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It is easy to generate random numbers with a uniform distribution when given a “fair
coin”, i.e. a coin that when flipped has an exactly 50% probability of giving each of heads
and tasls and for which the outcomes of successive flips are completely independent. But
o coin (mechanical or electronic) is perfectly fair. A “fairing” algorithm is an algorithm
which can use a biased coin, possibly many times, and produce a single heads or tails as
its result. Such an algorithm may be desirable since the results it produces may have a
smaller bias than the original coin which the algorithm employs. When only a bounded
number of biased flips are to be used, perfect fairing is usually not possible. This report,
however, will explore several methods of fairing biased coins and analyze some of the
advantages, disadvantages, and error properties of each. Some methods of generating
specific biases will also be given, and some problems associated with using a biased coin
rather than a fair one will be examined. For a particular use, the threshold at which a
coin’s bias becomes large enough to warrant fairing will be examined.

Introduction

If you are given a biased coin and want to use it (possibly many times) to simulate a single
flip of a fair coin, how would you go about it? One might ask first what the bias of the coin is. If
the bias is not known a priori, it can be estimated with a statistically significant number of trial
flips. If the coin is known to be perfectly 50-50, then you need do nothing special. If there is a
fixed bias where, for instance, tails is expected with probability exactly -\é, then you can simply
flip the coin twice returning tails if and only if the coin yields tails on both flips.

In most cases, however, it will not be possible, within a fixed pumber of flips, to generate a
perfectly fair coin — even under the assumption that the bias remains fixed and is independent
of previous flips and other influences. A more modest goal will be to reduce the bias to within a
reasonable limit.

In most of what follows, it shall be assumed that a biased coin is available for which successive
flips are independent. p will be used to designate the probability that any given flip of the coin will
yield heads, and ¢ = 1 — p will be used to designate the probability that a given flip will produce
tails. Because of the independence assumption, p and ¢ will not vary for a given coin. Finally,
€ = |p — g| will be used to denote the error (or bias) of the coin.

A fairing algorithm is a deterministic procedure which has access to a (possibly) biased coin.
The procedure may use the value yielded by the coin, perhaps many times, but no other source
of randomness is permitted. A fairing algorithm is not required to terminate, but if it does, it is
required to return either heads or tails as its result. P will be used to designate the probability
that a given fairing algorithm returns heads, and Q will designate the probability that such an
algorithm returns tails. P and Q may depend not only on the algorithm itself but also on the error
of the coin which is used. E = [P — Q| will denote the error of such an algorithm.

For example, if no fairing is used (i.e., the biased coin is used directly) then P = p, Q = ¢,
and E = P—Q = p-¢. The improvement in error that can be obtained will be shown for various
techniques to be described.

This report will explore several fairing algorithms and analyze them with respect to how well
they reduce E, how many biased coin flips they require, and when it might be desirable to use such
an algorithm in preference to using the biased coin directly.




Some Techniques for Fairing

the result is tails. But if the number of tails obtained is less than expected, the result is heads. The
THRESHOLD approach is simple but has many subtleties (which shall be explored in more depth
later). There are also several disadvantages, including the need to know the bias of the coin ahead
- of time and the complexity of the calculations which must be performed to obtain the threshold
criterion. Although the optimal threshold for a given coin using a preset number of flips can be
calculated with a numerica] sum, minimizing the error requires optimizing BOTH the number of
flips and the threshold. It is easily seen that THRESHOLD wil not produce a perfect 50-50 fairing
except in certain very specialized circumstances (such as in the 5;—5 case presented above).

Another approach is the XOR technique. The XOR function returns heads if the number of

smaller than THRESHOLD in most cases. It will be seen, however, that with XOR the error is 0
only when the coin is fair to begin with.

An alternative approach, usually attributed to vonNeumann [vonN51], might best be called
PAIRING. The PAIRING function, unlike the Previous two, is asymmetric. It is calculated as
follows:

Let B() be the Biased coin function (i-e. a random variable which yields heads or tails, each
with some fixed probability).

Function PAIR
Repeat Until X #¢ Y
Let X = B();
LetY = B()
Return X

The fundamental notion here is that if the bias of B is fixed, then the (heads, tails) pair will
occur with exactly the same probability as the (tails, heads) pair. In the other two cases, the pair is
discarded and another pair is chosen. Note that each of heads and tails is returned with probability

immediate result, so one can expect to complete the routine on average in about two iterations.
Thus about two pairs are used, and approximately four calls to B (i.e. four flips of the biased coin)
may be expected.

To be more precise, let p be the probability that B returns heads and let g = (1 - p) be the
probability that B returns tails. The probability that two calls to B return different values is then
2pq. Thus, the expected number of pairs needed is ;—,’,—q; and the expected number of biased flips is
2.,L =1

ithnthis form of the pairing function, a “bad” sequence of biased flips is one in which each
biasedﬂipisthesameasitspaxtner. For instance, HHTTTTH HTTHHHHHH would
be a bad sequence of flips since each pair chosen would be found to match and thus be discarded.
A simple extension to this approach, however, can drastically reduce the pumber of bad sequences.
The key observation is that (ustas H T...and TH... occur with the same probability) H H T
T...and TTHH... are equiprobable, and hence, can be used to select between heads and tails.
Thus, the pairing function can be extended to distinguish between these cases.
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With a stack of size loga n where n is the number of flips, a memory of all discarded flips can
be retained. When two identical groups of flips are encountered, the sense of the groups (all heads
or all tails) is placed on the stack for later comparison.

The Extended PAIRING function looks as follows:

" Fanction EPAIR
Initialize empty stack S
I=0
Repeat Until X # Y
Let J=I=1I+1;
Let X=Y = B();
While Jisevenand X =Y
Let Y = Pop S;
J=J/2
Push X onto S
Return X

EPAIR will (again by its symmetry) for any number of iterations yield each of heads and tails
with the same probability. In particular after 2" flips, for some positive integer n, the only bad
sequences are all heads or all tails. Whereas the original pairing function was able to make 2n-1
“trial comparisons” on 2" biased flips, the extended function makes 2" — 1 comparisons on the same
number of flips. Thus, the expected number of biased flips needed is just over half the previous
number — approximately .

With this approach, if ﬁ:e sequence H H T is observed, then it is known that the next biased
flip will “decide” the outcome. If the next flip is heads, then the result is tails; if, however, the next
flip is tails, then the result is heads. In general, if the first 2" biased flips yield the same result,
and the first change is seen somewhere between flip 2" and 2"*!, then the outcome will be decided
after at most 2"*! flips, but it may be Decessary to complete all 2"*! flips to come to a decision.

Hoeffding and Simons [HoSi70] observed that additional symmetries could be exploited by
allowing their algorithm more dynamic flexibility. Instead of H H T H yielding tails and H H H
T yielding heads, for example, the results yielded by these two equiprobable sequences could be
switched. This has the effect of causing both HH THand HH T T to yield heads. Thus, when
the sequence H H T is produced, the result heads can be returned with no additional flips.

Stout and Warren [StWa84] later discovered some further improvements that could be made
in this direction. It is, however, a property of all such even algorithms (algorithms which balance
probabilities by designating an equal number of equiprobable sequences as yielding each of heads
and tails) that they will not terminate as long as all trial flips have so far yielded the same outcome.
Since EPAIR will terminate within 2"+1 flips if the first change is observed between flip 2" and flip
2"+, the expected number of flips used by the EPAIR algorithm is no worse than a factor of two
greater than any algorithm from the class of even algorithms.

Analysis of Errors

For PAIR or EPAIR, P=Q = 3,50 E = 0, and the number of flips N is expected to be small.
However, this is not really a fair comparison, since PAIR and EPAIR may require an indefinitely
" large number of biased flips before terminating, while THRESHOLD and XOR worked with a fixed
number of flips.

A perhaps more just means of comparison (and perbaps more useful from both a theoretical
and practical viewpoint) may be obtained by bounding the number of biased flips to be allowed.
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This will be accomplished by introducing a bounded form of the EPAIR function (BEPAIR).
BEPAIR is defined to be the result of executing EPAIR for at most a prescribed number (N) of
iterations (flips), if EPAIR terminates in this time. For simplicity, BEPAIR will only accept bounds
of the form N = 2" (n a non-negative integer). In these cases, EPAIR is at least as good as any
even algorithm. If EPAIR does not terminate after N flips, then EPAIR must have been given
a bad sequence (either all heads or all tails). There is, in some sense, no information in such a
sequence since there is no evidence that the coin is not completely biased (will always yield heads
- or always yield tails) — a coin for which no useful fairing is possible. Thus, for lack of additional
information, BEPAIR will be defined to be heads on a sequence of N heads and tails on a sequence
of N tails. This is preferable to defining the same result on both bad sequences (since all other
sequences are balanced against each other, and this allows the two bad sequences to offset each
other somewhat). I p and ¢ are (perchance) exactly %, then the two bad sequences occur with
the same probability, so the balance is maintained (this gives the desirable property generally not
attained by THRESHOLD that fairing will not hurt an already fair coin).

For BEPAIR, let Pz (P-Good) be the probability of BEPAIR returning heads due to normal
termination of EPAIR, and let Q¢ be the corresponding probability of tails due to a “good” termi-
nation of EPAIR. Let Pg and Qp be the respective probabilities of heads and tails in termination
due to a bad sequence. Thus,

P=P;+ Pg and Q=Qc+@Qs
Observe also that Py = Q¢ (by symmetry). Thus,
E=|P-Q|=|Pg-Q5p|=|p" - ¢|

In the XOR technique with the number of flips fixed at N, P, the probability of returning
heads is given by

= (M) -y NN\
P= Z ( ,)pN—. ' and that of returning tails is Q = 2 ( ; )pN"q'
=0 \! =\
s even &=
Assuming, without loss of generality, that 0 < ¢ < p < 1; it is then easily seen that

(p-q)V =2N:(—1)‘ (Ij)ﬂ”"q‘ = i (?)p”"'q‘— ZN: (]:)p” “¢=P-Q

=0 =0 =0
i even § odd

Thus, Exor = (p - q)~.

This result may be somewhat surprising, since the following lemma will show that when allowed
only a bounded number of biased flips, XOR is at least as good as (and is, in fact, usually much
better than) PAIRING!

LEMMA
IfosqspSlanszl,then(p-q)NSp”-qN.

PROOF
Since0<g¢g<p<1,

P =" 2 (r-0p" 2 (p-g)p- 9" = (p-g)". 1
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It may be noted that, unless p = ¢, the above inequalities can be strengthened. In fact, for
large N and ¢ < p, (p - ¢)¥ « pV — ¢¥. I, for example, p = 0.6, ¢ = 0.4, and N = 64, then
0.6% ~ 6 x 10715, 0.4%4 &~ 3 x 10-26, and 0.2%4 & 2 x 10-5. Thus, the error of BEPAIR is
P* — ¢® ~ p® ~ 6 x 10715, While the error of XOR is only (p — ¢)% =~ 2 x 1045,

This indicates that the error of XOR is much less than the error given by the two “bad”
PAIRING sequences. This may seem somewhat counter-intuitive, but it suggests that although
PAIRING may be better in some instances, if one places a bound on the number of times one is

“willing to flip the biased coin, then XOR is at least as good a method of fairing as is PAIRING.

Where do THRESHOLD techniques fit in? It was observed earlier that for at least one specific
bias (¢ = #, € =+/2-1), a threshold approach gives a perfect fairing, whereas the error formulas
for XOR and BEPAIR show that the error with these techniques is zero if and only if the coin is
fair to begin with. Thus, a threshold technique can be better than these other approaches.

THRESHOLD, however, can be much worse. For a fixed number of biased flips N and a fixed
p and ¢, define the set of partial sums S; by

k-1 o
Si = ( ; ) pN -t

If k is chosen as the threshold (recall that this means that less than k tails yields heads and
that k or more tails yields tails), then Q = S, and P = 1- Sk, 80 E = [1-2S;|. If for some integer
k(O<k<N+1) 8 = %, then k is a perfect threshold. If not, then k should be chosen so as to
minimize |S; — }|. In the worst case, § lies in the middle of some interval. In this case,

% -Si= I% = Sk41| = Si41 - ';- =S+ (IZ)PN"'G" - ;i; ;
so
(1:)?" “tt=1-25
and

E=|P-Q|=1-25= (I:)p"'*q"
Hence, the THRESHOLD error is bounded by

max (If)p” “igt
[  §

and this bound is can be achieved. Thus, THRESHOLD can be much worse than XOR or PAIRING.

There is an interesting phenomenon observed here, and that is (unlike in XOR or PAIRING)
increasing the number of biased flips may actually sncrease the error. A simple example is seen
when the original coin is fair. With one flip, a threshold of 1 (less than 1 tails yields heads; at least
1 tasls yields tails) gives a perfect fairing. However, no threshold will give a perfect fairing with
two flips of this coin. In fact, E = % is the best that can be achieved.

This brings up an interesting question of how to simultaneously optimize the number of flips
and the threshold so as to minimize the error. As yet, we have no good approaches to this prob-
- lem. However, the problem seems to have a flavor similar to rational approximation by continued
fractions and a similar approach may be fruitful here.

THRESHOLDing may be generalized in several ways. First, keeping it symmetric, one may
partition the integers in 0,..., N into two sets. One of these sets is designated heads and the other
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general case than in the original.

The restricted problem of determining whether or not a a perfect 50-50 split is possible (much
less finding an optimum split) is a special case of the PARTITIONING problem (can a set of
 integers be partitioned into two sets such that the sum of the integers in the two sets are equal).
The general problem is NP-Complete; however, this special case could be tractible. As yet, we have
no results on the complexity of the problem of finding an optimum split.

The technique may be generalized yet further if asymmetry is to be tolerated. This is the
most general possibility, however, for it simply associates one of heads or tails with each sequence
of N biased flips. Bounded pairing certainly falls under this umbrella as does any function which
depends solely on a sequence of N biased flips (where N is fixed). _

Even with this generality, however, most biased coins can not be faired perfectly in bounded
time. If the probability of heads is p, then fairing it perfectly in a bounded number of flips would
imply the existence a non-trivial algebraic equation over the rationals with P as a root. This is, of
course, impossible if p is transcendental. Thus, if a bound is placed on the number of biased flips
to be allowed, then perfect fairing is not possible in general.

The Independence Assumption

For any of the above methods to work, it is essential that each element of the sequence of
biased flips used be independent of the others. In a natural setting, this may not always be the
case. For instance, if every flip has 60% probability of being the same as the Jast flip and 40%
probability of being different, then these methods as given will not work despite the fact the the
coin is dependant on only one previous flip and that this dependance is of a simple form. However,
in this case an independent sequence may be obtained by considering whether or not each flip was
the same as the previous. This will give an independent sequence of sames and differents on which
the above techniques may be performed. As long as some binary sequence may be derived from
the original sequence in which each element has a fixed probability of taking on each of the two
possible values, then these techniques are applicable. heads and tails need not occur with the same
probability, it is only necessary that the probability of each of heads and tails does not vary.

Samuelson [Samu68] showed how to generate an independent sequence from any sequence that
was generated by a fairly general class of Markov processes. The trick is to focus attention on
just one state. Blum [Blum84] shows that an obvious generalization of this technique fails for a
subtle reason and then presents a somewhat less intuitive generalization which allows all states to
be considered simultaneously — giving a far more efficient methodology.

Biasing of Fair and Biased Coins

Occasionally it is desirable to have coins with a bias that is not 50-50. Many of the approaches
given here can be easily extended to manage this possibility.

A simple THRESHOLD technique can adapt directly. The threshold must merely be chosen
80 as to approximate the desired probability rather than %




generated changes. The error properties of a coin do not change while st is being used to generate
a apecific n bit number.

The following theorem gives the asymptotic character of £ under the above conditions for al}
Possible positive values of k (note that k < 0 implies a constant or increasing error which, in the
Limit, sends £ to 1).

THEOREM
" K n bit numbers are generated at “random” using a coin with Yields 0 with probability P and
1 with probability ¢, and if the error E = P—¢= % (c and k arbitrary positive constants), then
the worst case error of generating an element of any given set consisting of exactly % of all n-bit
numbers goes (as n — o) to

1, if k < §;
€= erf(‘z), if k=1 (for ¢ = 1 this is 0.6827.. );
0, if k> 1.

PROOF

By applying the Central Limit Theorem, one can calculate the number of standard deviations
between the expected number of 0’s and 5. Since the worst case occurs precisely when less than 3
0’s are obtained, this will be enough to find the probability of generating less than 2 0’s and hence
the error £. Since the expected number of 0’s is

np=n 1+c
P=n\ztzx)

and the size of a standard deviation is

e (3o 520) () - P (G o)

the number of standard deviations is

[ Cy/n
n(Grar)-3__ 2 o
2 - £ 2k-1 _ 2
n(i-gm) Vi-d (e

When the limit as n goes to infinity is passed, it is quickly seen that for k > 1/2, the number
of standard deviations goes to 0; for k < 1/2, the number of standard deviations goes to infinity;
and for k = 1/2, the number of standard deviations goes to c. In this latter case, the probability
of landing within ¢ standard deviations of the mean in a normal distribution is given by erf (7"5)

This gives the desired result. 2

Thus, if E < %= can be maintained, then elements of the desired set are obtained with some

non-vanishing probability. If the original coin has error € bounded by any function of the form =
it can be improved by use of the XOR algorithm with sufficiently many flips to produce a “new”
coin with error bounded by -é:-. Let ¢ be the error of the original coin. By applying XOR to m
flips of the original coin, a new coin is produced with error ™. Since ¢ < %, it is only required
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XOR can be generalized to approximate the rational probability § by flipping a large number
of (fair or biased) coins and returning heads if and only if the number of heads obtained is less
than a when taken modulo b.

PAIRING approaches may also be extended, but the probabilities efficiently attainable seem
to be more limited. A § - g split may be obtained by flipping a (fair or biased) coin three times
rather than two in each iteration. If all flips are the same, the process is repeated. If not, the
location of the “odd” flip (the one different from the other two) can be used to decide which third
- to return. This can in a straightforward way be generalized with a stack as before to force all
heads or all tails to become the only bad sequences. If a bias of § is desired, then one can exploit
the fact that for fixed m and n, all sequences of m heads and n tails are equiprobable. If the
number, "';"}, of such sequences is greater than b, then any b such sequences can be designated
as terminating. a of these are designated heads and the remaining b — @ are designated tails.
The remaining (non-terminating) sequences require additional flipping. This approach, however,
becomes less manageable as the desired probabilities become less regular.

All of the above techniques generalize in a natural way to allow the possibility of more than
two distinct outcomes. The outcomes can be equiprobable or biased in any desired manner.

When is Fairing Worthwhile?

One question which arises immediately is “How much can a biased coin hurt me?” A common

context is the following. Let D, be the domain of binary integers of n digits. Let C, be a subset of
D, containing exactly half the elements of D,. By flipping coins, elements of Dy, will be randomly
chosen in hopes of finding members of Cn. This situation occurs in primality testing as well as
many other algorithms and is the basis of the Random Polynomial- Tsme complezity class RP (see
Gill77)).
[ Let p be the probability that the coin yields 0 and ¢ the probability that the coin yields 1.
Assume that p> gand E=p- 9. The worst case, assuming for simplicity that n is odd, is where
Cn = {2 € D, : z has more 1’s than 0’s}. If n is even, then exactly half of the sequences of D, with
the same number of 1’s and 0’s must be Placed in C,, (those which begin with a 0, for instance).
The error is comparable to the case of odd n, but the analysis of this case requires dragging around
an extra term. It is simpler, therefore, to consider only the case when n is odd.

The probability that an integer z which is generated by n flips of this coin will land in Cpis

8 (- ) (02) (-2

=0 =0

So, the error £ = (prob. z¢C,) - (prob. 2€Cn)=1-2 (prob. z€ Cn) is given by

=1 E (8 G50 E (v mro-ar

It is clear that for fixed E > 0, the error £ goesto 1 as n goes to infinity . It is also clear
_ that if the number of bits n is kept fixed, then £ goes to 1 as E goes to 1. Thus, to find a useful
asymptotic result, it is necessary to bind E and n in some way. A simple relationship is to let
E be an inverse polynomial function of n given by E = =%, for some positive ¢ and k. Note:
It is smportant to recognize that when generating an n bit number, the error Jor each bit remains
constant. The E = % relationship describes how the error varies as the number of bits to be
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that e™ < (5)" = & < 5; This is satisfied when mk > §. So m = [4] gives a sufficient
number of flips to be XORed to produce each bit.

Some Appraximations
The above result gives the asymptotic character of the error function, but in a practical case,
‘one may be using a coin with a certain known bias and want to decide whether or not the probability

of generating elements of a particular set (with a given number of flips) is enhanced by fairing. To
answer this question, one is again confronted with the equation

f=1- (%)H lifj (?) (1+E) (1- By

=0

For E« 1 (n<« }), the first few terms of the binomial expansion give the following ap-
proximation

’.) [1+4E][1 - (n— i) E]

(
- (D)7 (s e-nz

*»

=0
1\"! In/2
=0
n-1 [ In/2) [n/2)
-G R (X ()
=0 \' im0
n-1 In/2)
=- (i 2n (n 1) - n2"'l] E
2 =0 ' 1

-
1 'l-l l"/zj-l n-— 1 n—
= - 3 2n E ( i ) -n2" E

=0

n-1r
) 2n2""2 - n(n,,_ll) - n2"'l] E (since for odd n, |n/2] = 231)
] T

n-1
‘ (n”-,l) nE
axl

Sterling’s formula gives the relation

()~

So, this gives




L)

Thus, if the condition E < n is maintained, then for fixed E,n<€ g < @ (since0< E <1).
So, £ is bounded by a fixed constant. Similarly, when 1 is fixed, F <« ;’; < ;l! (since n > 1).

- So again, € is bounded by a constant,. Therefore, £ « 1 implies that £ js bounded above by

n
% < 0.8. This would imply that in excess of one in ten Sequences of flips will produce an element
of C,, one fifth of the expectation if the coin were perfectly fair.

_ In particular, if £ < V2 -1 can be achieved, then at least one out of every two sequences

of flips (on average) will yield an element of C,. This is attaineq when (in addition to £ < 1)
E< (v2- 1) VE, or alternately when n < 75z (3- 2v/2). But since E is assumed to be much
smaller then %, these conditions are already satisfied. Thus, if the original coin to be used satisfies
EK %, then two sequences of flips (2n total flips) will, with Probability greater thap %, yield an

element of C,. If it is presumed that any fairing method that might be used would require at least

C,. Therefore, when & <« %, the best results are obtained by using the coin directly rather than
“spending flips” fairing the coin.

Another bound which s especially useful for cojns with large errors may be obtained by the
following chain of inequalities.

)3 (:’) (1+E) (1~ gy
[n/?] n n n
<X (‘) (1+E)2 (1- E)}

=0

=0z (1)

=0
= 2"-1 (1- Ez)%
=2"1 (1 p?)F
< 21287 (where e is Euler’s constant)

So,

é= 1- (%)H lnfj (:’) (I+Ef(1-Er>)- (1-E3)% > _ -2
=0

In particular, if £ < 5 (fork < %), an alternate proof of the first case of the previous theorem
is seen.
Also,
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o2y ', .
._Z.; (’) (1+Ef(1-E)

In/2) i
= (l - E)" Z (:' Lﬁﬂ

= (1-E)
o,
2 (1- E) g (,)
=211~ E)"
So,
E=1- (%)M [‘12/:1 (:') (I+E)a-Eicy- (1-E)
Thus,

1-(1-2’)*5551—(1-2)"

Using the coin directly (E = €), one finds that the probability of generating an element of
Cs is 3%. K, however, the coin is faired first by flipping it twice and XORing; then the previous
analysis shows that £ = ¢2 = }, that is, the faired result will be 0 with probability g and 1 with
probability g (note that the coin remains biased towards 0 — we could have “cheated” by defining
the algorithm s0 as to reverse the bias, but this would hardly have been fair). Using this coin, the
probability of generating an element of Csis ﬁ% In this case, one sees with six flips of the original
coin, the probability of finding a member of Cs by fairing first is ,’3‘3; while without fairing the
original coin, six flips will allow two chances to find a member of Cj, each with a success rate of 3%.
This gives a probability of Iﬁ% of finding at least ope member of Cy (with fairing, the probability
was % = ﬁ%). Thus, given the same number of physical coin flips (6 in this case), one gets
better results by “using” some flips to improve the balance of the coin. Given 12 flips in the above
example, the probability is in favor (about 53%) of finding a member of Ci if fairing with XOR is
used and is against (about 49%) finding a member of Cs when no fairing is used.

Fairing is, therefore, advantageous in some instances. However, in other instances, it is not
worth the cost. It seems that the 7k rule above works well: if the error (E) of the coin is less
than the square root of the inverse of the number of bits in the random numbers being generated
(n), then fairing is probably not worthwhile; if, however, E > j,-‘, then fairing is likely to produce
better results.
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