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Abstract

We show that circuits composed of a symmetric gate at the root with AND-
OR subcircuits of constant depth can be simulated by probabilistic depth-2
circuits with essentially the same symmetric gate at the root and AND gates
of small fanin at the bottom. In particular, every language recognized by a
depth-d ACP circuit is decidable by a probabilistic perceptron of size 90(log* n)
and order O (log5d n) that uses O (log3 n) probabilistic bits. As a corollary,
we present a new proof that depth-d AND-OR circuits computing the parity of
n binary inputs require size gr /.

1. Introduction

An impetus for the study of circuit complexity has been its relationship with com-
putational complexity [9]. The inspiration for this paper is the discovery by Toda
and Ogiwara [14] that every language in PH is probabilistically polynomial time m-
reducible to a language in PP.

Studied since the 1950s, perceptrons are depth-2 threshold circuits consisting of a
single threshold gate at the root with AND-gates at the next level. Though percep-
trons were proposed as a powerful component of vision systems, Minksy and Papert’s
monograph [12] showed that they were computationally very weak. Thus debunked,
perceptrons all but disappeared from the scientific literature. Recently, however, cir-
cumstantial evidence for the computational power of perceptrons has been generated
by the success of neural nets, which are networks of perceptrons. In this paper, we
show that even a single perceptron is powerful enough to recognize every language in
AC®. To be precise, we show that probabilistic perceptrons of size 2P°Y18" and order
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polylogn can simulate AC® circuits (constant-depth, unbounded-fanin AND-OR cir-
cuits of polynomial size) with small error probability. This result and others in this
paper were independently discovered by Jun Tarui (personal communication, 1990).
Thus we vindicate the reputation of the much maligned perceptron.

Contrasting results are known for deterministic perceptrons. For example, Fu
Bin [7] has shown that there are depth-3 AC® predicates which cannot be computed
by deterministic circuits consisting of a small weighted threshold of AND-gates of
polylog fanin. Beigel [5] has some related results.

Our approach is inspired by Allender [1], who showed that every ACP circuit can be
simulated by a probabilistic depth-2 circuit with a parity gate at the root and 2p°l¥logn
. AND gates of fanin polylogn on the bottom. Allender and Hertrampf [2] extended
this result by reducing the number of random bits used. Hence they concluded that
every AC? circuit can be simulated by a deterministic depth-3 threshold circuit.

2. Probabilistic Polynomials and Circuits

Definition 1. A probabilistic circuit is a circuit with two types of inputs: actual
inputs zi,...,z, from {0,1}, and probabilistic inputs p;,...,p where each pi is
chosen uniformly and independently from {0,1}. If C is a probabilistic circuit, then
for any given z,,...,z, we think of the output C(zy,... ,Zn) as a random variable.
Let C be a probabilistic circuit, and let f be a function of n inputs. C computes f
with error € if for every z,...,z,, the probability that C(z,,... yTn) = f(T1,...,25)
is at least 1 —e.

Definition 2. A probabilistic polynomial is a polynomial in two types of variables:
actual variables zy,...,z, from {0,1}, and probabilistic variables p1,--.,p where
each p; is chosen uniformly and independently from {0,1}. If P is a probabilistic
polynomial, then for any given z;,...,z, we think of P(zy,...,2,) as a random
variable. Let P be a probabilistic polynomial, and let f be a function of n variables.
P computes f with error e if for every z1,.. ., z,, the probability that P(zq,...,2,) =
f(z1,...,2,) is at least 1 —e. .

Definition 3. A perceptron of size s and order m is a depth-2 circuit with a threshold
gate at the top and s AND-gates of fanin m on the bottom.

We will make use of the following result due to Valiant and Vazirani [15]:

Theorem 4. Let S C {0,1}’c be nonempty. Suppose wo,ws,...,w; are randomly
chosen from {0,1}*. Let So = S and let

Si={veS:v-w=v-wy=---=v-w; =0 (mod 2)}

for each i € {0,...,k}, where - denotes inner product. Let Pr(S) be the probability
that |Si| =1 for some i € {0,...,k}. Then Pry(S) > 1/4.
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Lemma 5. For any ¢ > 0, there exists a probabilistic polynomial of degree
@) (1og(1/e) logz(n)), with n actual variables and O (log(l/e) logz(n)) probabilistic
variables which computes the OR of the n actual variables with error probability at
most €.

Proof: Let bo,...,b,—1 be the actual variables and let & = [logn].
Consider elements of {0, l}k as numbers from 0 to n — 1 represented in binary. Let
S = {v € {0,1}*: 5, = 1}, and let the S;’s be as in Theorem 4. The bits of each w;
are taken from distinct sets of the probabilistic bits of size k. Notice that

1Sil= > (bA(v-wo=v-wy=--=v-w=0 (mod 2))). (1)
ve{0,1}*

Each summand in (1) can be computed as a polynomial in at most O (log2 n) vari-
ables, where b, and each bit in the w;’s are considered separate variables. Thus, for
each i € {0,...,k} we can compute P; = |S;| as a polynomial with the inputs and
the probabilistic bits as its variables. Consider P = []%;(1— P:). P is a probabilistic
polynomial with the ;s as its actual inputs and the bits of the w;’s as its probabilistic
inputs. If every b; is zero, then every |S;| = 0, so P(bo,...,by_1) = 1. If at least one
bi is 1, then, by Theorem 4, P(b,...,b,-1) = 0 with probability at least 1/4.

We can amplify the probability by repeating the test, each time using new prob-
abilistic bits. For each test, we construct a new probabilistic polynomial P which
differs only in the probabilistic bits used. Let P’ be the probabilistic polynomial ob-
tained by multiplying together O (log(1/e)) different such P’s. Notice that if every b;
is zero, then P'(bo,...,b,—1) = 1, and if at least one b; is one, then P'(bgy... bpm1) =0
with probability at least 1 — e. Since we repeat the test O (log(1/€)) times, we use
) (log(l/e) log? n) probabilistic bits in all. |

Lemma 6. For any ¢ > 0 and any function f computed by a depth-d, size-s
AND-OR circuit with n inputs, there exists a probabilistic polynomial of degree

o ((log(l/e) logz(n)log(s))d) of n actual variables and O (log(l/e) logz(n)) prob-

abilistic variables that computes f with error probability at most .

Proof:  Change each AND-gate in the circuit to the negation of an OR-gate of
the negations of its inputs. By Lemma 5, for each OR-gate in the circuit there is
a probabilistic polynomial that computes the value of the gate as a function of its
inputs and the probabilistic bits with error probability at most €/s. Let P be the
R d
composition of these polynomials. P has degree O ((log(l /€)log?(n) log(s)) ) and

computes f with error probability at most e. 1

Definition 7. A set of gates G is discerning if for any sequence of weights wy, ..., w;
there exists a gate ¢ € G of fanin f such that for all Tyy..., 2y, if Z,-f=1 z;w; = 0 then

9(z1,...,25) = 0 and if E,»f:l z;w; = 1 then g(zy,...,25) = 1. For example, the
collection of all (weighted) threshold gates is discerning.
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Theorem 8. For any € > 0, any discerning set of gates G, and any function f com-
puted by a depth-d, size-s AND-OR circuit with n inputs, there ezists a probabilistic

d
depth-2 circuit of size 20((1%(1/() log? () log()) ) composed of a gate from G at the root

and AND gates of fanin O ((Iog(l/e) logz(n)log(s))d) that uses O (log(l/e) log2(n))

probabilistic bits which computes f with error probability at most .

Proof: By Lemma 6, there exists a probabilistic polynomial that computes f with
error probability €. Let P be such a polynomial. Since the variables of the polynomial

d
are idempotent, it can be expanded into 20((108(1/6)1082(n) log()) ) monomials of degree

(0 ((log(l /€) log?(n) log(s))d), each of which can be computed by an AND gate of

fanin O ((log(l/ €) log?(n) log(s))d). Thus, f can be computed with error probability
at most € by a gate from G with these AND gates as inputs. |

Definition 9. A symmetric gate is a gate with inputs z;,...,z, which computes
h(3i; i) for some underlying function k. We say that two symmetric gates are of
the same type if the two underlying functions are the same.

Theorem 10. For any € > 0 and any function f computed by a depth-d cir-
cuit of n inputs with a symmetric gate g at the root and m size-s AND-OR sub-
circuits, there exists a probabilistic depth-2 circuit with a symmetric gate of the

d
same type as g at the root and 20((log(m/e)lof(n)log(ms)) ) AND gates of fanin
0 ((log(m/e) log?(n) log(ms))d) on the bottom that uses O (log(m/e) log2(n)) prob-
abilistic bits that computes f with error probability e.

Proof: By Lemma 6, for each subcircuit which computes an input to G, there exists
d
a polynomial of degree O ((log(m /€)log?(n) log(s)) ) that computes the value of the

subcircuit with error probability at most ¢/m. As in Theorem 8, each polynomial can
be computed by a weighted sum of AND gates. So, there is a symmetric gate of
the same type as g with these AND gates as inputs which computes f with error
probability e. |

Corollary 11. For any function f computed by a depth-d, size 2°°¢"* AND-OR cir-
cuit of n inputs, there exists a probabilistic perceptron of size 20(log?***)n) and order

0] (logzd(k"’l)n) that uses O (logk'*2 n) probabilistic bits and computes f with error
probability 1/20(l°gk n).

Corollary 12. For any polynomial p, and any function f computed by a depth-d
ACP circuit with n inputs, there ezists a probabilistic perceptron of size 20(1o8%n) 414
order O (long n) that uses O (log3 n) probabilistic bits and computes f with error
probability O (1/p(n)).




8. Parity and AC’: a structural approach

There have been many proofs that the parity function is not computed by any AND-
OR circuit having small depth and size [16, 4, 8, 11, 13]. We present a new proof
based on our result and a result due to Aspnes, Beigel, Furst, and Rudich [3].

Suppose that the parity of n binary inputs is computed by an AND-OR circuit
having size s and depth d. Then there exists a probabilistic perceptron having order
(log(s))°@ that computes parity with probability at least 3/4. Therefore there is
a deterministic perceptron of order (log(s))°(® that computes parity correctly on at
least 3/4 of all inputs. As shown in [3], such a perceptron must have order (y/r).
Therefore

5 = on/d

4. A Suggestion on Terminology

Many papers [9, 10, 1, 5, 17, 6] have considered circuits whose bottom level consists
of AND-gates or OR-gates having fanin polylogn, while gates at other levels have
unbounded fanin. Perceptrons have a single threshold gate at the root and polylog-
fanin AND-gates at the bottom level. Since they have only one threshold gate, it is
unnatural for us to think of perceptrons as depth-2 threshold circuits. We prefer to
call them depth-1% threshold circuits. In general we suggest the notation “depth-d+”
for circuits having d levels of unbounded fanin gates, followed by one level consisting
of polylog-fanin AND-gates or polylog-fanin OR-gates. For example, Yao’s result [17]
says that every bounded depth ACC circuit can be simulated by a deterministic
depth-2* threshold circuit of size 2p°vlogn,

5. Concluding Remarks

It is a routine matter to verify that all the polynomials constructed in this paper have
coefficients of size 2P¥1°86(n/¢) s the threshold gates used in the circuits built above
have weights of size 2P°V1°8(n/) a5 well. Beigel [5] and independently Bin [7] have found
depth-2+ AC? predicates which cannot be computed by any deterministic perceptron
with weights 2P°1°™ and order polylog n.! Thus, we find that randomization strictly
increases the power of perceptrons. Similar findings regarding randomness are known
in many other areas of complexity theory. We wonder whether the use of randomness
can assist in the design of more general neural nets.

Acknowledgments. We would like to thank Mike Fischer for helpful discussions and advice.

!Bin’s predicate cannot be computed by such a perceptron regardless of weights.
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