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EXPERIMENTS AND BOUNDS ON BLOCK DIAGONAL
PRECONDITIONING

MARK YAN-MING CHANG* AND MARTIN H. SCHULTZ!

Abstract. We have previously shown the theorems concerning the condition number of our block
diagonal preconditioning for the Laplace operator. We now extend the theorems to more general self-
adjoints elliptic operators with variable coefficients.

We then show some experiments using these kinds of block diagonal preconditioning on a network of
workstations.

1. Introduction. The sequential preconditioned conjugate gradient (PCG) meth-
ods are well-known as efficient ways to solve large sparse systems of linear equations [2].
These methods have been studied on variety of parallel architectures by Saad and Schultz

[7].

Following the approach in our previous paper [3], we consider a class of perfectly
parallelizable preconditioners and try to construct ones that have good convergence
properties, rather than trying to develop good parallel versions of the best sequential
preconditioners. Directly parallelizing good sequential preconditioners in terms of the
number of iterations and sequential work was studyed in [1].

In a parallel computing environment with very high communication cost relative to
computation, cutting down the amount of communication in the algorithm is very de-
sirable. It is sometimes even worthwhile to do more computation in order to do less
communication. This is the reason why we are investigating the perfectly parallel pre-
conditioners.

We did some experiments using these methods on some workstations connected on
a local area network. Comparing with a very good sequential modified incomplete fac-
torization preconditioner, we achieve relatively good speedups.

Let us first show the generalized theorems.

2. Upper Bounds of Condition Number for General Elliptic Problem. We
have derived bounds on the condition number of the block diagonal preconditioned sys-
tems for the discretized Laplace equation. In this section, we will extend the theorems
to general elliptic equations. '

Consider the second-order self-adjoint linear elliptic partial differential equation(PDE)
on a unit square domain
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for (z,y) € interior of Q = [0, 1] x [0, 1], subject to the zero Dirichlet boundary conditions
u(z,y) =0 for (z,y) € boundary of (.

We discretize the square domain in both the x and y directions with step size h,
where h = ﬁ, and n is number of discretizations along each dimension.

The lower case u is the continuous function that we are looking for. We will use the
upper case letter U to denote the discretized solution of the continuous function wu.

Since rectangular domain can be scaled to the unit square, we do not lose generality
by concentrating on the unit square domain.

Assume p(z,y), r(z,y) and s(z,y) are positive and bounded in :

IN

0<p<plz,y)<p

0<r<r(z,y) <7

0< s(z,y) <3

where p, P, T, 7, and 5 are constants.
We define the forward difference operators D, and D, as follows:

Uij1 — Ui

Din’j = A

We define the backward difference operators D, and Dy as:

_ Uij — U1
DxU,,js——fh—“—,
7 = Uij—Uija
Dy Uy = —H— ==t

We use the central difference to discretize the elliptic PDE (2.1) and get

—Dq[p(zi,y;) D, Ui 5] = Dy[r(zi,y;) Dy Us i1 + s(zi, y;)Usj = f(@i, y;)-

Let A denote the discretized elliptic operator (we normalize A by taking out the
factor 5%):

1

72 AUVii = =Delp(2i, yi) D7 Ui = Dy[r (i, y;) Dy Ui ] + (i, y5)Uis-
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We solve the following system of linear equdtions to get the discretized solution of

the PDE (2.1):
AU = b,

where the entries of vector b is defined by b; ; = k% f(z;,y;).
We can prove the following lemma using the zero boundary condition and summation

by parts [6]:
LEMMA 2.1.
(AU, U) = h2{<p(11:,', yj)DzU> DwU) + (7‘(:1:,', yj)DyU, DyU> + <3($i7 yj)Ua U>}
where

(p(@6,3;)DaU, D,U) = 33 [olzs,33) (Dl

1=0 5=0

(r(@6,3)DyU, D,U) = 3 3 [r(ai,55)(DyUii)?)

1=0 j=0

(s(z0,3)U,0) = 3 [s(zi,ui) 2]

1=0 j=0
The above lemma for the discretized Laplace operator L becomes
(LU,U) = R*((D,U,D,U) + (D,U, D,U)).

The next lemma bounds the elliptic operator by the Laplace operator.

LEMMA 2.2.
Let A be the discretized elliptic operator of equation (2.1) and L be the discretized
Laplace operator, then there exist constants u and fi such that

(LU, U) < (AU, U) < G(LU, ).

Proof.
By using lemma 2.1, and the fact that s(z,y) is positive, we have

1
L (av,U)
= (p(wia yj)DzUa D,,-U) + (7‘(.’175, yj)DyU7 DyU) + (S(:E,', yj)Ua U)

n

= 3 S by (DU + 3 S () (Dy Ui + 30 3 ls(e ) UZ;)

1=0 5=0 1=0 7=0 1=0 =0

S S (DU + 30 S (D, U

=0 j=0 1=0 j=0

min(p, o){3° S 1DV, + 331DV

1=0 5=0 1=0 j=0

1
= un{LUU)

Y

AV




where g = min(p,r).
This proves the lower bound of the lemma, and the upper bound is proved in a
similar manner:

(2.2) %mum

SR ICRACEIRLES 9 SUCKAILNINE I 3) DECRAL

S 2;)2%[1’(1) U,J)2] +Z;Z% D U,J) ZZO[EU?J]
< max(3,A){ 3D + 30 S I Us )} 435 3 U2,

1=0 j=0 1=0 j=0 1=0 j=0

= max(p, F) (LU, Uy +3) Z
1=0j
Apply the lemma that bounds the term U?; from [3] we have

h
—<Dwai,*’ Dwai,*)}

{ 8

(DoUsy;s DolUsy,) +

.M§
NE
oo >

-
1l
=)

n n
gZZUzj < 3

1=0 j=0

I
=3

J
" h
= Z{g(n + 1)(DQEU,|‘,yJ.,DmU,k,yJ +32{ (n+ 1)(DyUsg; , DyUsz; x)}
J=0 1=0
= 55(D,U,D,U) +3;(DyU,DyU)
11
= 3-8_?1,—2<LU, U)

Substitute this result back into (2.2) to get the upper bound:

000—l

Yooy

(AU,U) < max(ﬁ,F)(LU,U)-I—ES(

< KLU,U)

where fi = max(p,7,53). O

Now let us consider cutting the problem domain by lines as show in Figure 1. Similar
to the way we obtain a block preconditioning matrix M for the Laplace matrix L, we
can obtain a block preconditioning matrix B for the elliptic matrix A by ignoring the
connection across the cutting lines.

The cutting lines divide the big domain into many smaller subdomains. In each
subdomain, we can apply lemma 2.2, and this allows us to prove the following lemma:

LEMMA 2.3. There exist constants v and v such that

v(MU,U) < (BU,U) < 5(MU,U).
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cut in one dimension cut in both dimensions

FiG. 1. Cutting two dimensional grid with lines.

Now we are ready for the generalized theorem.

THEOREM 2.4.

Let A be the discretized elliptic operator of equation (2.1), and L be the discretized
Laplace operator. If we cut g vertical and/or horizontal lines through the n x n grid to
obtain block diagonal preconditioners B for A, and M for L, then the condition number
is bounded above as:

cond(B™'A) < O(qn + ¢ + 1).

Proof.

(BU,UY ~ (LU,U) = (MU,U) " (BU,U)"

(AUU) _ (AU,U) (LU,U) (MU,U)

Apply lemma 2.2 and lemma 2.3 we get

. (LU,0) (AU, U) (LU,U)
(E/V) mln( <MU, U>) < (BU, U> < (M/L/_) max(—(M—U,U_))

Since the matrix (B~'A) is similar to a symmetric matrix, we can apply Rayleigh
quotient theorem [9, p312] and get:

cond(B™'A) < H—licond(M'1 L).
Qv

Apply the bound we derived for the Laplace operator, we get our result

cond(B~'A) < %(qn +q¢+1)=0(gn+q+1).




3. Test Problem. We experiment with elliptic PDE’s in both two and three di-
mensions. The two dimensional problem is defined in equation (2.1):

— 5elbe 1) 5@, )] — 5 e, 5u(e )]+ s(e,)u(e9) = F(z)

The variable coefficients are defined as:

zy

p(z,y) =€
r(z,y) = ety

_r
l+z+y
The three dimensional problem is defined by:

s(z,y) =2+

__a_%[p(wv y,Z)%U(:ﬂ, y,Z)] - %[q(w,y,z)%u(w, Y, 2)] - a_ay'[r(w7 Y, Z)%U(:L‘, y)z)]

+w(z,y, 2)u(z,y,2) = f(z,y,2)

The variable coefficients are defined as:

p(z,y,2) = e™*
q(z,y,2) =

r(z,y,z) =™

w(w,y,z) =40+ m

Different right hand sides were tried. The relative performance between different
methods seem to stay the same. The tables we show here uses the 1 vector as the right
hand side. Zero initial guess is used.

We use central difference to discretize the PDE to get a system of linear equations.
This linear system is solved using our block diagonal preconditioned conjugate gradient
methods.

4. Implementations. The parallel preconditioned conjugate gradient methods are
implemented in C-Linda [4]. We can run our program anywhere that C-Linda is running.
This includes network of workstations.

The sequential program that we are comparing with is the modified incomplete fac-
torization preconditioned conjugate gradient method, MIC/PCG written in FORTRAN.
We run the sequential program with varying fill in level, and pick the best run time.

In our block diagonal preconditioning, we need to solve the local block in each pro-
cessor. We call various existing solvers to solve the local system. The solvers used are
SMPAK [8] and ESSL [5]. We also tried MIC routines on the local system.
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4.1. Communication Costs. We pick the perfect parallelizable preconditioners
for our parallel PCG methods, so there is no communication needed for the purpose of
preconditioning. But there are two parts of the parallel PCG needing communication,
namely the matrix vector multiply and the dot product.

The communication pattern in the matrix vector multiply depends on the structure
of the sparse matrix. Each processor holds a block of rows of the matrix and part of
the vector. We do some preprocessing to find out exactly who needs which part of the
vector before starting the PCG loop. In the PCG loop, each processor will put out
only the vector elements that are needed by some other processor into one tuple. Each
processor will read in the relevant tuples and get the needed remote vector elements.
These remote elements will be appended to the local vector, and the sparse matrix index
will be modified to point to the local copies of the remote vectors. This index change is
done only once before the iteration stage. After this change, the sequential matrix vector
multiply routine can be called and no extra indexing is done for the previously remote
elements.

For the parallel dot product, each processor first computes a partial sum locally,
then the partial sums are added together. There are many communication patterns to
use for the global sum, including trees, linear array, etc. We did not see a big difference
in timing for small number of processors. We settled with binary tree sum.

5. Modify the Diagonal. Analogous to the method of modifying the incomplete
factorization, we can add the cut off points in our block diagonal preconditioner back
to the diagonal. Actually, we can add a fraction of the off-diagonal elements back. It
turns out that the factor of 1 is the best when we solve the block diagonal preconditioner
exactly. Adding the cut off points back to the diagonal makes the preconditioner have the
same row sum as the original matrix. This gives the preconditioner more power without
changing the matrix structure.

fraction | iteration || fraction | iteration | fraction | iteration
1.00 14 .99 40 1.01 47
-0.10 65 .90 52 1.10 503
-0.20 65 .80 57 1.20 844
-0.30 66 .70 59 1.30 764
-1.00 61 .20 62 1.70 1132
-1.10 68 .00 64 2.00 1342
TABLE 1

parallel Smpak/PCG, Laplace on 240 x 240 grid, with 1 x 4 cut, reduce 2-norm of the residual to
10e-7, CG iteration=947

Table 1 shows the iteration numbers for adding different fraction of the off diagonal
back to the diagonal. We can see that factor of 1 is far better, and it gives an iteration
number of 14. Not adding back to the diagonal will require 64 iterations.

We don’t know a theorem showing why adding off-diagonal elements back to the
diagonal creates a better preconditioner. But the following two theorems show that
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there are more eigenvalues equaling to 1 if we do add the off-diagonal elements back.

THEOREM 5.1.

Let A be the discretized elliptic operator of equation (2.1). We cut q vertical lines
through the n x n grid to obtain the block diagonal preconditioner B for A. Assume each
subgrid has at least 3 columns after the cuts, then the number of eigenvalues equaling 1
for the preconditioned system B1A is:

n? — 2qn.
Proof.
We write out the matrix A using natural ordering in block form as:
[ A Cha ]
Cil:z A2 02,3
CI; As Csg
A= 03?:4 Ay Cys
Cis
Aq Cq,q+1
5 Cg:q+1 Agt1 -

The block diagonal preconditioner can be obtained by dropping the off-diagonal
blocks from the A matrix:

[ A, 0 ]
0 A2 0
0 As; 0
B= 0 Ay O
0
A, 0
| 0 Aq+1 ]
The preconditioned system will look like:
B 'A=1+R=1+B71C
0 01,2 1
C;": s 0 (i3
CI; 0 Csqu
I+ B! Cé’,4 0 Cus
o
0 quq+l
| Coarr 0




Zooming in on the off-diagonal blocks for q=2, we see:

[ 0 00 1
0 0 00 0
D, 00
0 0 D 0 00
R =B 00 0 0 0 00
00 0 D, 0 0
0 0 D,
0 00 0 0
i 00 0 |

It is easy to imagine the matrices for ¢ greater than 2. Each of the nonzero blocks
D, and D, are n x n full rank diagonal matrices. They appear in different block rows of
C. Therefore C has 2¢n linearly independent columns, and rand(C) is 2¢n.

Note, rand(R) = rand(B~'C) = rand(C), so R has 2¢gn nonzero eigenvalues and
n? — 2gn zero eigenvalues. Therefore B! A has n? — 2¢qn eigenvalues equaling 1. O

THEOREM 5.2.

Let A be the discretized elliptic operator of equation (2.1). We cut q vertical lines
through the n X n grid to obtain the block diagonal preconditioner B for A. Assume
each subgrid has at least 3 columns after the cuts. If we add the elements of A — B back
to the diagonals of B to obtain By, then the number of eigenvalues equaling 1 for the
preconditioned system BJ'A is:

n?® — qn.

Proof. Let us first look at the matrices for ¢ = 2 in detail. The matrix A using
natural ordering in block form is:

i 0 00 T
A 000] 0
Dy 0 0
00 Dy 0 00
A= !000 Ay ooo}
00 0 Dy 0 0
00 D,

0 [000 As
i 00 0 ]

Adding the off-diagonal elements to the main diagonal, we get the preconditioner:




By 0 0
Bd 0B20=
| 0 0 B
I 00 0
Ai+]0 0 0 0 0
0 0 D
D,y 0 0
0 A;+| 0 0 0 0
0 0 D,
D, 00
0 0 A3+000]
i 0 0 0] ]
Bd_lA= I+ Ry =I+Bd‘104
[0 0 O 0 00
[000 000} 0
00 —D Dy 00
0 0 D -D; 0 0 0 00
I+ B! {000 0 0 0 000‘
00 0 0 0 —-D, Dy, 00
0 0 D, -D; 00
0 looo ooo]
i 00 0 0 0 0],

where D; and D, are full rank diagonal matrices. It is easy to imagine the matrices for
q greater than 2.

Note along each vertical line in the matrix Cy, the n point-columns on left of the line
is linearly dependent on the n point-columns on right of the line. Also, each cluster of 2n
point-columns appears in different rows from the clusters around other lines. Thus the
matrix Cy has total of ¢n linearly independent columns. Since rand(Ry) = rand(By 1Cy)
= rand(Cy), then R, has gn nonzero eigenvalues and n? — gn zero eigenvalues. Therefore
B;'A has n? — gn eigenvalues equaling 1. O

There are two ways to bound the number of iterations for a PCG method. One
way is to use the condition number of the preconditioned system. Another is to use the
eigenvalue distribution of the preconditioned system. Basicly, one PCG iteration can
take care one cluster of eigenvalues. If the eigenvalues are clustered in a few groups,
then only a few iterations are needed to make the process converge. The previous two
theorems do not prove the convergence behavior of our block-diagonal PCG, but it does
show that if we add the off-diagonal elements back to the diagonal in the preconditioner,
there will be more eigenvalues equaling 1. This is a good sign by itself.

6. Tirhing results. We present here the run times on RS6000 workstations using
Network Linda V2.5.2. The workstations are connected via an Allnode switch from
10




IBM/Endicott. We have a network of RS6000/340’s and RS6000/560’s at Yale University

computer science department.

We also did experiments on the IBM SP1 computer located at Maui High Perfor-
mance Computing Center (MHPCC). The SP1 has thirty two RS6000/370 nodes, and a
fast switch called TBO connecting all of the nodes. The C-Linda used on the SP1 is a
beta test version.

The time are in seconds, and they are truncated to keep only one or two digits after
the decimal point.

The unknowns are ordered in the x direction first, then the y direction. The z direc-
tion is ordered last when there is such a dimension. When we cut the square domain for
the 2D case in different ways along the x and y directions, we obtain different bandwidth
in the preconditioning matrix. Similarly for the 3D case, we cut the cube domain by
planes and obtain different block-diagonal preconditioners.

We use some shorthands to refer to the methods we use. Here are the explanations
of these shorthands:

MIC/PCG Sequential preconditioned conjugate gradient (PCG) method with modified
incomplete Cholesky (MIC) factorization as preconditioner.

MIC/ParPCG Parallel PCG with MIC factorization of the block-diagonal matrix as
the preconditioner.

MIC/ParPCG2 Similar to MIC/ParPCG, the difference is that a fraction of the off-
diagonal elements are added back to the diagonal.

Smpak/ParPCG2 Similar to MIC/ParPCG2, the difference is that the block-diagonal
matrix is factored and solved completely as a preconditioner by calling routines
in the SMPAK package.

BandESSL/ParPCG2 Similar to Smpak/ParPCG2, the difference is that the precon-
ditioning solver is a banded solver from the ESSL library.

MICPCG/ParPCG2 Similar to Smpak/ParPCG2, the difference is that the precon-
dition solver is the sequential MICPCG.

The columns of data in each table represent the following:

p the number of processors.

cut the way the square or cube domain is cut. 2x3 means that the square domain is cut
into 2 pieces in the x direction and 3 pieces in the y direction. 4x2x1 means that
the cube is cut into 4 pieces in the x direction, 2 pieces in the y direction, and
no cut in the z direction.

itr or iter, the number of iterations.

pre the preconditioning time.

ord the ordering time for preconditioning.

fac the factorization time for preconditioning.

fraction the fraction constant used to multiply the off-diagonal element before adding
the result to the diagonal in the preconditioner.

sov the forward/backward solve time for preconditioning.

dot the dot product time.

mvp the matrix vector multiply time.

11




cmp the computation time.

cmm the communication time.
tot the total time for a group of operations.

i

spup the speedup with respect to the 1 processor time in the same table.
Sp same as spup.
sp2 the speedup with respect to MIC/PCG time on 1 processor.
sp3 the scaled speedup: assume the sequential time is p multiplied by the parallel com-
putation time.

Dot MVP SAXPY CG
p| cut | iter | cmm tot | spup || cmm tot || spup || cmm tot | spup tot | spup
1|1x1|2040| 0.00 | 74.53 | 1.00 | 0.00 | 403.47 || 1.00 0| 142.97 | 1.00 | 622.8 | 1.00
2| 1x2 | 2041 [ 13.97 | 51.55 | 1.44 || 7.40 | 207.87 || 1.94 0| 73.40| 1.94 || 3479 | 1.79
2| 2x1 {2040 |f 13.76 | 51.39 | 1.45 || 7.49 | 207.86 || 1.94 0| 72.76 | 1.96 || 347.7 | 1.79
3| 1x3 | 2040 || 14.08 | 45.65 | 1.63 || 11.81 | 146.40 || 2.75 0| 51.20 | 2.79 || 268.8 | 2.31
3| 3x1|2040 || 24.43 | 49.34 | 1.51 || 12.02 | 145.19 || 2.77 0| 4794 | 2.98 || 265.2 | 2.34
4 | 1x4 | 2040 || 27.05 | 46.56 | 1.60 || 23.08 | 124.54 || 3.23 0| 38.89| 3.67 ﬂ 227.5 | 2.73
4] 2x2 2040 || 15.17 | 38.32 | 1.94 | 19.83 | 120.17 || 3.35 0] 41.09| 3.47 || 231.7] 2.68
4 | 4x1 | 2039 [ 40.01 | 59.20 | 1.25 || 21.57 | 121.57 || 3.31 0] 39.00| 3.66 || 237.7 | 2.62
51 1x5 | 2040 || 30.44 | 45.41 | 1.64 || 22.32 | 103.56 || 3.89 0| 29.40 | 4.86 || 218.0 | 2.85
5| 5x1 | 2039 || 30.30 | 45.27 | 1.64 || 24.77 | 105.09 || 3.83 0| 29.11| 4.91 " 215.4 | 2.89
6 | 1x6 | 2039 || 54.97 | 67.55 | 1.10 || 14.41 | 84.83 || 4.75 0] 23.90| 598 |l 195.6 | 3.18
6 | 2x3 | 2041 || 28.98 | 41.59 | 1.79 || 28.67 | 98.05 || 4.11 0| 25.92| 5.51 | 193.9 | 3.21
6 | 3x2 | 2040 || 35.10 | 47.64 | 1.56 || 19.71 | 86.66 || 4.65 0| 23.96 | 5.96 || 184.7 | 3.37
6 | 6x1 | 2040 || 44.64 | 57.18 | 1.30 || 26.38 | 93.47 || 4.31 0| 23.87| 5.98 | 200.1 | 3.11
TABLE 2
Parallel CG on 420 z 420 grid, on RS6000/560, run time in seconds. reduce 2-norm of the residual
to 10e-7

In Table 2, the time spent in different part of the CG method are shown. For the

dot-product and matrix vector multiply, there are both the communication time and the
computation time. For the SAXPY operations, there is no communication. The speedups
are shown for each group of operations and for the CG method as a whole. The table
shows that both MVP and SAXPY are quite parallelizable, while dot product has too
big a communication cost as we increase the number of processors, no matter which kind
of global sum we used.

Table 3 shows the sequential MIC/PCG time with different levels of fill in. For fill
in level 3, we have the best total run time. We will use this time to compute one of the
speedups for the parallel timings.

In Tables 4, 5, and 6, the cut-off points are added back to the diagonal of the
preconditioner. This decreases the iteration number required without introducing any
extra fill in.

12




fillin | iteration | ordering | factor | solvs | dot prod | mvp | saxpy | total time
0 122 0.56 | 0.87 | 25.20 4.73 |1 24.34 | 8.55 64.44
1 84 0.79 | 1.09 | 20.80 3.26 | 16.77 | 5.98 48.84
2 73 1.04 | 1.37|21.31 2.83 | 14.62 | 5.14 46.45
3 61 1.70 | 2.08 | 22.49 2.38 | 12.26 | 4.29 45.31
4 52 249 | 2.86 | 23.71 2.02 | 10.48 | 3.68 45.35
5 47 3.52 | 3.87|25.43 1.83 | 9.49| 3.31 47.56
6 42 4.67 | 4.91 | 26.02 1.64 | 8.50| 2.94 48.79
TABLE 3

sequential 420 z 420 grid MIC/PCG on RS6000/560, run time in seconds. reduce 2-norm of the
residual to 10e-7

Table 4 shows the parallel PCG using MIC on the local preconditioner. Note, this
is not the parallel implementation of the sequential MIC/PCG method. We believe
that a direct implementation of the MIC/PCG method in parallel will require too much
communication on a slow network for workstations.

Our preconditioner depends on the way we cut the domain. We first derive a block
diagonal matrix by ignoring the connections along the cutting lines. We then use MIC
on this block diagonal matrix and the modified incomplete fatorization is used as the
parallel preconditioner. For two processors, there are two ways to cut the domain into
two pieces, namely 1x2 and 2x1. Since we order the unknowns along the x direction first,
the 1x2 cutting gives us a longer bandwidth in the resulting matrix than the 2x1 cutting.
For six processors, there are four ways to cut the domain.

For a given cut of the domain, we run our program with different levels of fill in, and
choose the best time to put in the table.

In addition to the fill in level, the way which we cut the domain affects the power
of the parallel preconditioner. On the one hand, we want to cut more in the x direction
so we have a smaller bandwidth for the preconditioner. On the other hand, we want
to keep the maximum number of cuts in any direction small to have faster convergence
according to our theorem. There is a best way to cut the domain for a given number of
Processors.

In Table 5, the block diagonal preconditioner is solved completely by calling minimum
degree sparse linear system solver called SMPAK [8]. We have three speedups in the
table: sp, sp2 and sp3. The sp is computed against the sequential direct solver of
SMPAK, while the sp2 is computed against the sequential MIC/PCG time. We call sp3
the scaled speedup, computed by assuming the sequential time is p times of the parallel
computation time, where p is the number of processors used. The scaled speedup does
not require us to obtain a sequential time for the same problem size, so we could report
the result for a much bigger problem. A bigger problem will show a even better scaled
speedup.

In Table 6, we use the banded linear system solver from ESSL [5] to factor and solve
the block diagonal preconditioner. Since banded solvers in general need more memory
than sparse solvers, we can not solve the given problem on one or two processors. In
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p| itr | fillin [ cut | pre | ord | fac | slv dot | mvp || cmp | cmm | tot | spup
1| 61 3|ixt|[262] 1.7]2.0[224] 2.38]|12.26 || 45.3| 0.00 | 45.3 | 1.00
2] 182 1[1x2{[23.3] 0405|223 | 4.87]18.66 | 51.4 | 3.27 | 54.7| 0.82
2134 2|2x1{[205]05]0.6[193] 3.52]|13.66 | 41.2]| 2.34|43.5]| 1.04
3| 269 1]1x3]22.8[0.2]03]221] 573|19.37 | 52.1 | 6.48 | 58.6 | 0.77
3174 2[3x1[175]03]04]16.7| 4.23|1252 36.0| 4.29|40.3| 1.12
4353 1]1x4]223] 01]0.2]21.9] 812]21.54 | 50.3 [ 11.42 | 61.7 | 0.73
4]213 2[2x2 157 02]03]151] 643]13.64 [ 325] 7.31[39.8] 1.13
4 | 206 2[4x1{152]02]03]|146] 4971243 31.4] 6.88]38.3| 1.18
5] 423 1{1x5[21.0] 0.1]0.2]20.6 ] 9.56|21.42 || 47.2 | 18.44 | 65.6 | 0.69
5] 245 1[5x1{[123] 0102120 5.55]12.31 || 27.4 [10.72 | 38.1 | 1.18
6 | 487 1[1x6 [ 20.2] 0.1]0.1]19.9 || 14.13 | 20.86 || 47.9 | 20.14 | 68.0 | 0.66
6 | 304 2[2x3|147]01]0.2]143] 8991340 | 31.2]12.58 | 43.8| 1.03
6 | 226 3[3x2|147]02]03|141] 561 961 26.4] 896|353 | 1.28
6 | 251 2[6x1{[123]01]0.2]11.9] 590 11.55 | 25.3 | 11.41 |36.7| 1.23

TABLE 4
MIC/ParPCG2 on 420 z 420 grid, on RS600/560, run time in seconds. reduce 2-norm of the
non-preconditioned residual to 10e-7

fact we can not solve the problem on six processors if we order the unknowns along the
longer dimension first. The table shows all the ways we could solve the problem up to
six processors. The speedup sp2 and sp3 are computed using the same method as in
Table 5. The total run time on six processors using a small bandwidth preconditioner is
the best time among all the timings we got.

Table 7 shows the parallel MIC/ParPCG2 time for 420x420 2D general elliptic PDE.
Note in the fraction column, the best fraction to use depends on the way the domain was
cut.

Table 8 shows the time of parallel ParPCG2 using sequential MICPCG as precon-
ditioner for 36x36x36 3D Laplace PDE. The fillin is for the sequential MICPCG. The
iteration number refers the parallel iteration. Note all of the parallel iteration converged
immediately. This is very special for the Laplace operator, and one should not expect

such a nice global convergence in other problems.
Table 9 shows the parallel MIC/ParPCG2 time for 36x36x36 3D general elliptic PDE.

Table 10 shows the parallel MIC/ParPCG2 time for 60x60x60 3D general elliptic
PDE’i‘able 14 shows the parallel MIC/ParPCG2 time for 48x48x48 3D general elliptic
PDE’i‘able 15 shows the parallel MIC/ParPCG2 time for 96x96x96 3D general elliptic
PDE'I.‘he extrapolated sequential times in tables 15 and 16 assume the run time is a
constant times n3%log,,n, and the constant is determined by using the run time on a

14




p | itr | cut pre | ord fac | slv| dot | mvp || cmp | cmm tot " sp| sp2| sp3
1| 1| 1x1][116.7] 8.0| 1053 | 3.3 0.05] 0.39 || 117.3 | 0.00 [ 117.3 || 1.00 | 0.26 | 1.00
245 1x2 [ 75.7[ 34| 36.7[35.4 (133|456 82.7| 0.86| 83.5] 1.40 | 0.54 | 1.98
241 2x1 | 595[33] 26.9[292]1.26] 416 | 659 | 0.84| 66.7 | 1.75 | 0.67 | 1.97
3[59[1x3 504 23] 191289 2.01] 442 56.7| 2.03| 588 | 1.99 | 0.77 | 2.89
3|54 [3x1| 40.0] 23] 13.7]23.9 155|393 ] 46.0 | 1.37| 47.4 ] 247095 |2.91
4]72]1x4 ] 31.3] 18] 7.8]21.6[1.85] 420 37.0] 2.52| 39.5] 296 |1.14 |3.74
461 |2x2] 335[1.6] 11.4][203] 1.79] 3.48 | 384 [ 2.05| 40.5] 2.89 | 1.11 | 3.79
4[63]4xt || 31.7[1.6] 9.6[203[149]349] 36.7] 2.15]| 389 3.01 | 1.16 | 3.77
5[81[1x5] 27.0] 1.4] 59]19.6[2.92] 3.88 | 32.3[ 3.32| 35.7 3.28[1.26 | 4.52
5 71 5x1 | 20.9] 1.2] 46]16.0[2.10] 332 26.5[ 3.05] 29.6 [ 3.96 | 1.53 | 4.47
6]93]1x6 | 22.2] 1.2] 3.6[174 (360 3.16| 27.0| 4.24| 31.3 | 3.74 | 1.44 | 5.17
6|77[2x3| 245] 1.1 6.7]166] 244| 4.09] 286 | 3.54| 322 3.64 | 1.40 | 5.32
6|72[3x2| 200 1.1 49140 170|376 238 3.23| 27.0 | 4.34 | 1.67 | 5.28
6|78 6x1| 207 1.0] 44]152] 200 4.02] 249 3.79| 28.7 ] 4.08 | 1.57 | 5.20

TABLE 5
Smpak/ParPcg2 on 420 z 420 grid, on RS600/560, run time in seconds. reduce 2-norm of the
non-preconditioned residual to 10e-7

smaller problem that fits on one node.

Table 16 shows the parallel MIC/ParPCG2 time for 144x144x144 3D general elliptic
PDE.

Table 17 shows the parallel MIC/ParPCG2 time for 420x420 2D general elliptic
PDE.

Table 18 shows the parallel MIC/ParPCG2 time for 420x420 2D general elliptic PDE
on SP1 using ethernet or switch.

Table 19 shows the parallel MIC/ParPCG2 time for 1320x1320 2D general elliptic
PDE.

The Cray XMP time in table 19 is extrapolated as follows. We have run times on

p|itr| cut | pre|ord | fac| slv| dot | mvp | cmp |cmm | tot | sp2| sp3
3(55]3x1{62.8] 0]16.3]465] 1.47]4.10] 68.6] 1.5770.2 || 0.64 | 2.93
4]61[2x2][81.5] 0258557 1.43]3.64] 86.6| 2.16 | 88.8 || 0.51 | 3.90
4]63[4x1{[35.0] 0] 6.0[29.0] 1.76 | 3.62 || 39.9 | 2.33 | 42.2 || 1.07 | 3.78
[5]72]5x1[[246] 0] 3.0[21.61.78]3.38 ] 29.7] 2.82 | 32.5 || 1.39 | 4.56 |
6]77[2x3][63.8] 0]17.1]46.6] 1.86] 3.66 | 68.0] 3.47 | 71.5 [ 0.63 | 5.70
6| 72]3x2[[384] 0] 81[302]2.07]338]42.1] 3.20[45.3] 1.00 | 5.57
6|78 |6x117.8] o] 1.8[15.9(2.29] 348 [ 21.8] 3.77|25.6 || 1.76 | 5.10

TABLE 6
BandESSL/ParPcg2 on 420 z 420 grid, on RS600/560, run time in seconds. reduce 2-norm of the
non-preconditioned residual to 10e-7
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proc | iter | fillin | cut | fraction | comp | comm | total | speedup
1| 61 3| 1x1 | not appl | 45.3| 0.00 | 45.3 1.00
21110 2| 2x1 097 341 221 363 1.24
3| 140 1| 3x1 097 | 27.2| 3.45| 30.6 1.48
4| 148 1| 4x1 097 | 21.0| 5.15| 26.2 1.72
5| 156 1] 5x1 096 | 183 | 7.33| 25.6 1.76
6| 160 1| 3x2 095 | 152 7.00| 22.2 2.04
TABLE 7

Parallel MIC/ParPCG2 on RS6000/560 for 4202420 PDE. reduce 2-norm of the residual to 10e-7

p | itr | pre itr | fill cut | fraction | comp | comm | total | spup

1] 32 0| 1{1x1x1 | notappl| 12.88 0.00 | 12.88 | 1.00

21 1 31| 1] 1x1x2 1.00 | 6.00| 0.26| 6.27| 2.05

41 1 29| 1] 2x2x1 1.00 | 2.78 | 0.44| 3.22| 4.00

8| 1 25| 1| 2x2x2 1.00 | 1.24| 046 | 1.71| 7.53
TABLE 8

Parallel MICPCG/ParPCG2 on RS6000/340 for 36z36236 Laplace. reduce 2-norm of the residual
to 10e-7

a smaller problem on both the Cray and the IBM, and Cray XMP is about 1.5 times
faster. We use this factor to approximate the Cray run time on this bigger problem.

The extrapolated sequential time in tables 19 assumes the run time is a constant
times n?®log,,n, and the constant is determined by using the run time on a smaller
problem that fits on one node.

7. Concluding Remarks. We have generalized our block diagonal precondition
theorem to more general elliptic PDEs. We have implemented our block diagonal PCG
methods on a network of workstations.

The speedup with respect to the sequential MIC/PCG is not very close to linear.
This shows that parallelizing sparse linear system solver in an environment with high

proc | iter | fillin cut | fraction | comp | comm | total | speedup
1] 25 0| 1x1x1 | not appl | 8.30| 0.00| 8.30 1.00
2| 34 0| 1x1x2 080 551 | 098] 6.49 1.27
31 35 0] 1x1x3 0.70 | 4.28 | 1.55| 5.84 1.42
41 36 0 | 4x1x1 0.76 | 3.20 | 2.16 | 5.36 1.54
5| 39 0 | 5x1x1 070 | 3.20| 2.39| 5.59 1.48
6| 40 0| 1x1x6 080 | 2.19| 3.22| 5.38 1.54
7| 42 0 | 1x1x7 070 | 192 3.62| 5.54 1.49
8| 39 0 | 2x2x2 0.70 | 1.78 | 3.32| 5.10 1.62
TABLE 9

Parallel MIC/ParPCG2 on RS6000/340 for 36236236 PDE. reduce 2-norm of the residual to 10e-7
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proc | iter | fillin cut | fraction | comp | comm | total | sp3

5| 50 0| 1x1x5 0.80 | 14.96 | 6.66 | 21.62 | 3.45
6| 54 0 | 1x6x1 0.80 | 13.65 7.05 | 20.71 | 3.95
7| 56 0 | 1x1x7 0.76 | 12.44 | 7.26 | 19.70 | 4.42
8 0

53 2x2x2 0.80 | 9.65 6.89 | 16.54 | 4.66
TABLE 10
Parallel MIC/ParPCG2 on RS6000/340 for 60z60z60 PDE. reduce 2-norm of the residual to 10e-7

iter # for different fillin
fraction | fill=0 | fill=1 | fill=2 | fill=3 | fill=4
0 38 32 30 30 28
1 37 39 36 33 32
.30 34 31 30 30 29
40 32 31 30 30 29
.60 31 32 30 30 29
.68 31 32 31 30 30

.69 31 32 31 29 29
.70 31 32 31 29 29
.75 31 32 31 29 29

.76 31 33 31 29 29
.19 31 33 31 29 29
.80 31 33 31 30 29
90 33 34 32 30 29

cost per iter 1| 1.03| 1.09| 1.20| 1.40
TABLE 11
MIC/ParPCG2, general elliptic PDE on 24 x 24 x 24 grid, with 2 x 2 x 2 cut, reduce 2-norm of the
residual to 10e-7.

communication cost is a very challenging job.

However, we do have very good scaled speedup. This shows the feasibility of solving
very large sparse linear systems on a network of workstations without paying too much
to the communication cost. Qur approach is one way to aggregate all of the memories
from different workstations and to solve a much bigger problem that does not fit on one
node.
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iter # for different fillin
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MIC/ParPCG?2, general elliptic PDE on 36 x 36 x 36 grid, with 2 x 2 X 2 cut, reduce 2-norm of the
residual to 10e-7.
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iter # for different fillin
fraction | fill=0 | fill=1 | fill=2 | fill=3 | fill=4
0 94 78 69 60 55
1 81 80 75 69 65
.70 58 54 52 52 51
.18 54 59 53 52 51

.79 53 99 54 52 a1
.80 53 59 94 32 31
.83 53 55 54 52 51

.84 53 56 39 53 52
.85 54 56 35 33 52

cost per iter 1| 1.11| 132 1.68| 238
TABLE 13
MIC/ParPCG?2, general elliptic PDE on 60 x 60 x 60 grid, with 2 x 2 x 2 cut, reduce 2-norm of the
residual to 10e-7.

proc | iter | fillin cut | fraction | comp | comm | total | speedup
1| 30 0] 1x1x1 0.70 | 12.93 0.0 | 12.93 1
8| 47 0 | 2x2x2 0.71 ] 2.54 2.78 | 5.32 2.43

27| 55 0 | 3x3x3 0.71 1.10 4.82 | 5.92 2.18
TABLE 14
Parallel MIC/ParPCG2 on SP1 for 48248248 PDE. reduce 2-norm of the residual to 10e-7

proc | iter | fillin | cut l fraction | comp | comm | total | sp| sp3
1 extrapolated time using O(n®*log;on) 172.47 1 1
8| 91 0 | 2x2x2 0.71 | 37.58 | 10.64 | 48.23 | 3.57 | 6.23

27| 85 1| 3x3x3 0.71 | 13.26 | 13.25| 26.51 | 6.50 | 13.50

TABLE 15
Parallel MIC/ParPCG2 on SP1 for 96296296 PDE. reduce 2-norm of the residual to 10e-7

proc | iter [ fillin |  cut [ fraction | comp | comm | total | sp | sp3

1 extrapolated time using O(n®°log,yn) 776.24 1 1

57[125] 1]3x3x3| 0.71] 60.75 | 37.69 | 98.44 | 7.88 | 16.66
TABLE 16

Parallel MIC/ParPCG2 on SP1 for 144z144z144 PDE. reduce 2-norm of the residual to 10e-7
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proc | iter | fillin | cut | fraction | comp | comm | total | speedup
1] 61 3 | 1x1 | not appl | 45.73 0.0 | 45.73 1
21110 2| 2x1 0.97 | 33.87 | 1.15| 35.02 1.30

3| 140 1] 3x1 097 | 26.74 | 2.24 | 28.99 1.57

4| 148 1|4x1 097 | 20.64 | 3.81 | 24.45 1.87

5| 156 1| 5x1 0.96 | 17.76 | 4.70 | 22.47 2.03

6| 164 1] 3x2 0.97 | 1531 | 5.13 | 20.44 2.23
91181 1| 3x3 0.95| 11.85 | 6.95 | 18.81 2.43

16 | 212 0| 4x4 096 | 7.35| 9.02|16.38 2.79
24 | 220 0| 6x4 096 | 5.39 | 10.03 | 15.43 2.96

TABLE 17
Parallel MIC/ParPCG2 on SP1 for 420420 PDE. reduce 2-norm of the residual to 10e-7

network | proc | iter | fillin | cut | fraction | comp | comm | total | sp

1| 61 3 | 1x1 | not appl | 45.73 0.0 | 45.73 1

ethernet 24 | 224 0| 6x4 0.97 | 4.98 | 259.48 | 264.47 | 0.17

switch 24 | 224 0| 6x4 097 | 570 | 10.55| 16.26 | 2.81
TABLE 18

Parallel MIC/ParPCG2 on SP1 using ethernet or switch for 4202420 PDE. reduce 2-norm of the
residual to 10e-7

proc | iter I fillin | cut | fraction I comp | comm | total | sp sp3
1| extrapolated time using O(n®®log;yn) | 952.59 1 1
16 | 393 1| 4x4 0.98 | 138.38 | 32.94 | 171.32 | 5.56 | 12.92
24 | 420 0| 6x4 0.99 | 91.25| 36.09 | 127.34 | 7.48 | 17.19
30 | 440 0| 6x5 0.99 | 76.16 | 37.18 | 113.34 | 8.40 | 20.15

1 extrapolated time on Cray XMP 635.06 | 1.5 1.5
‘ TABLE 19
Parallel MIC/ParPCG2 on SP1 for 1320x1320 PDE. reduce 2-norm of the residual to 10e-7
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