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SYNOPSIS

This work addresses questions from automata-based computational
complexity, using techniques and conceptual tcols from formal language
theory and the study of subrecursive functions as well as from automata
theory. The goal is to obtain information on the recognitional power of
resource-bounded automata, especially as compared to the expressive power
of string-theoretic predicates used in defining sets.

Chapter 1 introduces the topics considered in this dissertation and
contains an overview of the results.

" models for resource-bounded

"Query machines' and "oracle machines,'
relative computation, have been studied in [3,16,37,38,39,40,52]. The
definition of oracle machine from [39] is used here. Chapter 2 gives
some basic results for time-bounded oracle machines, especially in the
context of linear and polynomial time bounds. Properties considered are
closure under language operations (Theorem 2.2.4), the hierarchy induced
by in<reasing time bounds (Theorem 2.4.1), relationship to classes defined
by time-bounded Turing acceptors (Propositions 2.1.5, 2.2.2), and the
comparative power of deterministic and nondeterministic operation
(Proposition 2.2.3). It is also shown (Theorem 2.3.1) how the language
accepted by an oracle machine can be represented using language-theoretic
operaticns applied to the oracle set and a simpler language. With the
exception of Propositions 2.1.5 and 2.2,3, which appeared in {38} and [3],
resps.ctively, for polynomial time bounds, all results in this chapter are

new. Many of the results are extensions to oracle machines of known

ix

properties of Turing acceptors. The representation theorem (2.3,1) was
suggested by the definition of "r.e. in" given in [47].

In Chapter 3, the rudimentary relations [51] are investigated by
applying the connections established there between definition of languages
using_oracle machines and definition using language operations‘or string
predicates. Two new characterizations of the class of rudimentary
relations are given (Theorem 3.2.7 and Corollary 3.3,5(2)), which allow
different proofs of known properties of the class (Corollary 3.2.8,
Corollary 3.3.5(1)). Some basic results on the rudimentary relatioms
from [33,34,42] are given in Proposition 3.2.4(1)-(3) and are used in
proving the characterizations. Corollary 3.2.8 is proved directly in
[41,45] and Corellary 3.3.5(1), in [57]. Proposition 3.2.2, the version
of the Chomsky-Schutzenberger Theorem [14] used here, is taken from {8],
and Proposition 3.2.3 is from [9]. All other results in this chapter
are new.

The linear hierarchy, a decomposition of the rudimentary relations
into a structure of classes defined using linear-time oracle machines, is
the topic of Chapter 4. Closure properties (Propositions 4.1.2, 4.3.2)
and characterizations (Theorems 4.1.4, 4.2.2) of the classes in the
linear hierarchy are established, as well as equivalences among the
questions remaining open (Propositiom 4.1.3, Corollaries 4.3.8, 4.3.10).
A generator ("complete set") for each class is constructed (Theorem 4.3.5).
All results in this chapter are new; some are generalizations of results
previously known for the quasi-realtime languages, the first class in the

linear hierarchy.



The polynomial hierarchy [40,52,53] is considered in Chapter 5.
The technique of "polynomial translation" (as used in [7]) is combined
with results from Chapters 3 and 4 to yield simple proofs of properties
of the polynomial hierarchy. Proposition 5.2.3 appears in [38].
Proposition 5.3.10 was announced in [53] but was obtained independently.
As with the linear hierarchy, many results on the polynomial hierarchy
are generalizations of results known for the first class in the hierarchy.

The appendixes contain proofs, deferred from the text, of two new
results. Theorem 2.4.1 is proved in Appendix A; it is a relativized
version of theorems from [28,49]. Appendix B contains the proofs of
Proposition 3.3.3 and some related results. The development in Appendix
B leads to simplified proofs of Corollary B.4(1) and (2), which appear

originally in [46] and [31], respectively.

Chapter 1: INTRODUCTION
1.1. SETTING

This work -addresses questions from automata-based computational
complexity, using techniques and conceptual tools from formal language
theory and the study of subrecursive functions as well as from automata
theory. The goal is to obtain information on the recognitional power
of resource-bounded autcomata, especially as compared to the expressive
power of string-theoretic predicates used in defining sets. Only
strictly subelementary families of languages are considered; in
particular, the languages they contain have membership problems of at
most exponential time complexity by means of Turing acceptors. Since
families of languages are the objects for amalysis, the only specific
languages that are of {interest are generators for the families.

The study of the finite specification of functions, and, in
particular, of characteristic functioms for infinite sets, is central to
the development of the mathematical foundations of computer science.
Specification of a set in some system gives a view of the complexity of
its characteristic function relative to the basic operations or
capabilities of the system. On the one hand, research in computational
complexity focuses on finding specifications that are "concise" or "simple"
i.e., that are of minimal complexitf. On the other hand, properties of
the sets that possess simple descriptions are investigated, leading to

characterization of the expressive power of the system.



Medels for computing functions or recognizing sets that are based
on Turing machines are useful for studying problems of computation and of
complexity. While unrestricted Turing machines are equivalent to many
other formulations of the idea of "effective compufability," it is more
important for the study of computational complexity that correspondences
are known between complexity as measured using Turing machines and as
measured using more realistic models of computation. Thus although the
basic operations allowed in the model are highly restricted, questions
about the actual complexity of functions may be answered by ccnsidering
and comparing the power of resource~bounded Turing machines. The
restricted nature of the model simplifies manipulations and comstructions
involving the machines and the sets they accept. This 1is particularly
important for arithmetization and other representations of languages
accepted by machines with small bounds on computational measures.

Variations on the Turing machine model have been defined by varying
the mode of reading input (e.g., one- or two-way, one symbol per step or
with delay), by allowing nondeterministic operation, and by extending or
restricting access to the storage tapes or the actions performed on them
{e.g., allowing multiple heads on one tape or restricting a tape to serve
as a stack or a counter). To derive quantitative information on the
complexity of recognition problems relative to the chosen model, measures
of computational resource are assigned, most commonly the time or space
used during a computation as a function of the imput. Certain questions
can be posed concerning the power of the resource-bounded automata thus

defined and the properties of the classes of languages they accept. For
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example:

(1) What correspondence exists among the measured resources used in
computations and among the classes of languages determined by
different measures of resource?

(2) What increase in power results from the extension to nondeterministic
operation?

(3) What increase in allowed resources will result in increased
recogﬁitional capacity?

(4) How do classes defined by various resource bounds relate to classes

of languages arising from other machines models or in other contexts?

Only partial answers to these questions are known. With respect to the
second question, for instance, nondeterminism is known to add
recognitional capacity for certain classes of (time-bounded) machines with
restricted storage, but does not add power for finite-state ‘machines, the
most restricted model. Due to its importance for establishing whether
practical procedures exist for solving certain persistent recognition
problems, the question of the power of nondeterminism in computations of
length bounded by a polynomial in the lemgth of the input ("P vs. NP") is
currently receiving much attention. This question need not be attacked
directly: ' An answer to it can be derived from answers to other questions,
about the complexity of specific languages and about the closure
properties of the classes involved and their relationship to other
classes of languages. As indicated by this example, these four general

questions are not independent. In particular, Instances of the first



1-4

three questions can often be stated in terms of topics contained in the
fourth.

Many approaches other than acceptance by automata can be taken for
arriving at definitions of classes of languages. A class might be defined
as consisting of the languages generated by some class of formal grammars
(e.g., the context-free languages, generated by the context-free grammars),
or as consisting of the languages associated with a class of trees or of
functions (e.g., the class of languages whose characteristic functions
are elementary functions}. A class might also be defined by requiring
the strings in the languages it contains to satisfy some structural
property (e.g., the class of languages with the semilinear property).

Two other approaches are based on defining classes by using operations on
languages. In the first, a class of languages is defined inductively from
another, that is, is defined to be the smallest class containing some
basis languages and closed under given operations. For instance, the
regular sets can be defined inductively from the finite sets using the
operations of union, product, and Kleene closure. In the second approach,
the defined class consists of those languages resulting from one
application of some operation (e.g., complementation) to the basis
languages or from one application of some function in a class of string
mappings {e.g., inverse homomorphisms). As is the case for the examples
given, the classes resulting from these forms of definition can sometimes
be shown to equal or to contain the class of languages accepted by some
type of automaton. Such connections give a different view of the

properties of the computing devices and of the languages they are

capable of accepting, giving rise both to new questions and to new
techniques for studying the automata, Characterizations can be used to
restate open problems into possibly more tractable forms, and often allow
for simpler proofs than the original definition.

Any machine derived from Turing machines operates using
symbol-by-symbol scanning and manipulation of strings, and the basic
operation on strings is concatenation. A natural candidate, therefore,
for a class of languages to compare to automata-based complexity classes
is one defined inductively from a language representing concatenation.
Quine [44] investigated the form in which concatenation could serve as a
basis for arithmetic {and hence for computation with numerals), showing
that addition and multiplication are first-order definable from
concatenation. As part of a study of recursive function theory, Smullyan
[517 defined and used the class of rudimentary relations, consisting of
those sets that are "constructively" definable from concatenation
(restricting the quantifications allewed to a bounded form)., Bennett [4]
subsequently showed that addition and multiplication are comstructively
definable from concatenation, and defined some further classes of
rudimentary sets. Connections between these classes and classes arising
in automata and formal language theory have been recognized and studied
[41,15,33,34,42,57].

In this dissértation, a machine model ("oracle machines") that
extends Turing machines by allowing relative computation is studied.
Since the only measure of resource assigned is the number of steps taken

in a.computation, ‘the first of the questions cited above for resource-



bounded automata is not considered for oracle machines; partial answers
to the last three questions are developed. Primary attention is given

to the final topic, of the relationships of classes of languages accepted
by time-bounded oracle machines to other classes of languages. We use
oracle machines to derive new characterizations of the rudimentary
relations, which yield further knowledge of the relationship of this
class to classes from automata theory as well as information on open

problems.

1.2.OVERVIEW OF CHAPTERS

This section contains a survey of the topics considered and results
presented in each chapter of this dissertation, In the final section of
this chapter some terminology from automata and formal language theory is
reviewed.

An oracle machine is a multitape Turing acceptor with the added
ability to determine membership in a (variable) language. During a
computation such a machine may write a string on a distinguished tape and
ask for information on the string; the next state the machine enters is
determined by whether that string is a member of the "oracle set" or not.
Thus computations of the machine proceed relative to the informatiom it
receives, and it may accept different languages relative to different

oracle sets.

Unrestricted oracle machines can be used to define Turing
reducibility and hence serve in expressing the notion of degrees of
unsolvability [54,47]. Cook [16] introduced time-bounded relative
computation to define a restricted Turing reducibility and applied it
fruitfully to the question of the power of nondeterminism in poiynomially
time-bounded computations by Turing acceptors. TFurther studies of these
(and other) time-bounded reducibilities and of the structure they place
on the recursive sets have since been made [3,37,38,39,521.

The model of oracle machine used here is a technical variant of
Cook's "query machines." We view relative computation as a way to define
classes of languages from others and use the tools of automata and formal
language theory to study the languages accepted by oracle machines.
Time-bounded oracle machines share many of the properties of other
resource-bounded abstract automata and proofs that have become standard in
automata’ theory can be easily extended to apply to them. Chapter 2 gives
some basic results for time-bounded oracle machines, especially in the
context of linear and polynomial bounds, which are iwwed in the remainder
of the dissertation. Properties considered are tlosure under language
operations (Theorem 2.2.4), the hierarchy induced by increasing time
bounds (Theorem 2.4.1), relationship to classes defined by time-bounded
Turing acceptors (Propositioms 2.1.5, 2.2.2), and the comparative power
of deterministic and nondeterministic operation (Proposition 2.2.3), It
is also shown (Theorem 2.3.1) how the language accepted by an oracle
machine can be représented using language-theoretic operatioms applied to

the oracle set and a simpler language. This representation theorem, in



the spirit of those in [14,9,12], is used extensively in the following
chapters.

The class of rudimentary relations of Smullyan [51] can be defined

as the smallest class of string relations containing the concatenation
relations and closed under the Boolean operations, explicit transformation
and a form of bounded (existential and universal) quantification. It is
known that the addition and multiplication relations are rudimentary [4]
(identifying a number with its dyadic notation), and since, further, this
class is closed under many of the operations studied in automata and
formal language theory, it is of interest for the formal analysis of
computation {as well as for its role in logic [4,51}).

In a natural way the rudimentary relations give rise to a family of
languages. Since (Proposition 3.2.4) a relation is rudimentary if and
only if its associated language is rudimentary, the distinction between
rudimentary relations and “rudimentary languages" is ignored. The class
of rudimentary relations contains all context-free languages [34], all
languages accepted in linear time by nondeterministic multitape Turing
machines (Proposition 3.2.4), and all languages accepted in logarithmic
space by nondeterministic Turing machines [42]; on the other hand, every
rudimentary relation can be accepted in linear space by a deterministic
Turing machine [41].

In Chapter 3, the "machinery” developed in Chapter 2 is used to
provide two new characterizations of the rudimentary relations, one using
oracle machines and the other as an inductively defined class, with a

different basis and different operations than in the original definition.
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These results will now be described.

Consider nondeterministic oracle machines that operate in linear
time (i.e., the number of steps in any computation is bounded by a
constant multiple of the length of the input string). If A i1s a language,
then let NL({A}) denote the class of languages accepted by such ‘machines
when given an oracle for membership in A. For a class C of languages,
let NL{C) = U{NL{{A}): A ¢ C}. Using ML( ) to denote this operator on a
class of languages, let NL*( ) denote the closure of a class under
applications of NL{ }. This provides the notation necessary to state our

first characterization of the rudimentary relations.

Theorem 3.2.7. The class of rudimentary relations is the smallest

nonempty class cleosed under the operation of relative acceptance by
nondeterministic linear-time oracle machines. That is, NL*¥({¢}) is

exactly the class of rudimentary relations.

The proof of Theorem 3.2.7 depgnds on a characterization of the
operator NL( } in terms of language-theoretic operaticns that follows
from Theorem 2.3.1.

Because NL( ) and NL*( ) are defined by means of abstract automata,
it is apparent from Theorem 3.2.7 that the class of rudimentary relations
is closed under various operations studied in formal language theory, as
well as under the Boolean operations given in its definition; for
example, it is closed under product of languages, Kleéne *, inverse
homomorphism, non-erasing homomorphism, linear erasing, and reversal.

It was shown by Yu [57] that the rudimentary relations are the smallest
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class containing the context-free languages and closed under the Boolean
operations and non-erasing homomorphism. Here, a stronger

characterization is established.

Corollary 3.3.5. The class of rudimentary relations is the smallest
class of languages that contains the language {a™™: n > 0} and is closed
under the Boolean operations, inverse homomorphism, and length-preserving

homomorphism,

This characterization follows from a general statement concerning
the effect of applying NL*( ) to families of languages (Theorem 3.3.4),
combined with a result on the definability of context-free languages from
the language {a™": n 2 G} (Proposition 3.3.3).

In Chapter 4 we turn to a decomposition of the rudimentary relations
based on the characterization given in Theorem 3.2.7. Let 9 be the class

containing only the empty set. For each k, let o = NL(Uk). Thus

kt+l
u{ck: k > 0} is the class of rudimentary relations. Since an oracle
machine with an oracle that always replies "no" can be simulated by a
Turing acceptor, oy is the class of languages accepted in linear time by
nondeterministic multitape Turing machines (the quasi-realtime languages
of [9]). The linear hierarchy is the structure 93 S0 £95 S ... (along
with some related classes). -

Whether the linear hierarchy is in fact an infinite hierarchy of
classes (i.e., whether T § Tl for each k) is unknown; an affirmative

answer to this question would also settle other previously studied

questions: for example, whether the class of quasi-realtime languages is
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closed under complementation, and whether the class of rudimentary
relations is properly contained in the class of relations associated
with E}.

While v Sy (i.e., the rudimentary relations) is closed under
k

complementation, it is not known whether there exists a k such that oy 1s
closed under complementation. This question and that of the finiteness
of the linear hierarchy are closely connected, as is seen in the

following result.

Proposition 4.1.3. The linear hierarchy is finite if and only if there

exists some k such that O is closed under complementation.

It is shown in Chapter 3 that for any k > 1, a language belongs to
O+l if and only if it is the image un#er a nonerasing homomorphism of the
complement of a language in Oy - From this fact we establish the
following characterigation of the classes in the linear hierarchy.

Let 61 denote the family of languages that can be accepted in linear

time by deterministic multitape Turing acceptors.

Theorem 4.2.2. For each k = 1, the class 9 consists of exactly those
languages that can be obtained from languages in 61 by application of k
(linearly) bounded quantifications that alternmate between existential and

universal quantification and end with an existential quantifier.

Thus the class in the linear hierarchy to which a rudimentary
relation belongs is closely related to thé syntactic form of its

definition from concatenation relations.
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In the last section of Chapter 4, we consider the internal structure
of the classes Ops employing the concept of "efficient reducibiliry.”
Each class is shown to possess a complete set with respect to a
simple-to-compute reducibility. This property allows some comparisons to
be made between the classes in the linear hierarchy and other classes of
languages, and questions about the classes Oy and about the rudimentary

relations can be reduced to questioms about these generators.

Theorem 4.3.5. For all k > 0, there exists a language Ak € o with the
property that for every L ¢ Ty there is a homomorphism h such that

L - {e} = KA.

The sequence of languages AO’AI"" is defined uniformly from
Ay = ¢ by means of a '"universal” nondeterministic linear-time oracle
machine MO (which is constructed along the lines of the universal
machines studied in [55,11]): Ak+1 is the language accepted by MO when
MO is given an oracle for membership in Ak.

For each k, the language Ak is a "hardest" language for o, with

k
respect to deterministic time-bounded or space-~bounded recognition, in
the same sense that the language exhibited by Greibach [24] is a hardest
context-free language. Thus, for example, Ak can be accepted by a
deterministic Turing machine in polynomial time if and only if every
language in 0y can be so accepted.

Although the rudimentary relations form a subclass of the class of

languages accepted in linear space by deterministic Turing machines (i.e.,

accepted by deterministic linear-bounded automata), it is not known
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whether this inclusion is proper. However, from Theorem 4.3.5 and known
properties of the class of languages accepted in deterministic linear

space, we arrive at the following result.

Corollary 4.3.8. If the linear hierarchy is infinite, then there exists
a language that is not rudimentary but can be accepted in linear space by

a deterministic Turing machine.

The polynomial hierarchy of Meyer and Stockmeyer [40,52,53] is
(like the linear hierarchy) a structure of classes analogous to the
arithmetic hierarchy and is potentially useful for classifying languages.
It can be defined using nondeterministic oracle machines that operate in
time bounded by some polynomial of the length of the input: Each class
in the polynomial hierarchy consists of the languages accepted by such
machines relative to a language in the previous class.

In Chapter 5 an investigation of the polynomial hierarchy is made
based on a strong connection that exists between it and the linear
hierarchy. It is shown (Theorem 5.2.7) that a class in the linear
hierarchy forms a basis for the corresponding class in the polynomial
hierarchy under “polynomial translation" [7]. Thus the linear hierarchy
embodies in a simplified form the properties of the polynomial hierarchy.
The same questions remain open for both structures and certain solutions
in the context of the limear hierarchy will supply solutions for the
polynomial hierarchy; for example, 1f the linear hierarchy is not infinite
(i.e., collapses at some class) then the polynomial hierarchy must

collapse as well (Corollary 5.3.3).



Under certain conditions established in Chapter 2, an increase in
the time allowed an oracle machine yields increased computatiomal power.
From this it can be concluded that no class in the linear hierarchy can
be equal to any in the polynomial hierarchy. Furthermore, each class in
the polynomial hierarchy is decomposed into an infinite union of classes
and hence cannot have generators under some operations (in particular,
under the operations used for Theorem 4.3.5). A representation of the
linear hierarchy such as that given in Theorem 4.3.5 is necessary for
these conclusions to be drawn. The generators constructed for the
classes in the linear hierarchy lift to become complete sets for the

polynomial hierarchy, necessarily under an extended class of functions.
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1.3, PRELIMINARY DEFINITIONS AND NOTATION

Some basic definitions from automata and formal language theory,
used throughout this dissertation, are collected here. All shouid be
familiar to the reader, with the possible exception of the function 6
used to encode tuples of strings as strings.

For a set A and an integer m > 1, [A]m denotes the cross product
of A with itself m times. The cardinality of a set A is denoted
#(4).

If S is a finite set of symbols, called an alphabet, then S* denotes
the free monoid generated by the symbols in S. The elements of S* are
strings (finite sequences) of symbols from S; the operation in S* is
termed “(string) concatenation™ and is denoted by juxtapostion of the
strings. The identity element of S* is the "empty word" or "empty
string," denoted by e. Thus S* = {e} u [sl...sn : nzl,sl,...,sneS]. If
nz]l and x = 8,.-.8 is a string in § (aiss for 1<i<n} then the length of
x, denoted |x|, is mn; Jle| = 0.

If for some alphabet S, a set L is a subset of S* then L is a
language. An m-ary string relation is a subset of [S*]™ for some alphabet
S.

In orderrto use the tools of formal language theqry to investigate
classes of string relations, we combine a tuple of strings into a single

string, as follows. Suppose S is an alphabet and # is a symbol not in S.



Let 8, = Su{#}. For nz1, 9§7lsf]n - (IS#JD)* is defined as follows:
(1} For all zeS*, eﬁ(x) = x;

. #
* > =
{2) For nz2, if xl,...,xnes then Bh(xl,...,xn) z z where

1o

m = max {|xi! : lsi<n¥; for lsj=m, z, = {zﬁ,...,z?]e[s#}n; and for
. idi i _ m—lx |

1<i<n, I xi# il.

The mapping Gﬁ is extended to subsets of [S*]n by:

Gﬁ(R) = {eﬁ(xl,...,xn) 20y, ,x JeRD

Hereafter, '3" will be used ambiguously for any Eﬁ: n will be
clear from the context and it will be assumed that #¢S. For an
example, suppose § = {0,1} and n = 3. Then 68(e,101,1) =
[#,1,11(#,0,#1(#,1,#} azé 0(000,101,11) = £0,1,1100,0,1300,1,#1.

The intention of 0 is to describe writing n strings on n "tracks"

of a Turing tape; thus the second example should be read as

8(000,101,11) =

HERO
oo
=

This "parallel”™ encoding is due to Myhill [41]. <The notation "8" is

from [57].

Let § and T be alphabets and h:S*»F* be a (zonoid) homemorphism,
so that for any x,y,eS5*, a(xy) = h(x)h(y). If LlES* then h(Ll) =
{h(z} : xéLi} is the image of the language Ll under the homcmorphism h.
If LZST* then h_l(Lz) = {yeS* : h(y)eLz}; h_l is a mapping from subsets

*
of 3 to subsets of T*, called an inverse homomorphism. Defimitions

of homomorphisms need only be giﬁen for the symbols in S; they are then

1-17

extended to S* by h(sl...sn) = h(sl) en h(sn). Note that h{e) = e.
Suppose h:S*»T#* is a homomorphism. Then h is length-preserving
if |h(s)i = 1 for all seS. It is nonerasing if h(s) # e for all

s¢S {i.e., |h(s)]lzl). For a language LcS#*, the homomorphism h is

e-limited on L if there exists an integer k such that for any string

wel, if w = xyz for some x,y,zeS* such that h(y) = e then ]yi<k. (That
is, h can erase at most k consecutive symbols from a string in L.}

The homemorphism h is said to perform linear erasing on LcS* if there

is an integer k such that for any wel, |wi<k.max{|h(w)]|;1}. A family
of languages L is closed under linear erasing if whenever Tel and h

is a homomorphism that performs linear erasing on L, also h(L)eLl.

Souze further operations on languages are defined as follows:

(1) If L eS*, L

1 <T* are the languages then the brdduct of Ly and L,

2
is the language L1, = {xy: xeLl,yELZ}E(SUT)*. If ¢ is a new symbol,

¢ ¢(SuT), then Ll¢L2 = {xéy : stl,yeLz} is a marked product of L

and LZ'

(2) TIf LcS* is a language then it = [yl e ¥, R nzl, yieL for 1lsisn}
and L* = L+U{e}. Thus for an alphabet T, TF = T% — {e} = {xeT#®* : |x]|21}.
The operation taking L to L¥* (L) is Kleene 4 (Kleene +). If £¢S then
(Lﬁ)+ = {ylé...yné : n2l, y;eL} is a marked + of L and (L&)* = (Lg)tulel
is a marked % of L.

(3) The Boolean operations are the operations of set union, intersection

and difference. If Lj,L,cS5* then a marked union of 1y and L,, denoted

here Ly & Lj, is any language of the form {[¢JLyu{$]L, where £,5¢5 are
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two distinct symbols.

(4) A family of languages L is closed under complementation if
whenever Lel and § is any alphabet such that LcS* also S*-L =
{xeS8% : x¢L} is in L. If L is a family of languages them co-L
denotes the family containing exactly the complements of languages
in L; that is, co-L = {S%-L : LcS* in L}. Notice that L.-= co-l

if and only if co-lcl if and only if L is closed under complementatiom.

The family of regular sets is the smallest family of languages
containing the finite languages and closed under the operations of
union, product-and Kleene *. It is well known that a language is
regular if and only if it is acceptecd by some finite-state machine,
and that the regular sets are closed under all the operations described
in (1)-(4) above, as well as under homomorphic and inverse homomorphic

mappings.

The model for Turing acceptor used here has a (one- or two—way)
read-only input tape and multiple work tapes (see, e.g., [30]). It
may be deterministic or nondeterministic. The language accepted by
a Turing machine M is denoted by L(M). When Turing machines are
used as transducers, i.e., to compute string functions, one of the
work tapes becomes a one-way write-only output tape.

Let t:{N>(N and s: {8+ [N be nondecreasing functions, with t(n)=2n
for all ne N, (fN denotes the natural numbers.} A Turing acceptor

is said to operate in time t(n) if for every input string x every computa-
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tion of the machine on x takes at most t{]|x]) steps. A Turing
acceptor is said to operate in space s{n) if for any input x, no
more th>a.n s(lx}) tape squares are visited on any one of the work tapes
during any computation on x. We use lg(n) to denote the functiom whose
value at nelN is the length of the binary representation of n, so
1g(0} = 1 and for n>0, logy{n)<lg(n)<logz(n)+l. TFollowing [43],
define a function t#N to be a "running time" if there is a deterministic
Turing acceptor M such that on any input x, M takes exactly tb(]xi)
steps and halts.

The notation used here for families of languages defined by
resource-bounded Turing acceptors follows.

For a time bounding function.t(n):

DTIME(t(n)) {LOM) | M is a deterministic Turing acceptor that cperates

in time bound t(n)};

NTIME(t(n)) = {L(M} | M is a nondeterministic Turing acceptor that
operates in time bound t(n)}.

It is known [9] that for any constant c and any Turing acceptor
that operates in time cn there is a nondeterministic Turing acceptor
that accepts the same language and operates in time n(i.e., in real-time);
hence
NTIME(n) = U{NTIME(en) : ¢ = 1}.

Also,
DTIME(lin) = U{DTIME(cn) | ¢ = 1};

DTIME (poly) = u{DTIME(p{(n)) I p a polynomial}l;



prove (2H) = uioTMEESD) | ¢ > 0).

NIIME(poly) and NTTME (2™

)} are defined similarly.

For a space bounding function s(n):

DSPACE(s{(n)) = {L(M) | M is a.deterministic Turing .acceptor that
operates in space bound s{n)};

NSPACE(s(n)) = {L(M) | M is a nondeterministic Turing acceptor that
operates in space bound s{n)}.

Using standard tape-compression techniques, a Turing machine
that operates in space c-s(n) for some c21 can be converted to an
equivalent Turing machine that operates in space s(n). In particular,
DSPACE(n) = U{DSPACE(cn} : c > 1} and
NSPACE(n) = U{NSPACE(cn) : ¢ 2 1}.

The class DSPACE(n) is the family of languages accepted by deterministic
linear—bounded automata (LBA's); NSPACE(n) is the family of context-
sensitive languages [41].

In this notational scheme, the class U{DSPACE({p(n)) } p a polynomial}
is denoted by DSPACE(poly). However, since it is known [48] that
U{DSPACE(p (n)) j p a pelynomial} = U{NSPACE(p(n)) f p a polynomial},
this class will be denoted here by PSPACE.

A push—down store is a Turing tape that is ome-way infinite to the
right and the action of which is restricted in the following ways:

(i) only the rightmost symbol on the store may be read; and (ii) if
the head moves left into the string written on the store then all symbols
to the right of the head must be erased. Thus a machine with a push-down

store can test it for emptiness and manipulate it by "pushing" symbols

onto the store (printing and moving right) or by "popping" symbols

from the store, if it is nonempty (erasing and moving left}. The

family of languages accepted by nondeterministic (deterministic)

Turing acceptors with one—way fnput and one push-down store as

auxilliary storage is the family of context-free languages {(deterministic
context-free languages). The family of context-free languages is also
that generated by the context—free grammars. See [18,30] for discussion

of context—free languages and their properties.



Chapter 2: TIME~BOUNDED ORACLE MACHINES

In this chapter the definition of oracle machines is given and
some basic properties of time-bounded oracle machines are developed.

As a model for relative computation, oracle machines are a variant of
the model used to explain the arithmetic hierarchy [47] and of the
query machines used by Cook [16] to study efficient reductions between
language recognition problems.

Constructions involving Turing acceptors generally apply with only
slight modification to oracle machines, so we have, for example,rthe
expected closure properties for families of languages defined by time-
bounded oracle machines (Theorem 2.2.4). There 1s also a result
(Theorem 2.4.1) corresponding to the "time hierarchy theorem" for Turing
acceptors, giving conditions under which an increase in the time allowed
an oracle machine yields an increase in its definitional power. The
investigation to be made of the families of languages defined by time-
bounded oracle machines is greatly aided by Theorem 2.3.1, in which the
language accepted by an oracle machine is represented algebraically, in
terms of language-theoretic operations applied to simpler languages. In
subsequent chapters, we will consider only time bounds which are linear
functions or polynomials; most of the results in this chapter are there-
fore stated for those cases, although they can be seen to hold more

generally.

2.1. DEFINITION AND GENERAL PROPERTIES

We begin with an informal definition and discussion of oracle
machines. The interested reader can make the connections to the formal

definition that follows.

Definition 2.1.1. An oracle machine is a multitape Turing acceptor

with an added dynamic capability. A computation of an oracle machine

M depends on both an input string x and an oracle set A, which may
be any language over the tape alphabet of M. The machine M has

three distinguishea states 1y qyes and U along with its initial
and final states, and one of its work tapes is distinguished as the
oracle tape. At any point during a computation of M on x relative
to A, there are two possibilities:

(1) . The current state of M is not its query state g, (although it
might be one of the response states qyes’ qno). In this case the next
step of the computation is>determined by the tramsition function of M,
as for an ordinafy Turing acceptor. During such steps M can read from
and write on its oracle tape, as well as its other work tapes.

(ii) M has entered its query state 4,, 1in order to make an oracle
call. In this case the next step is determined by the string on the
oracle tape and the oracle set: if the (nonblank) contents of the
dracle tape is the string 2z, then the next state is qyes if =z ¢ A
and is LI if =z ¢ A. During a step that is an oracle éall, the oracle
tape is erased (i.e., reset to blanks) but the configuration of the other

work tapes and the input tape is unchanged.



The oracle machine M is deterministic if its transition function
allows at most one move at any step, nondeterministic otherwise. The
transition function is undefined for the query state, so moves from
that state are uniquely determined by A. M is said to accept x
relative to A if and only if some computation of M on x relative
to A reaches an accepting state. Let M(A) denote the set of strings
accepted by M relative to A.

This definition of oracle machines is essentially that used in [39]
and differs from the model used in [3,16] in that the oracle tape is
erased after an oracle call. This convention is made here to allow a
simpler form for the representation of languages accepted by oracle
machines in terms of language-theoretic operations (Theorem 2.3.1).
There is no difference in computatiomnal power when the class of oracle
machines that operate in arbitrary polynomial time bounds is considered.
It sheuld be apparent that a multitape Turing acceptor is {equivalent
to) an oracle machine that never queries its oracle, and conversely.

More formally, a k-tape oracle machine is a {(k+9)-tuple

ves® 9no’ F, j) where the compo~

M = (K, I, Tis wees Tys 85 9y 9, 4
nents have the following interpretations:

(1) Kk, z, Fl’ ceay Tk are finite sets, the state set, the input
alphabet and the alphabets for tapes 1 through k, respectively. The
set r = u{ Fi: 1=<i<k} dis the tape alphabet of M, and
vz 1s the alphabet. Let B denote the blank tape symbol, B ¢ T.

{2) qp € K is the initial state of M, q, 1is the query state, qyes
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and 9, Bare the response states, and F c K is the set of final
states.

(3) The j-th tape is the oracle tape, and 1 < j < k. The set Fj will
be termgd the oracle tape alphabet of M.,

(4) & is the transition function of M, a function from

(K-{q?})_x (Z-u {e}) x (Fl v {B}) x ... x (rk u {B})

into the finite subsets of

Kox [(Ty v {B}) x {0,1,-1}] x ... x [, v (B} x {0,1,-1} 1.

For simplicity, the dynamics of an oracle machine will be des~
cribed only for the case of a two-tape machine

M = (K, &, Tys Tys 65 9y Qs Q0o 9,,> F» 2). Note that the second

yes
tape of ‘M is the oracle tape.
An instantaneous description (ID) of M is a 6-tuple

]
and 1 < ij < |yj|. The components of an ID have the usual interpreta-

. . * +
(q, w, Yis Ypo 1ps 12) where qe K, welI, vy, ¢ (Fj u {B})

tions: M is in state q, with w remaining on the input tape, ¥y
on tape 1, and ¥, on tape 2 and is reading the ij—th symbol (from the
lefr) of y,, = 1,2.
*
If A 1is a subset of TZ then the yield relation FK— on 1IDs

of M relative to A is defined as follows.

(1) Suppose q e K - {q,}, aczIu{e}, ajer;u{B} for

T = T

ji=1,2, and (q', bys d1, bz, dz) e §(q, a, a;, az) for some

b1 € Fl u {B}, PZ € P2 v {B} and dl,d2 e {0,1,-1}. Then for any
*

* *
®psyp € {7 v {BD), Xys¥, € (T, u {B}), wer,



(q, aw, X121Y12 ¥85¥5. |x1| + 1, |KZI + 1) PK_ (q', w, Zys 2y 1y, iz) Definition 2.1.2. (1) Suppose t: N+ N is a nondecreasing function
where for j = 1,2 which satisfies t{n) = n. An oracle machine M is said to operate in
= ]

time t{(n) 1if for any input x and any oracle set A, every computa—

(i) if d, =0 them =z, = xb,y. and 1, = |x | + 1.
3 3 1373 3 Ijl»
(1) if d, =1 then i, = |x,] +2. If d, =1 and y, = e then tion of M on x relative to A halts in at most t{|x|) steps.
] i ] : 3 i .
z. =x,b.B; if y, #e then z, = x,b.y (Recall that an cracle call costs one step.) Thus the time allowed M
3 33 J hj 37178
(i11) if d, = -1 and x, =e them 1. =1 and z. = Bb v.3 if for a computation is a function of the length of the inmput string
3 i 3 3788
d, =-1 and x  #e then 1, = |x,| and =z, ==x.b.y,. (x| =m.
J 3 3 3 3 37373

(2) For a language A and a function t(n), define

*
(2) Suppose we I, and for j =1, 2, yj € (Tj u {B})+ and

DTIME{t(n), A} = {M(A): M is a deterministic multitape oracle machine
1= ij = {yj - Then that operates in time t(n)}; and
(q?, V> Y10 Yo 1ps iZ) hi' (a, w, Y B il’ n NTIME{t(n), 4) = {M(A): M is a nondeterministic multitape oracle
if and only if ¥y = Bszj for some z ¢ F;, m,j 2 0; and either machine that cperates in time t(n)}.
ze A and q = qyes or z4 A and q = 9Uq- '

* TIME i
Let hr— denote the reflexive and transitive closure of h;—. Thus for a language A, DIIME(t(n), &) (N (t(n), 4)) consists

11
Then the language accepted by M relative to A is defined by of languages that can be accepted (nondeterministically) relative to A

* . . . .
M(A) = {x ¢ £ : for some g ¢ F, ¥ € (Fl U [B})+, v, € (r2 v {B})+, in time t(n). In particular, since an oracle machine need not consult

% its oracle, DTIME(t{(n)) c DTIME(t(n), A} and
(CIO’ x, B, B, 1, 1) {—A_ (q, e, ¥y yZ’ il’ iz)}-
NTIME(t(n)) < NTIME{t(n), A) for any function t(n) and any language

A.

In this dissertation only time-bounded oracle machines will be By applying the standard comstruction for shortening computations

considered. The following definition establishes what will be meant by of Turing acceptors by a constant factor [30], the following "speed-up"

an oracle machine operating in a time bound: this property is to be theorem for oracle machines can be derived. Since the work tapes of the

independent of the selection of the oracle set. Time-bounding functions machine constructed are "compacted" versions of the tapes of the original

are assumed to be nondecreasing and at least as large as the identity machine, the oracle set must be altered; the translation can be described

function. as the application of an inverse homomorphism.



Proposition 2.1.3. Suppose M is an oracle machine which operates in
time t(n). Then for any k > 1 and any oracle set A for M, there
exist an oracle machine M' and a homomorphism h such that

W ome) = wehan;

(ii} M' is deterministic if M {is deterministic; and

(iii) M' operates in time n + t(n)/k. il

The next proposition uses a construction for "composing" oracle
machines with deterministic Turing acceptors, in order to give an upper
bound on the complexity of languages accepted by time-bounded oracle
machines. This fact appears in [38] in the context of polynomial time

bounds.

Definition 2,1.4. A function t: N> N is superadditive if for all
n,m, t(n) + t(m) < t(n+m). Note that polynomials are superadditive

functions.

Proposition 2.1.5. Let tl(n), tz(n) be time-bounding furctions, with
tl(n) superadditive. If A ¢ DTIME(tl(n)) then
DTIME(tZ(n), A) < DTIME(Ztl(tZ(n))), and

NTIME(tZ(n), A) < NTIME(Ztl(tZ(n))).

Proof. If A is a language in DTIME(tl(n)), let Ml be a determinis-

tic Turing machine that accepts A and operates in time tl(n). Suppose
M is an oracle machine that operates in time tz(n), and let

L2 = M(A). The machines Ml and M are combined to comstruct a Turing

machine M to accept L

, Given an input x, M, begins a computa-

27 2

tion of M on x; if M would query its oracle, MZ instead uses

Ml to test whether the string on the oracle tape is in L1 and then
continues the computation of M from the appropriate state. (Note that
we assume that Ml alﬁays halts.) Clearly M2 will accept précisely

L since M, -is deterministic, M, will be deterministic if M is

23 1 2
and nondeterministic otherwise. Suppose that on some input . x of
length n, M2 follows a computation of M on x in which the oracle

was queried about string Zys -ves g (m 2 0). The length of that com-

putation of ‘M, 1is then at most tz(n) + [tl(lzll) + .00+ tl(lzm|)].

Since the oracle tape of M is erased after every oracle call,
¥ |zij < tz(n); hence since t; 1s a superadditive function,
i=1

m
izl tl(lzi|) s t)(t,(n)). Therefore M, takes at most

tz(n) + tl(tz(n)) < 2t1(t2(n)) steps in any computation on an input of

length n. 0

It is a simple matter to alter the argument for Proposition 2.1.5
when Mi is a deterministic oracle machine rather than a Turing accep-
tor. Thus, for example, if A ¢ DTIME(tl(n), B)  and tl(n) is super-

additive, then NTIME(tZ(n), A) < NTIME(Ztl(tZ(n)), B).



2,2, RELATIVE COMPUTATION IK LINEAR AND POLYNOMIAL TIME -
Propesition 2.2.2.

(1) NL{{@}) = NL(DTIME(lin)) = NTIME(n).
The remaining chapters deal primarily with oracle machines that DTIME(lin,{#}) = DTIME(lin)
operate in tire bounds which are linear functions or pelynomials. We
(2) NP({#}) = NKP(DTIME(poly)) = NTIME(poly).
therefore establish the following notation for the families of languages .
P({#}) = P(DTIME(poly)) = DTIME(poly). 0

accepted by such machines.

: In the notation of [38] parts of Definition 2.2.1 can be restated
Definition 2.2.1. (1) An oracle machine is termed a linear-time
as
oracle machine if it operates in time cn + d for some constants c, d. p

B e P({A}) &3 B < A and

B e NP({A}) & B S}T‘PA .

If an oracle machine M operates in time t(n) and t(n) is a poly-

nomial {in n), then M 1is a polynomial-time oracle machine.

"1 ) . .
(2) If C 1is a class of languages, define In [38] the symbol "<" - 1is used for reducibilities: in this case,

the membership problem for B is reduced to that for A by means of

NL(C) = {M(A): A ¢ ¢, M a nondeterministic linear-time oracle machine}
a polynomial-time oracle machine. The superscript ™B" ("NP") indi-
= u {NTIME(cn +d , A): A e C, c,d 2 0} ;
cates that the reduction is performed deterministically (nondeterminis—
NP(€) = {M(a): A< ¢, M anondeterministic polynomial-time oracle tically) in polynomiél time and the subscript "TI" denotes Turing
machine}; and reducibility. Thus, the relations "B e P({4})" and "B ¢ WP({a})"
P(C) = {M(A): A e ¢, M a deterministic polynomial-time oracle ma- are viewed as restricted Turing reducibilities [47,54]. The structural

chine}. . properties of these reducibilities on recursive sets have been studied

recently {38,3,37]. 1In particular, in [3] it is shown that no general
When no confusion can result, we will write, e.g.,  NL{A) for
statement can be made about the inclusion (cr equality) relations holding
NL({A}). By analogy with the notational scheme used for families defined
ameng the classes P(C), NP(C), co-NP(C).
by Turing acceptors, let DTIME(lin, C} denote

U {DTIME{en +d, A): A e C, c,d > 0}. Proposition 2.2.3. (1) [3,38] One can construct recursive sets
The following proposition is immediate from Proposition 2.1.5 and Al Ay Ay such that P(Al) = NP(Al), P(AZ) j NP(AZ) = co—NP(AZ)
previous remarks. and NP(A3) # co—NP(AB).

B such that

(2) One can construct recursive sets B, By, 3
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. - . c =
DTIME(1lin, Bl) = N'L(Bl), DTIME(lin, BZ) 4 NL(BZ) = CO—N'L(BZ)

and NL(B3) # co—NL(B3). O

The second part of this proposition can be proved by simple modi-
fications of the arguments for the polynomial case. WNote that the exis-
tence of the languages A3 and B3 implies that neither of the rela-
tions "B ¢ NP(A)", "B ¢ NL(A)" 1is transitive.

Several positive closure properties are known to hold for a wide
variety of classes of languages accepted by abstract automata, for exam—
ple, closure under the operations corresponding to an "abstract family
of languages™ [20]: union, product, Kleene *, intersection with regular
sets, inverse homomorphism and nonerasing homomorphism. For multitape
devices the class of languages defined is usually closed under intersec-—
tion. The following theorem gives these closure properties in the con-
text of oracle machines; the statement of the theorem refers only to
classes of languages NL(C), but it will be clear which of the construc-

tions apply to P(C) and NP{(C) as well.

Theorem 2.2.4. (1) For any nonempty class of languages C(:

(1) € v co-C < KL(C); and

(1i) WL(C) is closed under marked +, Kleeme *, linear-erasing
homomorphism, inverse homomorphism, and union and intersection with lan-

guages in DTIME(1lin}.

(2) 1If either ( 1is closed under marked union or consists of a single

languagé} then WNL({) 4is also closed under marked product, product,

intersection, marked union and union.

The proof is for the most part applications of the standard con-
structions to oracle machines, and is given only for completeness. The
operations of union, intersection and product differ from the others
in that possibly two oracle sets are involved; use of two oracle sets is

reduced to one by applying the operation of marked union.

Procf. {1} First suppose S 1is any alphabet. It is easy to con—

struct deterministic oracle machines Dl and DZ’

in time n+l, such that for any language L ¢ S*, Dl(L) =L and

both of which operate

DZ(L) = §% -~ L; therefore if L ¢ ¢ then L and §* - L are in
NL(C).

Now suppose A ¢ C and M is a nondeterministic linear—time oracle
machine, so that L = M(A) 1s a representative element of NL(C). Let

S be the input-:alphabet of M and suppose M operates in time en + d.

(a) Suppose ¢ is a new symbol, ¢ ¢ 5. Let M; be an oracle machine

that operates as follows: ‘M, rejects its input =« (8 v {£1)* unless

x has the form xltxzt...xmé for some m > 1, Kis wees X € s*, If

the input is of the correct form, Ml acts like M on each segment X

of =x, using its work tapes (and oracle tape) just as M would. Then
Ml can be constructed to operate in time (2c + d)n, and

+ + +
M (8 = M@)E) = @), so (L) < NL(O).

(b) Suppose hl: S* > T* is a homomorphism with the property that,

for some k = 1, for any x e L, lx| < kemax {hl(x),l} » d.e., by



is a homomorphism that performs linear erasing on L. Let M, be a

2
nondeterministic oracle machine which, given y ¢ T*, first guesses
a string x ¢ S* such that b, (x) =y and |x| < kemax {]¥{, 1} and
then accepts x 1f and only if M accepts y (relative to the same
oracle set}. Then M2 operates in time c'n + ¢' (where

L =
c k{c+2) + d) and MZ(A) hl(L).

(¢} Suppose h T* + 5* {is a homomorphism. Let

K
k = max {|h(a}{: =z € T}; then for any =x, Ih(x)} = k|x|. Let L
be an oracle machine which, given y e T*%, first writes hz(y) on an

extra tape and then accepts y 1if and only if M accepts hz(y). Then

M3 operates in time k(c+2)n +d and M3(A) = h;l(L).

(d) Suppose L7 < S* 1is a language in DTIME(lin). Then L' is ac-
cepted by a deterministic Turing machine M' which operates in time kn

for some k = 1. Let M& and M. be oracle machines which, given an

5
input x, test first whether M accepts x and then test whether M'
accepts X. M4 accepts the input if and only 1f either of the tests
succeeds and M5 accepts if and only if both succeed. Then H4 and

M. both operate in time (k+c+l)ntd; and MQ(A) =Lu L' and

5
MS(A) =LnlLl'.

Note that if M 1s deterministic then the machines constructed
in (a), (¢) and (d) will also be deterministic. Closure under Kleene *
follows from (a), (b) and (d): L* = h(((L n SO U (e}, where
hi (S v {f)* + 5% is the simple homomorphism determined by defining

h(s) =s for se¢ S and h(f) = e. The homomorphism h is e-limited

on ({Ln S+)¢)+.

(2) Suppose Ll,L2 c 5* are elements of NL{(C). First, there exist

a language AO € € and nondeterministic linear-time oracle machines

Nl and Nz such that Li = Ni(AO) for i = 1,2, This 1is clearly the
case if ( consists of a single language, ¢ = {AO}. If £ contains

more than one language, then since L. ,L. ¢ NL{) there are languages

1’72

Al,A2 € € and nondeterministic linear-time oracle machines Ni and

Né such that Li = Ni(Ai), i=1,2. Let T be an alphabet such that

AjsAy S.T* and let #l’ #, be two distinct symbols not in T. If ¢

2
1s closed under marked union then 4 = #1A1 u #ZAZ €, For i=1,2,
the machine Ni can easily be altered to mark each string on its oracle

tape with #i before making an oracle call; the resulting oracle machine
. . . = Nt =

Ni will also operate in linear time and Ni(AO) = Ni(Ai) Li.
Now, since NL{C) is closed under linear-erasing homomorphism, it

suffices to show closure under marked product, marked union and inter-

section.

(a) Let ¢ ¢ S be a new symbol. Let M6 be an oracle machire which

rejects its input x unless x = xléxz for some X1sX, € S*, Omn an
input of the correct form, M6 first tests whether Nl accepts x
and then tests whether N2 accepts X,3 MG accepts x if and only if
both tests succeed. Since N and N operate in linear time, so will

1 2
MG’ and MG(AO) = L1£L2.

(b) Suppese £,$ ¢ S. Let M. be an oracle machine which if given

7

input ¢x, x € S*, acts like Nl on x; 1if given input $x, X € 5%,



acts like N2 on X; and rejects strings of any other form. Again

since Nl and N2 operate in linear time, so will M

M_(A)) = €L u bL,.

7° and

(¢} Let M_ be an oracle machine which given input x ¢ S*, first

8
tests whether Nl accepts x and then whether NZ accepts x; MB
accepts its input if and only if both tests succeed. Then MS will
operate 1n linear time, and MS(AO) = Ll n LZ'

Agaln, note that the three machines described above will be
deterministic if Nl and N2 are deterministic. |

2.3. REPRESENTATION OF LANGUAGES ACCEPTED BY ORACLE MACHINES

In the following theorem, language-theoretic operations are used
to obtain the language accepted by a linear-time oracle machine from
the oracle set and a simpler language. This representation will be used
extensively in Chapters 3 and 4, to ald in characterizing NL{(C) for

certain classes of languages (.

Theorem 2.3.1. (1) Let M be a nondeterministic linear-time oracle
machine. Then there exist a length-preserving homomorphism h and a
deterministic linear-time oracle machine D such that for any oracle set
A, M(A) = h(D(A)).

(2) Let D be a deterministic linear-time oracle machine with tape al-
phabet S. Then there exist a language L ¢ DTIME(lin), a length-

preserving homomorphism h1 and a homomorphism h, such that for any

2

Acs%, D(A) -{e} = nhn h;l(L')) where

L' = (A ® (8% - A))* = (#lA U #2(5* - A))* with #l,#z 4 s.

Proof. First, some notation 1s necessary. If T 1s an alphabet and k

is an integer, k=1, let T, ={[wl: we % 1% {w] < k}. 'That is,
for each nonempty string w e T'* of length at most k, [wl is a new

symbol, and Ty is the set of these symbols. For x e T*, x/k e (Fk)*
is defined as follows. Suppose |[x| =uwk+ j, m2 0, 0< j<k-l. If

j =0 then =x/k = [wl][wzl...[wm] where x = w and iwi| =k

l...wm

for 1< i<m if j =1, then x/k = [wl]...[wm][y] where
X =W Wy, |wi| =k for lL<ism and |y| =3. If LcTx,
let L/k = {x/k: =x ¢ L}. Note that T#*/k is a regular set,

(1} Part (1) is proved by applying to oracle machines a technique used

in [10,16,36}. Suppose a nondeterministic oracle machine M operates in
time c¢n + d and has input alphabet T. Let k = c+d. Suppose M has

at most . m choices of transition at any step and let

V= {vo, Vis eers vm] be an alphabet of mtl distinct symbols. ("vo"

représents a call on the oracle, the only move possible from the query

state.) Let I =T x (Vk u {#} = {[b,#]l: b e T} u {[b,[w]l]: b e T,

we Vk, 1x |w|.5 k } where # ¢ Ve

Let Dl be a deterministic oracle machine which has input alpha-

bet I and on input e simulates all the possible computations of M

on e, using its oracle tape just as M would. D1 rejects any non~



empty input strings. Since there are only finitely many computations
of M on the empty word, Dl can be constructed to operate in linear
time, and for any oracle set A, Dl(A) = M(A) n {e}. We now consider
a deterministic oracle machine D2 to follow computations of M on
non-empty iﬂputs.

D2 will accept only strings of the form ©(x,u/k) ¢ £* with

+
xe T, ueV, |u/k| <]xl. Given such an input, D, accepts if
and only if the choice of tramsitions given by u leads M to accept

x (so that D, uses its oracle tape just as M would). That is, for

2

any oracle set A, D(A) = {e(x,w/k): x ¢ T+, u e V+, |u/k| < | x|
and u describes choices of transitions by which M accepts X rela-
tive to A}. D2 can be constructed to operate in linear time; since M
operates in time cn+d and en+d< kn for n=>1, for any x # e
and any A, x ¢ M(A) if and only if there is an accepting computation
of M on x relative to A with at most k|x| steps if and only if
there is scme u ¢ V+ such that o(x,u/k) ¢ DZ(A). Using a construction
similar to those in Theorem 2.2.4, there is a deterministic linear time

oracle machine D such that for any A, D(a) = Dl(A) U DZ(A)' Let

h: Z* 5 T* be the length-preserving homomorphism defined by
h([bl’bZ]) = bl for bl e T, b2 € Vk v {#}; then M(A) = h(D(A)).

(2) Suppose D is a deterministic oracle machine that operates in
time cn + d and has input alphabet T and tape alphabet S. Let
#1,#2 ¢ 5 be two new symbols and U = § y {#l,#z}. Let

£ =T x (Uk u {#}), where k = cHd.
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Let R < F* be the regular set R = {0(x,y): x ¢ T+, y e U¥/k,
Ix| = [¥]¥. Let hy: ¥ +.U* be the homomorphism defined by
hy([b,#1) = e and for we U*, 1< |w| £k, berT, ho([b, [w1]) = w.
Then if A c S* and L' = (4 & (S*x - A))*, h;l(L‘) nR = {8(x,y):
xeTh yel'k, |x 2 lyl}.

Let D' be the following deterministic Turing acceptor, with input

alphabet " £. D' rejects its input unless it is of the form 0(x,u/k)

with x e T+, ue U* and |u/k| < {x|. On an input of this form, D'
acts like D would on input x, using the information in

u = #i U e #i . instead of oracle calls; that is, D' ' checks that
1 m

D would query its oracle about u uo (in that order} and D'

1% "

continues from the "yes" state if 1j =1 and from the "no" state 1if
i, =2, l<j<m D' accepts O(x,u/k) if and only if the answers
in u lead D to accept x. Now since D operates in time cm + d
and the oracle tape is erased after an oracle call, if during a computa-
tion on X, D queries its oracle about strings Ugs wees Wy m >0,

and receives Yanswers" il, ey im then

m+ iu1| + ..+ ]um| < clx| +d = k|x| for =x # e; hence if

u = £ ou ... #i u  then ufx| < |x|.  Further, for any oracle set

A, the answers in u are correct relative to A 1if and only if
u € (#lA [ #Z(S* - A)}* = L". Therefore for any x « T+, x € D(A) if
there exists u e¢ U* such that ©(x,u/k) ¢ L(D'Y) and u ¢ L'; or,

x € D(A) if and only if there exists y e U * with ly] < |%| such

k
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that ©(x,y) ¢ L(D'} n (h;l(L') n R).

Let h1: Z* > T* be the length-preserving homomorphism determined
by defining hl([bl’bZ]) = bl. Let L = L(D') n R; since R is a regu-
lar set and D' can be constructed to operate in.linear time,

L & DIIME(lin). Then D(&)-Te} = h (Ln h;l(L')). ' |

The two parts of Theorem 2.3.1 are combined with the closure pro-

perties given in Theorem 2.2.4 to yield the following corollary.

Corollary 2.3.2. For any class of languages C,

ML) = {h (Lo W;((A @ (5% - A)): AcS* in €, hy a length-

1

preserving homomorphism, h, a homomorphism, L ¢ DTIME(lin)}.

2

Proof. Suppose A c S*¥ is in (. Then from Theorem 2.2.4 A and
S* — A are in NL({A}) and NL({A}) is closed under marked union,
Kleene *, inverse homomorphism, intersection with languages in
DTIME(lin} and linear-erasing (hence length-preserving) homomorphism.
Therefore if L ¢ DTIME(lin), h1 is a length-preserving homomorphism
and h2 is an arbitrary homomorphism, then
by (L0 h;l((A @ (5% — A))* ¢ NL({A}) < NL(O).

On the other hand, if L ¢ NL({} then L =7M(A) for some A S S*

in ¢ and M a nondeterministic linear-time oracle machine. From

Theorem 2.3.1 (1), there is a length-preserving homomorphism h and a

deterministic linear-time oracle machine D such that L = M{A) = h(D{a)).

From Theorem 2.3.1 (2), there is a length-preserving homomorphism 8-

a homomorphism h, and a language L' ¢ DTIME(lin) such that

2

D{4) - {e} = gl(L' n h;l((A & (S* — A))*)). Let h1 be the homomor-
phism that is the composition of h with 83 that is, h1 is deter-
mined by defining, for a symbol a, hl(a) = h(gl(a)). Then hl is

also a length-preserving homemorphism. Let L=1L"vy (DCA) o {e});
since D{(A) n {el is either empty or the singleton set {e}, it is a

regular set, so L e DTIME(lin}. Then L = hl(ﬂ n h;l((A 8 (5% - A))*)). O

In Chapters 3 and 4, Theorem 2.3.1 will be used to give simpler
representations for NL({) than Corollary 2.3.2 when ( satisfies
certain conditions; e.g., for some classes of languages (),

NL{{) = {h(L1 n (S% - LZ)): LisL, 8% in €, h a length-preserving
homomorphism}.

The constructions used in the proof of Theorem 2.3.1 can be applied
to oracle machines which do not necessarily operate in linear time,

yielding the following generalization of the representation to arbitrary

time bounds.

ProBosition 2.3.3. Suppose M 1is a nondeterministic oracle machine
which operates in time t(n) and has tape alphabet S. Then there
exist homomorphisms hl and h2 and a language LM ¢ DTIME(lin) such
that for any oracle set A c S%, M(A) = hl(LM n hzl((A B (5% ~ A))*)).

Further, the homomorphism hl has the property that for any =z e LM’

|z] < t(1hl(z)|).

Proof. (sketch) The language LH is given by :



LH = {©(x,y,z): the transitions described in y and the information
given in 2z about the oracle set cause M to accept x}. The homomor—
phisms h1 and hz, then, satisfy hl(G(x,y,z)) =x and

hz(e(x,y,z)) = z. Since M operates in time t(n), if 6(x,v,2) ¢ LH

then {o(x,y,2)| = }y| = e(|z]) = t(|hl(e(x,y,z))|). Since the
homomorphism h1 does some erasing, the language LH does not depend
on A. Note that the strings y and z are now written "ome symbol per

square,” rather than k symbols as in Theorem 2,3.1; thus for a symbol

a, |hl(a)|, [hy(a)] < 1. a

If we drop the convention that the oracle tape is erased after an
oracle call, then a representation similar to Proposition 2.3,3 still
holds. However, it may no longer be the case that for B(x,y,z) ¢ LH'
tz] < |y| < t({x]), although |z| < (t(|x|))2.

The conclusion of Proposition 2.3.3 may be restated as follows:
for B = M(A),

x ¢ B iff there exists a string 0{(x,y,z) such that 6(x,y,z) ¢ LM
and z e (A @& (S* - A))*,
In this form, it is similar to the definition given in [47] of the rela-
tion "B is r.e. im A." Both allow separate consideration of two condi-
tions that must be satisfied by an alleged computation of M with oracle
set A: (1) moves from the query state must be consistent with the
answers from the oracle and other moves must follow from the transition
function of M; and (2) the answers from the oracle must be correct

relative to A. This separation of the oracle calls from the other moves

can be used to simplify proofs about oracle machines, in particular,
the proof of the following fact, which states that the multiple work
tapes of a nondetérministic oracle machine may be replaced with a fixed

number of tapes at the cost of only a linear increase in time.

Corollary 2.3.4. Suppese M is an oracle machine, which operates in
time t{n). Then there exists a nondeterministic oracle machine M'
with 3 work tapes such that for any oracle set A

(i} - M'(a) = M(a); and

(ii) every aécepting computation of M' relative to A on an input
of length n has to most 3t(n) steps (i.e., M' "accepts" in time

3t(n)).

Proof. Let M be an oracle machine and let § be the tape alphabet
of M. From the previous proposition, there exist homomor phisms hl’
h2 and a language LM € DTIME(lin) such that for any oracle set

AcS* M) = h (L n h;l((A ® (5% - A))%)). Also, if M operates

in time t(n), then lu] < t(|hl(u)|) for u e LH'

Since LM € DTIME(lin) c NTIME(n), from [9] there is a nondeter-
ministic real-time Turing machine Ml with 2 work tapes that accepts
LM. The nondeterministic oracle machine M' operates as follows:
given an input string x ' (over the input alphabet of M), M' guesses,
one symbol per step, a string u = 0(x,y,z) for some y and z, read-
ing x while guessing the first |x{ symbols of u. As each symbol uy

of u is guessed, M' writes the corresponding symbol hz(ui) of =z

on tape 1 and uses u; as the next input symbol to Ml' M' uses tapes



2 and 3 as the work tapes of M.; the third tape is the oracle tape of
M' but the oracle is not queried during this phase of the computation.
1f Ml enters an accepting state then the string o(x,y,z) guessed up

to that point is in Ly» so its length is at most t(|x|). 1If M

accepts, then M' proceeds to copy each segment =z, ¢ S* of

b
z = # 2] ees #i z. (m > 0) onto the oracle tape, querying its oracle
about zj and comparing the response to the marker #i . This phase of
3

the computation takes [z| + m < 2|z| 'steps; For any z and 4, M'
accepts x relative to A if and only if there exist strings y,z such
that 0(x,y,2) ¢ LM and z ¢ (A ® (S* ~ A))*, so M'(A) = M(A). If

M' does accept x (relative to A), by guessing strings vy,z, then

;12| < t(|x|}; therefore that computation of M' on x has length
y

at most |6(x,y,z)| + 2|z| = ]y! + 2|z[ < 3t(!x|). ]

Recall that a function ¢t{(n) is a "running time" if there is a
deterministic Turing machine which on amy input of length n takes ex-
actly t(n) steps. If in Corollary 2.3.4 t(n) 1is a running time, then
with the addition of some finite number of extra tapes, the oracle ma-
chine M' <can be constructed to operate (réther than accept) in time
3t(n). In the context of linéar time bounds, this fact will be used in

Chapter &4, so it is stated as a separate corollary.

Corollary 2.3.5. For any class of languages ¢,
NL(C). = {M(A): A e ¢, M a nondeterministic linear-time oracle

machine with 4 tapes}. 0O

2.4. A RELATIVIZED TIME-HIERARCHY THEOREM

As is the case with the analogous result for Turing acceptors,
Corollary 2.3.4 allows construction of a nondeterministic oracle machine
which can simulate computations of any oracle machine that operates in
time t{n) and which itself operates in time not much larger than t(n).
The known methods of deterministic simulation with a fixed number of
tapes of deterministic oracle machines are less efficient. These simu-
lation techniques are used in the following theorem to give conditions
on functions tl(n),tz(n) which ensure that relative computation in

time tz(n) is more powerful than relative computation in time tl(n).

Theorem 2.4,1. Suppose A 1is a recursive language and tz(n) is a

running time.

tl(n)lg(tl(n))
(1) If lim 7T= 0 then

DTIME(tZ(n), A) ¢ DTIME(tl(u), A),

tl(n+1)
(2) If l:!-lig} -tzT = 0 then
NTIME(tz(n), A ¢ N‘IIME(tl(n), A). n}

See Appendix A for the proof of Theorem 2.4.1. The proofs of
parts (1) and (2) are essentially the same as the proofs for the analo-

gous results for Turing acceptors [28,49,50]. 1In part (1), it is not
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necessary that A be recursive, since the proof is by diagonalization;
the recursiveness of A is used to derive a contradiction in the proof
of (2). 1In both cases the proof is uniform, In the sense that the
coracle machine constructed to demonstrate the non;containment does not
depend on A but only on an alphabet I such that A c %,

Theorem 2.4.1 will only be applied in the context of polynomial
time bounds. It implies in particular that for a recursive language
4, NP({A}) (and P({A}) ) can be decomposed into an infinite hier—
archy of classes based on the degree of the polynomial used as a time-

bounding function.

Corellary 2,4.2. For any recursive language A
(1}  BL{{AD) ¢ VP({AD); and
(2) for any polynomial p(n),

DTIME(p(n), A) ; P({A})

NTIME(p{n), A) j NP({A}).

Proof. "Part {2) follows easily from the Fheorem. For part (1),
suppose A 1s a language and M 1is a nondeterministic oracle machine
which operates in time cn + d. The language

L = {x e M(A): [x| < ¢+ d} 1is finite, so let M' be a nondetermi-
nistic oracle machine which acts like M on input strings of length

at least ¢ + d and accepts strings in L by simply reading its input.
Then M' operates in time n2 and M'(A) = M(A); so

NL({A}) < NTIME(nZ, A). If A 1is a recursive language then from part

(2), NLGAD) & NIIMEG, &) § NP({AD). o
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One might consider extending Theorem 2.4.1 to classes of languages,
to find, for example, conditions on a class of languages  such that
NL(C) ;NTIM:E(n3, 0 =u {NTIME(n3, A): A e C}. If the class NTIME(poly)
satisfied those conditions, then it will follow from results in Chapter
5 that NTIME(poly) could not be closed under complementation. However,
the proofs of Theorem 2.4.1 (1) and {(2) seem to apply only when the
class C has a simple structure; and there exist classes ( for which
C = NL(C) = NP(C) (e.g., C = PSPACE).

In the remainder of this dissertation, frequent application will
be made of the "mathematical machinery," representation theorems and

closure properties established in this chapter.



Chapter 3: THE RUDIMENTARY RELATIONS AND RELATIVE COMPUTATION

In this chapter the rudimentary relations will be defined and in-
vestigated as a family of formal languages. The class of rudimentary
relations is the smallest class of string relations containing the con-

catenation relations '"xy = 2"

and closed under some natural operationms,
called the rudimentary operations (basically the Boolean operations and
a form of bounded quantification). Extending the work of Quine [44}] on
definability from concatenation, Smullyan [51] introduced the rudimen-
tary relations (or hattributes") and used them in a development of recur-—
sive function.theory based on string manipulation. Bf taking this ap-
proach, Smullyan identified small baées for the recursively enumerable
sets and proved normal form theorems without relying on number theory.
The rudimentary relatioms are "comstructively'" definable from con-
caténation; hence they may be viewed as a string-thecoretic analog of the
constructive arithmetic relations, also defined by Smullyan [51]. The
class of constructive arithmetic relations is the smallest class of rela-
tions on natural numbers containing addition and multiplication and closed
under number-theoretic versions of the rudimentary operations (the
Boolean operations, finite quantification and explicit transformation).
Since most formal models for computation and, in particular, for restric-
ted computation are based on string manipulation, it is appropriate for
the study of computatiomal complexity to consider the rudimentary rela-

tiong rather than the comstructive arithmetic relations. Results about

either class apply to both, however, since Bemnnett [&] has shown cthat

the two classes are the same when strings are viewed as numerals.
Interest in the rudimentary relations is strengthened by the observation
that although it is a class of "low" complexity (contained in szegor—
czyk's class ZB [251) yet it contains exponentiation (as the rel;tion
L p" [4]) and forms a basis for the recursively enumerable sets,

We will see in this chapter and the next how questions which remain open
about the rudimentary relations are tied to some important open questions
in automata-based computational complexity.

The first section of this chapter contains the definition used here
for the class of rudimentary relations; it is equivalent to the defini-
tions used by Smullyan and others [&, 33, 57]. To allow comparison df
the rudimentaryrrelations to classes of languages, the mapping 0 (given
in Chapter 1) is used. No information is lost in passing from the rudi-
mentary relations to the family of languages associated with it under
this encoding, since a relation is rudimentary if and only if the lan-—
guage encoding it is a (l-ary) rudimentary relacion. In Section 2, some
properties of the rudimentary relations are established and the machinery
developed in Chapter 2 is applied to the class of (encodings of) rudi-
mentary relations. As a result, the family of rudimentary relations is
characterized as the smallest nonempty class of languages "closed under"
the operator NL{ ). Finally, in Section 3, parts of the proof of this
characterization are examined more closely, to extract the information
they contain about classes of languages in general and about language-the-

oretic closure properties. In particular, the class of rudimentary rela-



tions is shown to be the class of languages generated by the language
{a"™"™ n 2 0} under the operations of inverse homomorphism, length-

preserving homomorphism and the Boolean operations.
3.1. DEFINITION OF THE RUDIMENTARY RELATIONS

We begin with a definition of the rudimentary operations and the
rudimentary relations. The definition is in a more general form than

that given by Smullyan [51] and is based on the definition of Jones [33].

Definition 3.1.1. (1) We shall call the following operations the "rudi-
mentary operations,"

{1} Explicit transformation: An explicit transformation of a rela—

tion R 1s obtained by adding redundant variables, identifying or per-
muting variables, or substituting a string for a variable. That is,

Q E[S*]n is defined by explicit transformation from R S[S*]m if and
only if Q = {(xl, caey xn): (tl, ceas tm) € R} where for 1< 1< m,

t, 1s a string containing symbols from S or variables Xps ooy X

i

&
(or both). For example, tl might be X, ora string w e S or

n

X WX,
(1i) Boolean operations: The Boolean operations are union, intersection
and difference of relations over the same alphabet.

+
(iii) Bounded existential quantificatiom: Suppose R € {S*]n 1, n==0.

*
A relation Q c [S ]n+1 is defined by bounded existential quantification

from R if and only if Q = {(xl, ey xn,y): for some =z ¢ S* such

that [z| < |y|, (x5 ---» x,2) ¢ RI. This will also be written

Q= d<R.

*
(2) For an alphabet S, the concatenation relation Cs on S is

defined to be CS ={(x, v, z2): x,v,z¢ S$*, xy =z}, Define RUD(S)
to be the class of relations on S* definable from CS by a finite
number of applications of the rudimentary operations; that is,

RUD(S) 1s the smallest class of relations containing Cs and closed
under the Boolean operations, bounded existential quantification and

explicit transformation. Finally, define

RUD = u {RUD(S}: S any finite alphabet}.

The definition of the rudimentary relations in [51} restricts them
to the alphabet {1,2}, and in [4] separate classes of m-rudimentary
relations are defined for each m 2 1; in both these definitions the
operation of explicit transformation is restricted toc a simpler form,
in which each term ti is.either a constant string or cne of the vari-
ables. Clearly if #(S) = #(T) then RUD(S) is equal to RUD(T) (i.e.,
isomorphic under a renaming of the symbols); it is shown in [33] that
for #(S) = m, RUD(S) is equal to the m-rudimentary relations. More-
over, in a certain sense {discussed below) the alphabet may be restric-
ted to two letters without changing the class of relations defined.

A string relation may be viewed as a relation on natural numbers,
in the following way. If § = {sl, fees sm} is an alphabet with m
symbols, let e_: IN—+ S* be the bijection which assigns to a number

S

its m-adic notation. That is, eS(O) =e and for n z 1,

k .
es(n) =s. s ...s, if and only if n= J i<mk_J. The function e
S i "1 21 4 S

172



is extended to tuples of numbers and to relations on numbers in the
obvious way. The results in [4,33] show that for #(S),#(T) = 2, if
W is a relation on IN then eS(W) ¢ RUD(S) if and only if
eT(W) € RUD(T); further, for £=1{1,2} a relation W on NN is
constructive arithmetic if and only if eZ(W) ¢ RUD(L). Hence
RUD = RUD(L} when they are viewed as relations on natural numbers,
and, also in this sense, RUP 1is the class of constructive arithmetic
relations.

The class of rudimentary relations is closed under two other forms

+1
of bounded existential quantification. If n2 1, R c [S*]n ..

define
(1) e(R) = {(xl, «ves X )i there exists z ¢ s* such that
|z| < max{|xi[: 1l < i< n} and
(xl, cees Koy z) € R}; and
(i1) for 1< j < m,

Ej(R) = {(xl, ey xn): there exists z ¢ S* such that

!zl < |ij and (xl, T . z)} € R}.

Let Q= I< R be as in Pefinition 3.1.1. Then ej(R) is an explicit
transformation of Q: for 1 < j < n,
ej(R) = ((xl, vens xn): (xl, cees X, xj) e Q}.
Also, e{R) «can be defined from Q wusing union and explicit transfor-
mation: e(R) = sl(R) U EZ(R) U .ou U sn(R).
The same class ARUD of relations results if the cperations €49

i2 1, are used in place of J< in the definition of the rudimentary

*
operations. To see this, let R? < Is ]n+2 be the explicit transfor-
mation of R defined by

L. A .
R {(xl, . xn+2). (xl, cees X, xn+2) € R};
_ ' . .
then Q En+1(R ). When ey 1s used to define a relation Rl from

R, this will also be written
(x5 -oes %} e Ry = ( Hz)xi[(xl, cees X0 2) € R

Notice that this is a quantification in which the length of z is
bounded by the length of x, (rather than one in which the number rep-
resented by z is bounded by the number x5 represents) .

The class of rudimentary relations is also preserved if constant
multiples of the lengths of the variables are used to bound the quantifi-
cation. For exémple, suppose k 1is an integer and

Q' = {(xl, cees X y): ‘there exists z ¢ 5* such that
|z| < k|y| and (xl, <e+s X5 2) € RhL
Then Q' is an explicit transformation of Q:
Q' = {(xl, SEEPEE S ¥): (xl,'..., X yk) e @}
k . . . . ;-
where y = ZXL;LX: is the string y concatenated with itself k times.

k

In Theorem 3.2.7 the rudimentary relaticns will be compared to a
certéin class of languages; to make this comparison we associate the
language 8(R) with a string relation R. Myhill used the mapping &
in a proof that any rudimentary relation could be accepted by a determi-
nistic linear-bounded automaton, i.e., FKUD € DSPACE(n). Other encodings

of tuples of strings are possible, for instance the "sequential” ome,



taking (xl, ey xn) to xl# e #xn. The '"parallel" encoding 6 is
used here because it gives rise to simple relationships between the

rudimentary operations and language-theoretic operatious.

Proposition 3.1.2. If a relation Q is defined using rudimentary op-
erations from a relation R, then 0(Q) can be defined from O(R) and
languages in DTIME(lin) by application of Boolean operations, homomor-
phism and inverse homomorphism. Specifically:

(1) If R,R" < [$*]" and #¢ S then B(RuUR') = B(R) u 6(R"),

8(Rn R'Y =6(R) n 6(R') and 6(R - R') = 8(R) - 0(R");

(2) If Q is defined from- R by bounded existential quantification,
then there exist a regular set Lo, a howomorphism h and a length-pre-

serving homomorphism h' such that 8{(Q) = h'(L0 n h-l(e(R))); and

(3) If Q is an explicit transformation of R them 6(Q)} can be
formed from 6(R) by applying inverse homomorphism, linear—~erasing homo-

morphism and intersection with languages in DTIME(1lin).

Proof. Verification of (1) is straightforward.

For (2), suppose Q,R c [S*In+1 and Q = J< R. Let

+2_ %
L, = {e(xl, cees X, ¥, 2} |z} = [¥|} c ([S#]n 2) s then L, is a

n+2, * o+l *

regular set. Let h: ([S#] )y > ([S#] }  be the homomorphism deter-

mined by defining

e if bl = ... = bn = bn+2 =

n(lby, ooes b D)

ot+2
[b

17 s bn’ bn+2] else.

nt2. % ntl, *

Let h': ([S#] )y - ([S#] ) be the length-preserving homomorphism

: R ' -
determined by defining h ([bl, vees bn+2]) = [bl, ceey bn+1]' Then
h(e(xl, cees X0 Y, z)) = e(xl, cees X, z) and

h'(e(xl, cers X5 Y z)) = e(xl, cves Koo y) 1f |z| s |y|; hence

8(Q) = h'(Ly o B He(R)).

For (3) it is sufficient to show that the statement holds in the
following three cases, since any explicit transformation can be built up
from transformations of these forms. Suppose R < [S*]n and let

(1) Q; = £(xy, -vos x )i (Xﬂ(l), vees Xﬂ(n)) € R} where 7 1is some

-permutation on {1, 2, ..., n};

(11} Q2 = {(xl, ey xn+1): (xl, i xn) € R}; and

(1ii) Q3 {(xl, ey xn_l): (xl, sees X 9o t(xl, vees xn—l)) € R}

where t(xl, sees X ) is a string containing variables and synmbols

-1

. * *
from S. Let hl: ([S#}n) > ([S#]n) be the length-preserving homo-

morphism determined by defining hl([bl, eeny bn]) = [ R

b1r(1)’ n(n)h

then B(Ql) = hl(B(R)). Define a homomorphism h,: ([S#]n+1)* b
.k
(5,17 by e if b, =...=b_=#

by (b, oeus b B =

ntl
[bl, ey bn] else.

Then hz(e(xl, P xn+1)) = 9(x1, heny xn) and
8(Q,) = by (8 () n 8([s*]™). (Note that 8([5*]") is a regular set.)

Let h3: ({S#]n)* -+ ([S#]n-l)* be the homomorphism (similar to hz)



determined by defining

Byllbys «oey b1) =
Ibl, eey bn—1] else.

Let L1 = {9(x1, hes xn): x = t(xl, vees X .)}. Then

n-1

G(QB) = h3(8(R) n Ll)' Since t(xl, -svs X ) is formed by concate-

-1
. . . * PR
nating some of the variables and some strings in §°, it is easy to see

that L1 can be accepted in linear time by a deterministic Turing ma-—

chine with two-way input and one work tape. (Notice that if

t(xl, ey xn—l) is of a simple form, either a constant string or ome
of the wvariables, then Ll is a regular set.) Also because of the form
of t(xl, ey Xn—l)' there are constants Cg» Cps eres © such that

*
for any Xy eens X 1€ s,
1t(x1, ey xn_l)l < g + cl!xll + ...+ Cn—l!xn-ll' Therefore 1if

c = n.max{ci: 0 < i < n-1} then for any z ¢ L, |z| < c|h3(z)i;

that is, h3 is a linear-erasing homomorphism on Ll’ hence on

L1 n 8(R). ad
If explicit transformations are restricted to forms (i) and (ii)

above and form (iii) with t(xl, ey xn_l) either a constant string or

one of

ened as follows: for any explicit transformation Q of R, there exist

a regular set L and homomorphisms g1s 8 such that

B(Q) = g;(g; (G(R)) 1 L) and g, is e-limited on g;l(B(R)) " L.

Kps wees X1 then part (3) of this proposition can be strength-

3.2. A CHARACTERIZATION OF THE RUDIMENTARY RELATTIONS

The distinction between the rudimentary relations and the class of
languages {6(R): R ¢ RUD} will now be ignored. We will see that the
rudimentary relations are closed under some useful language-theoretic
operations and contain the languages accepted by certain types of
resource-bounded automata. In particular, any language accepted in
linear time by a nondéterministic multitape Turing acceptor is rudimen~
tary. - This fa;t combined with the representation given in Theorem 2.3.1
yiel@s the principal result of this section, thgt EUD is the smallest
nonempty class £ satisfying NL£) E‘f'

The comparison of RUD to a class of languages defined by automata
is easier if the latter class can be shown to be generated by some rudi-
mentary language under operations which preserve AUD. The Dyck sets,

defined below, are the basis for two such algebraic characterizations,

Definition 3.2.1. Let I, be the alphabet {al, a,, Ei, Eé} and let

Iy e I, be the alphabet [al,zl}. Let ~ be the binary relation on

*
L

2 defined by x ~y if and only if x = ua{;iv for some u,v e I

21
i=1o0r2, and y s uv. That is, x ~y if ¥y results when some

— — *
pair a;a;" or a,3, is cancelled.from x. Let ~ denote the reflexive

and transitive closure of ~, Then D the Dyck set on two letters,

29
* *
is defined to be D, = ixe Lt X7 e} - and D;, the Dyck set on one
* *
letter, is defined to be Dl = {x ¢ Losox~ e},
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and a and a, to be two types of match-

Consider a and a 5 2

1 1’

ing parentheses. Then Dl consists of strings of balanced parentheses
of cne type, and D2 congists of strings that are‘properly nested and
balanced parentheses of both types. The Dyck sets are context-free lan-
guages; the Importance of the Dyck set on two letters lies in the fact

that it generates the context-free languages under the operations of

intersection with regular sets, inverse homomorphism and homomorphism.

Proposition 3.2.2 (Chomsky-Schutzenberger). If L is a context-free

language then there exist a regular set L' and homomorphisms hl, hz,

with h, length-preserving, such that L = h,(L' n hIl(DZ)). 0
The first version of the Chomsky-Schutzenberger Theorem appeared in

{14]. in that proof, as well as in subsequent refinements [18], the

homomorphism h2 is not necessarily even e-limited on L' n hIl(Dz);

a preof of the version of the theorem given above can be found in [8].
The following result when combined with Proposition 3.2.2 shows

that the class NTIME(n) is generated by the Dyck set on two letters and

the regular sets under the operations of intersecticn, inverse homomor-

phism and length-preserving homomorphism.

Proposition 3.2.3 ([9]). If L ¢ NTIME(n) then there exist a length~

1 L2, L3 such

that L = h(L1 n L2 n L3). Il

preserving homomerphism h and context-free languages L

The next proposition brings together some facts about rudimentary

relations that will be useful for the proof of Theorem 3.2.7.

3-12

Proposition 3.2.4. (1) (Jones [33]) For aﬁy relation R, R e RUD if
and only if O(R) e RUD.

(2) For any relation R, if @(R) € NSPACE (lg(n))< them R RUD (i.e.,
NSPACE(1g(n)) < RUD).

(3) Suppose L ¢ S*, h: T* - S* is a homomorphism and h': S* - *
is a homomorphism that performs linear erasing on L. Then L ¢ RUD
implies h™1(L),h'(L) € RUD.

(4) For any relation R, 1if 6(R) ¢ NTIME(n) _then R ¢ RUD.

%
(5 If Ll’ L2 are rudimentary languages then (L1 [ LZ) e RUD.

Note that part (1} justifies our equating the family of rudimentary rela—

tions and the family of languages {6(R): R ¢ RUD}.

Proof. (1) For n 21, let Tn = {(xl,...,xn,z): z = e(xl,...,xn)}.
Jones [33] has shown that Tn is rudimentary for each n (and any alpha-
bet); the proof relies on the fact that relations such as "|xl = 1y|“

and "a 1is the |x|-th symbol in 3y" are rudimentary. Recall that

Ie(xl, ey xn)| = max{[xi|: 1< i< n}. Now for any relation R,

8(R) = {z: there exist Xy» -«.5 X such that ixi| < |z] for
1<1<n, (xl, cees Xy z) € Tn and (xl, [ xn) ¢ R};

and

R = {(x;5 -.., x }: there exists z such that |z| < max|x,|,
1 n i i

(g5 -ees x5 2) € T, and z¢ 9(R}}.

Ll
As remarked previously, the types of quantification used in the two ex—

pressions above can be replaced by bounded existential quantification



(and explicit transformation and union); therefore R and 8(R) can

be defined from each other and Tn by use of rudimentary operations.

(2) 1f Rc [5*]™ and #¢ 5, let
o(R) = (xl#xz#...#xm: (xl, . xm) € R}.
It is shown in [42] that R is rudimentary if there are constants k > 1
and e, 0 < e <1, such that o(R) is accepted in time nk and space
n® by a Turing acceptor with a two-way read-only input tape and one
work tape (to which the space bound applies). The proof is similar in
form to that in [45], where Turing acceptors are arithmetized to show
that a class of relations contains a basis for the recursively enﬁmerable
sets; In this case the arithmetization must be done to allow use of only
bounded quantification, so that the resulting relations are rudimentary.
A similar theorem appears in [57].

It is ‘easy to see that o(R) ¢ NSPACE(lg(n)) if and only if
6{R) = NSPACE(1g(n)) and that any language in NSPACE(lg{(n)) cam be accep-
ted by a device which satisfies the conditions of the theorem cited

above; therefore, if 8(R) ¢ NSPACE(lg(n)) then R is rudimentary.

(3) Given L c S* and h: T* + 5* a homomorphism, let

m = max{[h(a)|: a ¢ T}. Let R; be the binary relation on (5 u T)#*

defined by R, = {(x,9): x e T, v € s*, h(x) = y}. Then

B(Rl) € DSPACE(1g(n)), so R, 1is rudimentary. Let R, be the explicit

transformation of L given by R2 = {(x,y): x ¢ T*, y ¢ L}. Let R3

be defined from R1 n R2 by bounded existential quantification:

G67) € Ry = (32)yi(x.2) € Ry n Ry]. Then h_l(L) = {x: (x,x™) ¢ R3]

is an explicit transformation of RB; hence h_l(L) is rudimentary if
L is rudimentary.
Suppose h': 5+ T* 1s a homomorphism with the property that.

|%| < kX|h'(x)] for any xe L. Let Q = {(x,¥): h'(y) = x} and

*
Q = {(x,y): xe T, yeLl. Then 8(Q) ¢ DSPACE(lg(n)) and Q, isan
explicit transformation of L, so both are rudimentary if L dis. If
Q3 is defined from Ql n QZ by bounded existential quantificatiom, then

h'(L) = {x: (x,xk) € Q3} and therefore h'(L) is rudimentary.

(4) Since 6(R) € RUD implies R ¢ RUD, it is sufficient to show that
any language L ¢ NTIME(n) is rudimentary. In [46] a deterministic
automaton is described which accepts the Dyck set on two letters and uses
lg(n) space on an input of length n; hence D, ¢ DSPACE(lg(n)) and,
using part (2), D2 € RUD. Also, any regular set is rudimentary, since
any regular set is in DSPACE(lg(n)). Therefore, from Proposition 3.2,2 and
part (3), any context-free language is rudimentary. Using the characteri-
zation of NTIME(n) given in Proposition 3.2.3 and the closure properties of
RUD', any language in NTIME(n) is therefore rudimentary. (In {34,57}

the Chomsky-Schutzenberger Theorem is also used to show that any context-

free language is rudimentary, with different methods for showing that

the Dyck sets and regular sets are rudimentary.)

(5) Suppose LisLy © s* and #1,#2 ¢ S, and let

= = & *, . .
L 8L, = #lLl u #ZLZ. Let L = ({#1,#2}3 ¥y - (Ll -3 Lz) ;s since
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{ #l,#z}s*)* is a regular set, (Ll ] L2)* is rudimentary if and only
if L is rudimentary.

Let T =Sy {#1,#2). Rather than giving an explicit definition of
L from CT using the rudimentary operationms, the-previously established
facts about RUD will be used, specifically the facts that RUD is
closed under nonerasing homomorphism, inverse homomorphism and intersec-

tion with regular sets. Note that
= EN * * & *
L= )8R - L) u (hH(8Y = L)) (L #3sM

Let U ={a: a e S} be an alphabet isomorphic te S, with Un T = §.

For i=1,2 let R c (Uu T)* be the regular set

Ry = (A0 8 8 (4 #0095, Let byt (Uu D* > 1% be the

length-preserving homomorphism determined by defining hl(#l) = #l,
*

h(,y) = #,, and for ace s, hy(a) = hl(Z) =a. Let hy: (U ™* + 8

be the homomorphism determined by defining hz(#l) = hz(#z) = e and for
aeS, hy(a) =a and hZ(E) = e. Thus, applying h;l to a string

X e 5° inserts some symbols from U u {#1,#2} into x, and applying
hl to a string y e (Uu T)* changes symhols a e U occurring in y

to the corresponding symbols a € S. Then

L = hl((h;l(s* Sl AR U (h;l(s* - L) 0 Ry,

so L 1s rudimentary. 0]

Recall that NL(C) = {M(L): L ¢ ¢, M a nondeterministic linear-
time oracle machine}. We now define iterations and the closure of the

operator NL( }.

4]
Definition 3.2.3. Let ( be a class of languages. Define NL () = C,

and for k2 0, NMl(o) = NLMLE(C)). Define NLE(O) = u (NL¥(C): Kk = 0.

Thus, WNL*¥(¢) 1is the closure of ¢ under the operator NL( }, the

smallest class of languages X satisfying C c AL and NL(L) c Fé

*
The following closure properties of classes defined by NL () are

easlly established using Theorem 2.2.4.

Proposition 3.2.6. Suppose ¢ 1is a class of languages which either
consists of a single language or is closed under marked union. Then
NL*({) 1is closed under the Boolean operations, linear-erasing homomor-

phism and inverse homomorphism, and contains the class DTIME(lin). ]

Note that if C is a nonempty class then @ ¢ NL((); hence if C
is nonempty and NL(¢) < ¢, then NL*({G}) c (. Therefore, NL*({0})
is (by definition) the smallest nonempty class that is closed under
ML ). '

We now have the necessary preliminaries for the proof of the char-

acterization,

Theorem 3.2.7. A relation R is rudimentary if and omly if
8(R) ¢ N'L*({ﬂ}), i.e., RUD = NL*({G}). Thus the class of rudimentary

relations is the smallest nonempty class ( satisfying NL(() c G

Proof. First note that for any finite alphabet §, G(CS) € DTIME(lin),
where CS = {(x,y,2): xy = z, X,y,z ¢ §*}, Using Proposition 3.2.6,

B(CS) e NL*({#}). Also from Proposition 3.2.6, NL*({@1) is closed
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under inverse homomorphism, linear-erasing homomorphism and the Boolean
operations. Combining this with Proposition 3.1.2, we see that the class
of relations {R: 8(R} ¢ NL*({#})} is closed under the Boolean operations,
explicit transformation and bounded existential quantification, so from
the definition of RUD, if R is a rudimentary relation then
e(R) e N ({gh).

Clearly @ ¢ RUD. Since 6(R) ¢ RUD implies that R is rudimen—
tary, to show that NL*({#}) < RUD it suffices to show that
NL(RUDY} c RUD., Let L be a language in RUD and let M be a nondeter—
ministic linear-time oracle machine. Using the representation given in

Corollary 2.3.2, there exist a length-preserving homomorphism h a

1°
homomorphism h2 and a language L' ¢ DTIME(lin) such that
ML) = by L' 0 K3 ((L @ (S* - 1))®), wvhere L cS*. Now RUD is closed
under intersection and difference and, from Proposition 3.2.4 (3-5),

under the other operations used in this expression; therefore

M(L) ¢ RUD. a

The family DSPACE{n) contains DTIME(lin) and is closed under
the Boolean operations, inverse homomorphism and nonerasing hemomor-
phism; therefore from Corollary 2.3.2 NL(DSPACE(n)) c DSPACE(n}. Since
the empty set is clearly in DSPACE(n), we can conclude the following

known inclusion.

Corollary 3.2.8 (Myhill [41]). Every rudimentary relation can be accep—

ted in linear space by a deterministic Turing machine:
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RUD < DSPACE(n). |

This corollary can be proved by another metho&. It is known [45]
that the family DSPACE(n) is Grzegorczyk's class éf [25], again
viewing strings as numerals in w-adic notation. From the definitions
of the classes it is not hard to show that every rudimentary relation is

in £9 (511, hence EuD c 20 c #Z - DSPACE(n). (A direct proof that

RUD < {i is given in [45].) It is not known whether ﬁg i if, or
4 ’ 2
whether RUD S (:2 ; note that if AUD = DSPACE(n) then 50 = 22 .
£ * * *

This problem will be discussed further in the next chapter.

3.3. EXTENSIONS

In the proofs of Propositionm 3.2.4 and Theorem 3.2.7 only some of the
properties of the rudimentary relations were used.in each part. In this
section the ideas of those proags will be applied to classes of lan-
guages in general.

We first restate the closure properties of NL(J) and NL*(C) in

the following form.

Proposition 3.3.1. If ( is a class of languages closed under marked
union or which conéists of a single language then:

(1) the closure of ¢ under union, intersection, product, Kleene %, in~-
verse homomorphism and linear-erasing homomorphism is contained in

NL{C): and
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(2) the closure of (¢ under the Boolean operations, product, Kleene *,
inverse homomorphism and linear—erasing homomorphism is contained in

NL*(0) _ a

An "abstract family of languages" (AFL) [20] is a class of languages
containing at least one nonempty language and closed under union, inter—
section with regular sets, product, Kleene *, inverse homomorphism and
nonerasing homomorphism. Thus Proposition 3.3.1 states that, for a non-
empty class ( satisfying the condition, NL(C) contains the AFL-
closure of ¢ (i.e., the smallest AFL containing (); and NL*(C)} con~
tains the Boolean and AFL closure of (. The containment may be proper:
for instance, the class ;? of regular sets is closed under the Boolean
and AFL operations, but NL(£) = NTIME(n) and NL*(£) = RUD, both of
which properly contain the regular sets.

We now consider conditions under which equality does hold in Propo-

sition 3.3.1.

Proposition 3.3.2. Suppose ¢ 1is a class of languages containing DZ’
the Dyck set on two letters. Then NL*(C) is contained in the closure
of ¢ wunder intersection, difference with regular sets, inverse homomor-

phism and length-preserving homomorphism.

Proof. The proof is similar to the proof of Theorem 3.2.7. Let { be
a class of languages that contains D2 and let CO denote the closure

of (¢ wunder intersection, difference with regular sets, inverse homomor—

phism and length-preserving homomorphism; it must be proven that
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NL*(C) < CO.
Since C < CO’ for NL*(C) < CO it is sufficient that
NL(CO) < CO. It is easy to see that CO is closed under union and con-

tains every regular set. Since D2 is in C'O and is closed under

0
inverse homomorphism, length-preserving homomorphism and intersection
(wifh regular sets), from Propositions 3.2.2 and 3.2.3, NTIME(n) < CO.
Referring again to Corollary 2.3.2, if M 1is a nondeterministic linear-
time oracle machine and L c §* is an oracle set, then M(L) ¢ CO if
(L& (5% - L))* ¢ C'O, since M(L) can be formed from (L @ (5% - L))#*
using length-preserving homomorphism, inverse homomorphism and intersec-
tion with a language in DTIME(lin). Recall from the proof of Proposi-

tion 3.2.4 (5}, that for Ll,L c S*, regular sets R]_,R2 and homomor-

2

h, were constructed {with h

phisms hl’ 2 length-preserving) such that

1

((#,8359% - (L 8 L)% = hl((hzl(s* - L) R U (hyNs% - L) R,

Therefore if L c 8% is in C'O, then (L & (S% - L))* ¢ CO’ and so

N'L.(C'O) c CO. 0

In the proof above, to allow the conclusion that NTIME(n) < C'O,
it is sufficient (and also necessary) that the Dyck set on two letters
be in C'o. Thus-the condition on (¢ 1in Proposition 3.3.2 can be weakened

if D can be generated from some other language in (.

2

Proposition 3.3.3. Lf C is a class of languages containing the lan-
guage {0™™: n > 0} then the Dyck set on two letters is in the closure

of (¢ under intersection, difference with regular sets, inverse homomor-



phism and length-preserving homomorphism. O

The proof of Proposition 3.3.3 can be found in Appendix B, It is first

shown that D2 can be formed from D1 by application of Boolean opera-

tions with regular sets, union, inverse homomorphism and length~preser-

ving homomorphism; and then that D1 can be formed by applying those

operations to {0"1%: n 2 0}.

Theorem 3.3.4. Suppose ( 1is a class of languages which contains

{Onln: n 2 0} and which is either a singleton class or is closed under
marked union. Then NL*(C) is equal to the closure of ¢ under inter-
section, difference with regular sets, inverse homomorphism and lengtch-
preserving homomorphism. If further ( is closed under inverse homomor-—
phism, then NL*{C) 1is equal to the closure of ( under intersection,

difference with regular sets and length-preserving homomorphism.

Proof. The first part follows easily from Propositions 3.3.1-3,3,3.
For the second part, let Cl denote the closure of ¢ under intersec—
tion, difference with regular sets and length-preserving homomorphism;
it must be shown that Cl is closed under inverse homeomorphism.

Let D, =C and for k20, let D 1= {Ll nkL

0 Kt B-Lps

2’
h(Ll): Ll,L2 € Dk’ R a regular set, h a length-preserving homomorphi-

sm}. Then Cl = U Dk' Since by assumption C 1is closed under inverse
k

homemorphism, if I ¢ DO and h is a homomorphism then h‘l(L) € Cl.

For any languages L L and any homomorphism h,

1’ 72
1

h'l(Ll nLy) = h’l(Ll) n h"l(Lz) and h"l(Ll - L) = h_l(Ll) -h €y,

Furthermore, inverse homomorphism and length-preserving homomorphism

T

“commute,” in the following way:

Claim. If hl: 5% > T* is a nonerasing homomorphism, h2: U# > T*
is a homomorphism and L c¢ S*, then there exist a regular set L', a

length-preserving homomorphism h and a homomorphism h such that

3 4

-1 _ ' -1
hy"(hy (L)) =hy (L' n b, 7 (L)),
This construction is given in [21, pp. 43-44].
Thus an induction argument can be given to show that for all
k20, if LeD,_ and h isa homomorphism then h M(L) « ¢), and

therefore Cl is closed under inverse homomorphism, O

Theorenm 3.3.4 yields other, algebraic, characterizations of the

rudimentary relations.

Corollary 3.3.5. (1) (Yu [571) FRUD is equal to the closure of the
context-free languages under the Boolean operations aﬁd length-preser-
ving homomorphism,

(2} RUD is the smallest class of languages containing 0"1™: n > 0}
and closed under the Boolean operations, inverse homomerphism and length-

preserving homomorphism. 1

Note that part (1) of the corollary above holds if the context-
free languages are replaced by any class of languages contained in RUD,
closed under inverse homomorphism and containing {Onln: n > 0}, e.g.,

the deterministic context-—free languages, the linear context-free lan-
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guages, the one-counter languages, the class DSPACE(1lg(n)). Recall that
the closure of the regular sets under the Boolean operations and length-
preserving homomorphism is just the regular sets, which is properly con-
tained in RUD. Since {Onln: n 2 0} is a simple nonregular set, this
raises the question of whether there is a class of languages for which
the closure in part (1) properly contains the regular sets but is itself
properly contained in RUD. Alternately, is there a nonregular language
L such that the smallest Boolean-closed AFL containing L 1is properly
contained in RUD?

Part (2) of this corollary has the following interpretation. It
can be shown that for any alphabet 5 the language
{6(x,y,z)t xX,y,z ¢ 8%, xy # z} can be accepted by a nondeterministic
one-counter automaton with the property that during any computation the
counter makes at most one turn (i.e., one change from increasing to
decreasing). Furthermore, the class of nondeterministic one-turn one-
counter languages 1s generated by the language {Onln: n 2 0} under the
operations of intersection with regular sets, inverse homomorphism and
homomorphism [22].

Nonerasing or linear-erasing homomorphism can be used in Corollary
3.3.5, with the same results. On the other hand, the closure of the
(linear) context-free languages under intersection and arbitrary héomomor-
phism is the family of recursively enumerable sgets [26, 2}; and any r.e.
set can be generated from {anbn: n 2 0} by application of the AFL op—
erations, intersection and arbitrary homomorphism [27].

Recall that NL*(C) 1is closed under linear-erasing homomorphism for
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any class of languages (. There exist classes of languages closed
under nonerasing homomorphism (and the other AFL operations) but not
under linear erasing [23]; however, from Theorem 3.3.4 it is clear that
any sufficiently large Boolean-closed AFL is closed under 1inear—er§sing

homomorphism.

Corollary 3.3.6. If C is a class of languages containing
{0™" n 2 0} and closed under difference with regular sets, union,
intersection, inverse homomorphism and length-preserving homomorphism,

then (' is an AFL closed under linear-erasing homomorphism. B

In [12] conditions on € are given for which the closure of (
under interséctiou and nonerasing homomorphism is itself closed under
linear erasing homomorphism; the proof, like tﬁat for Corollary 3.3.6,
uses constructions involving automata, Once these results have been
stated it is possible to give proofs which make no reference to automata,
but ﬁhich, however, sfill rely on such algebraic characterizations as
those given in Propositions 3.2.2 and 3.2.3.

It 1s possible to strengthen Cor. 3.3.6 as follows: if ¢ contains
the (deterministic) linear context-free languages and is closed under
intersection, inverse homomorphism, length-preserving homomorphism and
union with {e}, then € is also closed under linear-eéasing homomor-
phism.

Now we consider the relationship of the operator NL{ ) to lan-

guage~theoretic closure properties.



Thecrem 3.3.7. Suppose ( 1is a class of languages closed under marked
product, marked +, inverse homomorphism, union with languages in
DTIME(lin) and intersection with and product with regular sets. Then
VL) = {h(Ll n ( £ LZ)): LI’LZ c * in €, h a nonerasing

homomorphism} .

Proof. For the containment from right to left, first recall from The-
orem 2.2.4 that NL(C) is closed under nonerasing homomorphism and
union with regular sets and contains L and ¥ - L whenever L < I
is in (. 1If Ml and MZ are nondeterministic linear-time oracle
machines (with the same input and tape alphabets) then for any orécle
sets Ll’ L2, it is easy to construct a nondeterministic linear~time

oracle machine My such that Ml(Ll) n MZ(LZ) = MG(LO) where

Ly = (Ll u {e})é(L2 u {e}). Thus if ¢ is closed under marked product
and union with regular sets, NL(C) is closed under intersection, and
the containment follows.

Suppose L ¢ NL({), so that L = M(Ll) with L1 e, M anon-
deterministic linear-time oracle machine. From Theorem 2.3.1 (1), there
is a length-preserving homomorphism h and a deterministic linear-time
oracle machine D such that M(Ll) = h(D(Ll)); since the composition
of nonerasing homomorphisms is a nonerasing homomorphism, we may assume
that M is deterministic.

Now suppose M operates in time cn + d and L c T*, Ll <. 5%.
Let #, #l’ #2 be three new symbols and

U=Tx ({#} v (Su {#l’#l})k) = {[a,#]: ae T} u

{[a,w]: ae T, we (Su {#1,#2})*, 1< |wl = K,

where k =c + d. Let hl: U* » T* be the homomorphism determined by

defining hy([a,x]) = a, and h,: U%x+ (S u {#1,#2})*, by defining

hZ(Ea,#]) = e and hz([a,w]) = w. The proof of Theorem 2.3.1 (2) can
be modified slightly to yield the following: there exists a language

Ly € U* in DTIME(lin) such that L = M(L,) = h (L, n h3(L)) where

L3

®
uﬁl““*‘ﬁwﬂ'
Let S =1{a:ae 5} bean alphabet disjoint from S§. Let
h3: (SuUSu {#1,#2])* > (Su {#1,#2})* be the homomorphism determined
by defining h3(a) = h3(a) =a, aces§8, h3(#1) = #l and h3(#2) = #2.

Let U, be the alphabet T x ({#} v (Su S u {#1,#2})k). Define

1
languages LJ < S, L,.Lg © U* by:
Li = {x e 5% ha(x) € 5% - Ll};
L, = {6(x,v/l): x e« T*, |x| = [v/k|, ve (Li# v E*#zw; and
Ly = {00ov/): x e, x| 2 |wkl, ve (st uLh)%,

8(x,h3(v)/k) € Lz}.

Now if h4: Ul* » T* is the length-preserving homomorphism determined by

. - _ -1 =
defining hA(Ia,x]) =a, then L = hl(L2 n h2 (L3)) = h4(L4 n LS)' The

containment from left to right will therefore follow if it is shown that

* _ .
L4 and U1 LS are in (.



Let hS: (SusSu {#1,#2})* + (Su (#1})* be the homomorphism
that erases symbols in S u {#2}: hS(a) = a, hS(E) =e for ace §,
hS(#l) = #1 and hS(#Z) =e. Let hg: Ul* > (s u-{#l})* be the homo~
morphism determined by defining h6([a,#]) = e, h6([a,w]) = h5(")’ so
that h6(e (x,v/k)) = hs(v). Let L6 < Ul* be the regular set
Ly = {8(,v/k): x e T+, ve (S, U S*# )%, x| 2 |v/k[}. Then

L, = h;l((Ll#l)+ v {el) n Lg. Hence since ¢ 1s closed under marked +,

inverse homomorphism and intersection and union with regular sets,
L[. e C.

Let hy: (SuSu {#,#,1)* > (S v {#,1)* be the homomorphism
(similar to h5) determined by defining hy(g) = a, h7(a) = e,
hy(#H) = e, hy(#) = #,5 and let hy: Ul* > (s u {#,1)* be determined

by defining hg([a,#1) = e, hg([a,w]) = ho(w). Note that

-1 — —
BT ((S*# )AL #, (S*4,)%) n (st U s*#z)* = (S*F, U SH)* - (S U LIf,)%.
If L7 < Ul* is defined to be
-1
L7 = hB ((S*#Z)*Ll#z(s*#z)*) n L6 then

Ly ={00x,w/): x e T+, [x]| 2 |v/k], v e (S, v S*E,)% - (S4, u L1#)%}.

L7 € ¢ since (¢ 1s closed under product by regular sets, inverse homo—

morphism, and intersection with regular sets. Let
= : LI * L
Ly = {80x,v/k): 8(x,v/k) e Lg and 80xhy(v)/K) e U = Ly} u (U* = L),

Since L2 is in DTIME(lin) and L6 is a regular set, also L8 is in
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DTIME(1lin). Since ( 1is closed under union with languages in DTIME(1lin),

M = *_ *_
L7UL85C', but L?"'LB U1 LS’ s0 Ul LSeC. ]

Notation [19]. If f, ‘{2 are classes of languages, let
L{l/\il = {Llan: Lis ,,{i, i=1,2}; and

-H[‘ill = {h(L): L ¢ £7, h a nonerasing homomorphism}.

In this notation, Theorem 3.3.7 becomes: for a class C satisfying
the conditions, NL(C) = H[{ A co—C]. In particular, we have the follow-

ing corollary.

Corcllary 3.3.8. If C is an AFL containing DTIME(lin) then

H[C A co=C] is an AFL closed under intersection and linear erasing. ad

Part of Corcllary 3.3.8 also follows frem results in [21], namely that
if £ dis an AFL then so is H[C A co-C]. However, closure under linear
erasing and under intersection do not seem to follow, unless ¢ is
closed under intersection,

In the preceding comparisons of MNL(C) and NL*(C) with closures
of (, only sufficient conditions were given, because the necessary
conditions that can be derived are not informative (e.g., if the conclu-
sion of Theorem 3.3.7 holds then DTIME(lin} < H[C A co-C]). There is a
class of languages that fails to satisfy the conditions of Theorem 3.3.7
and for which the containment NL(C) < H[C A co<C] 1s open: the family
DCF  of deterministic context-free languages. It is knowm that
co-DCF = DCF (see [18]) and DCF is closed under the operations used in

the proof of Theorem 3.3.7 except union with DIIME(lin}. (Recall that
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only a simple form of product with regular sets was used,) Since
DCF c DTIME(lin}, NL(DCF) = NTIME(n); the results inr {9] can be used
to show that NTIME(n) = H[DCF A DCF A DCF]. However, it is unknown
whether H[DCF A DCF] = H[DCF » DCF » DCF].

Theorem 3.3.7 will be used in the next chapter to show that for

certain classes (, NL{(C) = H[co-C].

Chapter 4: THE LINEAR HIERARCHY

In this chapter, the structure of the class of rudimentary rela-
tions is examined more cleosely. Using the characterization given in
Chapter 3, the class of rudimentary relations is decomposed intoc the

' a structure of classes of languages analogous to

"linear hierarchy,
the arithmetic hierarchy defined using linear-time oracle machines.
The k+l-st class Tl in the linear hierarchy is defined from the

k-th class o6, by o = NL(ck), so that a language is in ¢ if

k k+1 k+1

and only if it can be accepted nondeterministically in linear time given

an oracle for seme language in o It is not known whether the linear

K
hierarchy is in fact an infinite hierarchy of classesj a positive
answer to this question would close several open questions in automata
theory and logic.

Section 1 gives the definition of the lineér hierarchy and estab-
lishes some of its basic properties, which follow easily from the more
general results proved in Chapters 2 ard 3. In particular, a simpler,
alternate definition of the linear hierarchy is given (Theorem &.1.4):
for k 2 1, a language belongs to the k+l-st class if and only 1f it
is the image under a nonerasing homomorphism of the complement of a
language in the k-th class. In Section 2 this alternate definition
is used to prove a result that strengthens the analogy between the
linear hierarchy and the arithmetic hierarchy: the k-th class in the

linear hierarchy cotsists of exactly those languages that can be obtained



from languages in a basis class by application of k alternations of
bounded quantification (Theorem 4.2.2). Thus the class in the linear
hierarchy to which a rudimentary relation belonés is clesely related
to the syntactic form of its definition from concatenatiom.

We turn in Section 3 to investigation of the internal structure of
the classes in the linear hierarchy, employing the notions of "effi-
cient reducibility" and "complete sets." Each class is shovn to possess
a complete set with respect to reductions of a simple form {Thecrem
4.3.3); this property of the classes allows some conclusions to be drawm
about the relationship of the linear hierarchy and of the rudimentary

relations to other families of languages.
4.1. DEFINITION

The linear hierarchy consists of the classes of languages Tps

™ and ak (k 2 0}, defined immediately below. The names of the

classes were selected to suggest the analogy to the arithmetic hierar-

chy.

Definition 4.1.1. Define o, = g =8 = {@#}. For k > 0, define

0
Ty T Nhloy)s
"k+1 = co—ak+1; and
5k+1 = {M{(L): L ¢ s M a deterministiec linear-time oracle
machine} .

Note that o, = NLk({G}) for all k 2 0; Hhence
RUD = (J{Uk: k = 0}. Primary attention will be given to the classes

Opr For k21, the class consists of languages whose complements

k
are in Oy and 5k+l consists of languapges that can be recognized
deterministically in linear time relative to some language in Uk.‘

Except for the trivial case k =0, it is not known whether Ok i Opt1”

A proof of either proper containment or equality must rely on properties
specific to the classes rather tham only on general properties of the
operator NL( ), since, by employing techniques used in [3] in the
context of polynomial time, classes of recursive languages Cl and CZ
can be found such that () = NL(Cl) but €, ; NL(CZ).

The following proposition applies some results from Chapter 2 and
related constructions to the linear hieratchy. As well as providing

information about the classes, these containment and positive closure

properties will be useful in the investigation to follew.

Proposition 4.1.2.

(1) For each k = 0, O U T < 5k+1 S Op1 " “k+i'

(2) o, = NTIME (n); & = DTIME(1lin) .

(3) For each k 21, Gk is closed under union, intersection, product,

Kleene *, inverse homomorphism and linear erasing homomorphism.
{4) TFor each k > 1, " and 6k

tion, marked product, marked +, and inverse homomorphism; Gk is closed

are closed under union, intersec-

under complementation.

Note that closure under complementation for Uk and closure under



nonerasing homomorphism for 6k are not asserted; in Proposition 4.1.3
it will be seen that proof of either of these closure properties is

equivalent to proving the finiteness of the linear hierarchy.
Proof.
(1) TFor any alphabet S, it is easy to construct deterministic oracle

machines Dl and DZ’ both operating in time ntl, such that for any

L c S%, Dl(L) = DZ(S*—L) = L. Hence, if L ¢ 9y then
= *_
L Dl(L) € 6k+1’ and if L« L then S*-L ¢ a, and so
L= DZ(S*—L) € 6k+1' The second contaimment follows from the facts that
6k+1 S 9 (by definition) and that 6k+l is closed under complemen-—

tation. It is possible that & which is not the case

<
kL £ Tkl " Tt
for the corresponding classes of the arithmetic hierarchy (e.g., a set

is recursive if and only if both it and its complement are r.e.).

(2) Since ag = {#}, these equalities are consequences of Proposition

2.2.2.

(3) The class g, consists of a single ianguage; since o, = NL(ok_l),

0 k

by using induction on k and Theorem 2.2.4 we see that for each k = 1,

o is closed under marked union as well as the other operations

k

listed.

(4) The proof that 6k is closed under these operations for each

k 2 1 wuses that fact that is closed under marked union and

a
k-1
simple machine constructions (omitted here), similar to those given in
Theorem 2.2,4. Closure of the classes L under the operations listed

can be seen from part (3) and the following identities: if Ll,L2 c 8%,

4=5

¢S, T=5u{£¢ and h: U* > S* is a homomorphism, then

(S*—Ll) u (S*-Lz) = 5% - (Ll n LZ);

(5%-1;) a (S*-1,) 8% - (L U Ly;

(s*-Ll)t(s*-Lz) = T* - [(T* - (S*£S%*)) v Llés* U s*tLZ];
((S=LPAHT = T - [(TF - (5*O)T) v (S*)* LA(S*)*]; and

hltss - 1L = Ux - h"l(Ll). 3]

P
It is not known whether any of the classes 6k and T is closed

under nonerasing homomorphism; that one of them should be so closed is
a necessary and sufficient condition for.the linear hierarchy to
"collapse' at that point. Similarly, a class 0, is closed under com-
plementation 1f and only if the linear hierarchy is finite (and

RUD = ak).

Proposition 4.1.3.

(1) Forall k21, & is closed under nonerasing homomorphism if

k

and only if o = [} if and only if for all j =1, o.,c3$

ok i k”

{(2) Forall k=1, is closed under nonerasing homomorphism if

k

and only if oy is closed under complementation if and only if for

all j = 1, uj < -

Proof. First note that if for some k 2 1, o = NL(uk) is contained

k+1
in Tys then for all j > 0, NLJ(Uk) < o and hence for all j = 1,
aj g Uy Also, if Oy is closed under complementation then, using the

other closure properties given in Proposition 4.1.2(3), if L ¢ Ty

L ¢ S*, then for any length-preserving homomorphism h any homomor-

1°



morphism h, and any language L' ¢ 9

2

By (L' 0 BT((L 8 (SA-L))#) € g,

Therefore, from Corollary 2.3.2 if M 1is any nondeterministic linear—

time oracle machine and L ¢ © then M(L) € @ ; that is,

k’ k

Ot = NG S 9

n
To see the first part of the proposition, recall from Theorem
2.3.1(1) that if M 1is a nondeterministic linear-time oracle machine,
then there exist a deterministic linear-time oracle machine D and a

length—.preserving homomorphism h such that for any language L,
M{L) = h(D(L)). 1In the context of the linear hierarchy, this implies
that for all k 2 1,

c{h(L): L € § h a nonerasing homomor-

% ?
phism}. 1In fact, since ék < Uk and ck is closed under nonerasing
homomorphism, we see that for all k 2 1, Gk 1s equal to the closure
of 6k under nonerasing homomorphism. Thus if for some k, 6kl is
closed under nonerasing homomorphism then Gk = 0. Now since Gk is
closed under complementation, if 6k = Uk then Gk is also clesed

under complementation, so by the remark above, for all j 21,

cj SO = Gk. On the other hand, if for all j 2 1, aj < cSk then in

particular o < 6k, so that o, = 6k and since g, 1s closed under

nonerasing homomorphism, also Gk is closed under nonerasing homomor-~
phism.

For the second part, suppose for some k 2 1, ﬂk is closed

under nonerasing homomorphism. Then, since Gk = Tfk, the closure of

& under nonerasing homomorphism is contained in hence, from

wki

the proof of part (1), o € M Since ™, = co-o if o then

x x’ k= Tk

Theorem 4.1.4, For all k 2 2,

o =% and so o is closed under complementation. Again this im-

k k k

plies that for all j =1, For the reverse implicaticn,

9% Gy~
if for all j =1, Elj < G then in particular 941 S % Since
o< 0k+1’ this implies that oS %S hence LA and L is

closed under nonerasing homomorphism. 0

In the proof of the proposition above, it was shown (using Theorem
2.3.1) that for all k =1, 9 = {h(L): L ¢ :Sk, h a nonerasing
homomorphism} = HIGk]. Use of Theorem 3.3.7 allows the following

result, which is stronger in case LY ,CL (’ik

g = H[Trk_l].

Proof. Since each class O 1s closed under nonerasing homemorphism

and since ﬁk-l c Uk’ the containment from right to left is clear.
Consider Tl for k > 1. From the closure properties of O

given in Proposition 4.1.2(3) and the fact that DTIME(lin) = 51 < G
we see that % satisfies the conditions of Theorem 3.3.7: i.e.,

Gk is closed under marked product, marked +, inverse homomorphism,

union with DTIME(lin), and Intersection with and product with regular

sets, Therefore a = NL(ak) = I-I[crk A co—uk] = HIcrk A 'rrk]. Clearly

k+l

LS H[w Also, o, = HIék] c H[m so both and a,_ are con-

k T k

tained in H[ﬂk]. From [21, p. 45] we see that the closure properties

i) K3

of - T given in Proposition 4.1.2(4) ensure that H[nk] is closed
under intersection and nonerasing homomorphism (i.e., e is a "pre-
AFL" closed under intersection). Therefore H[crk Amle Hi"k] and
g

50 o 1=H[1r

k+. k] *



Theorem 4.1.4 gives an alternate definition for the "¢ classes"

of the linear hierarchy: o, = H[DTIME(lin)] and for k = 1,

1
Tptl H[co—gk]. The original definition allowed simple proofs of
closure of the classes under language-theoretic operations, for which
well-known constructions involving automata could be applied. On the
other hand, because of the close relationship between the operations

of nonerasing homomorphism and bounded existential quantification
(partially expressed in Proposition 3.1.2), this definition makes vir-
tually immediate the "syntactic" characterization of the classes g, to
be given in the nmext section. As a further preliminary for that charac-

terization, we consider another operation on string relations, bounded

universal quantification.

Definition 4.1.5. The operation of bounded universal quantification

n+l

is defined as follows: Suppose n 2 0 and R < [S*] Then

Qc [S*]n+l is defined by bounded universal quantification from R
(written Q = Vo< R) if and only if Q = {(%,,...,%X ,z): for every
1 T

¥y € S* such that |y| < |z], (xl,...,xn,y) € R}b.

n+l

™_g= 3= (s -y,

Note that i1f Q = ¥ < R, then [5#]
so the rudimenatry relations are closed under bounded universal quanti~
fication.

If two relations Q and R satisfy Q = V< [3 < R] then Q
is just an explicit transformation of R; therefore rather than classi-
fying rudimentary relations by the number of applications of bounded
quantification used in their definition, we consider quantifications

bounded by (the length of) one of the variables. Recall from Chapter 3

that any rudimenatry relation can be defined using the Boolean opera-

tions and explicit transformations, and quantification of the form

e, (RY = {(xl,...,xnj: there is some ¥y € §* such that |y| = |xi|
and (xl,...,x“,y) € R}

where 1< i<mn, Rc [S*]n+1. The analogous form of universal quan-

tification is given by:

ai(R) = {(x .,xn): for every y e s*, if |y| s Ixii then

1oe
(xl,...,xn,y) ¢ R}.
To increase readability, the definition of relatioms Q = si(R) and

Q, = ai(R) by use of these operations is writtem:

O € @ € (A, [0xp,eeamn) ¢ RI; and

(K5eeunx ) € Q, € (Vy)xi[(xl,---,xn,y) € R].
4.2. A SYNTACTIC CHARACTERIZATION OF THE LINEAR HIERARCHY

In this section we comsider a certain classification of the rudi-
mentary relations, by the number of alternations of applications‘of
bounded existential and ﬁniversél quantification used ig their defini-
tion. If RO denotes the class of ;elations definable from concatena-
tion relations by a finite number of applications of the Boolean opera-~
tions and explicit transformation, then any rudimentary relation can be
obtained by applying some number of quantifications and explicit trans-
formations to a relation in RO. It 1s easy to see that if a relation

R is in RO then B{(R) e DTIME(lin); we will see that, for example,

if a relation R is defined from a relation in RO by applying bounded
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universal quantification, explicit transformation and bounded existential
quantification (in that order) then A{(R) ¢ Ty

The following definition, of classes of languages Ek, k>1, is
made only for notational convenience; Theorem 4.2.2 states that for all

k=21, Ek and 9 contain exactly the same languages.

Definition 4.2.1. For each k2 1, define the class Ek as:
(1) If k is odd, then a language L is in Ek if and only if for

some language L0 ¢ DTIME(1in), for all x,
xel & (v (Vy), oo Ay lolxy...m) € Ll

(2) If k 4is even, them L 1is in Ek if and only if there exists

L. ¢ DIIME(lin) such that for all x,

(]

xe L & (v (Vrp, oo (V3 8Guy..umd € Lyl
The quantifiers in these expressions alternate between existential and

universal, so that the j~th quantification (from the left) is (Hyj)x

1f 1 is odd, and (Vyj)x if i is even.
Thus the class F, consists of languages that can be defined from

k

languages in DTIME(lin) by use of k alternations of quantification
bounded by x and with an existential quantification applied last (i.e.,
—_:{ is the leftmost quantifier in the prefix). If a langauge L ¢ Ek

is defined from L, = G(RO) € DTIME(lin), then L is an explicit

4]

transformation of a relation defined by successive application of bounded
universal or existential quantification and explicit transformation to

RO- .
could have been made to allow multiple

The definition of Ek

occurrences of quantifiers between alternations; the same classes of
languages would have resulted. Suppose, for example. that

LO € DTIME(lin) and a language L satisfies: x ¢ L if and only if
(ANCID 3],z < |x] and olx,y,2) « Lyl-

Let Ll be the language Ll = {o(x,w): w = p(y,z) for some y and
z, and @(x,y,2) ¢ LO}; then also ng DTIME(lin). Since L satis—

fies x ¢ L if and only if (E\w)x[e(x,w) € L]_], Le E]_-

It is not hard to see that a relation R 1is rudimentary if and

only if for some k= 1, g(R) ¢ £ in fact the classification of

k;
RUD given by ‘\k)Ek is the same as that given by the linear hierarchy.

Theorem 4.2.2. For all k= 1, Ek = 6k'

The proof is by induction on k. In the induction step for the

D

containment from left to right, we use Theorem 4.1.4% (ak = H[nk 1

and the fact that application of bounded existential quantification
followed by complementation is equivalent to application of complement
followed by bounded universal quantification. For the reverse contain—

ment we essentially show that F = H[co-%

k+l k] "

Proof. For the basis of the induction, recall that

g, = NTIME(n) = H[DTIME(lin)]. Therefore if L ¢ ¢ L c S*, then

1°
there is a language Ll ¢ DTIME(1lin), Ll < T*, and a nonerasing homo-

morphism h: T* -+ S guch that L = h(Ll). Let L0 = {elx,v):
h{y) = x and vy ¢ Ll}; then also L0 ¢ DTIME(lin). Since h is

nonerasing, if h(y) = x then iy] < |x!, so for all x, xe¢ L 1if
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and only if

(Antlyl < x| and o(x,y) € 1y];

therefore L e E . The proof that E <o

1 1 , 1s essentially the same as

the proof to be given for this containment in the induction step, and
is omitted.

Suppose E& =0 for some k2 1, and further suppose that k

is even. (The proof for the case k odd is a simple notational vari~

ant.) If L c 8% 1s a language in let L, ¢ DTIME(lin) be the

Eyy1e 0

language such that

xelL &3 (Hyl)x(Vyz)x (aykﬂ)x[e(x,yl,a-o,ykﬂ) € LO].

' [ . =
Let L0 be the language L0 {O(z,yz,...,yk+l). z O(x,yl) for some

x and 7y, such that 9(x,y,,...,yk+1) € Lo}; it is easy to see that

L6 e DTIME(lin} if LO ¢ DTIME(lin). Let L' be the language defined

by
el < (yp (Vy) .. (Vy) lole,y .y e Ll

Since L) e DTTME(lin), L' ¢ E . Recall that if fyll < |x|, then

|8(x,yl)| = |x|; hence for any %, x e L if and only if
(Fypllygl < [x] and otxyp) e L)

Now suppose T and # ¢ T are such that L' < ([T#}Z)*. Let

L" < (ET#]Z)* be the regular set L" = {0(x,y): x ¢ S%, vy e T*,

|yl < |x|}. Since L' « E = o and L" is regular, L" - L' ¢ e
If h: ({T#]Z)* + (T u {#1)* is the length-preserving homemorphism
determined by defining h([a,b]) = a, then L = h{L" - L") ¢ H{wk].

Therefore, from Theorem 4.1.4, L € Uk+l'
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To see that O c

41 S Ek+1, From Theorem 4.1.4

suppose L € Uk+l.
there is a nonerasing homomorphism h and a language L' ¢ Wk such

that L = h(L'}., Since T = eomgp and o there is a language

P
Lé e DTIME(lin) such that for all x (over the appropriate alphabet)

x4 L& Ty Wy oo (Wy) oy, my) € Ll
Define a language L0 by:
O(X’yl""’yk+1) € L0 if and only if
i = x:
@ nly) = x;

(1i) for 1 £ i s K/2, and

Y540l =1yl

(iii) if for 1 < j < k/2 |y2j| 5|y1| then
Oy s¥greresV ) £1g -

Now if h 1is a nonerasing homomorphism, h(yl) = x implies

[¥1| = |x|s therefore

x el = (v (W) - Ty Pfelny ey ) € Ll

so L ¢ Ek+l'

A "direct" proof of the containment ¢ (that is, one

K+ S B

not relying on Theorem 4.l1.4) is much longer, since it requires showing

that if L ¢ 8% is in Ek’ then (L GV(S*—L))* € Ek+1'

If the linear hierarchy is finite, so that for some. k=>1,

LJ{on j=z 1} = Op s then also RUD = o = E Hence for any rudimen-

<
tary relation R, ©(R)} could be obtained from a language in DIIME(lin)

by use of a finite number (k) of alternations of bounded existential
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and universal quantification. Equivalently, if it could be shown that
no finite number of applications of bounded quantification will suffice
to define all rudimentary relations, then oy i RUD, so0

a; = NTIME(n) could not be closed under complementation. In the next
section, it will be shown that a stronger result about definability of
rudimentary relations can be derived from the assumption that the linear
hierarchy is finite: if it is finite, then there is an integer m such
that for any rudimentary relation R, ©{R) can be obtained by applying

m operations to the language {Onln: n 2 0} {or to a Dyck set).

4.3, COHPLETE SETS IN THE LINEAR HIERARCHY

The concepts of efficient reduction of one {(recognition) problem
to another and of completeness have been found useful in studying the
computational complexity of languages. The reducibilities considered
are restrictions of the many-one reducibility of recursive function
theory [43, 47]; their gemeral form, and the corresponding definition of

complete set, may be stated as follows.

Definition 4.3.1. Suppose F ‘is a class of string-to-string functions.

(1) If L ¢ S*% L' c T* are languages, then L is F-reducible to L'

if there is a function f: S¥ > T* in F such that for all x e S%,
XelL 1iff f(x}) ¢ L' (i.e., L = f—l(L')). A family of languages C
is said to be F-reducible to a language L' if every language L ¢

is F-reducible to L*,

(2} A language LO is F-complete in a family of languages ¢ (or,
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complete in ¢ with respect to FA-reducticns) if L0 e ¢ and (¢ is

F-reducible to L0 .

Note that if a language L is F-complete for ({ then

0
C < {f-l'(LO)‘. f e F}. 1If the class ( 1is closed under application .of
inverses of functioms in F then since LO e ("5 equality holds; that
is, L0 generates (¢ under the operations {f_l: feF}.

In applying these ideas to the linear hierarchy, we will not
congider specific languages but rather view existence of complete sets
and of reductions of languages in one class of languages to languages
in another as properties of the classes of languages.

The appropriate class of functions to consider with the linear
hierarchy is that consisting of functions which can be computed in
linear time By deterministic Turing machines (say, with a two~way input
tape and a one-way output tape). It is easy to see that this class of
functions comtains all identity functions and is closed under composi-
tion; hence the reducibility relation it defines 1s reflexive and
transitive. We therefore abbrevia.te "L is reducible to L' by a

1lin LT,

function that cam be computed in linear time" by: L < Two

other reducibilities which have been extensively used and which will

S
arise in the next chapter are: < g’ corresponding to the functions
<P

that can be computed in 1g{n) space [35, 53], and o

s corresponding
to the functions that can be computed in polynomial time [36]. Note
that 1f etther L™ L' or L<'¥L' then 1 <P 1l

The follewing proposition states that each class in the linear

hierarchy is "closed under linear-time reducticns." The concept of
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closure under a reducibility 1s useful in comparing classes of languages

and in deriving conditions for ome class to be contained in another [7].

Proposition 4.3.2. For all k=1, if AslinB and B ¢ N (respec-~
tively, Ty Gk) then Aeak {respectively, L tSk).

Proof. The proof is a simple construction. Suppose A c 5%, B c T*
and f: S¥ » T* 4is a function which can be computed in linear time and
which reduces A to B: for all x e S%*, x e A iff f(x) ¢ B. Note
that if f can be computed in time cntd, then for all x,

;f(x)‘ < clx] + d. First suppose B ¢ o so there is a language

Kk’

Ce and a linear-time oracle machine M such that B = M{C). The

k-1
machine M and the machine that computes f can be combined to con-

struct a linear-time ecracle machine M' such that M'(C) =-A. Given an
input x ¢ S*, M" first computes £(x) as the input to M, accepting

x 1if and only if M accepts f(x) relative to the same oracle set.

Then M'(C) = {x € S*: £(x) ¢ M(C) = B} = f (B) = A. Since the length

of f(x) is bounded by a linear function of |>‘zl , M' can be constructed

to operate in linear time. Thus A ¢ Oy - In the preceding construction,
if M is deterministic then M' will also be deterministic; hence if

B ¢ Ek then A ¢ rSk. Moreover, since f also reduces S*~A to T*-B,

if Beﬂk then Asﬂk. O -

From Proposition 4.3.2 it is clear that for any k > 1 and any

L e Ty> {f'l(L): f a linear-time computable function} < ck. It will

now be shown that o, 1is generated by a single language Ak under

k

application of inverses of a subset of this class of functions. An
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inductive scheme is used to define the generators; a generator is defined
from the previous one by means of the "universal" linear-time oracle

machine described in the following theorem.

Theorem 4.3.3. Let % = {0,1}. One can construct a nondeterministic

linear-time oracie machine MO with input and tape alphabet E which
has the following property: If M is any nondeterministic linear-time
oracle machine (with alphabet I}, then there is a homomorphism

hy,: L* + £* such that for any oracle set L c L%,

(L) - (e} = By t(Mo(L).

Proof. The theorem essentially states that MO(L) is a "hardest"

language for NL({L}) in the sense of [24]. The conmstruction of MO
uses a technique in [55, 11].

First, suppose N is a (nondeterministic) oracle machine with
four tapes, the last ome the oracle tape, and input and tape alphabet
I. Then there is a string N ¢ {0,1,£}* that describes N in such a
way that information about the action of N can be extracted easily
from N {e.g., using an encoding similar to that in Appendix A). Also,
we can assume that no such encoding is a substring of any other, so
that for x = al(ﬁ)d... am(ﬁ)d with d = 1, a15--058 € I, m=>1,
the strings 85...8) and K and the integer d can be determined
uniquely from X.

Let hy: {0,1,¢}* >~ L* be the homomorphism determined by defining
hO(O) = 00, hO(l) =‘11 and ho(t) = 0l1l. Note that hO is a one-to-

one function. The oracle machine MO will reject its input x ¢ L*

—.d ~. d .
unless x = ho(al(N) vee am(N) ) for some m = 1, 8jaeaesdp € I,



4-18

d>1 and N a description of a four-tape oracle machine. HD can
be constructed so that checking that the input is in the correct form
takes only linear time. On an input of the correct form, MO simulates
some computation of N on y= ay..-a, using 4 of its tapes, in-
cluding its oracle tape, just as N would. MD clocks the simulation,
however: if within |x| of its steps M, simulates an accepting com-
putation of N on ¥y, then MO accepts X, and otherwise it rejects
x. M, can be constructed so that it needs at most 2[N| steps to
simulate one step of N. Then MO operates ‘in linear time, and accepts
x 1f and only if it simulates an accepting computation of N on y of
length at most |x|/2]EE .

Now suppose M 1s any nondeterministic linear-time oracle machine
with alphabet I. From Corollary 2.3.5 there is an equivalent nondeter-

ministic linear-time oracle machine with four tapes, so we may assume

that M itself has 4 tapes, named in such a way that the last one is the

oracle tape. Let M operate in time cntd and let k = ctd. Define
the homomorphism hH: L* > 1% by b.M(a) = ho(a(—ﬁ)k) for ae I. Note
that for any y e I*, |h'M(Y)1 = 2k]y]-|¥[. Then for any y ¢ z* and
Lcr*, if MO accepts hﬂ(y) relative to L, then by const.ruction
of MO, y#e and y e M(L). On the other hand, if y i1s a nonempty
string in M(L) then there is an accepting computation of M on y
relative to L, which has at most e¢]y| + d < k|y| = ]h.M(y)|/2|ﬁ1
steps; therefore hH(Y) € MO(L). Thus for any L c £¥ and

¥ ¢ % - {e}, ¥ ¢ M(L) if and only if h.H(y) € HO(L), or

(L) - {e} = nlog ). : o
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The construction in Theorem 4.3.3 can be extended to any honest,
superadditive time-bounding function t(n}, by allowing H0 to take
t(|xl), rather than |x|, steps during the simulation phase. The
resulting machine MD will be universal for the class of oracle
machines which operate in time linear in t(n).

The oracle machine described in the proof above gives a uniform

method for producing the desired gemerators for the classes Oy

Definition 4.3.4. Let MO be the linear-time oracle machine of

Theorem 4.3,3. Define Ao =@ and for k= 0, Ak+1 = MD(Ak).

It is apparent from the definition that Ak € g, for each k z 0.

k

Therefore (from Proposition 4.1.2) for k 2 1, %% contains the family

of languages generated by Ak under application of inverse homomor-—
phisms and union with {el; the following theorem implies that in fact

O is equal to this family of languages.

Theorem 4.3.5.

() Forall k=1, o =HN({a_b.

(2) For all k=20, 1if L ¢ 9 then there is a homomorphism h such

that L = {e} = h_l(A.k).

Proof. Both parts of the theorem will be proved together, using induc—

tion on k. By definition, part (2) holds for k = 0; it will be shown

that if part (2) holds for I1? then both (1) and (2) hold for C
Suppose for some k 2 1, for every language L ¢ Op_1? there 1is

a homomorphism h such that L - {e} = h_l(Ak_l). Let L = 5% be any



language in o) and suppose S = {sl,...,s }. Let hl: S* > {0,1}*
P
be the homomorphism determined by defining for 1< j < p,
~ a1l - ; . .
hl(sj) = 01'0. Then L1 hl(L) is also in o, 8o there exist a
language L2 €01 and a nondeterministic linear-time oracle machine
Ml such that L1 = Ml(LZ)' Without loss of generality we may assumé

that e d L so since L2 € 0y there is a homomorphism h2 such

23
_ -1 . . . v

that L2 = h2 (Ak-l)' Let MZ be the nondeterministic linear-time

oracle machine that acts like Ml except that it uses. tape symbols of

Ml encoded as strings in {0,1}*, and if Ml would query its oracle
about a string z, M2 instead queries its oracle about hz(z). Then
-1 B _ ) i
My(A 1) = My(h,"(A 1)) = My(L,). Therefore L; = M;(L,) ¢ NL({& _;D);
=1 .
since L = hl (Ll), also Le NL({Ak_l}) and so O S NL({Ak—l})'

Further, M satisfies the conditions of Theorem 4.3.3, so there is a

2
-1 -1

homomorphism h, such that MZ(Ak—l) - {e} = by (MO(Ak—l)) = h, (Ak)'

Let h: 8% » {0,1}* be the homomorphism that is the composition of h3

with h1: h(s) = h3(hl(s)) for s ¢ S. Then

L= fe) = nta, - fe = B7Nm e - h ey, 0

The following corollary is easily proved from part (2) of Theorem
4.3.5, using a construction similar to that used to prove Theorem

4.3.5(1).

Corollary 4.3.6. For all k> 1, 5k = {M(Ak_l): M a deterministic

linear-time oracle machine}. 0

We now consider the consequences for the linear hierarchy and for
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the class of rudimentary relations of the representation given in
Theorem 4.3.5. The corollaries which follow will be used in the dis-
cussion of the polynomial hierarchy in Chapter 5 and have significance
for basic questions in automata-based computational complexity.

Suppose the linear hierarchy is finite, so that RUD = o for
some k = 1. Since Ak € RUD, from Corollary 3.3.5{(2) Ak can be
defined from the‘language {Onln: n 2 0} by use of some finite number,
say m, of applications of the Boolean operations, inverse homomorphism
and length-preserving homomorphism, But from Theorem 4.3.5(2),

o = {h-l(Ak), h_l(Ak) u {e}: h a homemorphism}. Therefore if the
linear hierarchy is finite, then for any rudimentary relation. R, B8(R)
can be defined from {Oﬁln: n 2 0} by at most m2 applications of
the Boolean operations, inverse homomorphism and length-preserving
homoﬁorphism. Conversely, if a language L 1is obtained from

{Onln: n > 0} by use of k of these operations then L ¢ o Hence

K
the linear hierarchy is infinite if and only if {0(R): R ¢ RUD} camnot
be generated from one language by use of a bounded number of applica-
tions of language~theoretic operations. The representation of the

classes % in terms of operations applied to the language Ak also

shows that 0, Ppossesses a Slin -complete language.

Corollary 4.3.7. For all k z 1, the language {$} u {$}Ak is complete

in Ty with respect to linear-time reductions.

Proof. Suppose k > 1. Recall that by definition, e ¢ A and

A< {0,1}*; 1let AL = {$} v {$}Ak' As noted previously, A €0y, S0
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Al'( € 0. If L c 5* is any language in o let h: 8* > {0,1}* be

K’
the homomorphism such that L - {e} = h—l(Ak) . If ee L, let

f: 8% » {0,1,$}* be the function defined by £(x) = $h(x) for all
X e 5% 4f e ¢ L, define f by f(e) = e and for x # e,

f(x) = $h(x). In either case, for any xe S*, xe L iff f£(x) ¢ A['(,

so f reduces L to Al'( Moreover, the function f can be computed

in time m+l (where m = max {|h(a)|: a e S}) by a deterministic
Turing machine with only a one-way input tape and a one-way output tape,

so L < Al'c' 0

The arguments of Theorem 4.3.5 and Corollary 4.3.7 can be used to

show that, in general, if ( is a class of languages and L. is com

0

plete in  with respect to linear-time reductioms, then

NL(C) = NL({LO}) and NL(C) possesses a linear-time complete language.
The existence of a complete set for each class o yields the

following information on the question of the finiteness of the linear

hierarchy.

Corollary 4.3.8.

(1) The linear hierarchy is finite if and only if the class of rudimen-
tary relations contains a language that is complete with respect to

linear-time reductions.

(2) 1If the linear hierarchy is infinite then the rudimentary relations

are properly contained in 62 .

Proof. If the linear hierarchy is finite then there is some k such

that RUD = 0+ Then since AI'( = {$} u {$}Ak is Slln-complete in Iyt
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for every rudimentary relation R, O©(R) would be reducible to
Al'( € RUD in linéar time; that is, AI: would be complete in RUD with

respect to linear-time reductions. On the other hand, suppose

) 1i
Ly BUD 1is < m—complete for RUD. Since RIUD = U{cj: 2 1} there

is some k such that L0 € Oy If R is any rudimentary relation then

11
O(R) < LO € 0., S0 from Proposition 4.3.2, O(R) ¢ ¢,. Hence

k
RUD < I and the linear hierarchy is finite.

To see part (2), recall from Corallary 3.2.8 and the discussion

there that RUD < DSPACE(n) and 5’2‘ = DSPACE(n).  There is a language

Ly ¢ DSPACE(n) such that DSPACE(n) <lin L, [55]; the language L

is similar in form to the language accepted by the machine MO of

Theorem 4.3.3:
L0 = {Elﬁzzﬁ e z_inﬁ: M 1s a deterministic linear-bounded automaton

and aja, ... a € L(M}. Therefore if 2’2‘ < AUD, then L, e RUD, so

0
RUD contains a complete set with respect to linear—time redﬁctl‘.ons and
from part (1), the linear hieiarchy must be finite. The reverse impli-
cation of part (2) seems implausible; it states that if for some k,

RUD = 9 then DSPACE(n) = 9
DSPACE(n) = [h_l(A.k),h-l(Ak) v {e}: h a homomorphism}. O

and hence

The classes DSPACE(lg(n)} and NSPACE(1g(n)) are contained in
the rudimentary relacions (Proposition 3.2.4), hence contained in
U{uj: j 2 1}. Whether either of these families of languages is compara-
ble to any O is not known; however, the structure of the classes o

k
revealed in Theorem 4.3.5 gives partial information on this question.
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Corollary 4.3.9. For all k =1, o is not equal to either

DSPACE(1lg(n)) or NSPACE(lg{(n)).

Proof. As remarked previously, Theorem 4.3.5(2) implies that for all
k>1, o = {h_l(Ak),h_l(Ak) u {e}: h a homomorphism}. However, such
a representation (as a class generated by a single language under those
operations) camnot hold for the classes DSPACE{lg(n)) and
NSPACE(1lg(n)): they are each the union of an infinite hierarchy of
classes that are closed under inverse homomorphism and union with {e}

{32, 49,50].

There is an alternate proof of Corollary 4.3.% using a “transla-
tional™ argument [7]; this approach will be taken in Chapter 5 to
generalize the statement of the corollary to DSPACE((lg(n)}j) and
NSPACE((1g(n))J) for all j = 1.

Neither DSPACE(1lg(n)) nor NSPACE(lg(n)) is known to be closed
under nonerasing homomorphism; their closure under this operation has

the following consequences for the linear hierarchy.

Corollary 4.3.10.

(1) 1If NSPACE(lg(n)) is closed under nonerasing homomorphism then

NTIME(n) is not closed under complementation.

(2) If DSPACE(lg{n)) is closed under nonerasing homomorphism then
the linear hierarchy is infinite (and, in particular, NTIME(n) is not

closed under complementation).

Proof.

(1) The class NSPACE(lg(n)) is closed under inverse homomorphism
and intersection and contains the Dyck sets and regular sets. Using
Propositions 3.2.2 and 3.2.3, if NSPACE(lg(n)) is closed under non-

erasing homomorphism then o, = NTIME(n) < NSPACE(lg(n)). From Proposi-

1
tion 4.1.3, if oy 1s closed under complementation then for all j = 1,
Uj o, so NSPACE(1g(n)) < RUD < o, = NTIME(n)}. Since

NTIME(n) # NSPACE(lg(n)), a contradiction results if both closure

properties are assumed.

(2) Suppose DSPACE(lg(n)) is closed under nonerasing homomorphism.

It is also closed under the Booleén operations and inverse homomorphism
and contains {0™M": n > 0}; hence from Corollary 3.3.5(2),

RUD < DSPACE(1g(n}), so RUD = chj: j = 1} = DSPACE(lgin)). If also
the lineér hierarchy is finite, then there is some k such that

RUD = % - DSPACE(1lg(n)}, contradicting Corollary 4.3.9; therefore the
linear hierarchy must be infinite, From Proposition 4.1.3, if the linear
hierarchy is infinite then for all k = 1, Uk

complementation. a1

is not closed under

It was possible to draw a more general conclusion in part (2) of
this corollary than in part (1) because NSPACE{lg(n)) is mot known to
be closed under complementation. This difference between the two
lg(n}-space classes is reflected in the facts that (i) if DSPACE(lg(n))
is closed under nonerasing homomorphism then DSPACE(lg(n)) is the
rudimentary relatioms; while (ii)} if NSPACE(lg(m}) is closed under

nonerasing homomorphism then it is the class of positive rudimentary
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relations, defined by Benmett [4]. 1In terms of the definitions used
here, the class of positive rudimentary relations is the smallest

class of string relations containing the concatemation relations and
closed under union, intersection, explicit transformation, bounded exis-
tential quantification and universal subpart quantification (that is,
quantification of the form "for every z that is a substring of

¥y ..."). This is a "positive" class in that the operations of comple—
mentation and bounded universal quantification are excluded. The proof
in [42] in fact shows that any language in NSPACE(1lg(n)) is a posi-
tive rudimentary relation; hence ¢ = NTIME(n) is contained in the
class of positive rudimentary relations. On the other hand, it is not
known whether even 62 is contained in the positive rudimentary rela-
tions. In the next chapter we will see that a positive answer to this
question would imply that the class NTIME(poly) is closed under com—

plementation.

Chapter 5: THE POLYNOMIAL HIERARCHY

This chapter explores the polynomial hierarchy of Meyer.and
Stockmeyer [40,52,53], employing primarily the connections between it
and the linear hierarchy. The polynomial hierarchy can be used for the
classification of problems whose solution is not known to require more
than polynomial time, but for which no polynomial-time algorithm (even
nondeterministic) is known to exist. This hierarchy, like the linear
hierarchy, is a structure analogous to the arithmetic hierarchy; its
definition, using polynomial-time oracle machines, extends the analogy
between the recursive sets (those sets for which it is possible to
decide membership) and the class DTIME{poly) of sets recognizable
deterministically in polynomial time (those sets for which it is
"practical” to decide membership [15,361).

Section 1 presents the definition of the classes in the polynomial
hierarchy and establishes that proper contaiﬂment holds betwéen
corresponding classes in the linear and polynomial hierarchies. A
further relationship between the two structures is derived in the
second section: each language in a class in the polynomial hierarchy is
represented in the cerresponding class of the linear hierarchy by
application of "polynomial padding." The third section contains facts
about the linear and polynomial hierarchies that follow from this

relationship.



5.1. DEFINITION

The following definition differs only in notation from that given
in [40]}. In particular, the superscript "p" has been dropped from the
names of the classes, since the classes of the arithmetic hierarchy are

not referred to here by name.

Definition 5.1.1. Define £ =1, = AO = {¢}. For k z ¢, define

0~y
Ty = NELE)

Hk+1 = co~NP(Ek)

gy = P -

Finally, define PH = U{Ek : k =z 0},

Note that A, = DTIME(poly) and El = NTIME(poly).

1
Tt is apparent from this definition that each class in the

polynomial hierarchy contains the corresponding class in the linear

hierarchy (e.g., o ¢ El). In fact, using the time~hierarchy theorem

given in Chapter 2 (Theorem 2.4.1), the containments can be shown to be

proper.

-

PR C c
Proposition 5.1.2. For all k 2 1, o + Zk, Tk ¢ Hk and Gk + Ak'

Proof. Suppose k 2 1. Recall from Theorem 4.3.5 that o, = NL({Ak_l})
<
with Ak—l € 9 q- From Corollary 2.4.2, NL({Ak—l}) + NP({Ak_l}) so
< s r s r
O 4 NP(Uk_l) < Ep- Similarly, using Corollaries 4.3.6 and 2.4.2,
2 - < ; _
5, < DTTME(n",4, ;) . PUA ) S P(Z,_p) so 8 A . Now if m =1

i = - = - - * c
then (from the definitiom) 0y = co-m = co ]Tk Zk’ hence M o# Hk' ]

By using constructions similar to those given for Theorem 2.2.4,
it can be seen that, for all k 2 1, Ek possesses the same positive
closure properties as oy Zk is closed under union, intersection,
product, Kleene *, inverse homomorphism and linear-erasing homomorphism.
Moreovér, ;k is closed under application of polynomial-erasing
homomorphisms; that is, if L < S* is a language in Zk and h: S* » T% is
a homomorphism with the property that for some polynomial p(n}, for
every x ¢ L, 'Ix| £ p(1h(x)1), then h(L) € Z, . We will make occasiomal
{implicit) use of these facts.

The same relationships hold between classes in the polynomial
hierarchy as hold between the corresponding classes in the linear

hierarchy. Thus, for each k > 1, I v 1

-1 kel < Ak c Zk n . As is the

k

case with the linear hierarchy, it is not knowm whether any of the
inclusions_ik < Zk+1 for k = 1 is proper, i.e., whether the polynomial
hierarchy is finite or infinite. (If DTIME(poly) = NTIME(poly) then
none of these inclusions can be proper [40].) By restating the proof of
Proposition 4.1.3 in the context of the polynomial hierarchy, it can be

seen that if for some k 2 1, Zk =1I (or, equivalently, Zk = Hk) then

k+1

the polynomial hierarchy collapses at that point, that is, Ej = Zk for

all j = 1.
5.2. REPRESENTATION IN THE LINEAR HIERARCHY
Many properties of the classes in the polynomial hierarchy can be

established (as indicated above) by using arguments similar to those in

Chapter 4. However, some properties can be arrived at more simply by



making use of the fact that a language in the polynomial hierarchy has
a certain representation in the corresponding class of the linear

hierarchy.

Definition 5,2.1. Suppose L c S* is a language, ¢ ¢ S is a new symbol
and p(n) is a polynomial. The language {x¢® : x ¢ L, m = p(|x|)} is

termed a polynomial representative of L.

It will be shown that the polynomial hierarchy is "polynomially
represented” in the linear hierarchy; we first establish some
preliminary results.

10 g if there is a string

Recall that for languages A and B, A <
function f that can be computed in linear time such that A = f_l(B)
(i.e., for all x, x € A iff £(x) ¢ B). In connection with the

polynomial hierarchy, we extend the class of functicns allowed for

reductiona to include functions computable in polynomial time.

Definition 5.2.2., Let A c 5% and B ¢ T* be languages.

(1) A $§ B if there is a function f : S* + T* and a polynomial p(n} such
that A = f—l(B) and for any x ¢ S*, f(x) can be computed in time
pllxD).

(2) A Slg B if there is a function f : S* > T* such that A = f_l(B) and

for any x ¢ S*, f(x) can be computed in space 1lg(|x!).

The model for the computation of these reduction functions is a
Turing machine with two-way (read-omly) input, a one-way output tape and
multiple work tapes. The space bound applies only to the number of

squares used on the work tapes. The class of functions computable in

this way in lg{n) space is known to be closed under composition [35,53]
and clearly contains the identity function, sc Slg is a transitive and
reflexive relation. Similarly, SE is transitive and reflexive., Since a
Turing machine that operates in lg(n) space (and halts) also operates in
polynomial time, <18 is a restricticn of Si. The relation SE is itself
a restriction of the relation on languages defined by the operator P()}:
i.e., 1f A <P B then A ¢ P({B]).

Using essentially. the same argument as was given for Proposition
4.3.2, the following proposition can be established; it states that the
classes in the polynomial hierarchy are closed under polynomial~time

reductions (hence closed under lg(n)-space reductions).

Proposition 5.2.3. For any k =2 1 and languages Ll’LZ’ if L1 ss L2 and

L2 € Ek (resp., Hk’ Ak) then Ll € Zk (resp., Hk’ Ak). ]

The statement of Proposition 5.2.3 can be easily seen to hold in
general; that is, if A SE B then, for example, B ¢ NP({C}) implies
A e NP({C}) for any language C. The next proposition might be termed
the "inverse" of this fact: if two languages are polynomially equivalent
then they givg rise to the same class of languages when used as oracle

sets with pelynomial-time oracle machines.

Proposition 5.2.4. For any language A, P(P({A})} = P({A}) and

NP(P({A})) < NP({A}). Hence if L 53 L

1 then P({Ll}) < P({LZ}) and

2
N‘P({Ll}) < NP([LZ}).

Proof. The proof uses a comstruction similar to that of Proposition

2.1.5. Suppose Ml is an oracle machine that operates in time pl(n) and
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M, is a deterministic oracle machine that operates in time p,(n), where the length of the padding the apparenmt complexity of L' can be made
pl(n) and pz(n) are polynomials. Let q{n) = pl(n) + pl(pz(n)). The smaller than that of L. Applying this principle to polynomial-time
action of Ml on input strings can be composed with the action of MZ on oracle machines yields the following result.

the oracle strings to construct an oracle machine.M such that: (i) M is
Proposition 5.2.6. Suppose M is a polynomial-time oracle machine., Then
deterministic if Ml is deterministic; (ii) M operates in time q(n); and
there is a linear—time oracle machine M' such that (i) M' is
(iii) if A is an oracle set for MZ and B = MZ(A) then M(A) = Ml(B)
deterministic if M is determwinistic; and (ii) for any oracle set A,
(i.e., M(a) = Ml(MZ(A)) }. The details of the construction are
M'(A) is a polynomial representative of M{A).
straightforward. HNote that if Mz is not assumed to be deterministic,

then this construction fails, since there may be nonaccepting Proof. Let M be an oracle machine that operates in time p(n), where
computations of M, relative to A on a string z € MZ(A). G p{n) is some polynomial. Let S be the input alphabet of M and ¢ ¢ S.

The oracle machine M' operates as follows: given an input y e (Su{¢})#,

Returning to ''polynomial representation,' we see that it is a

M' first tests whether y is of the form xcp(lxl) for some x ¢ S*., 1If
restricted form of lg(n)-space equivalence. ;
the test is successful, then M' proceeds to accept y if and only if M

Proposition 5.2.5. If L' is a polynomial representative of L then accepts x (relative to the same oracle set). Clearly M' will be
L 518 L. deterministic if M is deterministic. Since M operates in time p(n), the

second phase of the computation of M' takes at most p(lx|) = |yl steps.

Proof. Suppose L < S#% and L' = {x¢" : x € L, m = p(}x])} where ¢ ¢ S
Thus M' operates in linear time, and for any oracle set A,

and p(n) is some polynomial. Let f : §*% > (Su{¢})* be the function pIxl)
M'(a) = {x¢ : x € M(A)} is a polynomial representative of M{(A). [0

f(x) = xcp(iX\)_ Let g : (Su{¢})* = (Su{¢l)* be the function defined
by: for v € (Suleh)#*, if vy = XcP(lxl) for some x ¢ S* then g(y) = x and Based on the preceding propositiomns, the proof of the desired
for y not of this form, g(y) = ¢. <Clearly f reduces L to L'; since "representation theorem" is straightforward.

LcS*% ¢ ¢ L sog reduces L' to L. Moreover for a string z of length

Theorem 5.2.7. For any k > 0 and any language L, L ¢ Zk (resp., Hk’ Ak)
n, both f(z) and g(z) can be computed in space linear in lg(n). O

if and only if L has a polynomial representative in oy (resp., Mes Gk).

A polynomial representative L' of a language L contains strings
Proof. The statement is clearly true for k = 0, since the only
from L padded to increase their lengths. Since computation time is
polynomial representative of the empty set is the empty set.

measured in terms of the length of the input, by a suitable choice of
i Suppose k = 1, L is a language and L' is a polynomial representative
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T . P
of L. IfL'e¢ o (ﬁk, dk) then also L, € Zk (Hk’ Ak), from Proposition

5.2.5, L slg L', so from Proposition 5.2.3, L ¢ Ek (Hk’ Ak)'

As noted above, the implication in the other direction holds for
k = 0; suppose it holds for some k 2 0 and let L be any language in

Zk+l' By definition there is a language A ¢ Zk such that L ¢ NP({A}).

Since A ¢ Zk, A has a polynomial representative A' in T Since

1g

A <P A", from Proposition 5.2.4, NP({A}) < NP({A'}) so L ¢ NP{{A"}).

Hence from Proposition 5.2.6, L has a polynomial representative in
NL{{A'}) c NL(ck) = Opyr- A similar argument, again using Propositious
5.2.4 and 5.2.6, shows that for L « Ak+l = P(Ek), L has a polynomial

representative in § If L ¢ S* is a language in nk+l then for

kt+l”

L, = § - L, we have L

1 z Since the statement was shown to hold

1° *kH1”
in this case, there is a polynomial p{n} and a symbol ¢ ¢ S such that

Ll' = {xe™ i x e Ll, m=p{lx|)} is in a Let

k+1l”
L o= {xe®: xe S%, m = p(|x|}}; then Lp € DTIME(lin), so

Ll' u [(suf{eh* - Lp] € Oy~ Therefore

(sufeh)* - [L" v [(Sufeh)* - LP]] =L, - L)' e mqs and

LP - Ll' = {xcm :m=p(lx]), x ¢ L} is a polynomial representative of
L. O

The remainder of this chapter is devoted to consequences of Theorem

5.2.7 for the linear and polynomial hierarchies.

5.3. PROPERTIES OF THE HIERARCHIES

We first use the representation theorem to show that if the linear

hierarchy is finite then the polynomial hierarchy must be finite as well.

The proof technique does not seem to allow proof of the reverse
implication; however, necessary and sufficient conditions for the
finiteness of the polynomial hierarchy which involve the classes of the
linear hierarchy can be established., The relationships between the
questions of finiteness of the two hierarchies follow from a more
general statement (Proposition 5.3.2) about families of languages that

contain a class in the linear hierarchy.

Definition 5.3.1. A family of languages C is said to be closed under

removal of polynomial padding if whenever L' is a polynomial

representative of L and L' ¢ C, also L ¢ C.

Proposition 5.3.2. Suppose C is a family of languages which is closed
under removal of polynomial padding. If for some k = 1, O (resp., T, ,

6} is contained in C, then I, (resp., M., &) is contained in C.

Proof. Suppose k 2 1 and o € C, where  is closed under removal of

polynomial padding. If L is any language in Zk then from Theorem 5.2.7
there is a language L' ¢ o such that L' is a polynomial representative
of L. Then L' € C so since C is closed under removal of polynomial
padding, L ¢ C; hence Zk c C. The other two cases (nk and Hk’ and Gk

and Ak) follow from a similar argument. 0

It is easy to see (using Propositions 5.2.3, 5.2.5) that every
class in the polynomial hierarchy is clesed under removal of polynomial

padding. Thus, for example, if 0y & Zl then EZ < Zl and therefore

PH =u Ej < Zl; since gy & 22 the converse also holds. The general
3

statements that follow from this reasoning are contained in the next
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corollary.

Corollary 5.3.3. For every k 2 1:
(1) s Zk if and only if 5k+1 < Zk if and only if for all j 2 1,
Zj £ I
2 HER = = .
(2) 1f U{Uj iz 1} o, then PH Zk
For the case k = 1, the first part of this corollary implies
the following fact: co-NTIME(n) is contained in NTIME(poly) if and only

if NTIME(poly) is closed under complementation. The next corollary

also generalizes a result known for NTIME (poly) = I, to the other

1
classes in the polynomial hierarchy; in this case, the fact that
NTIME(poly) = DTIME(poly) if and only if DTIME(poly) is closed under

nonerasing homomorphism.

Corollary 5.3.4. For all k > 1 the following are equivalent:

(1) oy = b
(2) Zk = Ak;
(3) Ak is closed under nonerasing homomorphism. |

From Propositions 5.3.2 and 5.1.2 it is clear that if C is a family
of 1anéuages closed uﬁder removal of pélynomial padding and, e.g., 9. < C
then o ¢ C. Therefore, no class in the linear hierarchy can be equal to
any class closed under removal of polynomial padding. Many families of
languages defined ﬁsing resource-bounded automata can be sﬁown to be
closed under this operation; for some of these families (e.g., PSPACE)
the fact that they properly contain Iy for each k can be derived from

the containment Sy c DSPACE(n). Of greater interest are families

defined using space bounds of the form {lg{n))?, i.e., polynomials in
lg(n). Except for the case j = 1, these families are not known to be
comparable to any class in the linearbhierarchy or to the class of

rudimentary relatiomns.

Corollary 5.3.5.
(1) For all j,k 2 1, o, # DSPACE((1g(n))?) and o, # NSPAGE((1g(m))T).
(2), For all k 2 1, o # viDsPAGE ((1g(m)¥) = j = 1}.

u

3 DSPACE{(1g(m))J) L 181).

(Recall that ; NSPACE((1g(@))d) =

The polynomial hierarchy was originally presented as a structure
for classifying the complexity of problems (encoded as languages).
Reducibilities such as Si have been found to be useful in such classifi-
cation; moreover, it cam be more easily done when complete sets are
known. Use of Theorem 5.2.7 (in conjunction with Theorem 4.3.5)} establishes
one éequence of complete sets for the classes in the polynomial hierarchy,

the languages AO,Al,... from Chapter 4., These complete sets are not

"natural", taking 'natural’ to mean a language that arises from a problem
the solution of which is of independent interest. However, the relationship
between the linear and polynomial hierarchies can be used to simplify

proofs of completeness for other languages and (as in Chapter 4) the
existence of complete sets gives some information about the classes in

the polynomial hierarchy.

Proposition 5.3.6. For all k 2 1,
lg , .
(1) I < ALs and

(2 7 = Ne(la ;. o



In general, if LO is a languape such that g then also

P
k Sm L

0

I <L and:
m

k 0 w1 T NECELGH.

The representation of the classes Zk given in part (2) of this
proposition shows that the first part cannot be strengthened; that is,
for any reducibility more "efficient" than Slg’ such complete sets
cannot exist. Any lg(n)-space computable function can be computed in
polynomial time; on the other hand, any polynomial can be "elocked"
in 1g(n) space (i.e., for any j there is a machine that on an input
of length n will use lg(n) space and run for exactly ad steps). The
latter property is essential for the reduction of a language in Ek
to the language A (or any other language).

Corollary 5.3.7. Suppose F is a class of functioms with the property
that for some polynomial p(n), any function in F can be computed in
time p(n) except for finitely many inputs. Then for all k 2 1 ¢

k

cannot have an F-complete set.

Proof. The proof is by contradiction, employing a technique used in

[6,7,19]. Suppose L, is F-complete in I, for some k > 1, Since then

k
LO € Zk = NP({Ak—l]) = U{NTIME(q(n),Ak_l) : q(n) a polynomial}, there

is some polynomial qo(n) such that Ly e NTIME(qO(n),Ak_l). Now if L

is any language in I then L is F-reducible to Ly: for some f ¢ F,

L= f-l(LO). The obvious comstruction, combining the time qo(n) oracle
machine for L, and the machine that computes f, yields L NTIME(ZqO(p(n)),
Ak—l)' Hence Ek < NTIME(Zqo(p(n)),Ak_l) so using Corollary 2.4.2,

Zk g NP({Ak_l}? = Zk, the desired contradiction. 0

Suppose a space bounding functiom S satisfies

1lim S(n)

e lg(n) =0

and f is a function that can be computed in space S(n). Then, by

counting configurations of a machine that computes f, it can be seen

that { can also be computed in time n3 (except for finitely many inputs,

the number of which depends on f); hence a result similar to Proposition

5.3.6 (1) cannot hold if the space allowed is further restricted.
Corcllary 5.3.7 reveals, for example, that none of the classes

Zk_can possess a set that is complete with respect to linear-time

reductions. This knowledge allows generalization of some facts concerning

NTIME(poly) to other classes in the hierarchy: each of the classes on

the right in the corollary below contains such a complete set (see

fo, Lemma 3.4]).

Corollary 5.3.8. For all k 2 1,
(1) %, # DSPACE(n") or NSPACE(n®) for amy r > 0;

@ z ¢ DTIHE(Zlin);
(3 I, # e ), 0

The statement of part (3) can be strengthened in the case k = 1[5]:

i Lin
since NTIME(poly) c NTIME(len), we see that NTIME(poly) g RTIME(2™ ).

lin

For k > 1 it is unknown whether I cNTIME(2 }. Corollaries 5.3.7 and

k

5.3.8 can be shown to hold for the classes PH, I, and 4, as well.

k
Corollary 2.4.2 implies that for any index k > 1, any language
L ¢ Loy and any polynomial p(n), L, properly contains NTIME(p(n),L).

However, it does not exclude the possibility that Zk < NTIME(p(n),Ll) for
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some language L, even L in Ek, and some polynomial p{n). If L ¢ Ek
has this property for Zk, then Corollary 5.3.7 requires that the power

of relative computation must be exploited to overcome the restriction

to time p(n). The existence of such an L would imply that the polynomial

hierarchy contains at least two distinct classes, so that DIIME(poly)

# NTIME(poly).

Corollary 5.3.9. For all j 2 1, if for some polynomial p(n) and language
L e PH, Zj < NTIME(p{n),L) then Zj ; Ej+1 and therefore NTIME(poly) is

not closed under complementation. 0

Now we consider the extension to the polynomial hierarchy of the
representation of languages in the linear hierarchy in terms of bounded
quantifiers. Quantification bounded by a polynomial function of the
length of a string is used, instead of simply the length of the string.

This polynomial-bounded quantification takes the following form.

Notation. Suppose L is a language and q a polynomial. Let languages
Ll and L, be defined by:

X € Ll <=> gyl Iy! < q(Txl) and 8(x,y) e¢ L] and

X € L2 <=> yyl if |y| < q€|x|) then 8(x,y) L.
Then Ll (LZ) will be said to be defined from L by polynomial-bpunded
existential {(universal) quantification. The expression defining L,
will also be written (ﬂy)q[B(x,y) € L1, and that for Ly, (vy)q[ﬁ(x,y) € L.
In tae casé 6f multiplé cuantifiers, the subscripting rolynomials will

all refer to bounds in terms of x; e.g., (ay)q (VZ)q [8(x,y,2) € L]
1 2
denotes QEy)(VZ)[[y| < ql(Jxl) and if |z] < qz(fxl) then 9(x,v,z} ¢ LJ.
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The following characterization of the classes Zk and nk follews
easily from Theorems 4.2.2 and 5.2.7. It was in this form--definition
b} the number of alternations of bounded quantifiers--~that the polynomial

hierarchy was suggested by Karp [363.

Proposition 5,3.10. Let L c S* be a language. For any k 2 1: L ¢ Zk
if and only if there is a language L' ¢ DTIME(poly) and a seguence of
k polynomials Py esPp such that for all x e S%

X & L <=> (Hyl)pl(Vyz)pz--.(Q yk)pklﬁ(x,yl,---,yk) e L'].

Dually, L Hk if and only if

X ¢ L <=> val)pl(ayl)pz"'(Q'yk)PkIe(x’yl""’yk) e L]

for some L' ¢ DTIME(poly) and polynomials Plascsspp- 0

The quantifiers in these expressions alternate, so.that if k.is
odd then Q is ¥ and Q' is ¥, and if k is even then Q is ¥ and Q' is 3.
This result was announced, without pfoof, in [53]. Note that in the
implication from left to right it is sufficient to take L' ¢ DTIME(lin),
and the polynomials Pg,...,p, can all be the functiom pi(n) = n.

The . form of the expressions in Proposition 5.3.10 recalls another
sequence of complete sets for the polynomial hierarchy. . Suppose pro-
positional formulas containing variables from the set {x<i,j> : i,j > 1}
are encoded as strings over some finite alphabet. For each k 2 1 let
Bk be a certain set of such strings, defined as follows. The enéoding
of a formula F is in Bk is and only if

& 2(_1) 4 Véz) e (Q ék) [F(ﬁl,. .. ,Ek) is true] where the variables

in F are exactly X' = {x<1,1>,. .. ,x<l,np00, ... P O TS x<k,my >}



for some m., N,,...,0, = 1, and where {as above) Q is 3 if k is odd
1 2 k

and Y if k is even.

Thus Bl encodes the set of satisfiable formulas; as remarked in

135], the proof of Cook [16] (see also [1]) can be used to show that

B, is Slg—complete in NTIME(poly) = Z;. In general, B is slg—complete

in Zk, k = 1 [53]. Using Cook's result for the basis, the general
case follows by induction on k. The induction step can be done by

"relativizing” the proof for k = 1 to oracle machines (as in [53]) or,
more easily, by making use of the following fact, which can be derived
from Theorems 5.2.7 and 4.1.4: for each k > 1, zk+l = {h{1) : Le Tys

h a polynomial-erasing homomorphism} [561.

The family of "extended rudimentary relations" was suggested by
Bennett [4, p. 67]: in terms of the definitions used here, it consists
of those string relations that are definable from rudimentary relations
by one application of polynomial-bounded existential cuantification.
From Theorem 5.2.7 and the fact that the union of the linear hierarchy
is the rudimentary relations, we see that PH = {8(R) : R an extended
rudimentary relation}. The characterization given in Proposition 5.3.10
therefore shows that the extended rudimentary relations can also be defined
as the smallest class containing the concatenration relations and closed
under the Boolean cperations, explicit transformation and polynomial-

bounded existential quantificatiom.

By using the proof technique of Corollary 5.3.8 it can be seen
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that the class of extended rudimentary relations is not equal to any class
DSPACE(nr), r > 0. (In particular, it is not equal to Ei = DSPACE(n}.)
However, PSPACE = u DSPACE(nr) can be easily shown to contain PH

(which is the exte;ded rudimentary relations); the question of proper
containment remains open. The class PSPACE possesses a complete set

with respect to lg(n)-space reductions [53] so we obtain a result

lifting Corollary 4.3.8 to the polynomial hierarchy.

Proposition 5.3.11. If the polynomial hierarchy is infinite then the
extended rudimentary relations are properly contained in PSPACE (and

the rudimentary relations are properly contained in DSPACE(n)). 0

Recall that no class in the linear hierarchy can be equal to
any family of languages that is closed under removal of polynomial
padding. Hence, in particular, for all j,k>1, Uj #=Zk; that is, for

k<3, aj #=Zk and for k > j, ﬂj g Ek' Now, if the linear hierarcy is

finite, then for some k, RUD = %, . and the polynomial hierarchy is

also finite. Thus we can conclude the fellowing.

Corgilary 5.3.12. If the linear hierarchy is finite then the rudimentary

relations are properly contained in the extended rudimentary relations. 0

Two other classes of string relations defined by Bemnett [4] are
of interest in connection with the linear and polynomial hierarchies.
Recall from Chapter 4 that the class of positive rudimentary relationms
is the smallest class of string relations containing the concatenation

relations and closed under union, Intersection, explicit transformation,



bounded existential quantification and universal subpart quantification.
A relation is an extended positive rudimentary relation if it can be

obtained from a positive rudimentary relation by one application of

polynomial-bounded existential quantification; as noticed by Cobham
[15], the class of extended positive rudimentary relations is in fact

the class NTIME{poly).

It is not hard to see that the positive rudimentary relations
are contained both in the rudimentary relations and in the extended
positive rudiuentary relations {[4]. Whether either containment is
proper is not known, mor is any inclusion relation known to hold
between the rudimentary relations and the extended positive rudimentary
relations {i.e., between RUD and NTIME{poly)). If RUD is in fact equal

to the positive rudimentary relations then the linear hierarchy is all

contained in NTIME(poly) and so (from Corollary 5.3.3) PH = NTIME(poly).

The same conclusion can be drawn if RUD is contained in the extended

positive rudimentary relations.

As remarked in Chapter 4, o = NTIME(n) is contained in the
positive rudimentary relations but this inclusion is not known to hold

for classes in the linear hierarchy with larger indices. If even 62 is

contained in the positive rudimentary relatioms them also §, S NTIME(poly)

2 =
so (again from Corollary 5.3.3) every class in the polynomial hierarchy

is contained in NTIME(poly).

We have seen in this chapter that a strong and useful relationship

exists between the linear and polynomial hierarchies. Questions that

remain open about the polynomial hierarchy can be solved if the corresponding
questions about the linear hierarchy have certain solutions (e.g., if the
linear hierarchy cqllapses at a class then the polynomial hierarchy

collapses at the corresponding class.} Properties desired for the classes

in the polynomial hierarchy need only be proven in the context of the

linear hierarchy (that is, only linear time bounds, rather than
polynomials, need be considered); they can then be lifted to the
polynomial hierarchy. Thus, for example, to show that a language

L0 € Zk is completeiin Ek with respect to polynomial-time reductions,
it is sufficient to show that any language in % is polynomial-time

reducible to LO'



Appendix A; DISCUSSION OF THE RELATIVIZED TIME-HIERARCHY THEOREM

This appendix contains further discussion of the time
hierarchy theorems for oracle machines that were stated in

Chapter 2.

Theorem 2.4.1. Suppose A is a recursive language and t2(n) is a

running time.

£, (@) 1g(k, (n))
(1) 1If lim = 0 then

e £, )
DTTME(t, (n),A) EDTIME(t, (n),4).

. tl(n+1)
2) 1f lim = 0 then NTIME(tZ(n),A)ENTIME(tl(n),A).

RN
2
We concentrate on the proof for the nondeterministic case.

For the deterministic case, first note that by applying the
construction of [29] to all the tapes of an oracle machine except
the oracle tape, it camn be established that DTIME(tl(n),A)E{M(A) :
M is a deterministic oracle machine with 3 tapes that operates in
time linear in tl(n)lg(tl(n))} for any language A, Using changes
similar to those described below, the diagonalization proof of [28]
can then be modified to apply to coracle machines, This yields the

result stated in (1) for any language A (not only recursive A).

The nondeterministic case of Theorem 2.4.1 follows from a
more general result (stated below), a relativized version of the
theorem of Seiferas for Turing acceptors [49, Theorem 13]}. The

differences between the proocf for Turing machines and that for
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oracle machines will be emphasized in the description of the

proof.

To simplify the proof we consider off-line oracle machines.
These machines differ from (on-line) oracle machines only in
that the input tape serves as a Turing tape; that is, an off-
line oracle machine can read its input tape in both directiomns
and can write on it. As with off-line Turing machines, the
reading head of the input tape is inirially positioned at the left
end of the input. The mechanism for an off-line oracle machine
to query its oracle is the same as for an on-line oracle machine;
in particular, the oracle tape is reset to blamnks after an oracle
call. Alsc as in the on-line case, an off-line oracle machine M
is said to operate in a time bound t(n) i1f for any oracle set A
for M and any input x, every computation of M on x relative to A

has at most t{|x|) steps.

Theorem A,l. Suppose tz(n) is a running time and A is a recursive
language. Let B = {tl: N+ :1(n)2 n for all n and for some
recursively bounded, strictly increasing function f,

tl(f(n+1))
lim = '0}. Then {M(A)} : M is a nondeterminstic off-

e (E()

line oracle machine that operates in time tz(n)} - {M({A) : M is
a nondeterministic off-line oracle machine that operates in time

tl(n) for some CIEB} is nonempty.

Theorem 2.4.1 (2) is easily derived from this theorem.

First note that for any language A and time bound t{n), NTIME(t(n),A) =
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{M(A) : M is an off-line oracle machine that operates in time

t(n)}. The containment from left to right follows from the definitions.

On the other hand, an off-line oracle machine M can be converted
to an (on-line) oracle machine without loss of time, by the
addition of two pushdown stores to act jointly as the input tape

.
for M. Fow if 1im ©10D

0 then tIEB for the recursive,
o>

tz(n)
strictly increasing function f(n) = n; hence Theorem A.1 may be
applied to yield a contradictiomn if Theorem 2.4.1 (2) is

assumed to be false.

The proof of Theorem A.l has the same structure as the proof
of the corresponding theorem for Turing acceptors [49, p. 23].
For any alphabet I, a particular nondeterminstic oracle machine
U2 is constructed satisfying: (i) U2 operates in time'tz(n); and
(ii) for any recursive language AcI*, UZ(A) is not equal to Ul(A)
for any off-line oracle machine Ul that operates in a time bound
in B. In describing the proof of the relativized version, it will
be assumed that the reader is familiar with Seiferas's proof [49,
pp. 21-28]. The changes necessary are due to the larger alphabet

involved (Aci*) and to additional linear factors in the timing

of the machines.

Suppose M is an off-line oracle machine and C is an
oracle set for M, Extending the notation of [49], for x=M(A)
let TimeM C(x) be the length of a shortest accepting computation
£

of M on x relative to C. For x¢M(A), let T:i.meM c(x) = =}
ks
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i.e., mSTimeM A(x) is true for every integer m.
»

The proof uses a "universal simulator" with certain properties,
sC we establish an encoding to describe off-line oracle machines
as strings for input to that machine. Suppose Z={ul,..., Um}
is an alphabet with {0,1,¢}cZ. Let a four-tape off-line oracle
machine M with input alphabet {0,1,¢} and tape alphabet I be
given as a 9-tuple M = (K, {p,l,c}, L, & qps 9, 9yes® Ino’ F)
where we assume that the first tape is the input tape and the last
tape is the oracle tape. As usual, K is the set of states of M,
FcK is the set of accepting states, qOEK is the initial state,
q?eK is the query state and qyes, anEK are the response states.
The four. distinguished states (qo, 4y qyes’ qno) are required to
be distinct. The set & of transitions of M is a subset of
[(k-{q,)) x {0,1,¢,B) x (zu{BN] «

[Kx({0,1,¢,B} x {L,R,C}) x ((2u{B}) x {L,R,C})>]

with the usual interpretation. (B¢ is the blank tape symbol; "L",
"R", and "C" instruct the machine to move that head to the left,
to the right and not at all, fespectively.) The string Me{0,1,¢}%
describing M is constructed as follows. Let K be a (finite)
subset of {pl, PZ""} and define 51 to be i written in binary.
For 1<jem, let 5, = 023*10 and let B = 010. Let L =10, K = 01
and C = 00. Suppose t = (q’al’az’a3’aﬁ’p’bl’dl’""bA’dA) is
a transition in § with qu—{q?}, pekK, al,bls{o,l,c,B}, EPTRRRRL IR

bys.-esb,efu{B}, dy,...,d,€{L,R,C}. Then t = ¢qea

4

.,tr are the transitions of M and f

1

If t

150 .,fP are its accepting

100t

¢...¢a,epeb ¢de.. boed, ¢l



states, then
M= ¢¢¢50¢a?ca canoc'fl Ercflcfzc .oo T cee.

yes P

Let L: e = {M :Mis a four-tape off-line oracle machine

with input alphabet {0,1,¢} and tape alphabet I}. If eEL; c

then Me will denote the off~line oracle machine M such that M =e.

. . 4
To simplify the notation, for eELp.c. let Timee,c(x) deonte TimeMe’C(x),

i.e., the length of a shortest accepting computation of Me on X Te-—

lative to c (if one exists).

4
The set Lp c of program codes 1s easily seen to satisfy the

following conditions, analogs of the conditions in [49].

Conditionll. L:_c. is prefix-free and can be recognized in linear
time by a determinstic on-line Turing machine.

Condition 2. There is a nondeterministic off-line oracle machine
U0 suEh that for amy CCE¥

U, () = fex : eeL:_C_, xe{0,1,61%, xet_(C))

4
and for any eELP c there is a constant o such that for any C and x

Timer,C(x) < ce'Timee’C(x).

Condition 3. There is a recursive function fA:L: c *L: c such

that for any eEL4 spends fe]| steps writing e (baclowards)

M
p.c.’ fk(e)
on its second tape and then acts according to the rules of Me.

Except for references to cracle machines rather than Turing
acceptors, only Condition 1 differs from the statement in [49] :
linear time rather than real-time seems necessary to check that no

transitions begin with the query state, Since the alphabet I is
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fixed, while U0 is simulating a computation of Me on x, it
can use its oracle tape (and three others) just as Me would

during that computation.

Lemma A.2. Suppose M is a four-tape off-line oracle machine
with input alphabet {0,1,¢} and tape alphabet . Then there is

an index eOEL: c such that for any Cci#*

MeO(C) = {x={0,1,¢}* : erEM(C)}

and there is a constant c¢ such that for any C and x
< -
Timeeo’c(x) S o + Timey (x) o
The following lemma, essential to the proof of the theorem,
has a slightly weaker statement for oracle machines than for

Turing acceptors (see [49, Lemma 4]).

Lemma A.3. Let Hl’MZ be off-line oracle machines with the same
input alphabet. One can comstruct an off-line oracle machine M
such that (i) for any oracle set C, M(C) = Ml(C)UMZ(C); and (1i)

there is a comstant do such that for any C and x,

TimeM’ch) < do'min {Time.Ml’C(x), T:LmeMz,c'(x)}- [}

The linear factor in the timing of M arises from oracle calls
made by Ml and MZ' The steps of Ml and M2 in which neither queries
its oracle can be run by M in "parallel™, as with Turing acceptors.
However, 1f (say) Ml wishes to query its oracle, the contents of
the tape serving as the oracle tape fo; Ml must be copled by M onto

its oracle tape before the call can be made. Since the oracle

tape of a machine is reset to blanks after a query, the total length
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of all strings that must be copied by M onto its oracle tape will
be less than twice the number of non-copying (or "parallel™) steps
M takes; therefore only a linear (rather than éuadratic) time

loss results.

The argument of Corollary 2.3.4 can be modified to yileld a

final lemma.

Lemma A.4. If Ml 1s an off-line oracle machine then one can

construct a nondeterministic four-tape off-line oracle machine M. with

2
the same alphabet such that (i) for any oracle set C for Ml, Mz(C) =
Ml(C); and (11) there is a constant ¢ such that for any C and x,

, < o .
TmeMZ’c(x) < e TlmeMl’c(x) g

Both of the following contribute to the linear factor c¢: the
action of MZ in quessing and writing down an entire computation
of Ml {and then following it ); and recoding the extra symbols

used by M2 into the original tape alphabet of Ml.

We can now proceed with the proof of Theorem A.1l. Suppose
t2(n) is a running time. Let UO be the universal oracle machine
of Condition 2 above. Let dan oracle machine U2 be constructed from
U0 by adding a timer for tz(n)IZ; then U2 operates in time t2(n).
(The timer cannot tun during steps of U2 that are oracle calls,

but during any initial segment of a computation of U0 the number
of steps that are not oracle calls must exceed the number of oracle

calls.) It will be shown that for any recursive Agi*, UZ(A) cannot

be accepted relative to A by any off-line oracle machine that operates

in time tl(n) for any tlEB.
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Assume to the contrary that tlsB and UZ(A) = Ul(A) for Uy

an off-line oracle machine that operates in time tl(n). Let f be

the function that demonstrates that t, is in B:

£, (E(nt1)) 1
lim = 0. Let U be the oracle machine constructed
o tzif(n))

from U0 and U1 as in Lemma A.3. Then U(A) = UD(A)uUl(A) = UO(A)

and there is a constant d0 such that for any eEL:.c. and x={0,1,¢}%,

Timeu,A(ex) < do'min{TimeUO,A(ex) s Timeul’A(ex)}

< do'min{ce‘Timee’A(x), Timeul’A(ex)}.

4 .
Suppose eELp'c. and ste(A). If ce-Tlmee’A(x)Stz(lexI)IZ then
U, accepts ex relative to A, so ex<U (A) and therefore TimeU (ex)
2 1 I’A
<t;(lexl). Hence if ce-Timee’A(x)Stz(]ex|)/2 then TimeU,A(ex)s

do'tl(lex|).

The machine U is now used to show that any recursive language
over {0,1} can be accepted relative to A within a fixed recursive
time bound. Combining this with Proposition 2.1.5 (since A is
recursive) we can conclude that for some recursive function h,
NTIME (h{n)) contains all the recursive sets, a contradiction.
Hence UZ(A) cannot be accepted relative to A in time tl(n) and

the theorem is proved.

So suppose Lc{0,1}* is any recursive language and let M be a
Turing acceptor for L that operates in time t{n) for some funning
time t{n}. An oracle machine M' is constructed from M and U just

as in [49, p. 24]. M' rejects any input not im Lg e {0,1}*. ()%,
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k 4 '
On an input ex¢ (eELP . x={0,1}*, k=0) M' operates as follows:
1) if k2t(|x|) then M' acts like M would act on input x; and
2) if k< t{ix]) then M' quesses some value k'>k and then acts like
1
U on exck .
Thus exckEM'(A) if and only if either (1) k2t Ix ) and x€L; or
Ll
(2) k<t(|x|) and there exists k'>k such that xck EME(A). Using
Condition 1 and the fact that t(n) is a running time, there is
some constant dl such that for exckEM'(A)
k .
d; - lex¢™ | if k2t (lx D)
Time,, ,(exc) <
eMt A =

1 r
nin {d -|ex¢k | + Time (exck Y} if k<e( k1),
K>k 1 A

Applying Lemma A.4 and then Lemma A.2 to M', there is a
program code ey and a constant d2 such that

xekat? (a)}

M (A) = {x¢X : xe{0.1}%, k20, e
eo 4}

and for any x€{0,1}% and k20

k k
TimeeO’A(xc )sd2 TimeM,'A(erc ).

The following three claims can be established as in [49, pp.25-28].

Claim 1. For all xe{0,1}* and k>0, xckeMe (A) if and only if xeL.
0
Claim 2. For every sufficiently long string x€L, for every nZIeoxI

TimeeO’A(xcf(n)_leox|)£d3.t1(f(n+1))

=d.. ).
where d3 d2 (d1 + dp

(In this proof, x is chosen long enough that co -d3-tl(f(n+l))St2(f(n))/2
0

for every nzleox|.)
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Claim 3. For every sufficiently long string x<L,

Timeeo’A(x)Sd3'tl(f(]e0x|+ 1)),

An oracle machine M'" can be easily comstructed from Me to
0
s . s . . <d .
accept L relative to A; using Claim 3, TlmeM..'A(x).d3 tl(f(leox] +
1)) for'any xeL. Since f is bounded above by a recursive function,

this implies (as in [49, p. 28]) that there is a recursive function

hl such that LENTIME(hl(n),A), leading to the desired contradiction.



Appendix B: CHARAGTERIZATIONS OF THE DYCK SETS

Two representations of Dyck sets 1n terms of simpler languages are
glven here. First, the Dyck set on two letters is shown to be definable
from the Dyck set on one letter by used of language~theoretic opera-
tions; the method generalizes easily to the Dyck set on k letters for
any k > 2. Second, the Dyck set on one letter is expressed in terms of

n.n

the language L0 ={01":

difference with regular sets) is used as well as some of the AFL opera-

n > 0}. In both cases complementation (i.e.,

tions; use of complementation is necessary.

For completeness we restate the definition of the Dyck sets. Let

I, = [al,zi} and z, = [al, a,, ;i, Eé}. Define the binary relation -~
*

*
I
on 2

2 , ua,a v~ uv and

as follows: for any u,ve I 131

— * .
ua,a,V ~ uv. Let ~ denote the reflexive and transitive closure of

*
~; that is, x~y if and only if % =y or for some n > 1 and

*

*
10t 2 9 » XV Zp Y Zy ...~z o~y Then D, = {xe I, :

1 2 2 2

* * *
x ~ e} and Dl = {x ¢ Zl : x ~ e}. Two properties of the Dyck sets

are apparent:
(1) no string in Dl begins with Ei or ends with a; and
(2) for i=1,2, forany x and y, 1f x~ y then x ¢ Di if

and only if y ¢ Di.

*
Let h: 22 + Zl be the homomorphism determined by defining

Lemma B.1. For any x,y e I

h(al) = h(az) =2 and h(;i) = h(zé) = Ei. Tt is easy to see that

h(DZ) = Dl’ so that D2 c h.l(Dl); moreover, we will see that the

difference between D2 and h_l(Dl) can be expressed in terms of

-1
h (Dl).

. I g * -1 - g %
Notation., Let A = ( al( 5 h (Dl)a 9 Y u

2 1

(a0’ -ntona, £
2 "2 2 172 2 °°

*
Note that for x ¢ 22 , x ¢ A if and only if whenever x = uav

- — *
for i =1lor 2 then veh 1(Dl)ai 22 ; that is, =x ¢ A if and only

if for every occurrence of a, in x there is a "matching" occurrence

of a,.
1

The language A contains the strings which are in h_l(Dl) but

not- in DZ' To see this, we first prove two lemmas about the language

-1
h (Dl) - A,

* -1
5 s if x~y, then xe¢ h (Dl) - A if
and only if ¥ ¢ h—l(Dl) - A.

Proof. Suppose x ~ y. Then by definition, x = ua a.v for some u

373
and v, and y = uv. Then h(x) = h(u)alzlh(v) ~ h{u)h(v} = h(y), so

h(x) ¢ D1 if and only if h{y) ¢« D It remains to show that x ¢ A if

IR
and only if ¥ ¢ A.

(1) If xe A then for some 1 =1 or 2, and some X = u,a,v

l]l,Vl,

-1 — * _ o
and v, éh (Dl)ai I, . Now 1f wu; =u then i =3 and



— -1 — *
vy Tave h (Dl)ai EZ ; therefore uy # u. Two cases remain:

(i) ]u1| < |ul: Then wu = v, for some u, and v, = u,a.a,v.

Now h(uzaj) = h(uz)a1 Fy D;s so it is mot hard to see that if

ntooa, 1" vz, 5" icti
uyv e ( P2 22 then also vy € (Dl)ai )22 , a contradiction.
Since y = ulai(uzv), ¥y e A,

(ii) |u1[> |u1: Then u1=uajaju2 for some u, so y=uuzaivl.

_ _ *
Since v, éh l(Dl)ai I, s Ye A

— *
(2) If ye A then y = wav, and v, ) h(Dl)ai Iy - Again'there

are two cases, |u1[ < |u| and {u,{ > |u|; using arguments similar

n

to those above, it can be seen that x ¢ A. O
* -1
Lemma B.2. For any x # e in EZ , if xe h (Dl) - A then

- *
X = uaiaiv for some wu,v e 22 and i =1 or 2.

*
Proof. Suppose x = Xyew Xy is in E with n=21, x. e I for

2 i 2

*
1< i<n., Let f£: Ez + & (where £ denotes the integers) be the

homomorphism determined by defining f(ai) =1 and f(;i) = -1,

1 =1,2. Let m=max{f(x1...xi): 1< 1<na}l and

k

min {j: 1< j<n, f(x ..xj) = m}; that is, k is the leftmost

1
position in x at which the maximum depth m is achieved. Since

h(x) ¢ D1 and every nonempty string in D, begins with a m > 0.

1 1’
let u = XpeenXp g (that is, if k =1, then u = e), By the choice of

k, f(xl...xk) z f(u), S0 X is either a; or a,, say ap. Since

every nonempty string in D ends with k < n, so let

1 %
v = x.k+2...xn. Then x = ualxk+1v and since x ¢ A,

—1 - * . -
E V€ h (Dl)al EZ . Since f(xl...xk) =m > f(xl...xk+1), L)

is a "barred" symbol, either ;1 or ;2. But no string in h_l(Dl)
can begin with a "barred" symbeol so in fact X1 = ;1 and
X = ualalv. O

Recall that A was defined from h_l(Dl) by use of Boolean
operations and product with regular sets. Thus the following proposi-

tion gives a definition of D2 from Dl'

Proposition B.3. D, = h"l(nl) - A.

*
Proof. The proof is by induction on |x] for x e I For the basis

g
step, |x} = 0, note that e« D,, ece h—l(Dl) but e ¢ A, TFor the

induction step Lemmas B.l and B.2 are used along with the fact that when

XxX~y¥, XeD, if and only if y ¢ D

2 2

*
Proposition B.3 can be rephrased as follows: a string x e EZ is

in D2 if and only if

(1) h(x) e Dy; and
(2) whenever x = ua,v (i = 1,2), there is a string

we h-l(Dl) such that wa, begins v (i.e., is an initial substring

i

of w).
Descriptions of D2 similar to this one have been used to comstruct

automata which accept DZ'
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Corollary B.4. (i) ([46]) D2 € DSPACE(1g(n)}.
(ii) ([31D) D2 can be accepted by a deterministic

two-way one-counter automaton. 1

The automaton given by Ritchie and Springsteel- [46] is a device
with two-way (read-only) input and has for storage counters which are
bounded by the length of the input, so there is a 1lg(n) tape-bounded
Turing machine that accepts the same set. The counter of the device
given by Hotz and Messerschmidt [31} is alse bounded by the length of
the input. Both autcmata operate by checking condition (2) above for
each symbol ai (i =1,2) in the input x f uaiv, using a couﬁter to
determine which initial substrings of v are elements of h_l(Dl).
They also check that every symbol Ei in x has a "matching" symbol
a; to its left; it is not hard to sée, however, that if conditions (1)
and (2) are satisfied by x {i.e., if x ¢ h_l(Dl) - A) them x also
satisfies:

(3) whenever x = uav (i = 1,2) there exists W e h—l(D such

v
that 2w ends u.

Once it is established that the Dyck set on one letter is a rudi-
mentary relation (see Proposition B.9), Proposition B.3 can be used to
show that the Dyck set on two letters is rudimentary and, hence, every
context-free language is a rudimentary relation. For the purpose of
showing the context-free languages to be rudimentary, other definitions
of D2 have been given by Jones [34] and Yu {57]. The characterization

given by Jones is similar in form to the restatement above of Proposition

*
B.3. TFor b e I, and we I

2 s let #b(w) denote the number of oc-

*
currences of the symbol b in w. For we Ez ,

balanced if #_ <(w) =4#_ and #_ (w) =#_ (w). Then Jones's represen—
——— a; a a, ,

define w to be

tation of D2 may be stated as follows:

X € D2 iff (1'} x 1is balanced;
"(2') whenever x = uav (i =1 o0r 2) there is a balanced
string w such that’ wZi begins wv; and

(3'} whenever x = d;iv (i =1o0r 2) there is a balanced

string w such that aw ends u.

Note that h-l(Dl) and the set of balanced strings are incomparable.
It is not clear whether condition (3') can be omitted. The characteri-

zation of the Dyck sets suggested by Yu can be stated more easily using

. ; N * * . x *
language~theoretic operations. Let fl. Zz + Zl and f2' 22 + El

be the homomorphisms (similar to the homomerphism h of Proposition

B.3) determined by defining for i = 1,2, fi(ai) = a fi(ai) = a; and

1’

fla) =f(3a) =e for §#1, j=1,2 ¥
i aj =i aj = e or j , J =1,2. Define a language K c 2
by

L% -1 -1 — * 1 -1 - L%
K 2, 8, (F) (D) n £, T(@)a, I, v I, e, (£17(D)) n £, (0 £,
Then D, = [£1(D,) n £.5(D,)] - K. The language £.1(D,) n £.1(D,) 1is

2 1 1 2 1 ) 1 1 2 1

properly contained .both in h_l(Dl) and in the set of balanced strings.

Recognition of D using this representation seems to require two coun-

2

ters.

The operation of product with regular sets .was used to define A
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-1 .
from h “(D,). The following lemma shows that closure of a class of

1

languages under product with regular sets is implied by closure under
intersection with regular sets, inverse homomorphism and length-preser-

ving homomorphism.

*
Lemma B.5. Suppose S is an alphabet, L, Ll, L2 cs and Ll

and L, are regular sets. Then there exist homomorphisms h

2 h

1? 5

with h1 length-preserving, and a regular set R such that

_ -1
LlLL2 = hl(h2 (L) n R}.

*
Proof. Suppose L, Ll’ L,<5$ are languages as in the statement of

2

the lemma. Let T = {a: a ¢ S} be an alphabet isomorphic to S, with

SoT=@%. For i=1,2, let Ri = {;i...;;: nz 0, ay...a € Li};

’ *
since L1 and L2 are regular so are Rl and RZ' Let Rc (SuT)
* * *
be the regular set R = Rls RZ' Let hl: (SuT) +8 and
* *
h2: (SuT) -8 be the homomorphisms determined by defining, for

ace 8, hl(a) = hl(ED = a, hz(a) = a and hz(;) = e, Note that hl

is a length-preserving homomorphism. Then L,LL, = hl(hgl(L) nRy. 0O

The following fact is easily proven using Proposition B.3 and Lemma

B.5.

Proposition B.6. If { 1is a class of languages containing Dl and
closed under intersection, difference with regular sets, inverse homomor-

phism and length-preserving homomorphism, then D2 e C. 0

Recall that the closure of Dl under the AFL operations is the
class of nondeterministic one-counter languages [22], which does not
contain D2; hence the operation of complementation is necessary.

Now we turn to the representation of D1 in terms of
Ly = (0™"; n20}. For we {0,1}* let #O(W) denote the number of

occurrences of 0 in w, and #l(w), the number of occurrences of 1

in w. Let Ll ={w ¢ {0,1}*: #O(W) = #1(w)}. We first define D

1
from L1 using language operations, in a representation similar to that
of Prop. B.3, and then define Ll from LO'

% *
Let hl: Il + {0,1} be the homomorphism determined by defining

hl(al) =0 and hl(zi) =1, so that x ¢ hIl(Ll) if and only if
*
# (x) =#_(x). Define B ={x € I : . for some prefix ¥y of =x,
a a; 1

#a (y) < #3 (y)}. Then the language B contains those strings which
1 1

. -1 . !
are in hl (Ll) but not in D;:

. ]
Proposition B.7. D; = hy (Ll) B. u}

The proof of this equality is essentially the same as the proof of
Proposition B.3, using facts about h;l(Ll) - B similar to Lemmas B.1
and B.2., Proposition ﬁ.? may be restated as: for x ¢ Zl*, X € D1 if
and omly if

(1) # (%) =#. (x); and
31 3

(2) for every prefix y of x, # (y) = #_ (¥).
! %1



Corollary B.8. If ( is a class of languages containing L1 and closed

under intersection, difference with regular sets, inverse homomorphism
and length-preserving homomorphism, then D1 (and hence every Dyck set)

is in C.

Proof. Recalling Lemma B.5, it is sufficient to show that B can be

defined from Ll by use of inverse homomorphism, length-preserving

homomorphism and intersection and product with regular sets,

* %
Let h2: {0,1,¢£} - {0,1}* and h3: {0,1,¢}* > Zl be the homo-

morphisms determined by defining hZ(O) =0, hZ(l) =1 and hz(f) = e,
and h4(0) = a; and hy(1).= hy(4) = Ei. Note that h, is length-pre-

* *
serving. Let R be the regular set R = {0,1,4} {¢}0,1,6} .

Then hy(n3lL) o R = (xe zl*: #al(x) < #El(x)}; hence

*

B = (hy(h3'L) 0 B) 5"

We will now see that L1 can be defined from LO and regular sets

by use of inverse homomorphism, length-preserving homomorphism and unicn
and intersection. The operation of complementation need mot be used,

because L1 can be accepted in linear time by a deterministic automaton

with two counters, each of which makes only one turn during any computa-
tion. Therefore there exist two one-turn ome-counter languages Li and

LI such that L 1is the image under a linear-erasing homomorphism of

Li n L; . Recall also that LO generates the one-turn one-counter lan-—

guages under the AFL operations. The algebraic definition of Ll from

LO (which reduces the linear-erasing homomorphism to a length-preserving

homomorphism) is based on these ideas.

Let C, = {e} v {ubvéu: uwv,we (0,1%, £ (w = # (v,
1 0 [}
#l(uv) = #l(w) and #O(U) = #l(w) 2 1}. Note that if x = ufvéw is

in C; then #O(X) = #l(x), #O(x) is even, and the two occurrences
of ¢ in x mark the positions in x where half the 0's and half
the 1's in x have occurred. Similarly, let

C, = {uvbw: wvw e 10,17, F W+ = §(w), # (u)HLl = 4 () and
#O(u)+l = #l(w) > 1}. Let g {0,1,¢}* - {O,l,t}* be the homomorphism
that interchanges 0's and 1's: gl(O) =1, gl(l) = 0 and gl(é) = ¢,

% *
Let C3 = C1 u gl(Cl) u C2 u gl(Cz). Let 8yt {0,1,¢} =~ {0,1} be

the homomorphism defined by gZ(O) =0, gz(l) =1 and gz(d) = e.

Then L1 = gZ(CB)' Since any word in C3 has at most two occurrences of

the symbol ¢, By is e-limited on C The effect of an e-limited

3+
homomorphism can be achieved by use of length-preserving homomorphism,

inverse homomorphism and intersection with a regular set [21, p.44], so

it suffices to show that C1 and C2 can be formed from 'LO'

C1 is the intersection of three one-turn one~counter languages,
each of which checks one of the conditions on the number of symbols in a

word. Let C4 = {udviw: #O(U) = #O(VW) > 1},
C5 = {uf¢viw: #l(uv) = #l(w) > 1}, and C6 = {uéviw: #O(U) = #l(w) 2 1};

then Cl = {e} v (C4 nC.nh C6). It is not hard to see that CA’ [

5 5

and C6 are inverse a-transducer mappings [20] of L hence can be

0°

defined from L0 by use of length-preserving homemorphism, inverse
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homomorphism and intersection with regular sets. We give the definition

only for CA; that for C is essentially the same, and that for C

5 6

is simpler. Define four homomorphisms as follows:

r: 10,1,$1% » {0,13" T =0, (=1, £, -e

5o (0,157~ (0,8} 5,0 = 5, =0, 1@ =§

ryt 10,1,4,4)% > 0,1.4)" 73000 = 0, (D) =ry(H =e, r ) = $
e 10,1, > {0,1,07 (0 =0, T, (D =1, r,® =1,# =4

Let Rl and R, be the regular sets:

2

R = [Om$ln: m,n 2 1}

R {0,1}*{$}{0,1}*{t}{0,1}*.

2
Then
ril(Lo) nR = 01" nox 1k
rz(ril(LO) n R = (0%0%: a1}

3t T n RDY 0 Ry = (ufvdw: v e (0,135, fo( = £ (n) > 1)
and

rh(rgl(rz(rll(LO) nRDY N By = G,

The demonstration that C can be formed from L0 is similar.

2

The preceding discussion is summarized in the following propositionm.

Proposition B.9. If C 1is a class of languages containing

{0™": n = 0} and closed under intersection, difference with regular

sets, inverse homomorphism and length-preserving homomorphism then every

Dyck set is in C. 0

Again, the operation of complementation cannot be deleted, since
the closure of L0 under the AFL operations is properly contained in
the family of context-free languages, and hence does not contain the
Dyck sets.

Using the algebraic characterizations of the context-free languages
and of the class NTIME(n)}, it can be seen that for any class ('
satisfying the conditions of Proposition B.9, the context-free languages

are properly contained in ¢ and NTIME(n) 1is contained in (.
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