
We describe a new class of algorithms for the solution of parabolic partial differential equa-
tions (PDEs). This class of schemes is based on three principal observations. First, the
spatial discretization of parabolic PDEs results in stiff systems of ordinary differential equa-
tions (ODEs) in time, and therefore, requires an implicit method for its solution. Spectral
Deferred Correction (SDC) methods use repeated iterations of a low-order method (e.g. im-
plicit Euler method) to generate a high-order scheme. As a result, SDC methods of arbitrary
order can be constructed with the desired stability properties necessary for the solution of
stiff differential equations. Furthermore, for large-scale systems, SDC methods are more
computationally efficient than implicit Runge-Kutta schemes. Second, implicit methods for
the solution of a system of linear ODEs yield linear systems that must be solved on each it-
eration. It is well known that the linear systems constructed from the spatial discretization
of parabolic PDEs are sparse. In R1, these linear systems can be solved in O(n) operations
where n is the number of spatial discretization nodes. However, in R2, the straightfor-
ward spatial discretization leads to matrices with dimensionality n2 × n2 and bandwidth
n. While fast inversion schemes of O(n3) exist, we use alternating direction implicit (ADI)
methods to replace the single two-dimensional implicit step with two sub-steps where only
one direction is treated implicitly. This approach results in schemes with computational
cost O(n2). Likewise, ADI methods in R3 have computational cost O(n3). While popular
ADI methods are low-order, we combine the SDC methods with an ADI method to generate
computationally efficient, high-order schemes for the solution of parabolic PDEs in R2 and
R3. Third, traditional pseudospectral schemes for the representation of the spatial operator
in parabolic PDEs yield differentiation operators with eigenvalues that can be excessively
large. We improve on the traditional approach by subdividing the entire spatial domain,
constructing bases on each subdomain, and combining the obtained discretization with the
implicit SDC schemes. The resulting schemes are high-order in both time and space and
have computational cost O(N ·M) where N is the number of spatial discretization nodes
and M is the number of temporal nodes. We illustrate the behavior of these schemes with
several numerical examples.
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1 Introduction

The diffusion equation with variable coefficients is an extremely well-studied subject. It is
usually written as

∂φ

∂t
= ∇ · (α(x)∇φ) , (1.1)

where α is the diffusion coefficient and x ∈ Rd for d = 1, 2, 3. This equation arises in various
physical phenomena, including heat transfer and fluid dynamics, biological and chemical
reaction processes, financial mathematics, and many other application areas. Furthermore,
the diffusion equation is an important component of many non-linear partial differential
equations (PDEs), including the Navier–Stokes equations. Thus, there is continued interest
in constructing accurate and fast methods for its solution. Traditional approaches for
computing its numerical solution include finite difference, finite element, integral equation,
spectral, and pseudospectral methods (see, e.g., [5, 7, 12, 13, 14, 17, 32, 35, 36, 40]).

Finite difference and finite element methods tend to lead to low-order schemes for the
solution of (1.1) and, hence, tend to require an excessive number of nodes in both the tem-
poral and spatial discretization. Furthermore, high-order finite difference and finite element
methods have difficulty maintaining the high-order near the boundary. As a consequence,
there is continued interest in developing high-order methods in both time and space.

For the case of constant coefficients, one can convert (1.1) to an integral equation and
evaluate the heat potential (see, e.g., [20, 21, 22]). For variable coefficients, some of the
issues of spatial discretization mentioned above are resolved in discontinuous Galerkin or
discontinuous spectral element methods (see, e.g., [24, 34, 37]).

Spatial discretization of (1.1) results in a stiff system of ordinary differential equations
(ODEs) in time and, therefore, requires an implicit method for its solution. While there are
no implicit A-stable multistep methods of order greater than two, there is a family of implicit
multistep methods which are A(α)-stable called backward differentiation formulae (BDF).
However, since there are no BDFs of order greater than six, implicit Runge-Kutta schemes
are frequently used for the solution of stiff ODEs. On the other hand, implicit Runge-Kutta
schemes are computationally expensive for large systems. An alternative approach, which
we use in this dissertation, is the so-called Spectral Deferred Correction (SDC) methods
[10]. To avoid high cost, SDC methods use repeated iterations of a low-order method (e.g.,
implicit Euler method) to generate a high-order scheme. As a result, SDC methods of
arbitrary order can be constructed that retain the desired stability properties necessary for
the solution of stiff differential equations. This makes it an appropriate tool for the solution
of parabolic PDEs in time. For example, recent work using SDC for computational fluid
dynamics include [28, 30, 31].

In general, implicit methods for the solution of a system of linear ODEs yield a linear
system that must be solved on each iteration. It is well known that the linear system
constructed from the spatial discretization of the variable coefficient operator in (1.1) is
sparse. In R1, this linear system is either banded or block banded and can be solved in O(n)
where n is the number of spatial discretization nodes. However, in R2, the straightforward
spatial discretization leads to matrices with dimensionality n2×n2 and bandwidth n. While
there exist fast inversion schemes that cost O(n3), alternating direction implicit (ADI)
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methods replace the single two-dimensional implicit step with two sub-steps where only one
direction is treated implicitly. This approach results in schemes with computational cost
O(n2). Likewise, ADI methods in R3 have computational cost O(n3). However, popular
ADI methods such as those by Peaceman-Rachford or Yanenko are low-order (see, e.g.,
[39, 40, 44]). In this dissertation, we combine the SDC methods for the solution of a system
of ODEs with an ADI method to generate computationally efficient, high-order schemes for
the solution of parabolic PDEs in R2 and R3.

We also construct high-order representations of the variable coefficient operator in (1.1).
Traditionally, pseudospectral schemes have been used for this purpose; however, some of
the eigenvalues of the resulting differentiation operator can be excessively large. An im-
provement on the traditional approach is to subdivide the entire spatial domain, construct
bases on each subdomain, and combine the obtained discretization with the implicit SDC
schemes. The resulting schemes are high-order and have CPU time requirements that are
linear in the number of spatial discretization nodes. In addition to solving (1.1), this ap-
proach is a foundation for solving nonlinear equations with diffusion components as well as
linear and nonlinear problems of wave propagation.

This dissertation is organized as follows. Section 2 summarizes various standard math-
ematical facts to be used in subsequent sections. Section 3 contains a description of the
SDC methods for a system of ODEs. In Section 4, we describe low-order solution methods
for parabolic PDEs and their extensions to higher dimensions. In Section 5, we discuss the
high-order discretization of the spatial variable in order to construct accurate representa-
tions of the second-order differentiation matrix. In Section 6, we describe the SDC methods
for parabolic PDEs and, in Section 7, illustrate the behavior of these methods with several
numerical examples.

2 Preliminaries

In this section, we introduce notation and summarize several well known facts which we use
in the dissertation.

2.1 Accuracy and Stability of ODE Solvers

We assume that the initial value problem to be solved is

ϕ′(t) = F (t, ϕ(t)), t ∈ [a, b]

ϕ(a) = ϕa
(2.1)

where ϕ(t) : R → Cn and F : R × Cn → Cn is sufficiently smooth (to permit high-order
methods).

Given a numerical solution to (2.1), ϕ̃(b), the numerical method is said to be of order k
if, for any sufficiently smooth F , there exists a constant M > 0, such that

‖ϕ̃(b)− ϕ(b)‖ < M(b− a)k+1. (2.2)

The scalar linear differential equation

ϕ′(t) = λϕ(t), t ≥ 0

ϕ(0) = 1,
(2.3)
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where λ ∈ C, has exact solution
ϕ(t) = eλt, (2.4)

so that for Re(λ) < 0
lim
t→∞

ϕ(t) = 0. (2.5)

Conceptually, a numerical method for the solution of (2.3) with Re(λ) < 0 should likewise
yield a solution that converges to zero. In this sense, the numerical method should exhibit
the same asymptotic behavior as the exact solution (see, e.g. [26, 39]).

Any numerical method for the solution of (2.3) produces a sequence of approximations
ϕ̃n to ϕ(nh) for n = 0, 1, . . . , which satisfy the recurrence relation

ϕ̃n+1 = g(hλ)ϕ̃n. (2.6)

Here, h either denotes the step size for multistep schemes or the interval size for, e.g., Runge-
Kutta schemes. Introducing the notation z = hλ, the stability region of the numerical
method is the set of all z ∈ C such that

lim
n→∞

ϕ̃n = 0. (2.7)

In other words, the stability region (together with its boundary) is defined to be

{z ∈ C : |g(z)| ≤ 1} (2.8)

where g(z) is known as the amplification factor. If a method is stable for all z in the left-half
plane (i.e., Re(z) ≤ 0), then it is said to be A-stable. A method is said to be A(α)-stable
if it is stable for all z such that

π − α ≤ arg(z) ≤ π + α. (2.9)

Thus, A-stability is A(α)-stability with α = π
2 . Finally, if a method is A-stable, it is said

to be L-stable if
lim

Re(z)→−∞
g(z) = 0. (2.10)

In cases when g(z) is not known analytically, the stability properties of the method can be
computed numerically. Specifically, the amplification factor g(z) can be evaluated as

g(z) = ϕ̃(h). (2.11)

See Section 3.5 for further details.
For a given ε, the accuracy region is defined as the set of all z ∈ C such that∣∣∣eλ − ϕ̃(h)

∣∣∣ < ε. (2.12)

Consider now the system of linear differential equations

ψ′(t) = Aψ(t), t ≥ 0

ψ(0) = 1,
(2.13)
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with
ψ(t) = {ψ1(t), . . . , ψd(t)}T , (2.14)

and
1 = {1, . . . , 1}T . (2.15)

We assume that A is a diagonalizable d × d-matrix with eigenvalues λ1, . . . , λd such that
Re(λj) ≤ 0 for all j = 1, . . . , d. Then, the exact solution of (2.13) is

ϕ(t) = eAt. (2.16)

Any numerical method for the solution of (2.13) produces a sequence of approximations ψ̃n
to ψ(nh) for n = 0, 1, . . . , which satisfy the recurrence relation

ψ̃n+1 = g(hA)ψ̃n. (2.17)

As in the scalar case, g(z) is the amplification factor and the definitions for A-stability,
A(α)-stability, and L-stability are identical. In particular, the numerical method is stable
if the spectral radius,

ρ(g(hA)) ≤ 1. (2.18)

2.2 Lagrange Interpolation

Given nodes t0, . . . , tm−1, the Lagrange basis polynomials

`j(t) =
m−1∏
i=0
i 6=j

(
t− ti
tj − ti

)
, j = 0, . . . ,m− 1 (2.19)

satisfy the property

`j(ti) = δij =

{
1 i = j

0 i 6= j.
(2.20)

Hence,

ψ(t) =
m−1∑
j=0

f(tj)`j(t) (2.21)

is the Lagrange interpolating polynomial for f(t), i.e., ψ(tj) = f(tj). If f is a polynomial
of degree m− 1, then ψ(t) = f(t).

Observation 1. For evaluation of (2.21), we compute `j(t) as

`j(t) =
wj
t− tj

φ(t) (2.22)

where

wj =
1∏m−1

i=0
i 6=j

(tj − ti)
(2.23)
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and

φ(t) =

m−1∏
i=0
i 6=j

(t− ti). (2.24)

Thus,

ψ(t) = φ(t)
m−1∑
j=0

wj
t− tj

f(tj), (2.25)

which is known as the modified form of Lagrange’s interpolation formula. The computation
of each wj costs O(m), so {wj} can be pre-computed and the total cost is O(m2) operations.
Once {wj} have been computed, the cost of evaluating ψ(t) at any point t is O(m). Since
m is O(1), the cost of evaluating the function f(t) is O(1).

2.3 Legendre Polynomials

In what follows, we will denote by Pj(x) the jth Legendre polynomial on the interval [−1, 1],
defined by the three-term recurrence

Pj+1(x) =
2j + 1

j + 1
xPj(x)− j

j + 1
Pj−1(x) (2.26)

with the initial conditions P0(x) = 1 and P1(x) = x (see, e.g., [1, 18]). Each Legendre
polynomial satisfies the differential equation

(1− x2)
d2Pj(x)

dx2
− 2x

dPj(x)

dx
+ j · (j + 1)Pj(x) = 0. (2.27)

The family of polynomials {Pj} is orthogonal on [−1, 1], that is,

ˆ 1

−1
Pi(x)Pj(x)dx =

2

2j + 1
δij . (2.28)

We denote by P̃j the normalized Legendre polynomials, that is,

P̃j(x) =

√
2j + 1

2
Pj(x). (2.29)

The following Lemma is well known. Its proof can be found in, e.g., [3].

Lemma 2. Pj(x) satisfies the following two relations:

(2j + 1)Pj(x) = P ′j+1(x)− P ′j−1(x) (2.30)

and
P ′j(x) = (2j − 1)Pj−1(x) + (2j − 5)Pj−3(x) + (2j − 9)Pj−5(x) + . . . (2.31)

for j ≥ 1.
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2.4 Gaussian Integration

The nodes and weights of Gaussian quadratures are chosen so that polynomials of degree
less than or equal to 2n− 1, {φ0, . . . , φ2n−1}, are integrated exactly, that is,

n−1∑
i=0

wiφj(ti) =

ˆ b

a
φj(t)dt (2.32)

for all j = 0, . . . , 2n − 1. Provided that the function f is well approximated by linear
combinations of such polynomials, the Gaussian quadrature formulae provide good approx-
imations to integrals of the form ˆ b

a
f(t)ω(t)dx, (2.33)

where ω(x) is an integrable non-negative function [8, 39].
The following are common choices of quadrature nodes t0, . . . , tn−1 for the integration

of functions defined on [a, b] = [−1, 1]. In all cases, ω(t) = 1, except for Chebyshev nodes

for which ω(t) = (1− t2)−
1
2 . See, e.g., [1, 6, 8, 39] for further details.

• Gauss-Legendre: ti is the ith zero of Pn(t), the nth-degree Legendre polynomial.

• Chebyshev: ti = cos(2i−1
2n π), which is the ith zero of Tn(t), the nth-degree Chebyshev

polynomial.

• Gauss-Lobatto: t0 = −1, tn−1 = 1, and ti is the ith zero of P ′n−1(t) for i = 2, . . . ,m−2.

• Left-hand Gauss-Radau: t0 = −1 and ti is the ith zero of

Pn−1(t) + Pn(t)

1 + t
. (2.34)

The right-hand Gauss-Radau quadratures are the negative of the left-hand Gauss-
Radau quadratures.

In this dissertation, we will also use what we call a right-hand variant of Gauss-Legendre
nodes,

ti = 2
yi + 1

yn−1 + 1
− 1 (2.35)

where yi is the ith zero of Pn(t). We refer to it as a right-hand variant of Gauss-Legendre
because xn−1 = 1.

Observation 3. In some cases, analytical expression for the weights wi exist. However, in
general, once the nodes t0, . . . , tn−1 are computed, the weights w0, . . . , wn−1 can be deter-
mined by solving the linear system of equations

n−1∑
i=0

wiφj(ti) =

ˆ 1

−1
φj(t)ω(t)dt

for i = 0, . . . , n− 1.
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3 Spectral Deferred Corrections

3.1 The Picard Integral Equation

Integrating the initial value problem in (2.1) with respect to t, yields the Picard integral
equation

ϕ(t) = ϕa +

ˆ t

a
F (τ, ϕ(τ))dτ. (3.1)

Suppose we have an approximate solution ϕ̃(t) to (2.1). A measure of the quality of the
approximation is given by the residual function

ε(t) = ϕa +

ˆ t

a
F (τ, ϕ̃(τ))dτ − ϕ̃(t). (3.2)

We define the error δ(t) by
δ(t) = ϕ(t)− ϕ̃(t). (3.3)

Substituting (3.3) back into (3.1), we obtain

ϕ̃(t) + δ(t) = ϕa +

ˆ t

a
F (τ, ϕ̃(τ) + δ(τ))dτ. (3.4)

Substituting (3.2) into (3.4) yields

δ(t) =

ˆ t

a
[F (τ, ϕ̃(τ) + δ(τ))− F (τ, ϕ̃(τ))] dτ + ε(t). (3.5)

By defining the function G : R× Cn → Cn to be

G(t, δ) = F (t, ϕ̃(t) + δ(t))− F (t, ϕ̃(t)), (3.6)

we can rewrite (3.5) as a Picard-type integral equation

δ(t)−
ˆ t

a
G(τ, δ(τ))dτ = ε(t). (3.7)

This is the key equation for Spectral Deferred Correction (SDC) methods as in, e.g. [10, 27].

3.2 Implicit Euler for the Picard Equation

Suppose that we have nodes a ≤ t0 < t1 < · · · < tm−1 ≤ b. Then, the implicit Euler scheme
for the solution of (2.1), or equivalently (3.1), is given by

ϕi+1 = ϕi + hi · F (ti+1, ϕi+1), hi = ti+1 − ti (3.8)

for i = 0, . . . ,m− 2.
Similarly, the implicit Euler scheme for the solution of (3.7) is given by

δi+1 = δi + hi ·G(ti+1, ϕi+1) + (ε(ti+1)− ε(ti)). (3.9)

Observation 4. Given an approximate solution ϕ̃(t) to (2.1), a key component of the
scheme in (3.9) is the evaluation of the integral in (3.2). This requires stable, high-order
methods for interpolation and integration.
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3.3 Spectral Integration

We would like to evaluate the integral
ˆ ti

a
f(τ)dτ (3.10)

for i = 0, . . . ,m − 1. A standard approach is to represent the function f by a truncated
series expansion and compute the integral by analytically integrating the series. The result
is a linear mapping between the vector of m function values {f(ti)}m−1

i=0 and the vector{´ ti
a f(τ)dτ

}m−1

i=0
. This approach is numerically stable provided that the quadrature nodes

are selected carefully, e.g., Gaussian-Legendre or Chebyshev nodes (see Section 2.4). In this
case, the matrix representation of the linear mapping is referred to as the spectral integration
matrix. Its singular values are between O(1), . . . ,O(1/m2). See, e.g., ([17, 19, 39]) for a
more detailed discussion on spectral integration matrices and their numerical properties.

The classical approach to the construction of the spectral integration matrix is to use
Lagrange interpolating polynomials defined in (2.21). Specifically, given nodes t0, . . . , tm−1

and a function f(t), the integral of the Lagrange interpolating polynomial,

ψ(t) =

m−1∑
j=0

f(tj)`j(t), (3.11)

is ˆ ti

a
ψ(τ)dτ =

m−1∑
j=0

f(tj)

ˆ ti

a
`j(τ)dτ. (3.12)

If we define

Sij =

ˆ ti

a
`j(τ)dτ, (3.13)

then ˆ ti

a
ψ(τ)dτ = Sf (3.14)

where f is a vector with elements fi = f(ti). The matrix S is referred to as the integration
matrix. If the nodes t0, . . . , tm−1 are Gauss-Legendre or Chebyshev nodes, then S is referred
to as the spectral integration matrix.

Observation 5. An alternative formulation useful for the computation of the spectral in-
tegration matrix in (3.13) expresses the function f(t) through Legendre polynomials instead
of Lagrange interpolating polynomials. Specifically, given {αj}m−1

j=0 so that

f(t) =

m−1∑
j=0

αjPj(t), (3.15)

we would like to compute {βj}mj=0 so that

ˆ t

−1
f(τ)dτ =

m∑
j=0

βjPj(t). (3.16)
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Denoting
f = {f(t0), . . . , f(tm−1)}T

α = {α0, . . . , αm−1}T ,
(3.17)

we have
f = V α (3.18)

where
Vij = Pj(ti). (3.19)

To compute the indefinite integral, we have
ˆ t

−1
f(τ)dτ =

m−1∑
j=0

αj

ˆ t

−1
Pj(τ)dτ. (3.20)

Using (2.30), we obtain

m−1∑
j=0

αj

ˆ t

−1
Pj(τ)dτ = α0 (P0(t) + P1(t)) +

m−1∑
j=1

αj
2j + 1

(Pj+1(t)− Pj−1(t)) . (3.21)

Hence, we arrive at

βj =


α0 − 1

3α1 j = 0
αj−1

2j−1 −
αj+1

2j+3 0 < j < m− 1
αm−2

2m−3 j = m− 1
αm−1

2m−1 j = m.

(3.22)

We denote by A, the (m+ 1)×m-matrix such that

Aα = β, (3.23)

where
β = {β0, . . . , βm}T . (3.24)

Finally, we denote by Ṽ the m× (m+ 1)-matrix such that

Ṽij = Pj(ti). (3.25)

Then, it is straightforward to see that the spectral integration matrix, S, is given by

S = Ṽ AV −1. (3.26)

Given any approximate solution ϕ̃(t), the residual function is

ε(t) = ϕa +

ˆ t

a
F (τ, ϕ̃(τ))dτ − ϕ̃(t). (3.27)

Denoting
ϕ = {ϕ̃(t0), . . . , ϕ̃(tm−1)}T

ϕa = {ϕa, . . . , ϕa}T

F (ϕ̃) = {F (t, ϕ̃(t0)), . . . , F (tm−1, ϕ̃(tm−1))}T ,

(3.28)

we approximate the residual function by the vector

σ(ϕ̃) = ϕa + SF (ϕ̃)− ϕ (3.29)

where S is the spectral integration matrix.
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3.4 Spectral Deferred Corrections Algorithm

Spectral Deferred Correction methods for the solution of (2.1) proceed as follows. First, an
approximate solution ϕ0(t) with error δ(t) = ϕ(t)−ϕ0(t) is computed at quadrature nodes
a ≤ t0 < t1 < · · · < tm−1 ≤ b via some numerical method - generally, low order. Then,
an approximation for the error δ(t) is computed at the quadrature nodes and the updated
solution becomes ϕ1(t) = ϕ0(t) + δ(t). This procedure is repeated L times to provide a
more accurate approximation ϕL(t).

More explicitly, given some choice of quadrature nodes, Algorithm 1 is the implicit SDC
algorithm from [10].

Algorithm 1 Implicit Spectral Deferred Corrections

Compute an initial approximate solution, ϕ0(tj), for j = 0, . . . ,m− 1 via the implicit Euler
method (3.8).

For l = 1, . . . , L

1. Compute the residual function ε(tj) in (3.2) via spectral integration (see Section 3.3),

2. Compute δ(tj) via the implicit Euler scheme (3.9),

3. Update the approximate solution ϕl(tj) = ϕl−1(tj) + δ(tj).

Set the resulting solution as ϕ(tj) = ϕL(tj).

Given the value of the solution ϕ(t) at t0, . . . , tm−1, we can evaluate the solution every-
where on the interval [a, b] via Lagrange interpolation (see Section 2.2).

Observation 6. Many choices of t0, . . . , tm−1 do not include the right endpoint. If (2.1)
is not stiff, then ϕ(b) can be computed via Gaussian integration (see Section 2.4) as

ϕ(b) = ϕa +

ˆ b

a
F (τ, ϕ(τ))dτ = ϕa +

m−1∑
i=0

wiF (ti, ϕ(ti)). (3.30)

For stiff systems, this approach is numerically unstable. Instead, the solution can be com-
puted at t = b via Lagrange interpolation. Nevertheless, it is for this reason that quadrature
schemes that include the right end point (i.e., tm−1 = b) are preferred (e.g. right-hand
Gauss-Radau or right-hand Gauss-Legendre).

See, e.g., [4, 10] for the proof of the following theorem.

Theorem 7. For any sufficiently smooth function F , the approximate solution computed
via SDC converges to the exact solution with order min(m,L+ 1).

Observation 8. Replacing the implicit Euler method with the higher-order trapezoidal
method reduces the required number of corrections, but results in a scheme that is not L-
stable. Moreover, such an approach requires careful implementation. For example, using
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Gauss-Legendre nodes and extrapolating the solution to t = b via Lagrange interpolation can
result in a scheme whose stability properties are like that of an explicit method. We avoid
such concerns by using the implicit Euler method to drive the SDC algorithm.

3.5 Stability and Accuracy Regions of Spectral Deferred Corrections

In [10], Spectral Deferred Corrections using Gauss-Legendre quadratures nodes are intro-
duced. However, the choice of the nodes strongly influences the stability and accuracy
regions of the resulting schemes. In this section, we compare the stability and accuracy
properties of SDC methods with four classes of nodes: Gauss-Legendre, Chebyshev, Gauss-
Lobatto, and what we call a right-hand variant of Gauss-Legendre (see Section 2.4).

In Section 2.1, we introduce the concepts of stability and accuracy regions of numerical
methods for the solution of ODEs. For clarity, we restate several facts here. To compare the
stability and accuracy properties of the SDC methods, we apply them to the scalar linear
differential equation

ϕ′(t) = λϕ(t), t ≥ 0

ϕ(0) = 1,
(3.31)

where λ ∈ C, has exact solution
ϕ(t) = eλt. (3.32)

Traditionally, for a fixed time step h, the stability of the numerical method is formulated
in terms of the so-called amplification factor g(hλ) in (2.6). The stability region (together
with its boundary) is defined to be

{z ∈ C : |g(z)| ≤ 1}. (3.33)

where z = hλ. If a method is stable for all z such that Re(z) ≤ 0, then it is said to be
A-stable. If the method is A-stable, it is said to be L-stable if

lim
Re(z)→−∞

g(z) = 0. (3.34)

Finally, for a given ε, the accuracy region is defined as the set of all z ∈ C such that∣∣∣eλ − ϕ̃(h)
∣∣∣ < ε, (3.35)

where ϕ̃(h) is the approximate solution at t = h computed via some numerical method.
Since the stability function of SDC methods is not known analytically, the stability region
of the methods are computed numerically via Algorithm 2. A simple modification of the
algorithm is used to compute the accuracy region.

If we fix h = 1, then a simple calculation shows that for a given λ, ϕ̃(1) = g(λ) = g(z).
Therefore, to compute the boundary of the stability region, we find λ such that ϕ̃(1) = 1.
To start, we use the fact that for z = 0, g(z) = 1 for SDC methods. The algorithm then
proceeds to take small steps and, after each step, searches in the direction perpendicular to
that step to find λ such that ϕ̃(1) = 1.
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Algorithm 2 Stability Region Boundary Search

Initialization:

1. Starting from λ0 = 0, take a small step along the positive imaginary axis and denote
this point λ̃1,

2. For λ = λ̃1, determine if ϕ̃(1) > 1 or ϕ(1) < 1,

3. If ϕ̃(1) > 1, search parallel to the real axis in the negative direction to find λ such
that ϕ̃(1) = 1. If ϕ̃(1) < 1, search parallel to the real axis in the positive direction to
find λ such that ϕ̃(1) = 1. Denote this by λ1.

For j = 1, 2, . . .

1. Starting from λj , take a small step in the same direction as the vector connecting

λj−1 to λj and denote this point λ̃j . Denote the vector by vj = {xj , yj}T ,

2. For λ = λ̃j , determine if ϕ̃(1) > 1 or ϕ(1) < 1,

3. If ϕ̃(1) > 1, search in the direction {−yj , xj}T to find λ such that ϕ̃(1) = 1. If
ϕ̃(1) < 1, search in the direction {yj ,−xj}T to find λ such that ϕ̃(1) = 1. Denote this
by λj .

Continue the iteration until λ returns to the origin.

In this section, we compare SDC methods of order 4, 6, 8, 10, and 12. In each case,
the number of nodes m equals to the order of the SDC method and the number of deferred
corrections L equals to m − 1. Similar analysis for other choices of nodes can be found in
[29]. For a given order, we compare the stability region, the amplification factor g(z) as
Re(z)→ −∞, and the accuracy region for different discretization nodes. Unless otherwise
stated, in the plots of the stability region in Figures 3.1, 3.4, 3.7, 3.10, and 3.13, the lines
indicate where g(z) = 1 with g(z) < 1 outside of the lines. In the plots of the amplification
factor g(z) for real z in Figures 3.2, 3.5, 3.8, 3.11, and 3.14, x = − log10(−z). Thus, the
x-axis in these plots, which has range x ∈ [−8, 5], corresponds to z ∈ [−108,−10−5]. Finally,
in the plots of the accuracy region in Figures 3.3, 3.6, 3.9, 3.12, and 3.15, the lines indicate
where ε = 10−5.

In Figures 3.1, 3.2, and 3.3 we compare the stability and accuracy properties of SDC
methods of order 4 for different sets of discretization nodes. Figure 3.1 is a plot of the
stability regions, Figure 3.2 is a plot of the amplification factors g(z) as Re(z)→ −∞, and
Figure 3.3 is a plot of the accuracy regions. In this case, the fourth order SDC method with
Gauss-Legendre nodes is A-stable, while the rest are A(α)-stable with α slightly less than
π
2 . For all choices of discretization nodes, g(z) < 1 as Re(z) → −∞. However, clearly the
SDC method with Gauss-Lobatto nodes has a much larger amplification factor in the limit
than the other choices of nodes.
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Figure 3.1: Comparison of the stability regions for fourth order SDC methods with different
sets of discretization nodes. The lines indicate where the amplification factor g(z) = 1 with
g(z) < 1 outside of the lines. The bottom figure is a plot of the stability regions zoomed in
on the origin.
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Figure 3.2: Comparison of the amplification factor g(z) as Re(z) → −∞ for fourth order
SDC methods with different sets of discretization nodes. In the x-axis of the plot, x =
− log10(−z).
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Figure 3.3: Comparison of the accuracy regions with ε = 10−5 for fourth order SDC methods
with different sets of discretization nodes.

In Figures 3.4, 3.5, and 3.6 we compare the stability and accuracy properties of SDC
methods of order 6 for different sets of discretization nodes. Figure 3.4 is a plot of the
stability regions, Figure 3.5 is a plot of the amplification factors g(z) as Re(z) → −∞,
and Figure 3.6 is a plot of the accuracy regions. In this case, none of the sixth order SDC
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methods are A-stable, but they all are A(α)-stable with α slightly less than π
2 . For all

choices of discretization nodes, g(z) < 1 as Re(z)→ −∞. However, as in the fourth order
case, clearly the SDC method with Gauss-Lobatto nodes has a much larger amplification
factor in the limit than the other choices of nodes.
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Figure 3.4: Comparison of the stability regions for sixth order SDC methods with different
sets of discretization nodes. The lines indicate where the amplification factor g(z) = 1 with
g(z) < 1 outside of the lines. The bottom figure is a plot of the stability regions zoomed in
on the origin.
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Figure 3.5: Comparison of the amplification factor g(z) as Re(z) → −∞ for sixth order
SDC methods with different sets of discretization nodes. In the x-axis of the plot, x =
− log10(−z).
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Figure 3.6: Comparison of the accuracy regions with ε = 10−5 for sixth order SDC methods
with different sets of discretization nodes.

In Figures 3.7, 3.8, and 3.9 we compare the stability and accuracy properties of SDC
methods of order 8 for different sets of discretization nodes. Figure 3.7 is a plot of the
stability regions, Figure 3.8 is a plot of the amplification factors g(z) as Re(z)→ −∞, and
Figure 3.9 is a plot of the accuracy regions. In this case, none of the eighth order SDC
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methods are A-stable, but they all are A(α)-stable with α slightly less than π
2 . For all

choices of discretization nodes, g(z) < 1 as Re(z) → −∞. However, as in the fourth and
sixth order cases, clearly the SDC method with Gauss-Lobatto nodes has a much larger
amplification factor in the limit than the other choices of nodes.
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Figure 3.7: Comparison of the stability regions for eighth order SDC methods with different
sets of discretization nodes. The lines indicate where the amplification factor g(z) = 1 with
g(z) < 1 outside of the lines. The bottom figure is a plot of the stability regions zoomed in
on the origin.
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Figure 3.8: Comparison of the amplification factor g(z) as Re(z) → −∞ for eighth order
SDC methods with different sets of discretization nodes. In the x-axis of the plot, x =
− log10(−z).
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Figure 3.9: Comparison of the accuracy regions with ε = 10−5 for eighth order SDC methods
with different sets of discretization nodes.

In Figures 3.10, 3.11, and 3.12 we compare the stability and accuracy properties of SDC
methods of order 10 for different sets of discretization nodes. Figure 3.10 is a plot of the
stability regions, Figure 3.11 is a plot of the amplification factors g(z) as Re(z)→ −∞, and
Figure 3.12 is a plot of the accuracy regions. In the plot of the stability regions in Figure
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3.10, the lines indicate where g(z) = 1 with g(z) < 1 outside of the lines except for the SDC
method with Gauss-Lobatto nodes where the line indicated where g(z) = 1 with g(z) < 1
inside of the line. In this case, none of the tenth order SDC methods are A-stable, but,
with the exception of the SDC method with Gauss-Lobatto nodes, they all are A(α)-stable
with α slightly less than π

2 . Despite the implicit construction for the SDC scheme with
Gauss-Lobatto nodes, the stability region is like that of an explicit method. For all choices
of discretization nodes except Gauss-Lobatto, g(z) < 1 as Re(z)→ −∞.
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Figure 3.10: Comparison of the stability regions for tenth order SDC methods with different
sets of discretization nodes. The lines indicate where the amplification factor g(z) = 1 with
g(z) < 1 outside of the lines except for Gauss-Lobatto nodes for which g(z) < 1 inside of
the line. The bottom figure is a plot of the stability regions zoomed in on the origin.
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Figure 3.11: Comparison of the amplification factor g(z) as Re(z) → −∞ for tenth order
SDC methods with different sets of discretization nodes. In the x-axis of the plot, x =
− log10(−z).
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Figure 3.12: Comparison of the accuracy regions with ε = 10−5 for tenth order SDC methods
with different sets of discretization nodes.

In Figures 3.13, 3.14, and 3.15 we compare the stability and accuracy properties of SDC
methods of order 12 for different sets of discretization nodes. Figure 3.13 is a plot of the
stability regions, Figure 3.14 is a plot of the amplification factors g(z) as Re(z)→ −∞, and
Figure 3.15 is a plot of the accuracy regions. In the plot of the stability regions in Figure
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3.13, the lines indicate where g(z) = 1 with g(z) < 1 outside of the lines except for the SDC
method with Gauss-Lobatto nodes where the line indicated where g(z) = 1 with g(z) < 1
inside of the line. In this case, none of the twelfth order SDC methods are A-stable, but,
with the exception of the SDC method with Gauss-Lobatto nodes, they all are A(α)-stable
with α slightly less than π

2 . Despite the implicit construction for the SDC scheme with
Gauss-Lobatto nodes, the stability region is like that of an explicit method. For all choices
of discretization nodes except Gauss-Lobatto, g(z) < 1 as Re(z)→ −∞.
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Figure 3.13: Comparison of the stability regions for twelfth order SDC methods with differ-
ent sets of discretization nodes. The lines indicate where the amplification factor g(z) = 1
with g(z) < 1 outside of the lines except for Gauss-Lobatto nodes for which g(z) < 1 inside
of the line. The bottom figure is a plot of the stability regions zoomed in on the origin.
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Figure 3.14: Comparison of the amplification factor g(z) as Re(z) → −∞ for twelfth
order SDC methods with different sets of discretization nodes. In the x-axis of the plot,
x = − log10(−z).
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Figure 3.15: Comparison of the accuracy regions with ε = 10−5 for twelfth order SDC
methods with different sets of discretization nodes.

It is clear from the stability regions in Figures 3.10 and 3.13 that the choice of Gauss-
Lobatto nodes for high-order schemes is not a practical option. Between the other choices
of nodes, the differences in the stability and accuracy regions are fairly small. However,
the SDC scheme with the right-hand variant of Gauss-Legendre nodes consistently had
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(slightly) larger accuracy regions with essentially equivalent stability properties. For this
reason, in our implementation of SDC methods for evolving parabolic differential equations
in time, we use the right-hand variant of Gauss-Legendre nodes.

4 Parabolic PDE Solvers

In order to develop an SDC algorithm for parabolic PDEs, we need a low-order numerical
solver to drive the PDE version of the SDC method. This scheme serves the same role
as that the implicit Euler method in (3.8) and (3.9) does for the implicit SDC algorithm
for the solution of ODEs. In many situations, the scheme should retain the L-stability
property provided by the implicit Euler method for ODEs. In this section, we discuss the
implicit Euler method for parabolic PDEs in one spatial variable and its extension to higher
dimensions, known as the Alternating Direction Implicit (ADI) method. Using ADI helps
control the computational cost of the numerical solver. As a general reference, we point to,
e.g., [32, 40, 44] for a more detailed discussion of numerical techniques for the solution of
PDEs.

4.1 Implicit Euler Methods for Parabolic PDEs

Consider the parabolic PDE in one dimension

∂φ

∂t
=

∂

∂x

(
α(x)

∂φ

∂x

)
, (4.1)

where α is the diffusion coefficient. Discretizing (4.1) using spatial nodes x0, . . . , xn−1 yields
a system of ODEs

∂ϕ

∂t
= D̃x (ADx)ϕ, (4.2)

where
ϕ = ϕ(t) = {φ(x0, t), . . . , φ(xn−1, t)}T . (4.3)

Matrices Dx and D̃x are discrete approximations of the derivative operator and A is the
operator of point-wise multiplication of the function α(x) defined via the formula

A(ϕ)(xj) = α(xj)ϕ(xj). (4.4)

Observation 9. Our construction of Dx and D̃x results in a matrix D̃xADx that is sym-
metric. While the matrices Dx and D̃x both approximate the derivative operator, in our
construction they are not necessarily the same. In particular, the matrix Dx enforces the
relevant boundary conditions, while the matrix D̃x does not. For details, see Sections 5.2
and 5.3.

Given nodes t0 < · · · < tm−1, the implicit Euler method for the solution of (4.2) is

ϕ(i+1) = ϕ(i) + hiD̃xADxϕ
(i+1), hi = ti+1 − ti (4.5)

or
ϕ(i+1) = (I − hiD̃xADx)−1ϕ(i). (4.6)

The following Lemma is an immediate consequence of the definition of stability in (2.18)
and L-stability in (2.10).
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Lemma 10. The implicit Euler method is stable provided

ρ
(

(I − hiD̃xADx)−1
)
≤ 1 (4.7)

where ρ (·) denotes the spectral radius of a matrix. Hence, it is stable if D̃xADx is negative
semi-definite. Finally, the implicit Euler method is also L-stable.

Observation 11. For most practical implementations of the implicit Euler method for
parabolic PDEs, the matrix D̃xADx is banded or block banded. As as result, it is possible to
efficiently solve linear systems with the matrix I−hiD̃xADx. In this case, the computational
cost of solving such linear systems is O(n). For parabolic PDEs in R2, the discretized spatial
grid is n×n and, therefore, the matrix representation of the Laplacian is n2×n2 - see Figure
4.1. In this case, there exist fast inversion schemes that cost O(n3) (see, e.g., [9, 15, 25]).
However, we instead use an alternating direction implicit scheme (see, e.g., [39, 40]), which
is much simpler to implement and more computationally efficient. Using an alternating
direction implicit scheme is even more advantageous in R3.
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Figure 4.1: Matrix representation of the Laplacian in R2.

4.2 Alternating Direction Implicit Methods for
Parabolic PDEs

Consider the parabolic PDE in two dimensions

∂φ

∂t
= ∇ · (α(x, y)∇φ) . (4.8)

Discretizing (4.8) using spatial nodes x0, . . . , xn−1 and y0, . . . , yn−1 yields a system of ODEs

∂ϕ

∂t
=
(
D̃x (ADx) + D̃y (ADy)

)
ϕ, (4.9)

25



where
ϕ = ϕ(t) = φ(xjx , yjy , t) (4.10)

for all jx = 0, . . . , n − 1 and jy = 0, . . . , n − 1. The n2 × n2-matrices D̃xADx and D̃yADy

are discrete approximations of the second-order differentiation operator with variable coef-
ficients. For details, see Sections 4.1, 5.2 and 5.3. In (4.9), A is the operator of point-wise
multiplication of the function α(x, y) defined via the formula

A(ϕ)(xjx , yjy) = α(xjx , yjy)ϕ(xjx , yjy). (4.11)

Conceptually, ADI schemes in R2 replace the single two-dimensional implicit step with
two sub-steps where only one direction is treated implicitly. This approach replaces a single
n2×n2 system with n systems of size n×n on each sub-step. Since each system can be solved
with computational cost O(n) (see Observation 11), the total computational cost of ADI
schemes in R2 are O(n2), with a small constant. Likewise, in R3, the total computational
cost is O(n3).

Given nodes t0, . . . , tm−1, a popular ADI method is the so-called Peaceman-Rachford
ADI method (see, e.g., [39, 40, 44]),

ϕ(i+ 1
2

) = ϕ(i) +
hi
2
D̃xADxϕ

(i+ 1
2

) +
hi
2
D̃yADyϕ

(i)

ϕ(i+1) = ϕ(i+ 1
2

) +
hi
2
D̃xADxϕ

(i+ 1
2

) +
hi
2
D̃yADyϕ

(i+1).

(4.12)

We rewrite (4.12) in the form
ϕ(i+1) = Lϕ(i), (4.13)

where

L =(I − hi
2
D̃xADx)−1(I +

hi
2
D̃xADx)◦

(I − hi
2
D̃yADy)

−1(I +
hi
2
D̃yADy).

(4.14)

The following Lemma is an immediate consequence of the definition of stability in (2.18)
and L-stability in (2.10). See, e.g., [39, 40, 44] for further details.

Lemma 12. The Peaceman-Rachford ADI method is stable provided

ρ(L) ≤ 1. (4.15)

Hence, it is stable if is stable if both D̃xADx and D̃yADy are negative semi-definite.

While the n2 × n2-matrices I − hi
2 D̃xADx and I − hi

2 D̃yADy are sparse, their inverses
are not. However, the computational cost of solving linear systems with these matrices is
O(n2) - see Observation 11.

While the straightforward analogue of the Peaceman-Rachford ADI method in R3 is not
guaranteed to be stable even if D̃xADx, D̃yADy, and D̃zADz are negative semi-definite,
stable versions in R3 have been constructed by Douglas, Rachford, Gunn and others (see,
e.g., [40, 44] and references therein).
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Observation 13. Using (4.14) and the definition of L-stability in (2.10), it is clear that
the Peaceman-Rachford ADI method is not L-stable, that is

lim
Re(z)→−∞

g(z) 6= 0, (4.16)

where g(z) is the amplification factor. While, strictly speaking, L-stability is not necessary
for the solution of parabolic PDEs, strong suppression of the amplification factor at infinity
is, that is

lim
Re(z)→−∞

g(z)� 1. (4.17)

Therefore, the Peaceman-Rachford ADI methods is not an appropriate choice to drive the
SDC schemes for the solution of parabolic PDEs.

However, there exists a class of ADI methods for the solution of (4.8) based on the
implicit Euler method that are L-stable (see, e.g., [44]). While these methods exhibit
convergence of order one in contrast to the Peaceman-Rachford ADI methods which exhibit
convergence of order two, we accelerate the convergence by using them to drive the SDC
schemes.

The implicit Euler-based ADI method for the solution of (4.8) is

ϕ∗ = ϕ(i) + hiD̃xADxϕ
∗

ϕ(i+1) = ϕ∗ + hiD̃yADyϕ
(i+1).

(4.18)

Its generalization to R3 is

ϕ∗ = ϕ(i) + hiD̃xADxϕ
∗

ϕ∗∗ = ϕ∗ + hiD̃yADyϕ
∗∗

ϕ(i+1) = ϕ∗∗ + hiD̃zADzϕ
(i+1).

(4.19)

Since we have

ϕ(i+1) = (I − hiD̃yADy)
−1(I − hiD̃xADx)−1ϕ(i) (4.20)

in R2, the method is stable provided

ρ
(

(I − hiD̃yADy)
−1(I − hiD̃xADx)−1

)
≤ 1. (4.21)

The stability analysis in R3 is identical.
As a direct consequence of the definition of stability in (2.18) and L-stability in (2.10),

we have the following Lemma. See, e.g., [44] for further details.

Lemma 14. The implicit Euler-based ADI method is stable if both D̃xADx and D̃yADy

are negative semi-definite. The implicit Euler-based ADI method is also L-stable.

As a result, this method is an appropriate choice to drive the SDC schemes for the
solution of parabolic PDEs.
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5 High-Order Differentiation Matrices

In order to develop high order methods for solving PDEs, it is necessary to develop an ac-
curate discrete approximation to the second-derivative operator with variable coefficients,
D̃xADx. In constructing D̃xADx, we would like to obtain a symmetric, negative definite
matrix for symmetric, negative-definite problems coming from linear, second-order PDEs.
Furthermore, such matrix should permit fast algorithms for solving associated linear sys-
tems.

To construct the discrete approximation to the derivative operator, we first represent
a function f by a truncated series expansion (e.g. Fourier or Legendre) and compute the
derivative by analytically differentiating the series. The result is a linear mapping between
the vector of m function values {f(xi)}n−1

i=0 to the vector {f ′(xi)}n−1
i=0 . Such approach is

numerically stable provided that the quadrature nodes are selected carefully. For example,
if f(x) is periodic, we use equally-spaced nodes. If f(x) = 0 on the boundary of the domain
(homogenous Dirichlet boundary conditions), then we use Gauss-Legendre or, alternatively,
Chebyshev nodes. In this case, the matrix representation of the linear mapping between
function values and values of the derivative is referred to as the spectral differentiation
matrix.

For details on the construction of differentiation matrices for periodic boundary condi-
tions, see, e.g., [23, 33]. For details on the construction of high-order differentiation matrices
for homogeneous Dirichlet boundary conditions, see, e.g., [2, 16, 38, 41, 43]. We summarize
the main details here.

5.1 Periodic Boundary Conditions

In order to describe discrete approximations of the derivative operator for a periodic func-
tion, we first introduce the Discrete Fourier Transform (DFT). The DFT is a transformation
F : Cn → Cn defined by

f̂` =
1

n

n−1∑
j=0

fje
−2πi`j/n, ` = 0, . . . , n− 1. (5.1)

The inverse DFT is given by the formula

fj =
n−1∑
k=0

f̂`e
2πi`j/n, j = 0, . . . , n− 1 (5.2)

(see, e.g., [23, 33]). The n complex numbers {f̂`} are referred to as the Fourier coefficients
of the function values {fj}. In many applications, such as those of this dissertation, it is
convenient to view {fj} as n equally-spaced samples of a continuous, periodic real function
f with a single period defined on [0, 1].

Observation 15. The DFT and its inverse can also be described by the closely related
formulae

f̂` =
1

n

n−1∑
j=0

fje
−2πi`j/n, ` = −n− 1

2
, . . . ,

n− 1

2
(5.3)

28



fj =

n−1
2∑

`=−n−1
2

f̂`e
2πi`j/n, j = 0, . . . , n− 1. (5.4)

While the forms (5.1) and (5.2) are the standard representation for the DFT, the forms
(5.3) and (5.4) are usually preferred in applications of DFT to analysis (see, e.g., [11]). If
xj = j

n , j = 0, . . . , n− 1 are the equally-spaced samples on [0, 1], then (5.4) can be restated
as

f(xj) =

n−1
2∑

`=−n−1
2

f̂`e
2πi`tj , j = 0, . . . , n− 1. (5.5)

The corresponding trigonometric polynomial for the evaluation of f(x) anywhere on [0, 1]
is, therefore,

f(x) =

n−1
2∑

`=−n−1
2

f̂`e
2πi`x. (5.6)

Obviously, straightforward computation of the DFT or its inverse costs O(n2) opera-
tions. Algorithms that perform such computations in O(n log n) are known as Fast Fourier
Transforms (FFT) (see, e.g., [23, 33]).

Given a function f(x) defined as

f(x) =

n−1
2∑

`=−n−1
2

f̂`e
2πi`x, (5.7)

the derivative is computed as

f ′(x) =

n−1
2∑

`=−n−1
2

2πi`f̂`e
2πi`x. (5.8)

Therefore, given a periodic function f(x), with a single period defined on [0, 1], we compute
its derivative by first computing its Fourier coefficients f̂` via the FFT, multiplying the
Fourier coefficients by a factor 2πi`, and then applying the inverse FFT to obtain f ′(x).

5.2 Dirichlet Boundary Conditions: Spectral Derivative on a Single In-
terval

In Section 3.3, we used Legendre polynomials for the purpose of constructing the spectral
integration matrix. We will now use the normalized Legendre polynomials {P̃j} in (2.29)
to construct the spectral differentiation matrix. Since the family of polynomials {P̃j} is
orthonormal, given

f(x) =
k−1∑
j=0

αjP̃j(x), (5.9)
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we have

αj =

ˆ 1

−1
f(x)P̃j(x)dx. (5.10)

Lemma 16. Suppose that f(x) : [−1, 1]→ R is given by the expansion in (5.9) and f ′(x) :
[−1, 1]→ R is defined as

f ′(x) =

k−1∑
j=0

βjP̃j(x). (5.11)

Then
β = Bα (5.12)

where
α = {α0, . . . , αk−1}T , (5.13)

β = {β0, . . . , βk−1}T , (5.14)

B is the k × k-matrix such that

Bij = P̃j(1)P̃i(1)− P̃j(−1)P̃i(−1)−Kij , (5.15)

and K is the k × k-matrix such that

Kij =

ˆ 1

−1
P̃j(x)P̃ ′i (x)dx. (5.16)

Proof. We have

βi =

ˆ 1

−1
f ′(x)P̃i(x)dx. (5.17)

After integrating by parts, we obtain

βi = f(1)P̃i(1)− f(−1)P̃i(−1)−
ˆ 1

−1
f(x)P̃ ′i (x)dx

= f(1)P̃i(1)− f(−1)P̃i(−1)−
k−1∑
j=0

αj

ˆ 1

−1
P̃j(x)P̃ ′i (x)dx.

(5.18)

Substituting in

f(1) =

k−1∑
j=0

αjP̃j(1) (5.19)

and

f(−1) =

k−1∑
j=0

αjP̃j(−1), (5.20)

the result follows.

Using (2.28), (2.29), and (2.31), a simple calculation shows that

Kij =
√

2j + 1
√

2i+ 1 (5.21)

for j = i− 1, i− 3, i− 5, . . . .

30



Observation 17. Given quadrature nodes x0, . . . , xk−1, quadrature weights w0, . . . , wk−1,
and denoting

f =
{√

w0f(x0), . . . ,
√
wk−1f(xk−1)

}T
, (5.22)

α = {α0, . . . , αk−1}T , (5.23)

we have
f = V α (5.24)

where
Vij =

√
wiP̃j(xi). (5.25)

It is straightforward to see that the spectral differentiation matrix, D, is given by

D = V BV −1. (5.26)

That is,
g = Df (5.27)

where
g =

{√
w0f

′(x0), . . . ,
√
wk−1f

′(xk−1)
}T

. (5.28)

If x0, . . . , xk−1 are Gauss-Legendre nodes and w0, . . . , wk−1 the corresponding weights,
then it is clear from (5.9) that

√
wif(xi) =

√
wi

k−1∑
j=0

αjP̃j(xi). (5.29)

Likewise, it follows from the discretization of the integral in (5.10) that

αj =

k−1∑
i=0

√
wiP̃j(xi)

√
wif(xi). (5.30)

If we denote by U the matrix with elements

Uji =
√
wiP̃j(xi), (5.31)

then (5.29) and (5.30) imply that U = V −1. A simple calculation shows that V is orthogonal,
i.e., U = V T .

The second-order differentiation matrix

D2 = V B2U (5.32)

obtained from (5.26) maps the values of the function f(x) at x0, . . . , xk−1 to its second
derivative f ′′(x) at the same quadrature nodes. In order to enforce homogeneous Dirichlet
boundary conditions within numerical PDE solvers, we first construct an augmented second-
order differentiation matrix by adding quadrature nodes at x = −1 and x = 1, i.e., we use
Gauss-Lobatto nodes (x0, . . . , xk−1 are therefore the interior Gauss-Lobatto nodes). We
denote by D̃2 a particular instance of the second-order differentiation matrix D2 computed
at the Gauss-Lobatto nodes. Since f(−1) = f(1) = 0, we denote by D2

0 the second-order
differentiation matrix obtained by removing the first and last columns and rows of D̃2. Such
construction of D2

0 results in a second-order differentiation matrix that is symmetric and
negative definite (see, e.g., [16, 43]).
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Observation 18. It is well known that differentiation is not a numerically robust procedure.
Indeed, the maximum eigenvalue of the spectral differentiation matrix D is of the order
O(k2). This implies that the maximum eigenvalue of D2 and, similarly, D2

0 is of the order
O(k4). This presents a significant problem in computation as it limits the number of nodes
that can be used in the spatial discretization. See, e.g., [16, 41, 42, 43], for more details on
the spectral properties of spectral differentiation matrices.

5.3 Dirichlet Boundary Conditions: Composite Spectral Derivative

Since the spectral differentiation matrix in D has a maximum eigenvalue of order O(k2)
(see Observation 18 above), in practical computations we are limited in the number of
nodes, k. An alternative approach is to fix k and instead subdivide the interval. Then, we
represent the function f by a truncated series expansion on each subinterval and compute
the derivative by analytically differentiating the series. It turns out that such an approach
yields a discrete approximation to the second-derivative operator with variable coefficients,
D̃xADx, that is block five diagonal (or block tridiagonal in certain implementations), sym-
metric, and negative definite, which permits us to efficiently solve linear systems with the
matrix I − hiD̃xADx (see, e.g., [2, 38]).

Specifically, let [−1, 1] be subdivided into 2n intervals of equal size. For clarity, we
assume that the number of points per subinterval k is constant. We define f(x) : [−1, 1]→ R
to be

f(x) =
2n−1∑
m=0

k−1∑
j=0

αjmP̃jm(x) (5.33)

where

P̃jm = 2
n
2

√
2j + 1

2
Pj(2

n(x− xm)− 1) (5.34)

and
xm = 21−nm− 1 (5.35)

for j = 0, . . . , k − 1 and m = 0, . . . , 2n − 1, which has support on the interval [xm, xm+1].
The functions P̃jm(x) have disjoint support for different choices of m. A simple calculation
demonstrates that for a fixed m, the functions {P̃jm(x)} are orthonormal for all j. This is
summarized in the following Lemma.

Lemma 19. The family of polynomials {P̃jm(x)} is orthonormal on the interval [−1, 1].
Hence, given f(x) as defined in (5.33),

αjm =

ˆ xm+1

xm

P̃jm(x)f(x)dx. (5.36)

Observation 20. Suppose that x0, . . . xk−1 are Gauss-Legendre nodes, w0, . . . , wk−1 the
corresponding weights, and we denote

xil = xl + 21−n(
xi + 1

2
) (5.37)
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for all i = 0, . . . , k − 1 and l = 0, . . . , 2n − 1. Then, due to (5.33),

√
wif(xil) =

√
wi

2n−1∑
m=0

k−1∑
j=0

αjmP̃jm(xil). (5.38)

Likewise, discretizing (5.36) yields

αjm =
1

2n

k−1∑
i=0

√
wiP̃jm(xil)

√
wif(xil) (5.39)

for all j = 0, . . . , k − 1 and m = 0, . . . , 2n − 1.
Introducing the notation

f i+k·l =
√
wif(xil) (5.40)

and
αj+k·m = αjm (5.41)

where k is the number of points per subinterval, we observe that

f = V α (5.42)

and
α = Uf (5.43)

where V and U are the 2nk × 2nk block-diagonal matrices with entries

Vi+k·l,j+k·m =
√
wiP̃jm(xil) (5.44)

and

Uj+k·m,i+k·l =
1

2n
√
wiP̃jm(xil), (5.45)

respectively. By construction, we have U = V −1.

Given f(x) defined in (5.33), we would like to compute the same type of expansion for
f ′(x). We start with the following lemma.

Lemma 21. Given f(x) as defined in (5.33),

f ′(x) =

2n−1∑
m=0

k−1∑
j=0

βjmP̃jm(x), (5.46)

where

βil =
√

2n
(
f(x̄l+1)P̃i(1)− f(x̄l)P̃i(−1)

)
− 2n

k−1∑
j=0

Kijαjl (5.47)

and Kij is defined in (5.16) or, equivalently, in (5.21).
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Proof. By Lemma 19, we have that

βil =

ˆ xl+1

xl

P̃il(x)f ′(x)dx. (5.48)

Integrating (5.48) by parts, we obtain

βil = f(x)P̃il(x)|x̄l+1
x̄l −

ˆ x̄l+1

x̄l

f(x)P̃ ′il(x)dx, (5.49)

and, substituting (5.33) for f(x), arrive at

βil =
√

2n
(
f(x̄l+1)P̃i(1)− f(x̄l)P̃i(−1)

)
−

2n−1∑
m=0

k−1∑
j=0

αjm

ˆ x̄l+1

x̄l

P̃jm(x)P̃ ′il(x)dx.
(5.50)

Due to (5.34), P̃jm(x) is only nonzero on the interval [x̄l, x̄l+1] if m = l. Therefore,

βil =
√

2n
(
f(x̄l+1)P̃i(1)− f(x̄l)P̃i(−1)

)
− 2n

k−1∑
j=0

Kijαjl. (5.51)

Observation 22. The value of f(x) in (5.33) at interior subinterval boundary values xl for
l = 1, . . . , 2n−2 is not well-defined. In particular, an interior subinterval boundary value xl
is shared by two subintervals with different Legendre expansions. Generally, the value at xl
computed using one Legendre expansion will differ from the value computed using the other
one. Specifically, for l 6= 0,

f(x̄l) =
√

2n
k−1∑
j=0

αj,l−1P̃j(1) (5.52)

from the left subinterval and

f(x̄l) =
√

2n
k−1∑
j=0

αjlP̃j(−1) (5.53)

from the right subinterval. Similarly, for l 6= 2n − 1,

f(x̄l+1) =
√

2n
k−1∑
j=0

αjlP̃j(1) (5.54)

from the left subinterval and

f(x̄l+1) =
√

2n
k−1∑
j=0

αj,l+1P̃j(−1) (5.55)

from the right subinterval.
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To approximate the interior boundary values, we use a combination of the value from
the left and from the right. In other words, for some 0 ≤ a, b ≤ 1, we define

f(x̄l+1) =
√

2n
k−1∑
j=0

(
(1− a) · αjlP̃j(1) + a · αj,l+1P̃j(−1)

)
(5.56)

and

f(x̄l) =
√

2n
k−1∑
j=0

(
(1− b) · αjlP̃j(−1) + b · αj,l−1P̃j(1)

)
. (5.57)

The choice of a and b impacts the resulting approximation to the derivative operator, which
we discuss further in Section 5.3.1.

We summarize the results in the following theorem.

Theorem 23. Suppose that f(x) is given by the expansion

f(x) =
2n−1∑
m=0

k−1∑
j=0

αjmP̃jm(x) (5.58)

subject to homogeneous Dirichlet boundary conditions

f(−1) = f(1) = 0. (5.59)

Then

f ′(x) =

2n−1∑
m=0

k−1∑
j=0

βjmP̃jm(x), (5.60)

where

βil = 2n
k−1∑
j=0

(
D

(1)
ij αj,l−1 +D

(0)
ij αjl +D

(−1)
ij αj,l+1

)
(5.61)

for l = 1, . . . , 2n − 2,

βi,0 = 2n
k−1∑
j=0

(
(1− a)P̃i(1)P̃j(1)−Kij

)
αj,0 + aP̃i(1)P̃j(−1)αj,1, (5.62)

and

βi,2n−1 = 2n
k−1∑
j=0

(
−(1− b)P̃i(−1)P̃j(−1)−Kij

)
αj,2n−1 − bP̃i(−1)P̃j(1)αj,2n−2 (5.63)

with
D

(1)
ij = −bP̃i(−1)P̃j(1),

D
(0)
ij = (1− a) P̃i(1)P̃j(1)− (1− b) P̃i(−1)P̃j(−1)−Kij ,

D
(−1)
ij = aP̃i(1)P̃j(−1).

(5.64)

for some 0 ≤ a, b ≤ 1.

35



For a given a and b in (5.56) and (5.57), we denote by B the 2nk×2nk matrix such that

Bα = β (5.65)

where
βj+k·m = βjm

and k is the number of points per subinterval. As a result, the spectral differentiation
matrix is given by

D = V BU. (5.66)

Observation 24. Given a sufficiently smooth function f(x), the error of the approxima-
tion of f ′(x) constructed in Theorem 23 is O(hk−1) where h = 2−n is the length of the
subintervals (see [2] for details).

5.3.1 Second-Order Differentiation Matrix

The construction of the second-order differentiation matrix depends on the choice of value
for f(x) at the interior subinterval boundaries. In our numerical experiments, we set the
value at the interior boundary as the average of the value computed from the neighboring
intervals (i.e., a = b = 1

2 in Theorem 23). We denote the resulting spectral differentiation
matrix Dc. Then, D2

c is the second-order differentiation matrix that maps the values of the
function f(x) at quadrature nodes xil to its second derivative, f ′′(x), at the same quadrature
nodes.

Our approach for the construction of the second-order differentiation matrix extends
the construction on a single interval in Section 5.2 and, e.g., [16, 41, 42, 43], to multiple
intervals. This approach differs from the construction used in [2]. Specifically, in order to
enforce homogeneous Dirichlet boundary conditions within a numerical PDE solver, we first
construct an augmented second-order differentiation matrix by adding quadrature nodes at
x = −1 and x = 1. That is, on the left most boundary, we use left-hand Gauss-Radau nodes
and on the right most boundary, we use right-hand Gauss-Radau nodes. We compute the
second-order differentiation matrix at the augmented nodes, which we denote by D̃2

c . Since
f(−1) = f(1) = 0, we denote by D2

c,0 the second-order differentiation matrix obtained by

removing the first and last columns and rows of D̃2
c .

The extra nodes are added to the outside subintervals in order to construct a Legendre
series expansion with k+1 terms (as compared to k terms on the interior subintervals). On
the outside subintervals, we project the Legendre polynomials onto the space of polynomials
that satisfy the appropriate boundary condition. If the extra term in the Legendre series
expansion is not added, then the basis formed by projecting onto the space of polynomials
that satisfy the appropriate boundary condition will not span that entire space. This, in
turn, results in a spurious zero eigenvalue that is avoided by our construction.

Observation 25. Our construction of D2
c,0 results in a second-order differentiation matrix

that is block five diagonal, symmetric, negative definite. The condition number of D2
c,0 is

O(n2
xk

4), where nx = 2n is the number of intervals. While the analytic condition number
of the second-order differentiation matrix is n2

xk
2, our construction results in a condition

number that is a factor of O(k2) greater. However, since k is O(1), this is a numerically
useful discretization of the second-order differentiation operator.
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Observation 26. Given a function f(x) at quadrature nodes {xil}l=0,...,2n−1
i=0,...,k−1 , we apply the

matrix D2
c,0 to the vector f to obtain approximate values for f ′′(x) at the quadrature nodes.

If f(x) is sufficiently smooth, then the approximation error is O(hk−2) where h = 2−n is
the length of the subintervals. This follows directly from Observation 24.

Observation 27. Due to the block banded structure of D2
c,0, the computational cost of

solving linear systems with the matrix I − hiD2
c,0 is O(nxk · k2), which is essentially linear

in the number of spatial discretization nodes.

5.3.2 Accuracy of Approximation

The classical choice of basis for representing functions satisfying homogeneous Dirichlet
boundary conditions on [−1, 1] is {sin(nπ2 (x + 1))}n∈Z. In Figures 5.1, 5.2, and 5.3, we
illustrate the accuracy in computing the second derivative of the function

sin(b
π

2
(x+ 1)) (5.67)

for varying b on the interval x ∈ [−1, 1]. Because the function does not necessarily satisfy
homogeneous Dirichlet boundary conditions, we evaluate the second derivative by applying
the augmented second-order differentiation matrix D̃2

c . In Figures 5.1, 5.2, and 5.3, we
construct the second-order differentiation matrix using 64, 256, and 1024 points, respec-
tively. In each case, we compare the accuracy of the second-order differentiation matrices
constructed with varying number of intervals and points per interval. Tables 1, 2, and 3
display the corresponding largest singular values and the condition number of the associated
second-order differentiation matrix with boundary conditions enforced. It is clear that, in
each case, there is a tradeoff between the accuracy of the approximation and the condition
number of the matrix. For example, in modest size problems, such as that in Figure 5.1
where 64 nodes are used, the difference between the condition number for the second-order
differentiation matrix with one interval and with eight intervals is only a factor of about
10. On the other hand, the range of b for which the accuracy of the approximation is bet-
ter than 10−11 is much larger for the second-order differentiation matrix with one interval.
In larger problems, such as that in Figure 5.3, where 1024 nodes are used, the condition
number for the second-order differentiation matrix with one interval is large. This results
in a significant loss of numerical precision that necessitates constructing the second-order
differentiation matrix with many subintervals.
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Figure 5.1: Comparison of the L2-error for second derivative of sin(bπ x+1
2 ), where

b ∈ [−35, 35], using 64-point stencils.

Points Per
Interval

Number of
Intervals

Largest
Singular Value

of D̃2
c

Condition
Number of D2

c

64 1 1.3107 · 106 1.8923 · 105

16 4 1.2749 · 105 5.1217 · 104

8 8 3.9033 · 104 1.5053 · 104

Table 1: Condition number of second derivative using 64-point stencils.
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Figure 5.2: Comparison of the L2-error for second derivative of sin(bπ x+1
2 ), where

b ∈ [−150, 150], using 256-point stencils.

Points Per
Interval

Number of
Intervals

Largest
Singular Value

of D̃2
c

Condition
Number of D2

c

256 1 3.1264 · 108 4.5139 · 107

32 8 7.3824 · 106 2.9846 · 106

16 16 2.0217 · 106 8.0991 · 105

8 32 6.2428 · 105 2.4056 · 105

Table 2: Condition number of second derivative using 256-point stencils.
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Figure 5.3: Comparison of the L2-error for second derivative of sin(bπ x+1
2 ), where

b ∈ [−650, 650], using 1024-point stencils.

Points Per
Interval

Number of
Intervals

Largest
Singular Value

of D̃2
c

Condition
Number of D2

c

1024 1 7.8638 · 1010 1.1354 · 1010

32 32 1.1810 · 108 4.7741 · 107

16 64 3.2348 · 107 1.2959 · 107

8 128 9.9885 · 106 3.8490 · 106

Table 3: Condition number of second derivative using 1024-point stencils.

5.3.3 Why Special Functions?

Although widely suggested, in many practical environments the choice of sine basis is in-
appropriate for the numerical solution of PDEs with homogeneous Dirichlet boundary con-
ditions. In particular, the sine basis forces all even derivatives of the function to satisfy
homogeneous Dirichlet boundary conditions. For example, the function

f(x) = cos(π(x+ 1))− cos(2π(x+ 1)) (5.68)

satisfies homogeneous Dirichlet boundary conditions but does not admit an accurate sine
series representation. Specifically, while the second derivative of the sine series vanishes
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on the boundary, f ′′(x) = 3π2 for x = −1 and x = 1. This means that the sine series
representation of f ′′(x) is not accurate near the boundary, resulting in the so-called Gibbs
phenomenon. The sine series coefficients of f ′′(x) are

ˆ 1

−1
f ′′(x) sin(n

π

2
(x+ 1)) = −6πn3(cos(nx)− 1)

(n2 − 16)(n2 − 4)
(5.69)

for odd n. That is, the coefficients decay like ∼ 1
n and are not absolutely convergent. This

results in a sine series representation that converges (slowly) at every point except on the
boundary.

On the other hand, in Figure 5.4 we use the example in (5.68) to investigate the numerical
order of convergence for the second-order differentiation matrix (with enforced boundary
conditions) D2

c,0 with different number of quadrature nodes per subinterval. While the error
initially decays exponentially fast, eventually the error for each of the schemes increases
slightly due to the growing condition number of the second-order differentiation matrix.
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 1  2  4  8  16  32  64

6th Order

10th Order

14th Order

Figure 5.4: Comparison of the L2-error in computing the second derivative of (5.68) for
different order methods as a function of the number of subintervals.

6 Spectral Deferred Corrections for Parabolic PDEs

6.1 In R1

The variable coefficient diffusion equation in R1 is

∂φ

∂t
=

∂

∂x

(
α(x)

∂φ

∂x

)
. (6.1)
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The Spectral Deferred Corrections algorithm for the solution of (6.1) proceeds very similarly
to Spectral Deferred Corrections for ODEs (see Algorithm 1). Discretizing (6.1) using
spatial discretization nodes x0, . . . , xn−1 yields a system of ODEs in (4.2),

∂ϕ

∂t
= D̃x(ADx)ϕ, (6.2)

which is then solved using Algorithm 1.

Algorithm 3 Spectral Deferred Corrections for Parabolic PDEs in R1

Compute an initial approximate solution, ϕ0(xi, tj), for i = 0, . . . , n−1 and j = 0, . . . ,m−1
via the implicit Euler method (4.5) for a chosen discrete approximation to the derivative
operator D̃xADx (see Section 5.3.1).

For l = 1, . . . , L

1. Compute the residual function ε(xi, tj) in (3.2) via spectral integration (see Section
3.3),

2. Compute δ(xi, tj) via the implicit Euler scheme (3.9) - see also Section 4.1,

3. Update the approximate solution ϕl(xi, tj) = ϕl−1(xi, tj) + δ(xi, tj).

Set the resulting solution as ϕ(xi, tj) = ϕL(xi, tj).

We investigate the computational cost of Algorithm 3. We assume the number of subin-
tervals in the spatial discretization is nx and the number of points per subinterval is k, that
is n = nxk. The cost of constructing the linear system within the implicit Euler scheme is
O(nxk

2) and the cost of solving it is O(nxk
3) (see Observation 27). In our implementation,

we use a version of LU decomposition designed for block banded matrices. Since the LU
decomposition of the matrix must be computed at every time step, the cost of constructing
the initial approximation ϕ0(xi, tj) is O(nxk

3m).
We now look at the cost of a single run of spectral deferred corrections. The computation

of the residual function ε(xi, tj) involves applying the m × m spectral integration matrix
to a vector representing F (t, ϕ(t)) at every point in space. Hence, the cost of computing
the residual function is O(nxkm

2). The computation of δ(xi, tj) involves solving the same
linear systems that appeared in the construction of the initial approximation. As a result,
if we store the LU decomposition of the linear system at each point in time, the cost of
solving the system is O(nxk

2). This has to be done at every time step, resulting in a cost
of O(nxk

2m). Finally, the cost of updating the approximate solution is O(nxkm).
If we run L iterations of spectral deferred corrections, then the cost is O(nxkm

2L) +
O(nxk

2mL). Therefore, the overall computational cost is

O(nxk ·m · k2) +O(nxk ·m ·mL) +O(nxk ·m · kL). (6.3)

Since, in practice, the values of k, m, and L are roughly equal to the desired order of the
scheme, the computational cost scales linearly in the number of discretization nodes in space
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(nxk), linearly in the number of temporal nodes (m), and quadratically in the desired order
of the scheme (k2, mL, kL).

6.2 In R2 and R3

In R2 and R3, the algorithm is identical to Algorithm 3, except we replace implicit Euler
method with the implicit Euler-based ADI method in (4.18) and (4.19).

We investigate the computational cost for the algorithm in R2. For simplicity, we assume
the number of subintervals in the spatial discretization is nx in both the x- and y-direction
and the number of points per subinterval is k in both directions as well. Thus, the cost
of constructing the linear system is O(n2

xk
3) in both the x- and y-directions. The cost of

solving the resulting linear systems is O(n2
xk

4) (see Observation 27). In our implementation
we used a version of LU Decomposition designed for block banded matrices. Since the LU
decomposition of the matrix must be computed at every time step, the cost of constructing
the initial approximation is O(n2

xk
4m).

We now look at the cost of a single run of spectral deferred corrections. The computation
of the residual function ε involves applying them×m spectral matrix to a vector representing
F (t, ϕ(t)) at every point in space. Hence, the cost of computing the residual function is
O(n2

xk
2m2). The computation of δ involves solving the same linear systems that appeared in

the construction of the initial approximation. As a result, if we store the LU decomposition
of the linear system at each point in time, the cost of solving the system is O(nxk

2) for
each point in the x-direction. The cost is the same for each point in the y-direction. Hence,
the total cost is O(n2

xk
3). This has to be done at every time step, resulting in a cost of

O(n2
xk

3m). Finally, the cost of updating the approximate solution is O(n2
xk

2m).
If we run L iterations of spectral deferred corrections, then the cost is O(n2

xk
2m2L) +

O(n2
xk

3mL). Therefore, the overall computational cost is

O(n2
xk

2 ·m · k2) +O(n2
xk

2 ·m ·mL) +O(n2
xk

2 ·m · kL). (6.4)

A similar analysis shows that the overall computational cost in R3 is

O(n3
xk

3 ·m · k2) +O(n3
xk

3 ·m ·mL) +O(n3
xk

3 ·m · kL). (6.5)

As is the case in R1, k, m, and L are roughly equal to the desired order of the scheme. Thus,
the computational cost scales linearly in the number of discretization nodes in space (n2

xk
2

in R2 and n3
xk

3 in R3), linearly in the number of temporal nodes (m), and quadratically in
the desired order of the scheme (k2, mL, kL).

7 Numerical Examples

In this section we present the results of several numerical experiments in which we compute
the solution to

∂φ

∂t
= ∇ · (α(x)∇φ) (7.1)

for different choices of boundary conditions and diffusion coefficients α.
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7.1 Periodic Boundary Conditions with Constant Coefficients in R1

We compute the solution for the diffusion equation with constant coefficients

∂φ

∂t
= α

∂2φ

∂x2
x ∈ [0, 2π] (7.2)

with initial condition
φ(x, 0) = cos(10x)− 0.5 sin(8x) (7.3)

and boundary conditions

φ(0, t) = φ(2π, t) and
∂

∂x
φ(0, t) =

∂

∂x
φ(2π, t). (7.4)

In this example, we set α = 1.
In this case, the exact solution is

φ(x, t) = cos(10x)e−100t − 0.5 sin(8x)e−64t. (7.5)

Figure 7.1 is a plot of the solution φ(x, t) in space for different points in time. In Figure
7.2 we plot the decay of the L2-error of the solution at t = 0.1 as the number of subintervals
in the temporal domain increases. We compare schemes of order 4, 8, and 12. In each
case, the number of nodes in time m is equal to the order of the scheme and the number
of deferred corrections L is equal to m − 1. In all cases, we use 32 equally-spaced spatial
discretization nodes.
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Figure 7.1: Solutions of the diffusion equation (7.2) at different points in time.
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Figure 7.2: Comparison of the L2-error in computing the solution of the diffusion equation
(7.2) for different order methods as a function of the number of subintervals in the temporal
domain.

7.2 Dirichlet Boundary Conditions with Constant Coefficients in R1

We compute the solution for the diffusion equation with constant coefficients

∂φ

∂t
= α

∂2φ

∂x2
x ∈ [0, π] (7.6)

with initial condition
φ(x, 0) = sin(12x)− 0.5 sin(8x) (7.7)

and boundary conditions
φ(0, t) = φ(2π, t) = 0 (7.8)

In this example, we set α = 1.
In this case, the exact solution is given by

φ(x, t) = sin(12x)e−144t − 0.5 sin(8x)e−64t. (7.9)

Figure 7.3 is a plot of the solution ϕ(x, t) in space for different points in time. In Figure
7.4 we plot the decay of the L2-error of the solution at t = 0.1 as the number of subintervals
in the temporal domain increases. We compare schemes of order 4, 8, and 12. In each
case, the number of nodes in time m is equal to the order of the scheme and the number
of deferred corrections L is equal to m − 1. In our spatial discretization, we construct the
second-order differentiation matrix with 16 subintervals and 16 points per subinterval. From
Figure 5.2, this matrix approximates the exact second derivative of the initial condition in
(7.7) with accuracy of about 11 digits.
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Figure 7.3: Solutions of the diffusion equation (7.6) at different points in time.
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Figure 7.4: Comparison of the L2-error in computing the solution of the diffusion equation
(7.6) for different order methods as a function of the number of subintervals in the temporal
domain.
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7.3 Dirichlet Boundary Conditions with Variable Coefficients in R2

We compute the solution for the diffusion equation with variable coefficients

∂φ

∂t
= ∇ · (α(x, y)∇φ) x, y ∈ [0, π] (7.10)

with initial condition

φ(x, y, 0) = sin(10x) (cos(2y)− cos(4y)) (7.11)

and homogeneous Dirichlet boundary conditions (i.e., if Γ is the boundary of the square
domain [0, π]2, then ϕ(x, y, t) = 0 for all (x, y) ∈ Γ). In this example, we set

α(x, y) = (1.1 + sin(4x))(1.1 + cos(8y)). (7.12)

Figure 7.5 is a plot of the solution φ(x, y, t) in space for a fixed y = π
2 and different

points in time. Figure 7.6 is a plot of the solution φ(x, y, t) in space for a fixed x = π
4 and

different points in time. In Figure 7.7 we plot the decay of the L2-error of the solution
at t = 0.1 as the number of subintervals in the temporal domain increases. We compare
schemes of order 4, 8, and 12. In each case, the number of nodes in time m is equal to the
order of the scheme and the number of deferred corrections L is equal to m−1. In this case,
the error of a solution computed with a given number of subintervals in time is constructed
by comparing that solution to the solution computed with twice as many subintervals.

In our spatial discretization, we construct the second-order differentiation matrix in the
x-direction with 16 subintervals and 16 points per subinterval. From Figure 5.2, this matrix
approximates the exact second derivative of the initial condition in (7.11) for a fixed y with
accuracy of about 11 digits. We construct the second-order differentiation matrix in the
y-direction with 8 subintervals and 16 points per subinterval. From Figure 5.4, this matrix
approximates the exact second derivative of the initial condition (7.11) for a fixed x with
accuracy of about 11 digits.
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Figure 7.5: Solutions (at y = π
2 ) of the diffusion equation (7.10) at different points in time.
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Figure 7.6: Solutions (at x = π
4 ) of the diffusion equation (7.10) at different points in time.
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Figure 7.7: Comparison of the L2-error in computing the solution of the diffusion equation
(7.10) for different order methods as a function of the number of subintervals in the temporal
domain.

8 Conclusions and Future Work

We introduce a new class of algorithms for the solution of parabolic partial differential
equations. We combine Spectral Deferred Correction methods for the solution of systems
of ordinary differential equations with the implicit Euler method and Alternating Direction
Implicit methods in R2 and R3. Furthermore, we construct high-order accurate representa-
tions of the spatial operator. We extend the traditional pseudospectral schemes by subdi-
viding the entire spatial domain, constructing bases on each subdomain, and combining the
obtained discretization with the implicit SDC schemes. As a result, we construct schemes
with arbitrary order of convergence for the solution of parabolic PDEs. Our schemes have
CPU time requirements that are linear in the number of spatial discretization nodes and
linear in the number of temporal nodes.

Schemes up to order 12 in both time and space have been extensively tested. We
are currently in the processes of implementing parallelized and adaptive versions of the
approach. An additional advantage of ADI schemes in higher dimensions is that they can
be trivially parallelized, which leads to greater computational efficiency. Versions of this
approach for the solution of linear and nonlinear problems of wave propagation are being
vigorously pursued.
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