Yale University
Department of Computer Science

Partitioning Circuits for
Improved Testability

Sandeep Bhatt
Fan Chung
Arnold Rosenberg

YALEU/DCS/TR-490
September 1986

Partitioning Circuits for
Improved Testability

Sandeep N. Bhatt Fan R. K. Chung Arnold L. Rosenberg
Dept. of Computer Science Bell Communications Research Dept. Computer Science
Yale University Morristown, NJ 07960 U. Massachusetts
New Haven, CT 06520 Ambherst, MA 01003
Abstract—

Exhaustive self-testing of combinational circuitry within the framework of the LSSD
design discipline requires that every output node depend on a small number of input nodes.
We present here efficient algorithms that take an arbitrary block of combinational logic and
add to it the smallest number of bits of new LSSD registers necessary to: (1) partition the
logic so that no output depends on more than & inputs, and (2) maintain timing within
the block (so that all input-to-output paths encounter the same number of bits of register).
Our partitioning algorithms conform to two different design constraints. We also show that
the unconstrained partitioning problem is NP-complete.

1 Introduction

Integrated circuit technology, most particularly VLSI, has rendered the problem of circuit
testing more difficult in at least three respects:

e Scale: VLSI circuits have tens or even hundreds of thousands of devices, compared to
the few hundreds of devices of earlier technologies.

e Access: Components on a chip can generally be probed only from a small number of
pins along the peripheries, so that most devices cannot be directly accessed.

e Fault Models: Perhaps worst of all, the “old reliable” single-stuck-at fault model is of
limited validity, in terms of both single faults (fault numbers increase with area and
densities) and stuck-at faults (VLSI devices have many nasty ways of failing).

Somewhat moderating these ways in which testing has become harder are two new
avenues for solving the problem. First, certain VLSI design styles, such as LSSD [5] obviate

testing sequential circuits; their register-to-register design discipline allows all logic to be
tested as combinational logic (after the registers have been tested). Second, the vastly
increased densities of devices on chips allows one to contemplate the use of self-testing
circuitry (STC), extra circuitry whose role is to test the other circuitry. The STC must be
very small compared to the working circuitry, and so can comfortably be tested via external
probes. In order for self testing to become a viable approach to the testing problem, it must
be achieved within the following constraints:

The STC must occupy a very small fraction of the chip area;

the STC must not appreciably degrade the performance of the circuit;

the process of testing must not be excessively time-consuming;

the STC must give good fault coverage.

The LSSD design discipline yields an approach to self testing that satisfies these criteria
in many situations. Specifically, at the cost of very little additional circuitry, one can add
linear feedback [14] to the LSSD registers, thereby converting them in test mode to test
generators [2, 11-13] which create the test inputs for each combinational logic block and to
signature accumulators [1, 3, 4, 7] which collect the output results for subsequent analysis.
The choice of appropriate linear feedback is crucial if one wants to be assured of good fault
coverage. Indeed, in the absence of generally accepted fault models for VLSI circuits, the
authors of [2, 11-13] have proposed to add linear feedback that will test the combinational
logic blocks ezhaustively.

The major shortcoming of this suggestion, as noted in [2, 11], is that exhaustive testing
presupposes small “cones of influence” in the logic block to be tested; i.e., no output node
of the circuit can depend on more than some small number (call it k, suggested to be about
20 in [2]) input nodes, since 2¥ cycles would be required to test such an output node. The
authors of [2, 10] suggest that circuits that violate this small-cone requirement be partitioned
by the addition of new LSSD registers, so as to reduce the size of any offending cone. It is
our goal in this paper to devise efficient algorithms for performing this circuit partitioning
in an optimal way, i.e., by adding the minimum number of bits of new register.

One overall constraint on our partitioning algorithms is that they not impair the cor-
rectness of the circuit by upsetting the timing of the circuit. Our specific concern is that
added registers not change the lengths of only some input-to-output paths. Thus we shall
interpret the mandate to partition the circuit as requiring that all input-to-output paths
receive the same number of bits of new register.

In summary, this paper is devoted to presenting efficient algorithms that take an arbi-
trary block of combinational logic and add to it the smallest number of bits of new LSSD
register that will:

e partition the logic so that no output depends on more than k inputs (k being an input
to the algorithm), and

e maintain timing within the block (so that all input-to-output paths encounter the
same number of bits of register).

We present efficient partitioning algorithms that conform to two different design con-
straints: the edge partitioning constraint discussed in Section 3, and the levelled partitioning
constraint discussed is Section 4. Finally, in Section 5, we show that the unconstrained par-
titioning problem is NP-complete.

2 LSSD partitioning

Level Sensitive Scan Design (LSSD) [5] is a design discipline that reduces the impossibly
hard problem of testing sequential circuitry to the very hard problem of testing combina-
tional circuitry. The essence of the approach is to design all circuitry in a register-to-register
format, with blocks of combinational circuitry intervening, and with all feedback loops also
being register-to-register. Additionally, each register is designed to be convertible to a shaft
register for purposes of scanning test inputs in and test results out. In operation mode the
registers merely latch the signal lines between blocks of combinational logic; in testing mode
each left register scans in an input vector and transmits the vector to the combinational
logic, while each right register collects the output of the logic block and scans that vector
out.

This section investigates ways to partition a large combinational circuit by inserting
extra LSSD registers. We illustrate some of the main concerns with an example. Figure
la shows the skeleton of a combinational circuit; the nodes denote boolean gates, and an
edge from one node to another signifies that the output of the first node is an input to the
second. In general, the value computed at a node is determined by each input from which
the node is reachable by a directed path. Thus, in Figure la, the output depends on the
values in 8 input registers. Suppose that for purposes of testability we require that no node
be affected by more than four registers in one clock cycle. By placing additional registers
as in Figure 1b, the output (and in fact every node) is affected by at most four registers in
one clock cycle; since every path from inputs 1, 2, 3, and 4 is blocked by a new register,
these registers can affect the value of the output only at the next clock cycle. The modified
circuit therefore meets our requirement for testability.

Unfortunately, the modified circuit is not functionally equivalent to the original one.
This inequivalence stems from timing considerations: in test mode, the values computed at
nodes A and B will arrive as inputs to node C at different clock cycles. As a consequence,

O/?\ ~ affected by

r

C\
><

~

(1a) An untestable circuit.

Ryeaffected by
{RyoRo %7554

N DA]

(1b) An inequivalent testable circuit.

/?\
EMJ

(lc) An equivalent testable circuit

Figure 1: Registers must be placed in a way to preserve circuit timing.

the output of the modified circuit is affected by the initial values in the new registers, and
will differ from the output of the circuit of Figure la.

Since we are only inserting new registers without structurally modifying the circuit, the
modified circuit will be equivalent if and only if each node receives all values computed by
its predecessors in the same clock cycle. At any given node this condition is met if every
path from any input to the node contains an equal number of registers; since every input
encounters an equal number of registers to a node, and every register contributes a delay
of one clock cycle, every input to a node arrives at the same clock cycle. Figure 1c shows
a circuit that is equivalent to the circuit of Figure la, in which every node depends on at
most four registers. Although this solution uses more registers than our original attempt
at a solution, one can verify that it cannot be improved on.

It is important to mention here that under normal operation the registers inserted for
testing may be bypassed using simple circuitry. In this case one may ask whether it is at
all necessary to add extra registers simply to preserve timing equivalence: why is it critical
that the circuit compute the same function under both test and normal modes? To counter
this argument, observe that the bypass circuitry will upset the timing of the circuit during
normal operation; consequently, we need to insert equal delays (which may be introduced
by means other than extra register bits) along every input-output path. Our intent is to
focus on both the added delay and the extra hardware, hence our simplifying assumption
that the delays are added by extra register bits.

In the example above, we placed registers on the nodes and not on the edges of the input
circuit. When each node denotes a boolean gate which computes a single value that is sent
to other nodes, this is only reasonable, since there is no need to store the same value more
than once. A node may, however, also be used to represent a combinational circuit module,
an adder for example, whose output values are not all the same. In this case one register
cell must be placed on each outgoing edge of a node, because each edge carries a different
computed value. We distinguish between these two models: in the node partitioning model
registers are placed on nodes, whereas in the edge partitioning model registers are placed
on edges.

In practice, many circuits are designed so that nodes fall into distinct levels, with edges
directed only between consecutive levels. The FFT network is an important example of such
a levelled circuit. In partitioning levelled circuits, a designer might require (for instance,
to preserve synchronization) that for any given level, registers be placed either on every
node on that level or on none of them. We call such a node partition a levelled partition.
When a levelled circuit is symmetric in the way that the FFT circuit is, optimal node parti-
tions are automatically levelled partitions. As a final note, observe that levelled partitions
automatically maintain timing equivalence.

In summary, the two quantities that we wish to minimize are:

e the total number of bits of register added to the circuit, and

e the delay introduced, as measured by the number of registers along any path from
an input to an output (any input and any output will do, since the modified circuit
maintains timing equivalence).

3 Computing optimal edge partitions

This section presents an optimal algorithm for computing optimal edge partitions for circuits
satisfying the property that the fan-out at each node is no greater than the fan-in. Certain
circuits may not obey this fan-in/fan-out constraint, as, for instance, when the result of one
computation is used repeatedly. In general, however, one would expect the fan-out of a node
to be reasonably small, since it is costly to drive a signal across many wires. In the edge
partitioning model, a node is used to denote a circuit module and many common circuit
modules, such as adders and multipliers for example, meet this fan-in/fan-out restriction,
as do clocked closed systems whose input and output ports are the same.

A combinational circuit is modeled as a directed acyclic graph. Nodes of indegree O
are the inputs to the circuit, and nodes of outdegree O are the outputs. We assume that
circuit inputs initially reside in registers, and that the value computed at each output node
is loaded into a register. An assignment ¢ of registers to edges of a directed acyclic graph
G is said to be well-timed if the number of registers along every path from an input to an
output of ¢(G) is the same. The delay of a well-timed assignment ¢ equals the number of
registers along any input-output path of ¢(G).

We say that (the computation of) a node v depends on a node wu if there is a directed
path from u to v in the circuit. If ¢ is a well-timed assignment of registers to G, and
R is a register from which there is a directed path to a node v which does not contain
any intermediate registers, then v depends on register R within the same clock cycle. The
register dependency of a node v in a well-timed circuit is the number of registers that v
depends on within a clock cycle.

The optimal edge partitioning problem is precisely stated as follows:

Input: A directed acyclic graph G and an integer k.
The indegree of each node v in G (except inputs) is no smaller than the outdegree of v, and
k is greater than the indegree of every node.

Output: A well-timed assignment ¢ of registers to edges which uses the minimum number
of registers and introduces minimum delay, and for which every node in ¢(G) has register-
dependency no more than k.

\é/ NV

/TN AR

Figure 2: The retiming operation.

Two simple observations underlie the algorithm. The first is the use of the retiming
operation to maintain timing equivalence while moving registers around in the circuit.
Suppose that every outgoing (incoming) edge incident to a node has a register on it. By
removing these registers and placing one on every incoming (outgoing) edge incident to
that node as in Figure 2, the resulting circuit remains well-timed although the retimed
node computes its result one clock cycle later (earlier). Retiming has been extensively used
earlier in optimizing synchronous circuitry [8, 9]. Retiming is a general operation in the
following sense.

Proposition 1. Suppose that ¢; and ¢, are two well-timed assignments of registers to a
graph G such that ¢;(G) and ¢2(G) have equal delay. Starting with the assignment ¢, it is
possible to obtain the assignment ¢2 using a sequence of retiming operations.

The second observation exploits the fan-in/fan-out restriction, which guarantees that
each application of the retiming rule which pushes registers forward (from incoming to
outgoing edges) cannot increase the total number of registers in the circuit.

Proposition 2. Suppose that a well-timed assignment ¢,(G) is obtained from ¢2(G) by a
sequence of retiming operations, in each of which registers are pushed from incoming edges
to outgoing edges. Then if G satisfies the fan-in/fan-out restriction (the fan-out at every
node is no bigger than the fan-in), the circuit ¢1(G) contains no more registers than does

$2(G).

Proposition 2 gives a strategy to compute an optimal edge partition for graphs with the
fan-in/fan-out property. For example, consider a directed acyclic graph whose single output
node is bad, in that its register-dependency is greater than k, but all other nodes are good,

i.e., have register-dependency no greater than k. By placing a register on every incoming
edge incident to the output node, the output node becomes good because the number of
incoming edges (and hence its register dependency) is no greater than k. By propositions
1 and 2, this assignment of registers is optimal both in minimizing the delay and the total
number of registers. In general, if a node is good, there is no advantage in retiming it.

Algorithm I generalizes this simple idea to graphs with many bad nodes and having
multiple outputs. The algorithm proceeds in stages. In each stage we isolate the good
nodes from the bad ones, and by adding unit-delay retime the circuit so that nodes which
should be delayed by one cycle are converted to good nodes. Then, proceed to the next
stage using the registers introduced in the previous stage as the new inputs to a truncated
circuit. The algorithm terminates when each output is good, which also means that every
node in the circuit is good.

To see that the algorithm computes a minimum-delay partition, observe that in the
original circuit every minimally bad node must be retimed to perform its computation at
least one clock cycle later. Similarly, every node that is minimally bad at the start of the
second stage must be retimed so that it lags by at least two clock cycles — if this were not
the case, then the node would not be minimally bad at the start of the second stage. By
induction, it may be proved that every node that is minimally bad at the beginning of the
i1th. stage must be retimed to lag by at least ¢. In other words, the total delay must be at
least as large as the number of stages; since unit delay is added per stage, the total delay
is minimum.

Next we argue that the algorithm computes a minimum-register partition. Consider
the nodes between (and including) the original inputs and the minimally bad nodes. Since
the algorithm pushes registers only as far back as necessary, Proposition 2 implies that
the number of registers used within this portion of the circuit is the minimum required.
By extending the argument to portions of the circuit that lie between successive stages of
minimally bad nodes, we can prove that the total number of registers used is the minimum
required.

Finally, for circuits with N nodes, the algorithm finds an optimal partitioning in O(dN)
time, where d is the minimum overall delay required to make each output good. The
topological sort in Step 1 can be done in time O(N) since the number of edges in the graph
is proportional to N. Each execution of Steps 2 and 3 takes O(N) time: each edge is
considered once, and the dependency-list has size O(1) (k is constant) so that unions can
be done in O(1) time. In d stages therefore, the total time taken is O(dN).

In practice, one would not expect d to be more than a small constant for otherwise the
delay inserted could be unacceptably large. In such cases the algorithm runs in linear time.
For every choice of d we can construct circuits of size N for which Q(dN) registers must be
inserted to make every node good. For such circuits our algorithm will take time Q(dN)
to simply describe the placement of the registers. In fact, no algorithm which explicitly

ALGORITHM 1

Input: The adjacency list of a directed acyclic graph G = (V, E) and an integer k.
The indegree of each node v in G (except inputs) is no smaller than the outdegree of v, and
k is greater than the indegree of every node.

Output: A minimum-delay well-timed assignment of registers to edges which uses the
minimum number of registers, and for which every node has register-dependency no more
than than k.

BEGIN

1.

4.

END

List the nodes vy,vs,... vy sorted in topological order (so that for each node all its
ancestors precede it in the sorted list). Initially mark each node as good. For each
node also maintain a dependency-list (initially empty) of the inputs that affect the
node. Initialize a counter NUMBER to 1 (this will maintain the number of registers
inserted).

Scan the list from left to right. For each node, if any of its predecessors is bad, mark
the node as bad. If, in addition, at least one of its predecessors is good, mark it as
being minimally bad. If all its predecessors are good, compute the set of inputs that
affect the node by taking the union of the dependency-lists of its predecessors. If
the size of the union is no greater than k, mark the node as good and update the
dependency-list. If the size of the union exceeds k, mark the node as bad and keep
the dependency-list empty.

. Scan the list again from left to right. If z is good then for each successor y that

is minimally bad, insert a new node Ryyasper at the beginning of the sorted list,
mark it good, add it to the dependency-list of y, update NUMBER and print “place
a register on the edge incoming to y.” Next, delete z from the list. Finally, if any
output node is good, but there are bad nodes remaining elsewhere in the circuit, place
a register on the outgoing edge of that output node.

If the list is empty then halt, otherwise proceed to step 2.

describes the position of each register can do better. Any improvement must only describe
the number of registers per edge, without naming the registers. We leave open the question
whether such an algorithm can run in O(N) time for all circuits.

4 Computing optimal levelled partitions

In alevelled circuit, the nodes are divided into levels, and all edges are directed from nodes
in one level to nodes in the next; edges may not “jump” levels or remain within the same
level. The circuit is not required to satisy any other constraints, such as the fan-in/fan-out
property. Figure 3 shows a levelled circuit. In a levelled partition we are required to either
place registers on every node at a level or on none at all. We wish to find an optimal
subset of levels on which to place registers, so that every node is good. In contrast with the
previous section, this section will be concerned only with minimizing the total number of
registers, not the added delay. In general there is a tradeoff between the number of registers
and the added delay so that both quantities cannot be simultaneously minimized.

The simple strategy of “working forward” from minimally bad nodes will not work for
levelled circuits; pushing registers further back could result in fewer registers overall. For
example, considering only the first four levels of the circuit in Figure 3, although the lowest
bad node is at the fourth level (assuming k = 4), it is better to place registers at the second
level rather than the third. But when we add the fifth level, we find that it is better to
place registers on the third level instead of the second and fourth levels. In short, higher
levels determine which lower levels should contain registers.

AN

o 7l 414

Figure 3: A levelled circuit

10

|

ALGORITHM II

Input: The adjacency list of a levelled directed acyclic graph G = (V, E) and an integer k
which is no less than the maximum indegree in G. The vertices in V are divided into levels
L;, 1 <1 < m, with input set = level L; and output set = L.

Output: An assignment of registers to levels which uses the minimum number of registers,
and for which every node has register-dependency no more than than k.

BEGIN

1. Compute the transitive closure T of the adjacency matrix of G.

2. For each level ¢ compute the maximum dependency of a level ¢ node on nodes at level
7, 7 < 1. More precisely, for each pair 7,7, m > ¢ > 5 > 1 compute

{ Z T(u,v) }
u€lL;

3. For the circuit induced by levels L; and Lj, the optimal solution contains no registers.

o5 = mMaXyeL,;

4. For | > 2, compute and store an optimal solution S for the circuit induced by levels
Li,... ,L; as follows:

o for each level 1 (i < 1) if ay; < k, consider the solution S;; which combines the

solution S; with registers placed at level ¢.

e choose a solution from above which uses the fewest registers, and call this solution
Si.

5. output the solution S,,.

END

11

Algorithm II computes an optimal partition using the standard dynamic programming
technique. Suppose that we are given optimal levelled partitions for the subcircuits induced
by the first level, by the first two levels, - -, and by the first [— 1 levels. The algorithm
uses these partitions to compute an optimal partition for the circuit induced by the first [
levels.

We can prove by induction on the number of levels that algorithm II always gives an
optimal levelled partition. For the circuit induced by levels L; and L2 no registers are
required; since the indegree of every node at level Lj is no greater than k, every node at
level Ls is good. For the inductive step, suppose that the algorithm yields optimal solutions
for circuits with I — 1 or fewer levels. Consider any solution for a circuit with [levels. If any
node at level L; is bad, then the solution must place registers at level 4, (i < I) such that
ay; < k, otherwise there will still be bad nodes at level l. Since the algorithm considers all
such levels ¢, and combines them with an optimal solution for the first ¢ levels, the algorithm
is guaranteed to find an optimal solution for the first [levels.

The running time of the algorithm is dominated by the time to compute the transitive
closure of the adjacency matrix. If the graph has N nodes, then it has O(N) edges, so the
transitive closure can be computed in time O(N?). Given the transitive closure, the a’s can
be computed in time O(N?) in a straightforward manner. Computing an optimal solution
at level | requires comparing at most ! — 1 solutions each of which is obtained by a simple
calculation and a lookup, so that step 4 can be done in O(N?) time as well.

5 NP-completeness of untimed node partitions

In this section we show that the problem of optimally partitioning a circuit by placing reg-
isters on nodes, and without maintaining any timing equivalence is NP-complete. In other
words, computing optimal partitions in untimed circuit models is intractable in general.
More precisely, we consider the following problem.

Untimed Node Partition: Given a directed acyclic graph G with maximum indegree
k (and a register on every input), and an integer b, is there an assignment of b or fewer
additional registers to nodes of G so that every node has register-dependency at most k?

Theorem. The Untimed Node Partition problem is NP-complete.

Proof. We reduce the 3CNF-SAT problem [6] to Untimed Node Partition. Suppose that
we are given a formula ¢ over n variables z1,... ,Zn, that contains m clauses C;, 1 <1 < m,
where C; = (i, V 7i, V 7;,). Construct the graph G = (V, E) defined as follows.

07‘@7A- ©r

-/
O/ (x5
q 4Gy, dl 4y % 9 g ‘5 da 43%0% dg é 3 d15¢14d1351/2d£ 4

Figure 4. Reduction ,{’oa (xl v ox, vx3) (Xl vx2 an)

k=5 b4
The set V' of vertices is:

{xi,f,',Cj,d[,t,‘,d:',d:! l 1<i<n,1 S]S m,051.<_4n- 1}-

The d;’s are the inputs of G.

The set of edges is:

{(d4i-1,2i), (d4i-2, i), (d4i-3, i), (dai-4,Ti) | 1 <1< n}
U{(z:,C;),(zi,Cy) | ifz; or F;isin C;,1 <i < n, 1 < j<m}
U {(ziatf)’(Ef,ti)9(d:‘ati)a(d:!,tf) l 1<:< n}

Finally, to complete the reduction, set k = 5 and b = n. Figure 4 illustrates the reduction
with an example. We claim that ¢ is satisfiable if and only if G can be partitioned with n
registers so that each output node C;,{; depends on at most 5 registers. To see this, first
suppose that ¢ is satisfiable. Pick a satisfying assignment, and for each #, place a register
on node z; if z; is true and on node Z; if z; is false. Since at least one literal per clause is
true, each clause node has one or more predecessors with a register on it. Similarly, each ¢;
has a register on one of its predecessors. But then the register-dependency of each output
is at most 5 and so G is an instance of our problem.

Next, suppose that G is an instance of the Untimed Node Partition problem with k =5
and b = n. Since each clause node has three variable nodes as predecessors, each in turn
with 2 inputs, it must be the case that one predecessor per clause node has a register on
it. Furthermore, each ¢; has register-dependency 5, and the only way to obtain this is by
placing exactly one register on either z; or Z;. This gives us a satisfying assignment. n

Computing timed partitions (for which the number of registers along all paths are equal)
is also NP-complete. In fact, Juergen Doenhardt [10] has recently shown that the problem
of determining if a timed edge partition or a timed node partition exists (without even
restricting the number of registers added) is NP-complete.

13

Acknowledgements

Thanks to David Greenberg, Michael Saks, Neil Inmerman and Dan Gusfield for helpful
discussions, and to Tom Spencer for suggesting that our previous version of Algorithm I
~ could be speeded up. A portion of the research of the first and third authors was done
while visiting Bell Communications Research. Sandeep Bhatt was also supported in part
by NSF grant DCR 84-05478 and ONR grant N00014-82-K-0184, and Arnold Rosenberg by
NSF Grants MCS-81-01213 and DMC-85-04308. A preliminary version of this paper was
presented at the Fourth MIT VLSI Conference on Advanced Research in VLSI.

References

[1] Z. Barzilai, J.L. Carter, A.K. Chandra, and B.K. Rosen, “Diagnosis based on signature
testing,” IBM Report RC-9682 (1983).

[2] Z. Barzilai, D. Coppersmith, and A.L. Rosenberg, “Exhaustive bit-pattern generation,
with applications to VLSI self-testing,” IEEE Trans. Comp., C-32, 190-194 (1983).

[3] J.L. Carter, “The theory of signature testing for VLSI,” 14th ACM Symp. on Theory
of Computing, 66-76 (1982).

[4] R. David, “Testing by feedback shift register,” IEEE Trans. Comp., C-29, 668-673
(1980).

[5] E.B. Eichelberger and T.W. Williams, “A logic design structure for LSI testability,”
Proc. 14th Design Automation Conf. (1977).

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the theory of
NP-completeness, Freeman (1979).

[7] B. Konemann, J. Mucha, and G. Zwiehoff, “Built-in test for complex digital integrated
circuits,” IEEE J. Solid-State and Circuits, SC-15 (1980).

[8] C. E. Leiserson, F. Rose, and J. B. Saxe, “Optimizing synchronous circuitry by retim-
ing,” 3rd CalTech Conf. on VLSI (1983). '

[9] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,” J. VLSI and Com-
puter Systems, 1 (1984).

[10] T. Lengauer, personal communication (1986).

[11] E. J. McCluskey and S. Bozorgui-Nesbat, “Design for autonomous test,” IEEE Trans.
Comyp., C-30, 866-874 (1981).

[12] D. T. Tang and C. L. Chen, “Efficient exhaustive pattern generation for logic testing,”
IBM Report RC-10064 (1983).

[13] D. T. Tang and L. S. Woo, “Exhaustive test pattern generation with constant weight
vectors,” IEEE Trans. Comp., C-32, 1145-1150 (1983).

[14] W.W. Peterson, Error Correcting Codes, MIT Press, Cambridge, MA. (1961).

14

