
Yale University

Department of Computer Science

The class DBW∩DCW of ω-languages is identifiable in
the limit from positive data and membership queries

with polynomial time and data

Dana Angluin
Department of Computer Science, Yale University

YALEU/DCS/TR-1528
August 2016

The class DBW∩DCW of ω-languages is

identifiable in the limit from positive data and

membership queries with polynomial time and data

Dana Angluin
Department of Computer Science, Yale University

1 Introduction

Saoudi and Yokomori defined local and recognizable ω-languages, as well
as monadic logic programs [11]. The class of recognizable ω-languages is
the same as the class of safety ω-languages [1]. In their paper, Saoudi and
Yokomori presented an algorithm, denoted Algorithm(3), and claimed in
Theorem 16 that Algorithm(3) efficiently learns in the limit any unknown
recognizable ω-language from positive data and restricted subset queries.
Unfortunately, this claim about Algorithm(3) is incorrect. In Appendix A
we discuss the problems with this claim and other papers affected by these
issues.

In the main body of this paper, we prove that the class DBW∩DCW of
ω-languages is identifiable in the limit from positive data and membership
queries with polynomial time and data. A corollary shows that this also
holds with restricted subset queries instead of membership queries. Because
DBW∩DCW properly contains the class of safety ω-languages, this proves
the existence of algorithms for identification in the limit from positive data
and membership queries (or restricted subset queries) with polynomial time
and data for safety ω-languages and for monadic logic programs. 1

2 Preliminaries

Σ denotes a finite alphabet of symbols. The set of all finite strings over Σ
is denoted Σ∗ and the set of all ω-words over Σ is denoted Σω. The empty
string is denoted by ε. The length of a finite string w is denoted by |w|.

1The subjects of Saoudi and Yokomori’s Theorems 16 and 19.

1

The size of a pair (u, v) of finite strings is |u| + |v|. If S is a set of pairs of
finite strings, the size of S, denoted size(S), is the sum of the sizes of its
elements.

We define deterministic Büchi and co-Büchi ω-automata (denoted by
DBW and DCW, respectively.) Each is given by a structureM = (Q, q0, δ, F),
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × Σ → Q
is the transition function, and F ⊆ Q specifies the acceptance condition.
For a DBW automaton, F is the set of accepting states, and for a DCW
automaton, F is the set of rejecting states. The size of M , denoted size(M),
is the number of states of M .

Given an ω-word w
w = σ1σ2σ3 · · · ,

where each σn ∈ Σ, we define the run of M on w as the sequence of states

q1, q2, q3, . . . ,

where q1 is the initial state of M and for each index n, qn+1 = δ(qn, σn). The
run is uniquely determined because we consider deterministic automata.

For a DBW automaton M , the word w is accepted if and only if some
element of F occurs infinitely often in the run of M on w. For a DCW
automaton M , the word w is accepted if and only if every element of F
occurs finitely often in the run of M on w. The notation L(M) denotes
the language recognized by M , the set of all ω-words accepted by M . We
also use DBW and DCW to denote the classes of languages recognized by
automata of these types. The size of a language L in DBW, denoted size(L),
is the minimum size of a DBW automaton M such that L = L(M).

For a DBW automaton M , a strongly connected component is any
nonempty set R ⊆ Q of states such that for every q1, q2 ∈ R, there is a
nonempty finite string x such that δ(q1, x) = q2. The strongly connected
components that are reachable from the start state are precisely those that
may be the set of states visited infinitely often by some ω-word. States not
in some strongly connected component are termed transient. No transient
state can be visited more than once in a run. Inclusion or exclusion of
transient states from F does not affect the language recognized.

2.1 The class DBW∩DCW

The class of languages DBW∩DCW consists of those L that can be recog-
nized both by a DBW automaton and by a DCW automaton. The class is
properly contained in DBW and in DCW, and properly contains the class of

2

safety ω-languages. Löding and Thomas have shown that it is also exactly
the class of languages accepted by deterministic weak parity automata [8].

Maler and Pnueli have given a polynomial time algorithm to learn lan-
guages in DBW∩DCW from membership and equivalence queries [9]. Their
paper includes a number of useful properties of the class. Consider the fol-
lowing condition on a DBW automaton M .

(SCC) For every strongly connected component of M , either all the states in
the component are accepting, or all the states in the component are
non-accepting.

If M is a DBW automaton recognizing some L ∈ DBW∩DCW, the set of
accepting states of M may be changed to satisfy the condition (SCC) while
preserving L(M) = L.

Moreover, a language in L ∈ DBW∩DCW has a canonical recognizer,
ML, defined as follows. Given an ω-language L, the syntactic right con-
gruence of L is the binary relation on Σ∗ defined by u ≡ v if and only
if for every ω-word w, uw ∈ L if and only if vw ∈ L. For languages
L ∈ DBW∩DCW, there exists a DBW automaton recoginizing L whose
transition graph is isomorphic to the syntactic right congruence of L. 2

We define the canonical recognizer ML for L to be the DBW whose tran-
sition graph is isomorphic to the syntactic right congruence of L, satisfies the
condition (SCC), and has no transient states in F . No DBW automaton rec-
ognizing L can have fewer states thanML, and therefore size(L) = size(ML).

For learning ω-automata, we consider a particular countable subset of
the set of all ω-words, namely the set of all ultimately periodic ω-words. The
ω-word w is ultimately periodic if there exist finite strings u and v such that
w = u(v)ω. Regular ω-languages that agree on all ultimately periodic words
must agree on all ω-words, so behavior on the subset of ultimately periodic
words suffices to learn automata that recognize regular ω-languages. A pair
of finite strings (u, v) is used to represent the ω-word u(v)ω.

The output of Maler and Pnueli’s polynomial time algorithm to learn
DBW∩DCW using membership and equivalence queries is the canonical
recognizer ML.

2.2 Positive data and queries

We consider learning algorithms that receive positive examples of a target
language L and may make queries of a specified type about L. 3

2This property does not hold of DBW languages in general.
3For a discussion of types of queries, see [3].

3

Each example is a pair (u, v) of finite strings such that v is nonempty,
representing the ultimately periodic ω-word u(v)ω. A sequence S1, S2, S3, . . .
is a positive presentation of a language L if and only if each Si is a finite
set of pairs of finite strings representing elements of L such that

S1 ⊆ S2 ⊆ S3 ⊆ . . . ,

and for every (u, v) that represents an element of L, there exists an n such
that (u, v) ∈ Sn. That is, each pair representing an element of L must
eventually be included.

The types of queries we consider are membership queries and restricted
subset queries. In a membership query about L, the learning algorithm
specifies a pair (u, v) of finite strings such that v is nonempty, and receives
the answer “yes” if the ω-word u(v)ω is in L, and “no” otherwise. In a
restricted subset query about L, the learning algorithm specifies a DBW
automaton M and is answered “yes” if L(M) ⊆ L and “no” otherwise.

For identification in the limit from positive data and queries of a specified
type τ , we consider a learning algorithm A that takes as input a finite set S
of pairs of finite strings (u, v) representing ω-words in the target language L,
and may also ask queries of type τ about L. A computes and asks queries,
and must eventually halt with an output specifying a DBW automaton M .
We denote this output by A(S).

The algorithm A successfully identifies the language L in the limit
from positive data and queries of type τ if and only if for any positive
presentation S1, S2, S3, . . . of L, the sequence

A(S1), A(S2), A(S3), . . . ,

where A may make queries of type τ to L, is equal to some fixed M for all
but finitely many n, and L(M) = L. That is, A receives a nested sequence
of finite subsets of L, such that each representation of an element of L
is eventually included, and makes a sequence of conjectures that eventually
stops changing, and is such that the final value of the conjectures is a correct
representation of L. If the algorithm A succeeds for every L ∈ C for some
class C of ω-languages, then we say the A identifies C in the limit from
positive data and queries of type τ .

We follow de la Higuera’s generalization of Gold’s definition of what it
means for an algorithm A to identify a class C of languages in the limit with
polynomial time and data [4, 6], adapting it to the protocol of positive data
and queries of type τ . The adaptations are that the algorithm may return a
hypothesis A(S) that is not compatible with S, and in condition (1) below

4

the running time of A is bounded by a polynomial in size(L) as well as
size(S), to accomodate the availability of queries.

First, A must identify C in the limit from positive data and queries of
type τ . In addition, A must satisfy the following two conditions on resource
use.

1. For any L ∈ C, given a finite set S of representations of elements of L
as input and access to queries of type τ about L, the algorithm must
return its conjecture A(S) in time bounded by a polynomial in size(S)
and size(L).

2. For any L ∈ C, there exists a set SL of representations of elements of
L such that size(SL) is bounded by a polynomial in size(L), and for
any set S of representations of examples of L such that SL ⊆ S we
have A(S) = A(SL), and if M is their common value, then L(M) = L.

A must return its conjecture M in time polynomial in the sizes of the
input set S and the target concept L. The sample SL is called a charac-
teristic sample of L with respect to A. When the input of A is SL,
it must output a correct conjecture M representing L, and this must also
be the output of A for any set S of representations of elements of L that
contains SL as a subset.

3 Identifiability of DBW∩DCW
In this section we prove the following main result.

Theorem 1. There is an algorithm to identify DBW∩DCW in the limit
from positive data and membership queries with polynomial time and data.

Given a representation (u, v) of an ultimately periodic ω-word, there is
a DBW automaton M(u,v) that accepts only the word u(v)ω, and is con-
structable in polynomial time in the size of (u, v). A membership query
with (u, v) has the same answer as a restricted subset query with M(u,v).
This allows a membership query to be simulated in polynomial time using
a restricted subset query, and proves the following corollary of Theorem 1.

Corollary 2. There is an algorithm to identify DBW∩DCW in the limit
from positive data and restricted subset queries with polynomial time and
data.

5

To prove Theorem 1, we follow the approach used to prove that the class
of DFA languages can be learned in polynomial time from a representative
sample and membership queries [2], using the results of Maler and Pnueli [9]
about the class DBW∩DCW.

If M = (Q, q0, δ, F) is a DBW automaton and q ∈ Q, then Mq is the
DBW automaton (Q, q, δ, F), equal to M with q replacing the start state.
An ω-word w distinguishes q1 from q2 inM provided w ∈ L(Mq1)⊕L(Mq2),
that is, w is accepted starting at one of q1 or q2, and rejected starting at the
other. The following is from Maler and Pnueli [9].

Lemma 3. Let L ∈ DBW∩DCW and let ML be its canonical recognizer,
with n = size(ML). For distinct states q1 and q2 of ML, there exists a pair
of finite strings (u, v) of size at most n2 such that u(v)ω distinguishes q1
from q2 in ML.

Given L ∈ DBW∩DCW, let ML be its canonical recognizer. If S is a
finite set of pairs of finite strings (u, v) then S is a representative sample
of L provided that the following conditions are satisfied.

1. For every (u, v) ∈ S, u(v)ω ∈ L.

2. For every pair of distinct states q1 and q2 of ML, there exists a pair
(u, v) ∈ S and a suffix u2 of u such that u2(v)ω distinguishes q1 from
q2 in ML.

Lemma 4. Let L ∈ DBW∩DCW and n = size(L). Then there exists a
representative sample RL of L of size O(n3).

Proof. Consider the canonical recognizer ML for L. Then ML has n states.
There exists a set D of at most n − 1 pairs of finite strings, each of size
at most n2, such that for each pair q1 and q2 of states of ML, there exists
(u, v) ∈ D such that u(v)ω distinguishes q1 from q2 in ML.

Such a set D may be constructed by repeatedly refining a partition of
the states of ML, starting with all the states in one block, until each state
is in its own block. For the refinement step, consider a block that has at
least two distinct states q1 and q2. By Lemma 3, there exists a pair (u, v) of
size at most n2 that distinguishes q1 from q2 in ML. Add the element (u, v)
to D and split the block into two blocks: those states from which u(v)ω is
accepted, and those from which it is rejected. After n− 1 such refinements,
all the blocks of the partition will be singletons.

The set RL is defined as follows. For each pair (u2, v) ∈ D there is a
state q of ML such that u2(v)ω is accepted from q. Let u1 be a shortest

6

string such that δ(q0, u1) = q. Add the element (u1u2, v) to RL. Then RL

contains O(n) pairs, each of size at most O(n2).
To see that RL is a representative sample for L, if (u, v) ∈ RL then there

exists (u2, v) ∈ D and a state q of ML from which u2(v)ω is accepted, and a
string u1 such that δ(q0, u1) = q such that u = u1u2. Thus, u(v)ω ∈ L and
condition (1) is satisfied.

For every pair q1 and q2 of distinct states of ML, there is a pair (u2, v) ∈
D such that u2(v)ω distinguishes q1 from q2 in ML. For the pair (u2, v) ∈ D
there is a state q in ML from which u2(v)ω is accepted and a string u1 such
that δ(q0, u1) = q and (u1u2, v) ∈ D, so condition (2) is satisfied, and RL is
a representative sample.

We now proceed to the proof of Theorem 1.

Proof. We describe an algorithm IDω that takes as input a finite set S of
pairs (u, v) of finite strings representing elements of L, may ask membership
queries about L, outputs a DBW automaton M and halts.

If S is the empty set, IDω outputs a canonical recognizer of the empty
language and halts. Otherwise, IDω constructs the set E containing all
pairs (u2, v) such that for some (u, v) ∈ S, u2 is a suffix of u. The set E is
nonempty and can be constructed in time polynomial in size(S).

For any finite string x ∈ Σ∗, we define row(x) to be the finite function
with domain E such that for (u, v) ∈ E the value of row(x)(u, v) = 1 if
xu(v)ω ∈ L and row(x)(u, v) = 0 otherwise. The values of row(x) can be
determined by making |E| membership queries about L.

IDω now constructs a DBW automaton as follows. We assume a fixed
length-lex ordering of Σ∗. The set Q of states consists initially of just the
string ε, marked as unprocessed. If there are any states in Q marked as
unprocessed, select the least one, say s, and consider the one-symbol exten-
sions sσ of s, in order. If row(sσ) is different from row(t) for all strings t
currently in Q, then add the string sσ to Q, marked as unprocessed. Once
all the one-symbol extensions of s have been considered, s is marked as pro-
cessed. This continues until there are no states in Q marked as unprocessed.
The total number of strings added to Q is at most the number of states of
ML, and each one requires processing each of its |Σ| one-symbol extensions.

The initial state is the string ε, and the transition function is defined by

δ(s, σ) = t,

where t is the unique element of Q such that row(t) = row(sσ).

7

The accepting states F are determined as follows. For each state s ∈ Q,
if it is transient, it is not included in F . If it is not transient, then there is
a shortest nonempty string v such that δ(s, v) = s. The state s is included
in F if a membership query to L with s(v)ω is answered “yes”. Then IDω

outputs the DBW automaton

M = (Q, ε, δ, F)

and halts.
To see that IDω identifies DBW∩DCW in the limit from positive data

and membership queries, we argue as follows. The running time of IDω is
polynomial in size(ML) = size(L) and size(S).

For any L ∈ DBW∩DCW with n = size(L), let RL be a representative
sample of L of size O(n3), by Lemma 4. We show that RL is a characteristic
sample of L with respect to IDω, which will conclude the proof.

Suppose S is any finite set of pairs (u, v) representing elements of L
such that RL ⊆ S. Consider the algorithm IDω run with input S and
membership query access to L. Because RL is a representative sample, for
every pair of distinct states q1 and q2 of ML, there exists a pair (u2, v) ∈ E
that distinguishes q1 from q2 in ML. This guarantees that the strings in the
state set Q will consist of the length-lex least string reaching each state q of
ML. The state transitions, based on the values of row(s) and row(sσ) for
each s ∈ Q and σ ∈ Σ, will agree with those of ML. The choice of states to
include in F will likewise agree with the accepting states of ML.

Thus, M is isomorphic to ML and L(M) = L. This same M will be
the output for any finite set S of pairs representing elements of L such that
RL ⊆ S, so RL is a characteristic sample of polynomial size for L with
respect to IDω, and IDω identifies DBW∩DCW in the limit from positive
data and membership queries with polynomial time and data.

4 Acknowledgements

The author thanks Dana Fisman and Takashi Yokomori for their helpful
comments on earlier drafts of this paper.

References

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(3):117–126, 1987.

8

[2] Dana Angluin. A note on the number of queries needed to identify
regular languages. Information and Control, 51(1):76–87, 1981.

[3] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1988.

[4] Colin de la Higuera. Characteristic sets for polynomial grammatical
inference. Mach. Learn., 27(2):125–138, May 1997.

[5] E. Mark Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967.

[6] E Mark Gold. Complexity of automaton identification from given data.
Information and Control, 37(3):302–320, 1978.

[7] M. Jayasrirani, M. Humrosia Begam, and D. Gnanaraj Thomas. Learn-
ing of regular omega-tree languages. In Grammatical Inference: Al-
gorithms and Applications, 9th International Colloquium, ICGI 2008,
Saint-Malo, France, September 22-24, 2008, Proceedings, pages 295–
297, 2008.

[8] Christof Löding and Wolfgang Thomas. Alternating Automata and Log-
ics over Infinite Words, pages 521–535. Springer Berlin Heidelberg,
2000.

[9] Oded Maler and Amir Pnueli. On the learnability of infinitary regular
sets. Inf. Comput., 118(2):316–326, May 1995.

[10] Dominique Perrin and Jean-Eric Pin. Infinite words: automata, semi-
groups, logic and games. Elsevier, Amsterdam, 2004. Pure and Applied
Mathematics Series, vol. 141.

[11] Ahmed Saoudi and Takashi Yokomori. Learning local and recognizable
ω-languages and monadic logic programs. In Proceedings of the First
European Conference on Computational Learning Theory, Euro-COLT
’93, pages 157–169, New York, NY, USA, 1994. Oxford University Press,
Inc.

[12] D. G. Thomas, M. Humrosia Begam, K. G. Subramanian, and
S. Gnanasekaran. Learning of regular bi-omega languages. In Proceed-
ings of the 6th International Colloquium on Grammatical Inference:
Algorithms and Applications, ICGI ’02, pages 283–292, London, UK,
UK, 2002. Springer-Verlag.

9

A Appendix: Problems with Theorem 16 in [11]

It appears that Theorem 16 in the paper of Saoudi and Yokomori [11] is
incorrect. The theorem claims that Algorithm(3) in the paper learns an ar-
bitrary recognizable ω-language in the limit from positive data and restricted
subset queries, and does so efficiently. Both the correctness and efficiency
claims for Algorithm(3) appear to be erroneous. The class of recognizable
ω-languages defined by Saoudi and Yokomori is the same as the subclass of
safety languages of the regular ω-languages, so the claim in Theorem 16 also
concerns the learnability of safety languages.

A.1 Efficiency

Saoudi and Yokomori do not define “efficiently”, but applying our mod-
ification of de la Higuera’s definition [4] of identifiable in the limit from
polynomial time and data, we have the conditions: (1) the learning algo-
rithm should return a hypothesis in time bounded by a polynomial in the
sum of the lengths of the examples it has seen and the size of the target au-
tomaton, and (2) for each target concept there should exist a characteristic
sample of size polynomial in the size of a minimum automaton recognizing
the concept.

Algorithm(3) does not meet the first criterion. Consider the algorithm
run with some target language U over the alphabet Σ and parameter n rep-
resenting the number of states of a minimum B-type deterministic acceptor
for U . The alphabet Γ contains all symbols of the form (i, σ, j) such that
i, j ∈ {1, 2, ..., n} and σ ∈ Σ.

In response to the first positive example

w = a1a2 · · · at,

Algorithm(3) computes the set of “good words” for w. This set contains
every word in Γt of the form

(1, a1, i1)(i1, a2, i2) . . . (it−1, at, it),

where each ij ∈ {1, 2, . . . , n} and we assume that the initial state is labeled
1. The number of such words is nt, which is not bounded by a polynomial
in n and t.

A.2 Correctness

The more serious issue is that Algorithm(3) does not necessarily identify
every recognizable ω-language in the limit. An example will illustrate this

10

a b

1 2 1
2 2 −

Figure 1: Transition function for a B-type automaton for U .

issue. Let the alphabet be Σ = {a, b} and define

U = bω + b∗aω.

This is a recognizable ω-language. A minimum B-type automaton for it has
states {1, 2}, with initial state 1, both states accepting, and the transition
function given in Figure 1.

Note that aω ∈ U . Consider what happens when Algorithm(3) is run
with U and n = 2, and the first positive example it processes is aω. The
canonical representation of the example is (λ, a), which is presented to the
algorithm as the word w = aa.

The algorithm constructs all the “good words” for aa and processes them
one at a time. Assume that the first good word processed is

α1 = (1, a, 1)(1, a, 1).

This has the 1-prefix
P1(α1) = (1, a, 1),

and the set of 2-factors

F2(α1) = {(1, a, 1)(1, a, 1)}.

These are used to modify the initial local system S = (∅,Γ2) to

S′ = ({(1, a, 1)},Γ2 \ {(1, a, 1)(1, a, 1)}).

Then a restricted subset query is used to determine whether h(Lω(S′)) is
a subset of U , where h is the strictly alphabetic morphism that maps the
symbol (i, σ, k) ∈ Γ to σ ∈ Σ.

The answer to the subset query is “yes” because h(Lω(S′)) is just {aω},
which is a subset of U . This means that for the subsequent Si = (Ii, Ci),
(1, a, 1) is permanently added to Ii and (1, a, 1)(1, a, 1) is permanently re-
moved from Ci. Once these commitments are made, no further additions
to Ii or removals from Ci can create a local system Si = (Ii, Ci) such that
h(Lω(Si)) = U .

11

This is because bω ∈ U , but if transitions are added to allow acceptance
of bω from state 1, then they will also allow acceptance of abω, which is not
in U . Thus in this case, Algorithm(3) will never output a correct hypothesis
for U .

A.3 Other consequences

Subsequent work based on the approach of Algorithm(3) is also compromised
by these issues. In the paper of Thomas et al. [12], Algorithm(4) is directly
based on Algorithm(3) of Saoudi and Yokomori and suffers from the same
problems. Theorem 4.4 claims that Algorithm(4) learns an arbitrary regular
bi-ω language in the limit from positive data and restricted superset queries,
and is not correct.

The paper of Jayasrirani, Begam and Thomas [7] on learning regular
ω-tree languages says that it is based on the approach of the Saoudi and
Yokomori paper. However, at under three pages, the paper does not provide
sufficient details to enable a reader to check its claims. It seems likely that
Theorem 6, claiming the existence of an algorithm to learn an arbitrary reg-
ular ω-tree language in terms of a Büchi local system, is also compromised.

A.4 Limit identification without resource bounds

If we ignore resource bounds, any class of languages represented by a recur-
sively enumerable class of automata with a decidable membership problem
can be identified in the limit using just restricted subset queries (resp., re-
stricted superset queries), with no positive data, using a variant of Gold’s
method of identification by enumeration [5]. We describe an algorithm A
using restricted subset queries.

A runs in stages n = 1, 2, Let L denote the target language and let [n]
denote the set {1, 2, . . . , n}. In stage n, A enumerates the first n automata
M1,M2, . . . ,Mn and the first n examples x1, x2, . . . , xn, and computes the
finite sets

Si = L(Mi) ∩ {x1, x2, . . . , xn}

for i ∈ [n], using the decidability of membership.
For each i ∈ [n], A makes a restricted subset query with Mi. If none of

the subset queries is answered “yes”, then A outputs an arbitrary hypothesis,
say M1, and goes to the next stage. Otherwise, A outputs Mi for the least
i ∈ [n] such that L(Mi) ⊆ L and for no j ∈ [n] do we have both L(Mj) ⊆ L
and Si (Sj , and goes to the next stage.

12

It is not difficult to see that the sequence of conjectures of A finitely
converges to Mm for the least m for which L(Mm) = L. The algorithm for
restricted superset queries is analogous, with subset replaced by superset.

The regular ω-word languages are recognized by nondeterministic Büchi
ω-word automata, the regular bi-ω-word languages are recognized by nonde-
terministic Büchi bi-ω-word automata, and the regular ω-tree languages are
recognized by nondeterministic Muller ω-tree automata [10]. These classes
of automata are recursively enumerable and their respective membership
problems (for ultimately periodic ω-words, ultimately periodic bi-ω words,
and regular ω-trees) are decidable, which implies the following.

Corollary 5. The classes of regular ω-word languages, bi-ω-word languages
and regular ω-tree languages are identifiable in the limit from restricted sub-
set (resp., restricted superset) queries.

13

