
Yale University

Department of Computer Science

The Exact Multiplicative Complexity of the

Hamming Weight Function

Joan Boyar1

joan@imada.sdu.dk

René Peralta2

peralta@cs.yale.edu

YALEU/DCS/TR-1260

December 2003

1Department of Mathematics and Computer Science, University of Southern Denmark. Par-

tially supported by the Future and Emerging Technologies programme of the EU under con-

tract number IST-1999-14186 (ALCOM-FT), and by the Danish Natural Science Research Council

(SNF).
2Department of Computer Science, Yale University. Partially supported by NSF grant CCR-

0081823.

The Exact Multiplicative Complexity of the

Hamming Weight Function

Joan Boyar∗

joan@imada.sdu.dk

René Peralta†

peralta@cs.yale.edu

Abstract

We consider the problem of computing the Hamming weight of an n-bit

vector using a circuit with gates for addition and multiplication modulo 2 (al-

ternatively, XOR and conjunction gates) only. The number of multiplications

necessary and sufficient to build such a circuit is called the “multiplicative

complexity” of the Hamming weight function, and is denoted by c∧(Hn). We

prove c∧(Hn) = n−HN(n) where HN(n) is the Hamming weight of the binary

representation of n.

1 Introduction

The multiplicative complexity c∧(f) of a Boolean function f is the number of con-

junctions necessary and sufficient to implement a circuit which computes f over the

basis (∧,⊕, 1) (alternatively, the number of multiplications necessary and sufficient

to calculate a function over GF2 via a straight-line program). Let
−→
H (x) denote the

∗Department of Mathematics and Computer Science, University of Southern Denmark. Partially

supported by the Future and Emerging Technologies programme of the EU under contract number

IST-1999-14186 (ALCOM-FT), and by the Danish Natural Science Research Council (SNF).
†Department of Computer Science, Yale University. Partially supported by NSF grant CCR-

0081823.

1

binary representation of the Hamming weight of a bit string x ∈ GF n
2 .

−→
H (x) has

fixed length dlog2(n + 1)e and may contain leading zeros. The function
−→
H () will be

denoted by Hn when the parameter n needs to be explicitly stated. We will denote

by HN(n) the Hamming weight of the binary representation of the integer n. In this

paper we show

c∧(Hn) = n−HN(n).

Our motivation to study multiplicative complexity comes from cryptography. In

[2] a construction is given for a non-interactive cryptographic proof of knowledge of

a secret X. The secret is defined as the input to a public circuit C containing con-

junctions, negations, and XOR gates only. The output C(X) is also publicly known.

Such constructions are called “discreet proofs”, and have a number of applications,

e.g. electronic voting, on-line auctions, fair exchange of secret keys, etc. The length

of a discreet proof is linear in the number of conjunctions in C and is not affected by

the number of negations or XOR gates. Computation of the Hamming weight is of

particular interest because it is often an intermediate step for constructing efficient

circuits for use in discreet proofs.

Our result is also of interest from a purely complexity-theoretic point of view. For

measures of circuit complexity in general, the exact complexity of explicitly defined

Boolean functions is known only for a small number of simple functions. For most

functions, only weak lower bounds are known [5]. To our knowledge, the only other

exact solutions for the multiplicative complexity of non-trivial functions appear in

[1], [6], and [4]. The first two papers relate the multiplicative complexity of an

arbitrary quadratic form to the rank of an associated matrix over GF2. The third

paper contains the result c∧(Σn
3) = dn

2
e, where Σn

k is the kth elementary symmetric

function on n variables. 1

1Σn
k (x) (or simply Σn

k) is defined by

Σn
k (x1, x2, . . . , xn) =

∑
S⊆{1,...,n},|S|=k

∏
i∈S

xi (1 ≤ k ≤ n).

2

2 Preliminaries

There is a bijection between Boolean functions on n variables and square-free poly-

nomials over GF n
2 . It is known that a Boolean function f(x) whose polynomial has

degree d has multiplicative complexity at least d − 1 (for a proof see [3]). This we

call the degree lower bound.

It will prove useful to define the Hamming weight of the empty string λ to be 0,

i.e.
−→
H (λ) = HN(0) = 0. We now make some simple observations.

• If 0 ≤ i < 2k then HN(2k + i) = 1 + HN(i). (1)

• If 0 ≤ k then HN(2k − 1) = k. (2)

• If 0 ≤ a, b, k and n = 2k − 1 = a + b then HN(n) = HN(a) + HN(b). (3)

•
−→
H (x) is the integer sum of the bits of x.

• For all n ≥ m > 0, there exists a circuit which adds an n-bit number to an

m-bit number – plus an optional carry-in bit c – using n conjunctions. This is

a standard addition circuit using a chain of full adders. A full adder computes

the two-bit sum w1w0 of three bits b1, b2, b3. Only one conjunction is needed

because w0 = (b1 + b2 + b3) mod 2 and w1 = ((b1 + b2)(b2 + b3) + b2) mod 2. We

will refer to this circuit as the standard addition circuit (with carry-in c).

Denote by c∧(ADD(n,m)) the multiplicative complexity of adding an n-bit num-

ber to an m-bit number. An immediate application of the degree lower bound is that

c∧(ADD(n, m)) ≥ Max(n,m). This is because c∧(ADD(n, m)) ≥ c∧(ADD(n, 1)),

and the most significant bit of this sum is the product of all n + 1 input variables.

We have already observed that c∧(ADD(n,m)) ≤ Max(n, m). Thus we have shown

Lemma 1 The multiplicative complexity of adding two integer inputs, of lengths n

and m in radix-2 representation, is Max(n,m).

3

3 A circuit for the Hamming weight

We construct a circuit for Hn that uses n−HN(n) conjunctions. Our construction is

essentially a recursive version of a construction that appeared in [3]. First we show a

circuit for the case n = 2k − 1.

Lemma 2 Let n = 2k − 1 for k ≥ 0. Then c∧(Hn) ≤ n−HN(n) = 2k − (k + 1).

Proof.

The proof is by induction on k. The cases k = 0, 1 are easily verifiable. For k > 1,

a string x of length 2k − 1 can be split into two strings u,v, of length 2k−1 − 1 each,

plus one string c of length 1. We recursively compute
−→
H (u) and

−→
H (v). Then we

use the standard addition circuit with carry-in c to compute c +
−→
H (u) +

−→
H (v). The

result is
−→
H (x). By induction, and the fact that

−→
H (u),

−→
H (v) are of length k − 1, the

number of multiplications used is 2(2k−1 − k) + k − 1 = 2k − (k + 1). 2

We now consider the general case

Theorem 1 c∧(Hn) ≤ n−HN(n), for all n ≥ 1.

Proof. We have already shown this for the cases n = 0, 1, 3, 7, 15, 31, We prove

the remaining cases by induction on n. Let x be a string of length 2k + i with k > 0

and 0 ≤ i < 2k − 1. Assume the theorem holds for all values 0 ≤ n′ < 2k + i. As in

Lemma 2 we split x into three strings u,v, c of lengths 2k − 1, i, and 1 respectively

(note that v may be the empty string). We recursively compute
−→
H (u) and

−→
H (v).

Then we compute the sum c +
−→
H (u) +

−→
H (v). The result is

−→
H (x). By induction,

using Lemma 2 and the fact that
−→
H (u),

−→
H (v) are of maximum length k, the number

of multiplications used is

2k − (k + 1) + (i−HN(i)) + k = 2k + i− (1 + HN(i)) = (2k + i)−HN(2k + i).

The last equality is due to observation (1). 2

Lemma 11 of [3] shows that when m = 2i ≤ n, the value of Σn
m(x) is the i + 1st

bit of
−→
H (x).2 Suppose x is a bit string of length 2k. The k + 1st bit of

−→
H (x) is

2See also [7].

4

Σ2k

2k(x), which is a polynomial of degree 2k. Thus, by the degree lower bound, it is

not possible to compute the Hamming weight of a string of length 2k bits using less

than 2k−1 multiplications. Since Theorem 1 gives a matching upper bound, we have

Corollary 1 c∧(H2k
) = 2k −HN(2k) = 2k − 1 for all k ≥ 0.

4 The exact complexity of the Hamming weight

We proceed to show that the bound in Theorem 1 is tight, and hence the construction

is optimal for all n.3 The proof uses the known value of c∧(H2k
) to compute a lower

bound on c∧(H2k−i). For notational brevity, we will denote c∧(Hn) by hn.

Theorem 2 c∧(Hn) = n−HN(n), for all n ≥ 1.

Proof.

By Corollary 1, we only need to consider the cases where n is strictly between

consecutive powers of 2, i.e. 2k−1 < n < 2k. Our proof is by induction on k with base

k = 1. Let k > 1 and assume the theorem holds for all n′ ≤ 2k−1. Let n = 2k − i

for some integer 1 ≤ i < 2k−1. Then n + (i − 1) = 2k − 1 implies, by observation

(3), that k − HN(i − 1) = HN(n). We design a circuit for the Hamming weight of

a string x of length 2k = n + (i − 1) + 1 as follows. We split x into three strings

u,v, c of lengths n, i − 1, and 1, respectively. We use optimal circuits to compute
−→
H (u) and

−→
H (v). Note that the longest of these two strings is

−→
H (u), which has

length k. Then we use the standard addition circuit with carry-in c to compute

c +
−→
H (u) +

−→
H (v). The result is

−→
H (x). By the inductive hypothesis, the circuit for

−→
H (v) contains hi−1 = (i− 1)−HN(i− 1) multiplications. Thus the circuit for

−→
H (x)

contains hn + (i− 1)−HN(i− 1) + k multiplications. By Corollary 1, this quantity

must be at least 2k − 1, i.e.

hn + (i− 1)−HN(i− 1) + k ≥ 2k − 1.

3This is quite surprising. In fact, we mistakenly stated in [3] that this bound was not tight.

5

Substituting HN(n) for k−HN(i− 1), n for 2k − i, and rearranging terms, we obtain

hn ≥ n−HN(n). This lower bound matches the upper bound of Theorem 1. 2

References

[1] A. A. Aleksanyan. On realization of quadratic Boolean functions by systems of

linear equations. Cybernetics, 25(1):9–17, 1989.

[2] J. Boyar, I. Damg̊ard, and R. Peralta. Short non-interactive cryptographic proofs.

Journal of Cryptology, 13:449–472, 2000.

[3] J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of Boolean

functions over the basis (∧,⊕, 1). Theoretical Computer Science, 235:43–57, 2000.

[4] J. Boyar, R. Peralta, and D. Pochuev. Concrete multiplicative complexity of

symmetric functions. Technical Report YALEU/DCS/TR1219, Computer Science

Department, Yale University, 2001.

[5] K. Lenz and I. Wegener. The conjunctive complexity of quadratic Boolean forms.

Theoretical Computer Science, 81:257–268, 1991.

[6] R. Mirwald and C. Schnorr. The multiplicative complexity of quadratic Boolean

forms. Theoretical Computer Science, 102(2):307–328, 1992.

[7] R. Rueppel and J. Massey. The knapsack as a nonlinear function. In Abstracts of

papers, IEEE Int. Symp. on Information Theory, page 46, 1985.

6

