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ABSTRACT
We propose three automatic algorithms for analyzing
digitized medieval manuscripts: text block computation,
text line segmentation and special component extraction,
by taking advantage of previous clustering algorithms
and a template matching technique. These three meth-
ods are completely automatic, so that no user interven-
tion or input is required to make them work. More-
over, they are all per-page based; that is, unlike some
prior methods–which need a set of pages from the same
manuscript for training purposes–they are able to ana-
lyze a single page without requiring any additional pages
for input, eliminating the need for training on additional
pages with similar layout. We extensively evaluated the
algorithms on 1771 images of pages of 6 different pub-
licly available historical manuscripts, which differ sig-
nificantly from each other in terms of layout structure,
acquisition resolution, and writing style, etc. The ex-
perimental results indicate that they are able to achieve
very satisfactory performance, i.e., the average precision
and recall values obtained by the text block computation
method can reach as high as 98% and 99%, respectively.

Index Terms— Document layout analysis, medieval
manuscripts, text block computation, text line segmen-
tation, logical component extraction

1. INTRODUCTION

Over recent years, a large number of historical manuscripts
have been digitized and made public, successfully build-
ing numerous digital libraries all over the world. For
massive collections, there is a pressing need for au-
tomatic computer-aided techniques that are able to
perform prompt and intelligent document analysis in
order to extract various types of information [1], such
as text lines and capital letters. Given the extracted

information of interest, scholars can then carry out
their manuscript studies more efficiently and in greater
depth. While manual or semi-automatic techniques can
be used for performing analysis on smaller datasets,
once the datasets reach a certain size these techniques
become unfeasibly expensive in terms of both time
and labor. For instance, when dealing with large-scale
datasets that contain a considerable degree of variability
in manuscript physical structure, non-automatic tech-
niques are not as desirable since, in such a context,
they usually require distinctive parameter settings for
producing good results.

Although some automatic methods [2] [3] for an-
alyzing medieval manuscripts have recently been pro-
posed, they can only work on a per-book/manuscript ba-
sis. In other words, they require the availability of mul-
tiple pages from the same manuscript in order to train
a manuscript-dependent classifier. The dependency is-
sue could restrict their range of applicability, i.e., they,
when applied to deal with a database that contains pages
of structure-distinctive manuscripts, will likely fail due
to the difficulty of obtaining a generalized classifier that
is reasonable for all the data in the dataset. Therefore,
algorithms that can work on a per-page basis are in high
demand.

Two complicating factors are (i) that medieval
manuscripts generally have sophisticated physical struc-
tures, such as flexible writing style and holes; and (ii)
that they have undergone significant degradation, due to
aging, frequent handling and storage conditions. Thus, it
is generally more challenging to design an algorithm for
analyzing medieval manuscripts than modern machine-
printed documents. Expectedly, the methods [4] spe-
cially designed for modern machine-printed documents
are unlikely to produce reasonable results when applied
to historical manuscripts [1]. Despite potential diffi-
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Fig. 1. Algorithmic pipeline. Given an image, we
present three automatic algorithms: text block compu-
tation, text line segmentation and FCLs extraction for it,
based on using template matching and clustering tech-
niques. Manuscript images courtesy of the Yale Univer-
sity [7].

culties, attempts have been made towards developing
computer-assisted techniques for layout analysis of me-
dieval manuscripts. These previous works concentrate
mainly on word spotting [5], word segmentation [6] and
text line extraction [1].

We develop three fully automatic, per-page based
algorithms for analyzing medieval manuscripts: (i) text
block computation, (ii) text line segmentation and (iii)
special component extraction. By “medieval manuscripts”
we refer to professionally prepared books prior to the ad-
vent of mechanical printing. Such books were prepared
by professionals, who as a step in manuscript prepa-
ration ruled the parchment before writing, so that they
generally have regular layouts and stable features [8].
Thousands and thousands of such books professional
produced by hand have survived and are an object of
study by scholars. For the Book of Hours, which we
use for our tests, there are at least 800 surviving copies.
Scholars, such as the scholar we worked with, are in-
terested in finding variations in these book copies that
convey individuality in their production [9].

The algorithmic pipeline is illustrated in Fig. 1. Note
that by special components, we mean those semantically
meaningful elements that are not text. Since the spe-
cial components in our test dataset are almost solely fig-
ures and capital letters (see Fig. 9), we shall abbreviate
them as FCLs. The text blocks and lines are extracted
based on analyzing a projection profile derived from its
corresponding binary image. Although the use of bi-
nary images likely results in weak robustness against
factors such as noise, our methods cope with this lim-
itation by using the reliable text leading/height [1] as
the a priori knowledge about the page’s physical struc-

ture. As demonstrated by our experiments on different
manuscripts, the presented approaches can achieve sat-
isfactory robustness. Similar to previous methods [2,
10], we also formulate the extraction of FCLs as a clus-
tering problem, but with two main distinctions. First,
we utilize both unsupervised and supervised learning al-
gorithms for improved performance, while prior meth-
ods often take into account supervised learning only.
Second, the proposed algorithm is a per-page based al-
gorithm that can carry out single page-based training,
which is implemented through a novel conversion that
transforms the outputs of unsupervised learning into the
inputs of supervised learning. By contrast, to the best
of our knowledge, prior methods perform multiple-page
based training, which requires information contained in
few pages from the same manuscript during the training
process. As such, they fail to produce reasonable results
when working on a database of digital images from mul-
tiple distinct books.

The current paper is a significantly extended ver-
sion of our previous work on color analysis [11]. We in
this paper use similar image template matching idea pre-
sented in [11] to identify text pixels of a given page im-
age and also use the same constraints described in [11]
to determine if an FCL candidate is a real or valid FCL.
The new material includes: (i) text block computation;
(ii) text line segmentation; and (iii) new approach to
identifying FCLs. In sum, the main contributions of this
paper are summarized as follows:

• Three automatic, per-page based algorithms for
analyzing medieval manuscripts.

• A demonstration of how to combine unsupervised
and supervised learning algorithms properly for
classification purposes.

• Extensive evaluation of our proposed algorithms
on a dataset of 1771 images of pages of 6 structure-
distinctive medieval manuscripts.

Overall, the purpose of our paper is to create a re-
liable framework for performing document layout anal-
ysis on medieval manuscripts. Although some assump-
tions regarding medieval text height/width are made, the
framework is highly modular, and some steps are inde-
pendent of the assumptions so that it is adaptable to other
writing styles by, for example, finding a new assumption
for a particular type of manuscripts.



The rest of this paper is organized as follows. Sec-
tion 2 reviews relevant literature. Sections 3 and 4 cover
the extraction of text blocks and text lines respectively.
The algorithm for localizing and extracting FCL is de-
scribed in detail in Section 5. The experimental results
are presented and discussed in Section 6, and we give
a brief conclusion in Section 7. In order to aid in clar-
ity, we have included the frequently used symbols in this
paper in Table 1.

Table 1. Frequently used symbols.
Symbol Meaning
H text height/leading
W text width
K number of colors/clusters
B binary image
S matrix of original matching scores
S′ matrix of updated matching scores
d·e ceiling function
|x| absolute value of x

2. RELATED WORK

There are many excellent works on analyzing historical
documents and they focus on various aspects of anal-
ysis, such as word matching [5] [12], word segmenta-
tion [13] [6], text line extraction [1] [14] [15] and figure
extraction [10]. For concision we will only review the
most relevant here. For a more exhaustive comparison
of layout analysis algorithms, we refer the reader to re-
cent surveys and contests [16] [17] [18] [19].

Text Line Extraction. Projection profiles have been
extensively used for extracting text lines. Manmatha et
al. [13] compute the projection profile by summing
up the pixel values line-by-line. Next, the profile is
smoothed with a Gaussian filter to reduce noise sensitiv-
ity. Finally, text lines are found by detecting the peaks
of the smoothed profile. Arivazhagan et al. [20] propose
a skew-resistant method, where an initial set of candi-
date lines is obtained from the piece-wise projection
profile of the input image, and the lines traverse around
any obstructing handwritten connected component by
associating it with the line above or below. However,
there are many problems that are extremely common
with these project profile based methods, such as a high
sensitivity to noise, inconsistent inter-line spacing, and

text-line skew variability.
The Hough transform has also been successfully

exploited for text line segmentation [14] [21] [22].
Likforman-Sulem et al. [21] propose a hypothesis-
validation scheme. That is, they extract the best text
line hypothesis in the Hough domain, while checking
the validity of the hypothesis in the image domain. Al-
ternatively, Louloudis et al. [14] employ block-based
Hough transform to detect potential text lines.

Image smearing-based algorithms include both the
fuzzy [23] and adaptive RLSA (Run Length Smoothing
Algorithm) [24]. In some approaches, the RLSA mea-
sure is computed for every pixel, yielding an RLSA-
based grayscale image. Then, this grayscale image is
binarized and the text lines are extracted from the binary
image. Other text line extraction methods [1] are based
on feature training and testing.

Although some advanced algorithms [25] [26] [27]
have been recently proposed to extract text lines, they fo-
cus on dealing with the images that are of high contrast
between background and foreground. Consequently,
they generally do not work when used to perform text
line extraction for images of medieval manuscripts,
where the contrast between background and foreground
could be quite low.

As compared to our method, some of the existing
algorithms focus on different classes of documents. For
instance, the work by Garz et al. [28] deals with doc-
uments that have been stored improperly so that the
pages are not flattened, while we consider the thou-
sands of medieval manuscripts stored in libraries that
are not severely damaged as in the special case given
here. Bar-Yosef et al. [29] propose an algorithm that
works for documents with large skew, which does not
occur for the professionally prepared books we are
studying. Arvanitopoulos et al. [30] study a different
class of algorithms for cutting out irregular shapes of
text, that are useful for applications such as handwritten
correspondence, but are not relevant to the analysis of
professionally prepared medieval books.

Our proposed method computes text lines by analyz-
ing projection profiles. Indeed, similar ideas have been
used in previous algorithms [13], but with two main dis-
tinctions. While prior methods work by analyzing whole
images, our proposed algorithm analyzes text blocks in-
stead. In addition, we use the reliable text leading [1]
as the a priori knowledge about the page physical struc-
ture; however, prior algorithms do not generally employ



or consider this useful information. It is this distinction
that allows for our great success in producing such pro-
jection profiles which can be analyzed with less effort
and which can therefore generate better results.

Text Block Extraction. In the past, algorithms have
been presented which have been capable of text block
segmentation. While Jain and Yu [31] concentrate on
geometric layout analysis of printed technical journal
pages, Baechler et al. [32] describe a semi-automatic
tool for historical manuscripts. More recently, Pintus
et al. [3] propose a text block extraction method for
medieval manuscripts. However, this method is per-
book/manuscript based, requiring the availability of a
set of pages from the same manuscript in order to train
a classifier for identifying text pixels.

While Asi et al. [33] treat a problem in variation in
text layout (i.e. writing in curved lines in varies blocks
around main text blocks) in ancient (not medieval) texts
that do not occur in the class of professionally prepared
medieval books that we study, Shafait et al. [34] consider
the segmentation used by various OCR methods applied
to mechanically printed books. The problems consid-
ered in [35] are not present in the class of documents we
consider. As we can see, none of these papers is dealing
with the same type of documents or the same problem
we are interested in the paper.

Motivated by [11], we utilize a template matching
technique to obtain texts and proceed to extract text
blocks by finding connected components. Our proposed
text block extraction method works on a per-page basis
and as such requires only the page being analyzed as the
input, with no reference to other supporting pages.

Special Component Extraction. Extracting or
identifying special, non-text components from histori-
cal manuscripts is becoming an increasingly important
aspect in contemporary document analysis. This is gen-
erally considered as a clustering/segmentation problem,
where each image pixel is classified into one of the
pre-defined groups such as text, background or decora-
tion [2].

Chen et al. [2] develop a layout structure segmen-
tation algorithm, where each pixel is represented by
a vector containing features based on the coordinates,
color and texture information gathered from the area
surrounding the pixel. By taking advantage of the SVM
(Support Vector Machine), Grana et al. [10] propose a
system for automatically extracting graphical elements
from historical manuscripts and then identifying sig-

nificant pictures from them. Yang et al. [11] introduce
an algorithm for automatically estimating a reasonable
number of clusters and demonstrate the importance of
using the cluster number in FCL extraction.

A common issue among methods which employ su-
pervised learning techniques is again that they work on
a per-book basis and consequently have limited appli-
cability. Following [11], we propose a per-page based
algorithm to efficiently address this problem. The pro-
posed method differs from [11] in two aspects. First,
we modify the K computation strategy so that both k-
means and EM algorithm are used, while the original
method uses either individually. Second, while [11] only
takes into account unsupervised learning, our method
reasonably incorporates both unsupervised and super-
vised learning techniques. As demonstrated by the ex-
perimental results, these improvements result in better
classification performance.

3. TEXT BLOCK COMPUTATION

As Fig. 2 illustrates, we propose a two-stage procedure
for extracting the text blocks. In the first stage, we obtain
rough text blocks by analyzing projection profiles. In the
second stage we perform text block refinement by tak-
ing full advantage of a template matching technique to
remove unwanted non-text regions from the text blocks
obtained, which yields better blocks.

Here we assume that a valid text block always satis-
fies the following constraint: its height and width must
be larger than 2 ·H and d1/4 ·Wime, respectively. Here,
H and Wim represent the text leading and image width,
respectively. We compute H using the ATHENA [37].

3.1. Stage I: Rough Text Blocks

Given a color image, we compute its corresponding bi-
nary matrix B using the image binarization method pre-
sented in [11]. This method performs image binarization
under the assumption that there are more background
pixels than foreground ones. Generally, the projection
profile derived from summing along rows of B differs
significantly in shape for text and non-text regions. Tak-
ing into account this fact, we obtain a smoothed pro-
jection profile via performing the unweighted moving
average using adjacent dH/2e neighbors of each profile
point on the original profile (see Fig. 3).



Stage 1: Rough Text Block Stage 2: Text Block Refinement 

Fig. 2. Two-stage text block computation pipeline. Firstly, we analyze the project profiles to yield the rough text
block, whose vertical and horizontal ranges are highlighted by green and red lines, respectively. Second, we propose
a refinement strategy to remove unwanted non-text regions from the obtained rough block and to produce a final
text block. The rightmost figure shows the text blocks before (red) and after (green) refinement. Manuscript images
courtesy of the Yale University [36].
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Fig. 3. From left to right: original image, binary image, original projection profile obtained from summing up pixel
values along rows and smoothed projection profile. Manuscript images courtesy of the Yale University [7].

Next, we compute the local maximum and minimum
points of the smoothed projection profile, subject to the
constraint that the minimum distance between any two
local maximum or minimum points must be larger than
or equal to α ·H . The observation is that the minimum
points likely correspond to text areas, while the image
segment between any two adjacent maximum/minimum
points is generally the text lines themselves. As such,
we put a constraint on the distance between two adjacent
maximum points. That is, it should approximately equal
to the text height, H . For conservative purposes, α is
introduced to relax the constraint; α = 0.7 was used in
our tests.

Then, let ri denote the row index of the i-th min-
imum point, and r−i and r+i the row indices of its 2-
nearest maximum points such that r−i < ri < r+i . We
can quantitatively describe the above observation and
profile shape difference using the ratio defined as fol-
lows:

di = max {f(ri)/f(r−i ), f(ri)/f(r+i )}, (1)

where f(x) indicates the value at the point x of the pro-

file. We fix di = 1 if r−i < ri < r+i does not exist.
Indeed, smaller di corresponds to the regions where text
appears (see Fig. 3). The goal now becomes extracting a
subset of ratios that corresponds to the text regions. To
do so, we apply the k-means++ algorithm [38] (k = 2 in
this paper) to the ratio set {d1, d2, ...}, yielding k clus-
ters C1, C2, ..., Ck. As mentioned earlier that we expect
small di for the text areas, these areas should hence cor-
respond to the cluster Ck∗ given by

minimize
Cj

1

‖Cj‖
·
∑
di∈Cj

di

subject to max
di∈Cj

{f−1(di)} − min
di∈Cj

{f−1(di)} > 2 ·H
,

(2)
where ‖x‖ stands for the number of elements in a set
x and f−1(x) returns the row index associated with x.
The constraint in Eq. 2 reflects our assumption that a text
block contains more than two text lines.

Given Ck∗ , we believe that the text block(s) is/are



bounded by

Θ = [ min
di∈Ck∗

{f−1(di)}−dH/2e , max
di∈Ck∗

{f−1(di)}+dH/2e].

(3)
Notice that ±H/2 in Eq. 3 is due to the fact that a min-
imum point is located approximately in the middle of a
text line (see Fig. 3).

It is easy to see that the above process just prunes
the non-text regions along rows. Our current focus is on
removing those unwanted regions along columns. Sim-
ilarly, a column-based projection profile is first created
by summing along columns of the binary matrix of the
text block computed before. Assuming the block size is
M ×N , we can obtain a N -sized binary vector v:

vi =

{
0 if si ≥ λ ·M
1 otherwise

, (4)

using the N sum values {s1, s2, ..., sN} along columns.
The parameter λ in Eq. 4 is a parameter that distin-
guishes text and non-text columns. In other words, if the
majority of pixels along the i-th column are foreground
(black) pixels, we expect a smaller si. Moreover, this
column is said to be a text column and is associated with
vi = 1. The parameter λ is found through an iterative
process. Starting from λ = 0.98, we iteratively reduce
λ by 0.004, i.e., λ ← λ − 0.004, and terminate the
iteration until there are more than 10 percent of zeros in
the vector v.

After this, we update v using the majority-based vot-
ing rule. Specifically, for each component vi of v, we
group its H-nearest neighbors and assign vi = 0 if there
are more 0’s than 1’s in the group; otherwise vi = 1.

Since vi = 1 corresponds to a text column, the prob-
lem now turns into finding the consecutive 1’s within in
the updated vector v. We partition v into smaller se-
ries of subvectors of consecutive elements vi = 1. For a
specific series, we claim that its corresponding columns
constitute a text block if and only if it obeys the assump-
tion mentioned earlier.

The text blocks obtained in the first stage are not
perfect; i.e., they may contain non-text regions, espe-
cially when the given page contains decorations in the
margins (see Fig. 2). Nevertheless, the intention of pro-
ducing rough blocks and preliminarily removing some
unwanted image parts from the original is twofold: (i) a
better estimate of the stroke width,W , can be computed;
and (ii) the speed of the image matching process can be
greatly increased.

𝐏𝐏𝐻𝐻∗  

𝐏𝐏𝑉𝑉∗  

𝐏𝐏∗ 
𝐏𝐏  

Fig. 4. Illustration of the refinement process for a page
with multiple text blocks. Starting from the rough block
(highlighted in red), we obtain its binary text mark im-
age P, two variants, P∗H and P∗V , of P and also P∗. Re-
fined text blocks are computed by extracting connected
components from P∗. Manuscript images courtesy of
the Oxford University [39].

3.2. Stage II: Text Block Refinement

Motivated by the method presented in [11], here we
refine the text blocks obtained in the previous subsec-
tion under the assumption that the text is rectangularly
shaped. This assumption is generally true for old En-
glish and Latin manuscripts, although in some cases
manuscripts have a highly curved style that will degrade
the performance of our method. Fig. 4 shows how the
refinement algorithm works for a page with multiple
text blocks.

The main idea is that the text of a manuscript page
can be identified by using an image template match-
ing technique due to the shape (rectangularly shaped)
of text. We refer the reader to [11] for more detailed
description on the matching process. Briefly, we, given
the text height H and text stroke width W , begin with
defining a binary text stroke-like template image T:

T(i, j) =

0 if
αH ·H ≤ i ≤ βH ·H
αW ·W ≤ j ≤ βW ·W

1 otherwise
. (5)

Here, H and W are computed based on [1] and [40],
respectively. The two parameters αW and βW are fixed
at αW = 0.5 and βW = 1.5, while the other parame-
ters αH and βH are obtained using connected compo-
nent idea. Then, matching the binary image B and the
template T yields a matrix S of matching scores normal-
ized into [0, 1] and furthermore S′ after making some
updates to S. Fig. 5 shows the color-coded S and S′ for
an example image.

While Yang et al. [11] end up with choosing the pix-
els that corresponding to S′(x, y) < κ for computing



Fig. 5. Visualization of the original matching score map
S and updated map S′ for the text block of Fig. 3 (left).
Here, we assign blue and red color to low and high
matching scores, respectively.

an appropriate number of clusters, we here regard pixels
with S′(x, y) ≥ κ as text pixels. That is, the binary text
mark image P is given by:

P(x, y) =

{
0 if S′(x, y) ≥ κ and B(x, y) = 0

1 otherwise
.

(6)
κ is a threshold distinguishing text and non-text and is
fixed at κ = 0.75 in [11].

With P, we can perform text block refinement based
on the observation that a text block can actually be con-
sidered as a connected component that satisfies certain
constraints. Rather than extracting the connected com-
ponents directly from P, we produce a variant P∗ of it
and then work on P∗ instead.

To generate P∗, we compute both horizontal-direction
and vertical-direction distance maps of P. The distance
map along horizontal direction is defined as follows:

DH(x, y) = min
y′

P(x,y′)=0

{|y − y′|}. (7)

We set DH(x, y) = W + H if P(x, y′) = 0, ∀y′ does
not exist. Next, we compare DH against the threshold
W , resulting in a binary image P∗H :

P∗H(x, y) =

{
0 if DH(x, y) ≤W
1 otherwise

. (8)

Similarly, we can obtain the vertical-direction distance
map DV and furthermore its corresponding binary im-
age P∗V with the threshold H/4. Fig. 2 shows the color-
coded maps for DH and DV . Then, P∗ is produced after
performing element-by-element bitwise AND (&) oper-
ation between P∗H and P∗V , i.e., P∗ = P∗H&P∗V .

Finally, we extract all the connected components
from P∗ and consider each of them as a valid refined
text block if it meets the size-based constraints men-
tioned at the beginning of Section 3.

The intention of generating P∗ is to “close” the gaps
between non-connecting text pixels and hence to in-
crease the accuracy of obtaining expected text blocks.
In other words, P∗H and P∗V are two variants of P pro-
duced by adding extra zero-valued pixels into P. This
addition attempts to merge certain adjacent, yet iso-
lated pixels or closes their “gaps” along both directions,
forming one or few larger connected components in P∗.
Regarding the two thresholds used here, they are an
indication that what gaps can be filled up with zeros.
As an example, considering two foreground pixels at
(x1, y1) and (x1, y2) with

y2 = arg max
y

P(x1,y)=0

{|y1 − y|}, (9)

we believe that the two pixels (x1, y1) and (x1, y2) are
unlikely from the same text block if DH(x1, y1) > 2 ·
W ; and thus they should not be connected. The dis-
connectivity is implemented because DH(x1, y) > W ,
∃y ∈ [y1, y2] holds, assuming without loss of generality
that y1 < y2 and hence P∗H(x1, y) = 1, ∃y ∈ [y1, y2].
Otherwise, ∀y ∈ [y1, y2], DH(x1, y) ≤ W and hence
P∗H(x1, y) = 0.

4. TEXT LINE SEGMENTATION

The extraction of text lines is based on analyzing the
text blocks computed in the previous section. Specifi-
cally, we extract the text lines from the binary images of
the text blocks, rather than from the given whole image.
Again, the main observation is that the spacing between
any two adjacent text lines results in wave-like fluctua-
tion in the row-based projection profile.

Following the same idea and using the same param-
eter setting as mentioned in Section 3.1, we sum up the
pixel values along rows of the binary image of each text
block, smooth these sum values and compute the local
maximum points. Afterward, we extract the image re-
gions bounded by any two adjacent maximum points and
deem them as text lines.

Although our text line segmentation algorithm is
a binary image-based method, we achieve satisfac-
tory performance (precision value of up to 93.20% and



99.62% as shown in Tables 4 and 5, respectively). This
is because it works on a text block basis with the a pri-
ori knowledge about the page’s physical structure; i.e.,
the height of each text line segment is expected to be
approximately H .

5. FCL EXTRACTION

Next, we move on to the most challenging part, where
the focus will be on identifying and extracting FCL, if
existing. Since FCL are generally colored and shaped
distinctively from text (see Fig. 9), we formulate this as
a clustering problem. The algorithmic pipeline is shown
in Fig. 1 and the implementation details are described as
follows.

5.1. Feature and Optimal K Computation

We use the same features as used in [11] and the feature
vector for each foreground pixel is composed of 60 com-
ponents associated with color and statistical character-
istics, such as the mean, standard deviation, skewness,
energy and entropy of the color information.

As the number of colors, K, varies over pages, we
should use content-adaptiveK as the number of clusters
when using clustering algorithms to classify pixels. Oth-
erwise, with fixed K, the unexpected underfitting and
overfitting issues likely occur.

To compute a content-adaptive K, we follow the
strategy in [11] with some modifications. In [11], K
is estimated by minimizing a function that assesses
the quality of a candidate clustering. That is, the ex-
pected/appropriate K should correspond to the best clus-
tering quality. Our proposed method first selects a subset
of foreground pixels corresponding to S′(x, y) < κ and
clusters them into different groups. Then, the clus-
tering quality is measured using the Davies-Bouldin
method [41]. Finally, we compute K as

K =
⌈
(Kkmeans +KEM)/2

⌉
. (10)

where Kkmeans and KEM are the optimal cluster number
K corresponding to good clustering quality, when using
K-means and the EM algorithm for the Gaussian mix-
ture model to perform clustering. Kkmeans is estimated
as

Kkmeans =

{
d(K+ +K−)/2e+ 1 if |K+ −K−| ≤ 3

K+ + 1 otherwise
,

(11)

where K+ and K− denote the indices of the first
and second minimum elements of {DBK̃ : K̃ ∈
[Kmin, Kmax]}. Kmin and Kmax define the range of
K; that is, the number of colors that one manuscript
page generally uses. We fix Kmin = 1 and Kmax = 7.
|K+ − K−| ≤ 3 in Eq. 11 means that both K+ and
K− should be reliable due to their small difference and
thus should contribute to Kkmeans. The computation
procedure for its corresponding KEM is analogous, so
we omit the details.

Two noticeable changes to the original method pre-
sented in [11] are (i) that we combine both the k-means
and EM clustering algorithms to compute the expected
K in Eq. 11, while [11] uses each individually and
(ii) that we use an improved equation 11 to compute
Kkmeans.

5.2. Feature Clustering and FCL Extraction

The clustering algorithms used include the k-means,
SVM and EM algorithm for the Gaussian mixture
model. FCL are extracted according to the binary mask
image I, which is derived from combining all the bi-
nary mask images {I1, I2, . . . , I8} that are produced
based on the results of these clustering methods. Each
zero-valued pixel in each mask image corresponds to
a unit/element of a FCL. The algorithmic details are
described as follows. Note that we shall only consider
the foreground pixels in the following unless otherwise
stated.

Mask Image I1. To compute the first binary mask im-
age I1, we apply the k-means algorithm with k = K
(computed using Eq. 10) clusters to classify the image
pixels, resulting in K groups. However, since the com-
puted K could be inaccurate, the clustering results may
be not satisfactory and consequently the cluster labels
may have to be amended [11]. We update K follow-
ing [11].

To distinguish the text and FCL pixels, we take
into account the two observations: (i) generally there
are significantly more text pixels than FCL ones and
(ii) the text pixels are associated with larger matching
scores. Considering the pixels with the matching score
S′(x, y) ≥ κ = 0.85, we respectively count the number
of occurrences of each label in {1, 2, . . . ,K} for these
pixels to produce the count set {n1, n2, . . . , nK}. With
the observation in mind, we can thus assume that the



text has been assigned the label

i∗ = arg max
i

{ni}. (12)

and hence that the pixels without the label i∗ are the el-
ements of FCL.

The binary mask I1 is produced as follows. We first
initialize it with ones. Next, we perform I1(x, y) = 0
if and only if its label is not i∗, i.e., it belongs to the set
{1, 2, . . . ,K}−{i∗}. This way, I1(x, y) = 0 is expected
to correspond to the FCL pixels, while I1(x, y) = 1 is
for the text and background pixels.

Mask Image I2. The computation process for the sec-
ond mask image I2 is exactly the same as for I1, except
that we use the EM algorithm rather than the k-means
method.

Mask Image I3. To generate I3, we combine both the
k-means and SVM clustering algorithms. That is, we
employ the clustering results resulting from k-means to
assist the SVM training. First, the k-means algorithm
with K clusters is first applied to classify the image pix-
els. Next, we train a SVM classifier with Radial Basis
Function (RBF) kernel using the features computed in
Section 5.1 and k-means based clustering labels. In our
experiments, the training pixels include those that cor-
respond to S′(x, y) < κ = 0.75 (likely non-text pix-
els) and half of those pixels (likely text pixels) that have
S′(x, y) ≥ κ = 0.85 and the label i∗. The half pixels
are randomly chosen.

After the SVM-based classifier has been computed,
we perform pixel classification and subsequently pro-
duce I3, following the strategy as mentioned in the I1
computation.

Mask Image I4. Simply replacing the k-means algo-
rithm with the EM algorithm for computing I3 will yield
the fourth binary mask image I4.

Mask Image I5. To compute the fifth mask image I5,
we combine the k-means, EM algorithm and SVM to-
gether. To train a better SVM classifier, we utilize the
first two algorithms with K clusters to identify more re-
liable training pixels. A pixel is deemed as reliable if
the two labels from the two unsupervised methods are
corresponding to each other. Note that there is no need
for the two methods to assign the same label to the pixel,
i.e., label consistency is not required.

Since the labels from the two unsupervised algo-
rithms may not be consistent, we first need to com-

pute Σ, which is composed of a set of label corre-
spondences. In other words, the task is to find a per-
mutation of the k-means labels (EM labels) so that
the permuted labels correspond to the EM labels (k-
means labels). Let {nkmeans

1 , nkmeans
2 , . . . , nkmeans

K } and
{nEM

1 , nEM
2 , . . . , nEM

K } denote the numbers of occur-
rences of each k-means and EM label of the train-
ing pixels, which are obtained using the same way
as used for computing I3. Assuming the k-means la-
bel i corresponds to the EM label i′, then their oc-
currences nkmeans

i and nEM
i′ are expected to be sim-

ilar; that is, the difference |nkmeans
i − nEM

i′ | should
be small. Computing the differences between any
two elements in {nkmeans

1 , nkmeans
2 , . . . , nkmeans

K } and
{nEM

1 , nEM
2 , . . . , nEM

K } yields a K × K dissimilarity
matrix M

M(i, j) = |nkmeans
i − nEM

j |. (13)

A good label correspondence is found if the sum of all
its dissimilarities is small. In our case, the aim is there-
fore to find a constrained minimum assignment through
column and/or row permutation to minimize the trace of
M. Mathematically,

minimize trace(M)

subject to arg max
i

{nkmeans
i } ↔ arg max

i
{nEM

i }
,

(14)
where ↔ stands for a correspondence between two la-
bels. The constraint in Eq. 14 reflects our assumption
that there are more text pixels in the training set and
thus that their labels should correspond to each other.
To solve this optimization problem, various optimiza-
tion algorithms, such as [42], can be used. We in this
paper use the Hungarian algorithm [43], which results
in a set of label correspondences Σ.

Given Σ, we carefully prune the pixels in the train-
ing set with the aim of obtaining more reliable train-
ing pixels for improved training and hence better clus-
tering. For each pixel in the original training set, we
find both its k-means and EM labels, denoted by ikmeans

and iEM. If (ikmeans, iEM) ∈ Σ, this would indicate that
(ikmeans, iEM) is a pair with label consistency and that
ikmeans is corresponding to iEM, so that we consider it as
a training-reliable pixel and then add it to the new train-
ing set. Otherwise, we ignore it if (ikmeans, iEM) /∈ Σ.
Finally, with the new training data and their labels, we
obtain I5 using the same way the mask I3 is computed,
but the only difference is to use the new training data.



Mask Image I6. The sixth mask image I6 might be
produced, depending upon if the number K of clusters
needs to be updated when computing I1. That is, if the
k-means-based labels require amendment, the K com-
puted by Eq. 10 needs to be updated accordingly and
hence we will produce I6. Let Kkmeans

new (Kkmeans
new < K)

denote the new number of clusters. Given Kkmeans
new as

the input, we just go through the same procedure as we
compute I3, yielding I6.

Mask Image I7. Similarly, we check if there are any
incorrectly labeled pixels by the EM algorithm, and if
so, compute the new cluster number KEM

new (KEM
new < K).

Next, the seventh mask image I7 can be produced in the
same way I4 is computed using KEM

new instead of K.

Mask Image I8. We generate the eighth mask image
I8 following the same strategy as used for computing
I5. Since the process of producing I5 involves the label
correspondence/matching, the number of the unique k-
means-based labels must be equal to that of the unique
EM algorithm-based labels. This would mean that I8
will be generated if and only if Kkmeans

new = KEM
new < K.

Final Mask Image I. The final binary image I is
constructed after combining all the existing masks
{I1, I2, . . . , I8}. Specifically, I is computed by compar-
ing the numbers of the pixel values 0 and 1 as follows:

I(x, y) =

0 if
∑
i

(Ii(x, y) == 1) <
∑
i

(Ii(x, y) == 0)

1 otherwise
.

(15)
Notice again that {I6, I7, I8} may not exist and also that
a background pixel at the position (x, y) is not consid-
ered as an FCL pixel so that Ii(x, y) = 1 and hence
I(x, y) = 1, ∀i ∈ {1, 2, . . . , 8}.

It is worth mentioning here that we have observed
that the amount each mask image Ii contributes varies
over pages, indicating that that it is not reasonable to
claim Ii is consistently better than Ij in terms of pixel
classification. Moreover, presented above is just an effi-
cient strategy for generating I, but we do not focus on in-
vestigating and comparing other possible strategies that
may use {I1, I2, . . . , I8} in a different manner.

Given the final binary mask I, we are able to ex-
tract FCL from it. In other words, FCL are considered
as those connected components of I that satisfy the con-
straints described in [11].

6. EXPERIMENTAL RESULTS

In this section, we perform a comprehensive evaluation
of the proposed algorithms on a public dataset with 1819
images of pages of 7 different manuscripts from the Yale
Universitys Beinecke Rare Book and Manuscript Digital
Library [44], the Oxford Universitys Bodleian Library
and the Walters Art Museum. The dataset is available
to download at [45]. The data are very heterogeneous,
in terms of layout structure (e.g., number of columns
and text density), conservation (e.g., ageing, ink bleed-
through and noise), acquisition resolution and writing
styles. We implemented these algorithms using MAT-
LAB, C++ and the OpenCV library [46]. The compu-
tational time depends on the dimensions of the test im-
ages. For a 3128×2274-sized image, our non-optimized
implementation takes approximately 11 seconds, 12 sec-
onds and 3.5 minutes respectively to extract text blocks,
text lines and FCL on a PC running on an 8 Intel Core
i7-3630QM CPU 2.40GHz processor with 12GB mem-
ory.

6.1. Evaluation Methodology

We evaluate the performance of our algorithms in both
pixel-level and object-level. Like [3], we report the re-
sults in Precision and Recall values, given by:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

, (16)

where TP, FP and FN indicate true-positive, false posi-
tive and false-negative, respectively. Note that we take
into account all pixels when computing TP, FP and FN
for pixel-level evaluation.

By pixel-level, we mean that we consider pixel clas-
sification accuracy when computing TP, FP and FN. In
doing so, we compare the results automatically gener-
ated by the proposed algorithms against a ground truth
dataset. To create the ground truth data, we, for each al-
gorithm proposed, randomly select 5 images from each
manuscript, forming a dataset of 105 images. Next,
we obtain a single binary mask by manually segment-
ing each image in the dataset into either text blocks,
text lines or FCL. Fig. 6 shows our manually produced
ground truth masks for an example image. It is worth
mentioning here that the pixel-level based evaluation
strategy is only practical for a small set of images (105



Fig. 6. Illustration of the manually created mask images
for evaluating text block computation algorithm (mid-
dle) and FCL extraction algorithm (right) for an example
manuscript page image (left). Manuscript images cour-
tesy of the Yale University [47].

in our experiments), since the ground truth data for
the test data used in the experiments is not available
yet and also since creating them is a very tedious and
time-consuming process.

Given a ground truth mask Pman and its correspond-
ing mask Pauto resulting from one of our algorithms, we
analyze the pixel value pairs (Pman(x, y),Pauto(x, y)) at
each position (x, y). That is, TP, FP and FN correspond
to (0, 0), (1, 0) and (0, 1), respectively.

By object-level, we mean that TP, FP and FN
are computed based on the object classification ac-
curacy, which is obtained by visually assessing the
automatically-generated results. As these results are vi-
sualized by drawing rectangles or lines, we just need to
go through all the test images to perceptually verify the
result correctness and obtain the resulting TP, FP and
FN. For instance, to evaluate the FCL results, we pre-
sented them to two users, who were asked to give the TP,
FP and FN. In order for an extracted FCL to be deemed
as TP, there must be more than 80% overlap between
it and its corresponding rectangular box. Notice that
the object-level evaluation emphasizes the capability of
successfully detecting the objects (text block, text lines
and FCL) rather than the pixel-level detection accuracy.
Although this strategy is a binary judgment (correct or
incorrect) [1], it makes extensive validation possible
while efficiently evaluating the algorithm performance.

It is worth mentioning that the groundtruth data for
the whole dataset is not available yet and also that creat-
ing the groundtruth data, though very useful, for such a
big dataset is not considered a contribution of our work.
Thus, we can only create the groundtruth data for a small
portion of the dataset, which were randomly selected to
avoid biased selection.

Another important reason of performing evaluation
on groundtruth data is to demonstrate that the results
by object-level evaluation (used for extensive evaluation
when groundtruth data is not available) are reliable. In-
deed, by comparing Tables 2 and 3, Tables 4 and 5, and
Tables 6 and 8, we can see that the results by pixel-level
evaluation match well with those by object-level evalu-
ation, indicating we would expect similar results when
evaluating on the groundtruth data for the whole dataset.
Therefore, even though the groundtruth data we tested
on is for 90 images, the results obtained on them can
still reliably reflect the overall performance of the pro-
posed methods.

6.2. Text Block Computation Results

We applied the text block computation algorithm to the
randomly selected 35 images with 42 text blocks. As we
can see from Table 2 showing the resulting pixel-level
evaluation results, the proposed algorithm can achieve
very satisfactory results, with an overall precision value
of up to 97% and a recall value of up to 96%.

By contrast, we also evaluated the algorithm on all
the test images with 2045 text blocks in order to further
demonstrate its efficiency. After visually checking the
results, we list the numerical statistics in Table 3. It is
easy to see from this table that we can achieve up to 99%
precision and 96% recall.

To visualize the detected text blocks, we draw the
rectangles over their own images. Fig. 7 illustrates the
text block computation results for few example images
from 7 physical appearance-distinct manuscripts. This
figure demonstrates that we are able to identify the un-
wanted image parts from the coarse text blocks and re-
move them to produce the satisfactory refined blocks.
Moreover, the rightmost image shows that the proposed
method is still successful even when used to detect the
text blocks with a few text lines. From these results pro-
duced on the massive number of page images, we can
conclude that the proposed method is capable of auto-
matically extracting text blocks.

6.3. Text Line Segmentation Results

Table 4 reports the text line segmentation results ob-
tained from applying the proposed method to the ran-
domly selected 35 images with 759 lines. From this ta-
ble, we are able to achieve the precision and recall values



Table 2. Pixel-level evaluation results for text block computation.
Manuscript Name Blocks TP FP FN Precision Recall

BeineckeMS10 5 9.54× 106 7.54× 104 5.62× 105 99.22% 94.44%
BeineckeMS109 5 4.05× 106 4.13× 104 1.57× 105 98.99% 96.27%
BeineckeMS310 5 2.97× 107 6.10× 105 4.10× 105 97.99% 98.64%
BeineckeMS360 5 5.28× 106 8.24× 104 1.56× 105 98.46% 97.13%

Osborna44 5 8.22× 106 2.09× 105 4.45× 105 97.52% 94.86%
BodleianMSBodley850 12 3.34× 106 1.97× 105 1.57× 105 94.42% 95.50%

Walters34 5 1.82× 107 5.24× 105 1.19× 106 97.20% 93.85%
# Manuscripts – 7 42 7.83× 107 1.73× 106 3.04× 106 97.84% 96.26%

Table 3. Object-level evaluation results for text block computation. We compare these results against those obtained
by the state-of-the-art method [3].

Manuscript Name Blocks TP FP FN Precision Recall
[3]/Our [3]/Our

BeineckeMS10 173 173 0 0 NA/100% NA/100%
BeineckeMS109 250 246 1 4 91.01%/99.60% 98.83%/98.40%
BeineckeMS310 277 275 4 2 94.56%/98.57% 90.06%/99.28%
BeineckeMS360 370 370 0 0 67.26%/100% 97.17%/100%

Osborna44 470 467 2 3 77.73%/99.57% 95.25%/99.36%
BodleianMSBodley850 457 447 22 10 NA/95.31% NA/97.81%

Walters34 48 40 0 8 NA/100% NA/83.33%
# Manuscripts – 7 2045 2018 29 27 82.64%/99.01% 95.33%/96.88%

Fig. 7. Block computation results for several example page images, which are respectively from BeineckeMS10,
BeineckeMS109, BeineckeMS310, BeineckeMS360, Osborna44 and BodleianMSBodley850 (from left to right). The
two rightmost images show pages from the BodleianMSBodley850 manuscript. The green and red rectangles show
the results before and after text block refinement. Manuscript images courtesy of the Yale University [7, 48, 36, 47,
49] and the Oxford University [39].

as high as 98% and 97% across the manuscripts tested.
However, due to the skew introduced during document
scanning (see Fig. 8), the text lines have inclinations
with respect to the horizontal lines. This is in conflict
with our assumption that they are parallel to the hori-
zontal lines, hence making the precision and recall by
the text line segmentation algorithm smaller than those
by the text block computation approach. For improved

results, we can apply the de-skewing algorithms to pre-
process the images before using our method.

In addition, we apply the algorithm to all the test
images, which have a total of 39847 text lines. Table 5
summaries the object-level evaluation results obtained
from visual inspection. Again, the algorithm yields up
to 100% precision and recall for some manuscripts, ex-
hibiting very satisfactory performance.



Table 4. Pixel-level evaluation results for text line segmentation.
Manuscript Name Lines TP FP FN Precision Recall

BeineckeMS10 60 9.23× 106 4.55× 105 1.33× 106 95.30% 87.41%
BeineckeMS109 100 4.06× 106 5.54× 105 5.43× 105 87.99% 88.20%
BeineckeMS310 88 1.28× 107 6.50× 105 2.29× 106 95.17% 84.82%
BeineckeMS360 110 4.89× 106 4.73× 105 5.34× 105 91.18% 90.15%

Osborna44 90 7.76× 106 6.86× 105 8.21× 105 91.88% 90.43%
BodleianMSBodley850 220 3.43× 106 2.57× 105 3.86× 105 93.03% 89.89%

Walters34 91 4.35× 108 2.29× 106 4.72× 106 99.48% 98.93%
# Manuscripts - 7 759 4.77× 108 5.37× 106 1.06× 107 98.89% 97.83%

Table 5. Object-level evaluation results for text line segmentation. We compare these results against those obtained
by the state-of-the-art methods [1, 3].

Manuscript Name Lines TP FP FN Precision Recall
[1]/[3]/Our [1]/[3]/Our

BeineckeMS10 2076 2076 2 0 100%/NA/99.90% 99.90%/NA/100%
BeineckeMS109 4652 4586 21 66 98.64%/97.48%/99.54% 97.73%/99.00%/98.58%
BeineckeMS310 5264 5161 83 103 98.64%/95.24%/98.42% 97.73%/99.00%/98.04%
BeineckeMS360 8162 8044 0 118 98.61%/92.09%/100% 98.23%/98.19%/98.55%

Osborna44 9317 9134 29 183 99.96%/97.07%/99.68% 90.37%/99.03%/98.04%
BodleianMSBodley850 9695 9409 12 286 NA/NA/99.87% NA/NA/97.05%

Walters34 681 607 6 74 99.92%/NA/99.02% 95.18%/NA/89.13%
# Manuscripts – 7 39847 39017 153 830 99.17%/95.47%/99.61% 96.79%/98.81%/97.92%

Fig. 8 visualizes the line segmentation results for a
few images. As this figure shows, the proposed method
is successful in segmenting the text lines, even if the
pages are seriously degraded with low quality.

6.4. FCL Extraction Results

To evaluate the performance of the FCL extraction algo-
rithm, we first apply it to the random 35 images with 357
FCL. Table 6 shows that in this environment the average
pixel-level precision and recall accuracies can reach as
high as 98.71% and 96.93%, respectively. Nevertheless,
the pixel-level results do not explicitly indicate the ac-
curacy of successful FCL extraction because we cannot
infer from them how many FCL have been successfully
detected.

In Table 7, we compare the pixel-level based results
obtained from using the individual masks {I1, I2, ..., I8}
and their combination I for FCL extraction. The results
indicate that I1, I2, I5, I6 and I8 provide similar Preci-
sion and Recall values. Although I3, I4 and I7 each have
relatively lower Precision, they can offer higher Recall.

On the other hand, just as expected, using the mask I,
which is the combination of {I1, I2, ..., I8}, yields the
best Precision and Recall values than using any individ-
ual mask Ij , 1 ≤ j ≤ 8 does.

extraction from all the 1819 images with 13668
FCL. Although the pages of these test manuscript, es-
pecially the manuscript BeineckeMS109, contain a great
deal of noise and are of very low quality, our approach
still achieves very desirable performance.

We visualize the detected FCL for several images in
Fig. 9. Notice that it is quite challenging to extract all
the FCL from the second leftmost and rightmost images
since some of them look rather similar to the text. For-
tunately, the visualization shows that our proposed algo-
rithm is able to extract all of them, clearly demonstrating
its efficiency.

6.5. Algorithm Comparison

We compare our proposed text block computation and
text line segmentation algorithms against two state-of-
the-art methods in [1, 3] and the FCL extraction method



Fig. 8. Text line segmentation results for several example page images, which are respectively from Beineck-
eMS10, BeineckeMS109, BeineckeMS310, BeineckeMS360, BodleianMSBodley850 and Osborna44 (from left to
right). Manuscript images courtesy of the Yale University [7, 48, 36, 47, 49] and the Oxford University [39].

Table 6. Pixel-level evaluation results for FCL extraction.
Manuscript Name FCL TP FP FN Precision Recall

BeineckeMS10 17 1.02× 106 3.38× 104 5.66× 104 96.79% 94.83%
BeineckeMS109 37 6.51× 105 2.53× 105 2.96× 104 72.01% 95.65%
BeineckeMS310 77 2.89× 106 2.66× 105 2.08× 105 91.57% 93.29%
BeineckeMS360 50 5.12× 105 2.33× 104 1.73× 104 95.65% 96.73%

Osborna44 41 1.10× 106 1.34× 105 6.31× 104 89.11% 94.58%
BodleianMSBodley850 90 5.05× 105 6.27× 104 6.33× 104 88.94% 88.85%

Walters34 45 3.03× 107 3.95× 105 4.96× 105 98.71% 98.39%
# Manuscripts – 7 357 3.70× 107 1.17× 106 9.34× 105 98.71% 96.93%

Fig. 9. FCL extraction results for several example page images, which are respectively from BeineckeMS10, Beineck-
eMS109, BeineckeMS310, BeineckeMS360, BodleianMSBodley850 and Osborna44 (from left to right). Manuscript
images courtesy of the Yale University [7, 48, 36, 47, 49] and the Oxford University [39].

against [11]. As the comparison results listed in Tables 3
and 5 show, our approaches very likely outperform [1, 3]
in terms of both precision and recall rates. Moreover,
Table 8 indicates that, compared to [11], the proposed
method provides higher precision by anywhere between
1% to 10%, as well as comparable recall values.

Regarding applicability, we believe that our per-
page based methods can be used in a wider range of
applications because the approaches presented in [1, 3]
both work on a per-book basis. The method by Pintus

et al. [3] requires the availability of few pages from
the same manuscript in order to train a classifier. By
contrast, our methods are all single-page based with no
reference to any other pages.

Fig. 10 illustrates the automatically generated results
for some challenging pages. Despite the existence of
noise and/or marginal decorations that can create dif-
ficulties, the proposed algorithms still succeed in cor-
rectly extracting the text block, text lines and FCL.

However, our algorithms could yield unexpected re-



Table 7. Comparison of pixel-level evaluation results obtained from using the individual masks {I1, I2, ..., I8} and
their combination I8 for FCL extraction.

Mask Name FCL TP FP FN Precision Recall
I1 312 6.29× 106 1.04× 106 0.83× 106 85.78% 88.32%
I2 312 6.26× 106 1.18× 106 0.87× 106 84.17% 87.83%
I3 312 6.69× 106 3.19× 106 0.43× 106 67.70% 93.97%
I4 312 6.64× 106 3.37× 106 0.48× 106 66.29% 93.26%
I5 312 6.36× 106 1.25× 106 0.76× 106 83.62% 89.32%
I6 312 1.70× 106 0.31× 106 0.37× 106 84.53% 82.06%
I7 312 1.40× 106 0.54× 106 0.12× 106 72.35% 91.97%
I8 312 1.28× 106 0.36× 106 0.25× 106 77.98% 83.90%
I 312 6.68× 106 7.73× 105 4.38× 105 89.63% 93.85%

Table 8. Object-level evaluation results for FCL extraction. We compare these results against those obtained by the
method presented in [11].

Manuscript Name FCL TP FP FN Precision Recall
[11]/Our [11]/Our

BeineckeMS10 767 724 20 43 87.82%/97.31% 99.23%/94.39%
BeineckeMS109 1386 1333 115 53 88.55%/92.06% 95.80%/96.18%
BeineckeMS310 2443 2330 112 113 90.02%/95.41% 96.33%/95.37%
BeineckeMS360 3503 3257 13 246 98.36%/99.60% 89.93%/92.98%

Osborna44 3386 3144 118 242 NA/96.38% NA/92.85%
BodleianMSBodley850 1793 1475 62 318 NA/95.97% NA/82.26%

Walters34 390 323 13 67 NA/96.13% NA/82.82%
# Manuscripts – 7 13668 12586 453 1082 91.19%/96.53% 95.32/92.08%

Fig. 10. Results for some challenging pages, which
contain a great deal of noise and/or marginal decora-
tions. Manuscript images courtesy of the Yale Univer-
sity [48, 36] and the Oxford University [39].

sults when applied to pages that are composed of sparse
text lines. This is mainly due to the heavy dependence
on the text leading H and also the assumption about the
spacing between two text lines. Fig. 11 illustrates an
example image for which the algorithms are not very
successful.

Although comparing the proposed methods against
other state-of-the-art algorithms allows us to further

Fig. 11. Failure example page. The text height com-
puted by ATHENA [37] is 158, but its real value is 60.
Manuscript images courtesy of the Yale University [36].

evaluate the performance of our methods, to the best of
our knowledge, there is one major difficulty: the vast
majority of the previous algorithms are not completely
automatic and independent of the text leading and im-
age resolution. They typically require a parameter set
by the user. This manual tuning, which is not present in
our approaches, might add a bias in the comparison and
evaluation.



7. CONCLUSION

Given an image of a medieval manuscript page, we
present three fully automatic, per-page-based layout
analysis algorithms: text block computation, text line
segmentation and special component extraction. Their
automation property enables them to be particularly
useful for scenarios where many images need to be an-
alyzed. Moreover, unlike the state-of-the-art methods
requiring images of few pages from the same manuscript
to work, our proposed algorithms work on a per-page
basis, so that they can be used in a wider range of appli-
cations.

We carried out an extensive experimental evaluation
of the proposed algorithms by testing them on 1819 im-
ages of pages of 7 distinct medieval manuscripts. As
demonstrated by the results, they can achieve very sat-
isfactory performance; that is, the overall precision and
recall values are as high as 99% and 97%, respectively,
for the text line segmentation algorithm. Even for the
very changeling task of extracting FCLs, our method is
able to achieve up to a 96% precision rate. The suc-
cess is attributed to taking advantage of previous clus-
tering (both unsupervised and supervised) and template
matching techniques, as well as the a priori knowledge
(the text leading is H) about the page physical structure.

As a direction for future research, we plan to inves-
tigate the analysis methods based on superpixels other
than single individual pixel. The aim is to make further
improvements by regarding as an independent compo-
nent each superpixel rather than a single pixel. We will
further evaluate the performance of the proposed algo-
rithms by comparing them against other state-of-the-art
approaches and also testing them on other publicly avail-
able datasets. In order to make the evaluation easier to
perform, we have developed a program for creating the
ground truth data. This will allow us to conduct in-depth
analysis on the results and hence to design improved al-
gorithmic strategy. Therefore, our future work also in-
cludes creating ground truth data so that algorithm eval-
uation can be simplified and performed without requir-
ing users to manually judge the correctness of results.
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