Abstract

We present a stable and efficient divide-and-conquer algorithm for comput-
ing the eigendecomposition of an N x N symmetric tridiagonal matrix. It is
based on a new, backward stable scheme for finding the eigendecomposition
of a symmetric arrowhead matrix. Numerical results show that this algorithm
is competitive with the QR algorithm, bisection with inverse iteration and
Cuppen’s divide-and-conquer algorithm for solving the symmetric tridiagonal
eigenproblem. We also show how to use the fast multipole method of Car-
rier, Greengard and Rokhlin to speed up this algorithm from O(N?) time to
O(N log, N) time for computing all the eigenvalues, and from O(N?3) time to
O(N?) time for computing all the eigenvalues and eigenvectors.
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1. Introduction

Given an N X N symmetric tridiagonal matrix
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the symmetric tridiagonal eigenproblem is to find the eigendecomposition:
T =XAXT |

where A is diagonal and X is orthonormal. The diagonal elements of A are the eigenvalues
of T, and the columns of X are the corresponding eigenvectors. This is a basic problem in
numerical linear algebra [12, 24, 28, 29]. In this paper, we propose a divide-and-conquer
algorithm, arrowhead divide-and-conquer (ADC), for solving this problem.

ADC divides! T into two smaller symmetric tridiagonal matrices 77 and T3, each of
which is a principle submatrix of 7. It then recursively computes the eigendecompositions
of Ty and T3, and computes an orthonormal matrix Q such that T = QHQT, where H is a
symmetric arrowhead matrix

- ( a 2T ) ,
z D

with D a diagonal matrix and z a vector. It computes the eigenvalues of T by computing
the eigendecomposition

H=UAUT |

where U is an orthonormal matrix®. It then computes the eigenvector matrix of T as QU (see
Section 2).

Since error is associated with computation, a numerical eigendecomposition of T or H
is usually defined as a decomposition of the form

T=XAXT +0(c|T)ls) or H=UAUT +0(c||H|:) , (1.1)

where € is the machine precision; A is diagonal; and XorUis numerically orthonormal. An
algorithm that produces such a decomposition is said to be backward stable [28].

While the eigenvalues of T and H are always well-conditioned with respect to a symmetric
perturbation, the eigenvectors can be extremely sensitive to such perturbations [12, 24, 28,
29]. That is, A can be guaranteed to be close to A, but X and U can be very different from
X and U, respectively. Thus one is usually content with backward stable algorithms for
computing the eigendecompositions of T and H.

1 This dividing strategy has previously appeared in (1, 3, 13, 15].
?Since T and H are similar, they have the same eigenvalues.




The problem of computing the eigendecomposition of a symmetric arrowhead matrix is
an interesting problem in its own right (see [3, 4, 23, 25, 26] and the references therein).
Several schemes for solving this problem have been proposed [3, 23, 26]. While they can
compute the eigenvalues to high absolute accuracy, in the presence of close eigenvalues they
can have difficulties in computing numerically orthonormal eigenvectors, unless extended
precision arithmetic is used [21, 27]. In this paper we present a new scheme for computing
the eigendecomposition of a symmetric arrowhead matrix. It is similar to previous schemes in
finding the eigenvalues, but it uses a completely different method in finding the eigenvectors,
one that is backward stable. The amount of work is roughly the same as for previous schemes,
yet it does not require the use or simulation of extended precision arithmetic. Since it uses
this scheme, ADC is backward stable as well.

ADC computes all the eigenvalues of T' in O(NN?) time, and both the eigenvalues and
eigenvectors of T in O(IN?) time. We show that by using the fast multipole method of Carrier,
Greengard and Rokhlin [9, 14], ADC can be accelerated to compute all the eigenvalues of a
symmetric tridiagonal matrixin O(N log, N) time, and both the eigenvalues and eigenvectors
in O(N?) time. These asymptotic time requirements are better than the corresponding worst-
case time requirements (O(N?) and O(N?®)) for the QR algorithm [7, 12] and bisection with
inverse iteration [12, 19, 20]. This is an important advantage of ADC for large matrices. Qur
scheme for finding all the eigenvalues of H takes O(N?) time, as do previous schemes [3, 23,
26]. By using the fast multipole method, it can be accelerated to compute all the eigenvalues
of H in O(N) time.

Cuppen’s divide-and-conquer algorithm (CDC) [10, 11] uses a dividing strategy simi-
lar to that of ADC to compute the eigendecomposition of T, but it reduces T to a sym-
metric rank-one modification to a diagonal matrix, rather than to an arrowhead matrix.
CDC is considered one of the fastest algorithms for solving the symmetric tridiagonal eigen-
problem in both sequential and parallel settings [10, 11, 12, 18, 19], but it can be unsta-
ble [5, 10, 11], unless extended precision arithmetic is used [21, 27]. In contrast, ADC is
backward stable, and our implementation is roughly twice as fast as existing implementa-
tions of CDC (TREEQL [11]) for relatively large matrices (N > 256), due to differences in
how deflation is implemented (see Sections 4 and 6).

The occasional instability of CDC can be overcome without extended precision arith-
metic by using our techniques in [17]; the deflation procedure for ADC can also be used in
CDC, as can the fast multipole method. We have implemented only ADC. Our implemen-
tation shows that ADC is also very competitive with the QR algorithm [7, 12] and bisection
with inverse iteration [12, 19, 20].

We take the usual model of arithmetic®

fllzoy)=(zoy) 1+¢) ,

3 This model excludes machines like CRAYs and CDC Cybers that do not have a guard digit. ADC can
easily be modified for such machines.




where z and y are floating point numbers; o is one of +, —, X, and +; fi(z o y) is the floating
point result of the operation o; and |{| < e. We also require that

AWz) = Vz (1+¢§)

for any positive floating point number z. For simplicity, we ignore the possibility of overflow
and underflow.

Section 2 presents the dividing strategy used in ADC); Section 3 develops an efficient
scheme for the eigendecomposition of a symmetric arrowhead matrix and shows that it is
backward stable; Section 4 discusses the deflation procedure used in ADC; Section 5 discusses
the application of the fast multipole method to speed up ADC; and Section 6 presents some
numerical results.

2. “Dividing” the Matrix

Given a symmetric tridiagonal matrix T of size N x N, ADC recursively divides T into
two subproblems as follows:

Ty Bryer 0
T=| Brrre] 1 Breoe] , (2.1)
0 ﬂk+2 €1 T,

where Ty and T, are k X k and (N — k — 1) x (N — k — 1) principle submatrices of T,
respectively; and e; is the j-th unit vector of appropriate dimension. Usually ¥ < N is taken

to be | N/2].
Let Q:D;Q.T be an eigendecomposition of T;. Substituting these into (2.1), we get
QD:1Q1" Brirex 0

T = ﬂk+16£ (0738 ] ﬂk+2e:1r
0 Brrzer Q2D2Q,T
0@ 0 akr1 BT BrsafF 0 1 0
= 1 0 0 ,Bk+1ll D] 0 Q]T 0 0 (22)
0 0 Q: Brszafz O D, 0 0 Q.7
= QUAUTQT
= XAXT

where [T is the last row of Qy; fI is the first row of Qy; @ is the first matrix in (2.2); and
UAUT is an eigendecomposition of the middle arrowhead matrix. Thus T is reduced to an
arrowhead matrix by the orthonormal similarity transformation Q.

ADC computes an eigendecomposition for the middle arrowhead matrix using the scheme
described in Section 3. The eigenvalues of T are the diagonal elements of A, and the eigen-
vector matrix of T is obtained by computing the matrix-matrix product X = QU. To
compute the eigendecompositions of 77 and T3, this process (equations (2.1) and (2.2)) can




be recursively applied until the subproblems are sufficiently small. These small subproblems
are then solved using the QR algorithm. There can be at most O(log, V) levels of recursion.

Equations (2.1) and (2.2) also suggest a recursion for computing only the eigenvalues.
Let fT be the first row of Qy, and let IT be the last row of Q,. Suppose that D;, f; and ;
are given for ¢ = 1,2. Then after finding the eigendecomposition of the arrowhead matrix,
the first row of X can be computed as (0, f,0) U, and the last row of X can be computed
as (0,0,1F) U. There is a similar recursion for CDC [10].

3. Computing the Eigendecomposition of a Symmetric Arrow-
head Matrix

In this section we develop a stable and efficient scheme for finding the eigendecomposition
of an n X n symmetric arrowhead matrix

a 2T
i=(13) -
where D = diag(dy,...,d,) is a matrix of order (n — 1) x (n—1), withd, < d3 <...<dy;
z=(22,..., zn)T is a vector of order n—1; and a is a scalar. The development closely parallels

that in [17] for finding the eigendecomposition of a symmetric rank-one modification to a
diagonal matrix.

We further assume that
djy1 —d; 2 7||H|]z and |z] > 7||H|: (3.1)

where 7 is a small multiple of ¢ to be specified later. Any symmetric arrowhead matrix can
be reduced to one that satisfies these conditions by using the deflation procedure described
in Section 4 and a simple permutation.

The following lemma characterizes the eigenvalues and eigenvectors of arrowhead matri-
ces.

LEMMA 1 (WILKINSON [29]). The eigenvalues {)\;}%, of H satisfy the interlacing
property
M<d<Ah<...<d, <)\,

and the secular equation
2
z

i _
/\—0

f(A):A_a+Zdj
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For each eigenvalue \; of H, the corresponding eigenvector is given by

T n 2

21 Zn zj
i= | -1 yeo oy —_— 3.2
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The following lemma allows us to construct an arrowhead matrix from its eigenvalues
and its shaft.

LEMMA 2 (BOLEY AND GOLUB [6]). Given a diagonal matriz D = diag(d,...,dn)
and a set of numbers {\;}%, satisfying the interlacing property

M<di<hh<...<da<hy (3.3)
there ezists an arrowhead matriz
' ~ & 2
H=1 "
whose eigenvalues are {A\;}7,. The vector 3 = (3,,...,%,)T and the scalar & are determined

by

Bl = | (&= %) G- ﬁ(d;_ ! ﬁ Lt (3.4

Jj=2
&= M+ En: (% - &) (3.5)
=2

where the sign of Z; can be chosen arbitrarily.

3.1. Computing the Eigenvectors of H

For each ezact eigenvalue );, equation (3.2) gives the corresponding ezact eigenvector.
Observe that if A; was given ezactly, then we could compute each difference, each ratio, each
product and each sum in (3.2) to high relative accuracy, and thus compute u; to component-
wise high relative accuracy.

In practice we can only hope to compute an approximation Xi to A;. But problems can
arise if we approximate u; by

a 21 V 2n
u; = | —1, Ty ey = 1+
( dy— X dn—A,-) / E

3—2

(i.e., replace A; by J; in (3.2), as in [3, 23]). For even if A; is close to );, the approximate
ratio z;/(d; — A;) can still be very different from the exact ratio z;/(d; — );), resulting in a
unit eigenvector very different from u;. And when all the approximate eigenvalues {:\,-},T;l
are computed and all the corresponding eigenvectors are approximated in this manner, the
resulting eigenvector matrix may not be orthonormal.

Lemma 2 allows us to overcome this problem. After we have computed all the approx-
imate eigenvalues {A;}7, of H, we can find a new matrix H whose ezact eigenvalues are
{5‘1‘}?=1, and then compute the eigenvectors of H using Lemma 1. Note that each difference,
each product and each ratio in (3.4) can be computed to high relative accuracy. Thus |Z;]
can be computed to high relative accuracy. The sign of Z; can be taken to be the sign




of z;. Substituting the ezact eigenvalues {};}%, and the computed % into equation (3.2),
each eigenvector of H can be computed to component-wise high relative accuracy. Conse-
quently, after all the eigenvectors are computed, the computed eigenvector matrix of H will
be numerically orthonormal.

To ensure the existence of H, the approximations {3:}~, must satisfy the interlacing
property in Lemma 2. But since the exact eigenvalues of H satisfy the same interlacing
property (see Lemma 1), this is only an accuracy requirement on the computed eigenvalues,
and is not an additional restriction on H.

We can use the eigendecomposition of A as an approximation to that of H. Since
T A AT
a z ~ a—a (z—32)
H= =H
( : D ) + ( 2=5 0 ) ’

i =Xl S NIH - H|l2 < Ja = &] + ||z — 2]z

we have

Thus such a substitution is backward stable (see (1.1)) as long as & and 2 are close to o and
z, respectively (cf. [17]).

3.2. Computing the Eigenvalues of H

In order to guarantee that 2 is close to z and & is close to o, we must ensure that the
approximations {);}~, to the eigenvalues are sufficiently accurate. The key is the stopping
criterion for the root-finder, which requires a slight reformulation of the secular equation

(cf. [8, 17]).

Consider the eigenvalue \; € (d;,d;4;), where 2 <i<n-—1;thecasesi =landi=n
are considered later. A; is a root of the secular equation '

n 2
z*
— ) _ i _
fA=r-at+} ——5=0
=2 7
We first assume that* \; € (d;, éi:‘-ﬂ). Let a; = d; — @ and §; = d; — d;, and let
i 2_72 n 212
Yi(p) = and ¢;(p) =
(1) ;51__” (#) j;l 5=

Since
fle+di) = p+ai +¥i(p) + ¢i(p) = gip)

we seek the root pu; = A; —d; € (0,6;41/2) of g:(1) = 0. Let ji; be the computed root, so that
Ai = d; + [i; is the computed eigenvalue.

4 This can easily be checked by computing f(d‘L.j‘il). If f(&3i41) > 0, then A; € (di, X851, otherwise
A € [Gitdi g,y




An important property of g;(u) is that each difference §; — p can be evaluated to high
relative accuracy for any g € (0,8;+1/2). Indeed, since §; = 0, we have fi(§; — p) = —fl(u);
since fl(6i41) = A(diy1 — di) and 0 < p < (diy1 — d;i)/2, we can compute fl(6i41 — p) as
A(f(di41 — di) — fi(p)); and in a similar fashion, we can compute §; — p to high relative
accuracy for any j # ¢,7+ 1.

Because of this property, each ratio z2/(6; — u) in gi(x) can be evaluated to high relative
accuracy for any p € (0, 6;41/2). Moreover, a; can be computed to high relative accuracy.
Thus, since both ;(x) and ¢;(p) are sums of terms of the same sign, we can bound the error
in computing g;(¢) by

(|l + leal + [i(w)] + |6:(w)])
where 7 is a small multiple of € that is independent of n and .

We now assume that A; € [ﬁ—:—iﬁ,dﬂl). Let a; = diy1 — @ and 6; = dj — di41, and let

i 2 n 2
Pi(p) = — and ¢i(p) = :
JZ:; b —p j;;l 6 — p

We seek the root p; = A\; — diy1 € [6:/2,0) of the equation

gi(w) = f(p + diy1) = p+ i + ¥i(p) + ¢i(p) =0

Let /i; be the computed root, so that A\; = diy1 + fii. For any p € [6:;/2,0), each difference
6; — p can again be computed to high relative accuracy, as can each ratio 22/(8; — u) and
the scalar «;; and we can bound the error in computing g;(x) as before.

Next we consider the case ¢ = 1. Let a; = d; — a and é; = d; — d, and let

z

bW =0 and hHW=) ¢

2

i
j=2 7 — K
We seek the root s = Ay — dz € (—||z||2 — |a|,0) of the equation

gi(p) = flp+d2) =p+or+¢i(p) + é1(p) =0

Let fi; be the computed root, so that A; = d; + fi;. For any g € (—||z]|2 — |e/,0), each ratio
z3/(8; — p) can be computed to high relative accuracy, as can a;; and we can bound the
error in computing g1(p) as before.

Finally we consider the case : = n. Let o, = d, — @ and §; = d; — d,,, and let

n 2

AOEDI- i ~ and ga(u) =0

j=2 9

We seek the root p, = A, —dn € (0, ||z]|2 + |@|) of the equation

gn() = f(p+dn) = p+ an 4+ Pn(p) + ¢u(p) =0




Again, let /i, be the computed root, so that A, = dy, + fin. For any x € (0, ]|z]|2 + ||), each
ratio z2/(6; — p) can be computed to high relative accuracy, as can a,; and we can bound
the error in computing g,(u) as before.

In practice the root-finder cannot make any progress at a point p where it is impossible
to determine the sign of g;(x) numerically. Thus we propose the stopping criterion

lg: ()] < mn (lul + lea| + [ (k)] + 18i()]) (3-6)

where, as before, nn(|p| + |a;i| + |¥:i(k)] + |¢:i(g)]) is an upper bound on the round-off error
in computing g;(#). Note that for each i, there is at least one floating point number that
satisfies this stopping criterion numerically, namely fl(y;).

We have not specified the scheme used to find the root of g;(1). We used a modified ver-
sion of the rational interpolation strategy in [8] for the numerical experiments, but bisection
and its variations [23, 26] or the improved rational interpolation strategies given in [13, 22]
would also work. What is most important is the stopping criterion and the fact that, with
the reformulation of the secular equation given above, we can find a p that satisfies it.

3.3. Numerical Stability

In this subsection we show that & and 2 are indeed close to « and z, respectively, as long
as the root-finder guarantees that each j; satisfies the stopping criterion (3.6).

Since f();) = 0, we have

n

z
"‘“Zd,—x

i=2

loi| =

n zz
< il + Z I_d-——J—j\—l-
j=2 "9 t

and (3.6) implies that the computed eigenvalue }; satisfies

2 n 2
1FG) < nm (lml+luzl+z —n Z——ld,z_’x,,)
] 1

Jj=2 j=2

Since

704 = £() = (A)-(A—A)(HZ /\)(d—/\)> ,

it follows that
2

= A (Hzl(d x-f(dj—x,-)x)
<gn (Ip,|+|ﬂzl+zld +Z|d —/\I) : (3.7)

7=2

Note that for any ¢ and 7,
ll + 1l < 4llB 2 + 2 = Al and - Jdj = Nl + 1dj = Ml < 41 H ]l + % = M




Substituting these relations into (3.7), we get

|Ai — A (1 t Z (d; — :\i)](dj - Ai)l)

=2
A Hs + i — Ai])2?
.<.nn<4nHu2+u A;+z( 1. | I)J) ,
i=2 — Xilld; = Al
or
( — M| < 4nn”H“2
1—7n

i.e., all the eigenvalues are computed to high absolute accuracy. Applying (3.5) of Lemma 2
to both H and H, we have

a=h+> (N—d) and a=h+) (-d) ,
Jj=2

and therefore
< 4’|l Hll2
1—-9n

E(,\ -3 <

7=1

To show that % is close to z, we further note that for any : and 5, we have
|l < lpal + 1 = Nl

and
lA +dl/\ < A 2 1 P\j—/\i|
ld; — Xl 1di =Ml T |(d; = M) = M)IE T |(dj = A)(di = A

Substituting these relations into (3.7) and using the Cauchy-Schwartz inequality, we get

A (H;I(d %) dJ—A)I)

2nn i 22
S H + = 2 1
1—nn (Iﬂl E |(d,-—/\,-)(dj—)\,-)|‘f)

j=2
2nn 2}
<7, \/lﬂ=12+llzlz\J1+Z @ = (& — )
j=2 t

Since |u;:|? + ||2]|2 < 5||H]|3, we have

2

: 2m 5
- Xl < 1_",7 hml”llﬂz/d“’Z X)J(d )
— A8 — A

]—2
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2v/5nn|| H||» :

SVORIN2 J1(d; = Ao)(d; = s
2Bl Hlls 1 )
(-l (67 AF gl A

Letting 8; = 2v/5nn||H||2/((1 — nn)|z;]), this implies that

R ﬂj

A=A < d; — X (3.9)
for every 2 < j < n, provided that §; < 2.

Let ; — )\ = a;;j(dj — A;)/zj for all i and j. Suppose that we pick 7 = 67n? in equa-
tion (3.1) of Section 3. Then |2z;| > 69n®||H||,. Assume further that 7n < 1/100. Then
Bi < 2/5, and (3.9) implies that |a;;| < « = 69n||H||; for all ¢ and j. Thus

1= | ) J 90 2) ) I (1+2)
Zi| = ry = Y = |2; —
i=2,j#i (dj —di) Hj:z,j;éi (dj — di) =1 2
and, since 2; and z; have the same sign,
TT(1+22) -1 <zl 1+—a—)2—1
=]

| (exp (éclizn—') - 1) <(e—1)an/2
< 6’|l H]2 (3-10)

|2: — z:] = |z

IA

where we have used the fact that an/(2|z;]|) <1 and that (e —1)/z <e—1for 0 <z < 1.

One factor of n in 7 and equations (3.8) and (3.10) comes from the stopping crite-
rion (3.6). This is quite conservative and could be reduced to log,n by using a binary tree
structure for summing up the terms in v;(¢) and ¢;(u). The other factor of n comes from
the upper bound for 377, (A; — };) in (3.8) and [1;(1 + @ji/=) in (3.10). This also seems
quite conservative. Thus we might expect the factor of n? in 7 and equations (3.8) and (3.10)
to be more like O(n) in practice.

4. Deflation for ADC
4.1. Deflation for H

Consider the arrowhead matrix
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where D = diag(ds,...,d,) and z = (22,...,2,)T. We now show that we can reduce H to
an arrowhead matrix which further satisfies (cf. (3.1))

|di —dj| > 7||H||z for i#j, and |z|>7||H|:2 ,

where 7 is specified in Section 3.3. We illustrate the reductions for n = 3, ¢ = 3 and
J = 2. Similar reductions for a symmetric rank-one modification to a diagonal matrix
appear in [8, 10, 11].

Assume that |z;| < 7||H||2. Then

a zy z3 a zy 0
H=| 2z d =| 22 do +O(r||Hll2) - (4.1)
z3 d3 0 d3

We perturb z; to zero. Then H is perturbed by O(7||H]||2). d; is an approximate eigenvalue
of H and is deflated. The (n — 1) x (n — 1) leading principle submatrix of the perturbed
matrix is another arrowhead matrix with smaller dimensions. This deflation procedure is
backward stable (see (1.1)).

Now assume that |d; — d;| < 7||H||,. Apply a Givens rotation to H as follows:

1 a 29 23 1
c s zy dy c —s8
-5 ¢ z3 ds s ¢

«a r 0
= r d262 + d382 CS(d3 - d2)
0 cs(ds —da) dps® + dac?

«a r 0
=| r dac®+dss® + O(7||H]]2) (4.2)
0 d282 + d3c2

where r = /2?4 2%, ¢ = z;/r and s = z;/r. Similarly we perturb cs(d; — d;) to zero.
Then H is perturbed by O(7||H||2). d;s® + dic? is an approximate eigenvalue of H and

can be deflated. The (n — 1) x (n — 1) leading principle submatrix of the matrix in (4.2)

is another arrowhead matrix with smaller dimensions. This deflation procedure is again
backward stable (see (1.1)).

4.2. Local Deflation for ADC
In the dividing strategy for ADC (see (2.2)), we write
0 Q 0 k1 Ber1l¥ Brsoff 0 1 0
T=110 0 Birilh Dy 0 QTo0 0 (4.3)
0 0 @ Br+2fa O D, 0 0 Q)7
= (QU)AQU)T ,
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where @ is the first matrix in (4.3); IT is the last row of Qy; f7 is the first row of @Q,; and
UAUT is an eigendecomposition of the middle arrowhead matrix.

Note that @ is a block matrix with some zero blocks. When we compute the matrix-
matrix product QU, we would like to take advantage of this structure. Since the main cost
of ADC is in computing such products, we get a speedup close to 2 by doing so. In this
subsection we design a deflation procedure for ADC that takes advantage of this structure.
This is not done in any current implementation of CDC.

If the vector (Be41l7, Bri2fy) has components with small absolute value, then we can
apply reduction (4.1). The block structure of @ is preserved. If D; has two close diagonal
elements, then we can apply reduction (4.2). The block structure is again preserved. We
can do the same when D, has two close diagonal elements.

However, when D; has a diagonal element that is close to a diagonal element in D; and
we apply reduction (4.2), the block structure of @ is changed. To illustrate, assume that
after applying a permutation the first diagonal element of D, is close to the last diagonal
element of D;. Let Q1 = (g1 Q1) and Q; = (@2 ¢2); let

Br+1ly = (32) and  Brofo = ( “2 ) )
z1 ZN

and let Dy = diag(d,, Dl) and D, = diag(Dz,dN). By assumption, d; and dy are close. Set
r = /224 2%, c = zy/r and s = zy/r. Similar to (4.2), we apply the Givens rotation®

—S$ c

to the middle matrix in (4.3) to rotate zy to zero. This creates some non-zero elements in
the second and N-th columns of Q:

i a1 72 3 ay i ’
0t @ 0 O zy dy 01 @ 0 O
T={(100 0 0)G'G| # D, GFGl10 0 0 0
00 0 Q; ¢ %, D, 00 0 Q@ ¢
ZN dN
Qkt+1 T 2 Eg 0
0 cqu Ql 0 —sq r o d, 3 0 cqu Q1 0 —sq
= 1 0 0 0 O % D, 1 0 0 0 O
0 sg2 0 Q2 cqo Z2 D, ) 0 s¢2 0 Q2 cge
0 dn
+0(7|IT|2) (4.4)

5 I; is the 7 x 7 identity matrix.
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where dy = dac? + dys? and dy = dgs? + dyc? are as in (4.2).

dy is an approximate eigenvalue of T' and can be deflated. The corresponding approxi-
mate eigenvector is the last column of the first matrix in (4.4). The leading (N —1) x (N —1)
principle submatrix of the middle matrix is again an arrowhead matrix. We deflate this ma-
trix in a similar fashion until D; does not have any diagonal element that is close to a
diagonal element of D,. Thus, after this procedure T can be written as

T= (% %) (ﬁl i ) (% %) +0(ITl) - (4.5)

./~\2 is a diagonal matrix whose diagonal elements are the deflated eigenvalues; the columns
of X, are the corresponding approximate eigenvectors. H; is the arrowhead matrix

5T T T
5 Zo Do
H 1= ~ D ’
21 1
22 Dg

where the dimension of Dy is the number of deflations; D; contains the diagonal elements of
D; not affected by deflation; and 2o, #; and 2, are defined accordingly. X; is of the form

3 0 Qo1 @1 O
Li={10 0 0], (4.6)
0 Qo2 0 @2

where the cglumn dimension of both Qo,l and Qo,g is the number of deflations, and the
columns of @); and @), are those of @; and @, not affected by deflation.

If Do has a diagonal element that is close to a diagonal element of either D; or Ds, then
we can use reduction (4.2) to deflate without changing the structure of Xj. In the following
we assume that no further deflation is possible in (4.5).

Let U,A; U7 be an eigendecomposition of H;. Then

r= (% &) (L) (% %) 0w

= (%) (PN ) (5 x)" ot

= ()"(1(71 Xz) (A‘ .7\2> (5{101 Xz)T+o(T||Tn2)

Thus (5(1(71 Xg) is an approximate eigenvector matrix of T. The matrix X,U; can be

computed while taking advantage of the block structure of X; in (4.6).

We refer to these deflations as local deflations since they are only associated with indi-

vidual subproblems of ADC.
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4.3. Global Deflation of ADC

To illustrate global deflation, we look at 2 levels of the dividing strategy (cf. (2.2)). For
simplicity, non-important entries of T are denoted by z.

T Bitj+2€iti+1
_ N T
T = ﬂz+3+2e,‘+j+1 z Tey
ze; T,
Ti,  ze;
T T
re; T Biyae;
= Birzer  Thp  Biyisee; ,
T T
Bivir2e; T zeg
zTey T,

where Ty, T3, T1,; and T are principle submatrices of T of dimensions (43 +1) x (145 +1),
(N—i—j—2)x(N—it—3j—2),ix¢and j x j, respectively.

Let Q1,2D1,2Q{2 be the eigendecomposition of T} 5, and let flT o and l’{: o be the first and
last rows of @2, respectively. Then

Tl,l zTre;
zel 2 Bivael
T = Birzer Q12D12Q7, Biyitoe;
Bitvitee] z  ze
Trep T2
Tl,l Te;
zel & Biefl,
=Y Birafrz  Diz Bitjreh Yt (4.7)
Bivitall, T ze] :
ze; T,

where Y = diag(l;,1,Q1,2,1, IN—ij—2).

Let d, be the s-th diagonal element of D; ;. Then d, is also the (14 s+1)-st diagonal ele-
ment of the middle matrix. Let f, and I, be the s-th components of fi2 and [; 2, respectively.
Then, by ignoring all zero components, the (i + s + 1)-st row of the middle matrix in (4.7)
is (Bis2fs, ds, Bivjrals). Thus if both |Bir2f;| and |Bisjrals| are small, then we can perturb
them both to zero. T has d, as an approximate eigenvalue with the (i + s + 1)-st column
of Y being the corresponding approximate eigenvector. This eigenvalue and its eigenvector
can be deflated from all subsequent subproblems. We call this global deflation.

Consider the deflation procedure for computing the eigendecomposition of T} in Sec-
tion 4.2. If |B;y2 fs| is small, then it can be perturbed to zero. This is a local deflation if only
|Bi+2fs| is small, and a global deflation if |B;4;42l,| is also small.
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5. Acceleration by the Fast Multipole Method

Suppose that we want to evaluate the complex function

n
o) = 3 il — 2;) (51)
i=1 ,

at m points in the complex plane, where {c;}}_, are constants and ¢(z) is one of log(z), 1/
and 1/z%. The direct computation takes O(nm) time. But the fast multipole method (FMM)
proposed by Carrier, Greengard and Rokhlin [9, 14] takes only O(n+m) time to approximate
®(z) at these points to a precision specified by the user®. In this section we briefly describe
how FMM can be used to accelerate algorithm ADC. A more detailed description appears
in [16] in the context of updating the singular value decomposition.

a 2T
=(15)

where D = diag(ds,...,d,) is a matrix of order (n — 1) X (n — 1) with d; < ds < ... < dy;
z = (22,...,2,)7 is a vector of order n — 1 with z; # 0; and «a is a scalar. Let UAU7 denote
the eigendecomposition of H with U = (uy,...,u,) and A = diag(Aq,...,As).

Let

We consider the cost of computing U7 ¢ for a vector ¢ = (g1, . ..,¢,)F. By equation (3.2)
in Lemma 1, the i-th component u7¢ of UTq can be written as

u;rq — -q1 + (I)l()\i)
' V14 @2(/\,‘) ’

where
n

n 2
2kqk 2k
®;(A)=) —— and O(\)=) —
1( ) e dk _ A 2( ) kz:; (dk _ A)Z
Thus we can compute UTq by evaluating ®,()\) and ®;()) at n points. Since these two
functions are of the form (5.1), we can do this in O(n) time using FMM. To achieve better

efficiency, we modify FMM to take advantage of the fact that all the computations are
real (see [15, 16]).

Let T be a symmetric tridiagonal matrix of size N. When ADC is used to compute
all the eigenvalues and eigenvectors, the main cost for each subproblem is in forming XU
(see (4.5)), where X is a column orthonormal matrix”. Each row of X U is of the form
¢TU = (UTq)7, and there are O(n) rows. Thus the cost of computing XU is O(n?) using
FMM. There are log, N levels of recursion and 2! subproblems at the k-th level, each of
size O(N/2%). Thus the cost at the k-th level is O(N2/2¥), and the total time is O(N?).

€ The constant hidden in the O notation depends on the logarithm of the precision.

7 X, is also a block-structured matrix (see (4.6)). But here we view it as a dense matrix to simplify the
presentation, even though FMM is more efficient when it exploits this structure.
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We may also have to apply an orthonormal matrix Y to the eigenvector matrix of T,
e.g., when T is obtained by reducing a dense matrix to tridiagonal form [12, 24, 28, 29].
For each subproblem, we can apply the eigenvector matrix of the corresponding arrowhead
matrix directly to Y. The cost for each subproblem is O(Nn) using FMM, and there are
O(N/n) subproblems at each level. Thus the cost at each level is O(N?), and the total time
is O(N?log, N).

When ADC is used to compute only the eigenvalues, the main cost for each subproblem
is computing two vectors of the form ¢7U, finding all the roots of the reformulated secular
equation, and computing the vector 2. We now show how to find all the roots of H and all
the components of 2 in O(n) time.

A root-finder computes successive iterates for each eigenvalue \;. We assume that the
number of iterations for each root is bounded. The main cost for each iteration is in evalu-
ating the function
2}

;= n

Gn) = pta+i(p)+ bW =p+aty

=2

To compute all the eigenvalues simultaneously, we must evaluate g;(4) at O(n) points. The
function g;() is similar to the form (5.1), and thus we can evaluate g;(x) at these points in
O(n) time using FMM?®. In other words, all the eigenvalues of H can be computed in O(n)
time.

To compute 2, we note that equation (3.4) can be rewritten as

. 2 3 1 -1 :\j —d; 1 iy :\j —d;
IZ-,I = \/(dz - A]) (An - d-,) exp (‘2' ;log (m) + -2- ;log (;l——-———-

i+1 — d;

Thus we can compute all of the components of % in O(n) time using FMM.

We have shown that when computing all the eigenvalues of T using ADC, we can solve
each subproblem in O(n) time. Since there are O(N/n) subproblems at each level, the cost
at each level is O(N), and thus the total time is O(N log, N).

6. Numerical Results

In this section we present a numerical comparison among ADC and three other algo-
rithms for solving the symmetric tridiagonal eigenproblem:

1. B/IL: bisection with inverse iteration [19, 20] (subroutines DSTEBZ and DSTEIN from
LAPACK [2]);

2. CDC: Cuppen’s divide-and-conquer algorithm [10, 11] (subroutine TREEQL [11] from
netlib);

8See [15, 16] for a version of FMM for computing %;(p) and ¢;(p) and their derivatives at O(n) points
in O(n) time. This is needed for the root-finders in [8, 22] and to check the stopping criterion.
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3. QR: the QR algorithm [12] (subroutine DSTEQR from LAPACK [2]).

Since none of our test matrices is particularly large, FMM is not used in this comparison.

All codes are written in FORTRAN and were compiled with optimization enabled. All
computations were done on a SPARCstation 1 in double precision. The machine precision
ise=1.1x 1071,

Let [, e, 8] denote the N x N symmetric tridiagonal matrix with 3 on the off-diagonals
and ay,...,ay on the diagonal. We use the following sets of test matrices.

1. a random matrix with both diagonal and off-diagonal elements being uniformly dis-
tributed random numbers in [—1,1];

2. the Wilkinson matrix W3 = [1,w;, 1], where w; = |(N + 1)/2 — 3| and N is odd;

3. the glued Wilkinson matrix® W;}: a 25 x 25 block matrix, with each diagonal block
being the Wilkinson matrix W}'; the off-diagonal elements B;xx41 = g, for i = 1,...,24;

the Toeplitz matrix [1,2,1];

the matrix [1, p;, 1], where y; = ¢ x 1078;

the matrix [1/100,1 + g;,1/100], where y; = x 107¢;

Type 8 to Type 21 test matrices!® from the LAPACK test suite.

R

Tables 1-5 present the numerical results. An asterisk means that the algorithm did not
converge. Since the numerical results in Tables 1-3 suggest that CDC and QR are not as
competitive, we only compare ADC with B/II for the LAPACK test matrices (see Tables 4
and 5).

The residual and orthonormality measures for ADC' are always comparable with those
for QR and B/II, and ADC is roughly twice as fast as CDC for large test matrices, due to
differences in how deflation is implemented (see Section 4.2). In most cases ADC is faster
than the others by a considerable margin, and in many cases is more than 5-10 times faster.
When ADC is slower than B/II (by at most 10%), the matrix size is large (N = 512) and
there are few deflations. These are cases where ADC can be significantly speeded up by

FMM.
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Matrix Order Execution Time (seconds)

Set N ADC | B/II | CDC | QR
64 0.96 2.17 0.99 1.73

Random 128 3.12 8.50 3.90 11.63
256 | 10.43 | 33.35 | 14.88 | 85.86
512 | 20.89 | 133.61 | 34.31 | 654.52

65 0.58 | 1.78 | 0.60 1.37

Wi 129 1.44 6.54 1.46 9.87
257 | 3.43 | 25.00 | 3.74 | 66.86
513 | 8.26 | 97.57 | 14.76 | 497.55

125 4.42 7.05 * 5.70

Wi 275 | 26.88 | 32.94 * 52.71
525 | 52.15 | 123.20 * 330.82

125 | 0.63 | 5.88 * 5.12

Wit . 275 2.22 | 28.83 * 47.35
525 | 8.23 | 121.84 * 353.41

64 0.90 | 2.18 | 0.69 1.49

1,2,1] 128 | 3.91 | 849 | 3.72 | 10.21
256 | 21.89 | 33.68 | 22.77 | 72.40
512 | 138.79 | 144.43 | 213.01 | 545.05

64 1.02 | 219 | 1.16 1.49

1, pi, 1] 128 | 4.48 | 854 | 6.66 | 10.17
256 | 24.20 | 33.64 | 43.02 | 72.14
512 | 148.95 | 135.48 | 302.06 | 544.65

64 1.05 | 3.14 | 1.18 1.49

(1/100,1 + p;,1/100] || 128 | 4.57 | 16.93 | 6.86 | 9.83
256 | 24.45 | 102.81 | 43.01 | 70.65
512 | 149.50 | 692.64 | 301.58 | 539.48

Table 1: Execution Time




Matrix

Order

max; | T'q; — digil|2

Ne||T|l»
Set N ADC B/II CDC QR
64 |0.96x107"]0.12x107'|0.77 x 107! | 0.19 x 10°
Random 128 | 0.49 x 107! | 0.11 x 107 | 0.10 x 10* | 0.16 x 10°
256 | 0.43 x 107! | 0.47 x 1072 | 0.74 x 10° | 0.82 x 107!
512 |0.23x107' | 0.28 x 1072 | 0.13 x 10* | 0.69 x 107!
65 |0.10 x10° |0.10 x 107! | 0.40 x 10° | 0.12 x 10°
W 129 | 0.67 x 107! | 0.86 x 1072 | 0.59 x 10° | 0.61 x 107!
257 [0.17x1071 | 0.39 x 1072 | 0.15 x 10° | 0.35 x 107!
513 |0.44 x1072|0.21 x 1072 | 0.67 x 10° | 0.21 x 107!
125 [0.23 x 107! | 0.85 x 1072 * 0.90 x 107!
Wi, 275 | 0.64 x 107! | 0.85 x 107! * 0.82 x 1071
525 |0.19 x 107! | 0.54 x 107! * 0.13 x 10°
125 |0.11 x 10° | 0.16 x 10° * 0.22 x 10°
Wi .. 275 | 0.27 x 107! | 0.36 x 107! * 0.11 x 10°
525 |0.15x107' | 0.66 x 107! * 0.14 x 10°
64 |0.78x107*[0.11 x 1071 | 0.35 x 107* | 0.71 x 107!
[1,2,1] 128 |0.41 x107' | 0.70 x 1072 |{ 0.31 x 107! | 0.52 x 107!
256 | 0.22x1071 | 0.12 x 107! | 0.25 x 107! | 0.35 x 107!
512 |0.12x1071 | 0.35 x1072 | 0.20 x 107 | 0.25 x 107*
64 |0.88x107"[0.20 x 10™* | 0.80 x 107" | 0.12 x 10°
1, pi,1] 128 | 0.46 x 107! | 0.16 x 10™* | 0.67 x 10™* | 0.90 x 107!
256 | 0.23 x107' | 0.11 x 107! | 0.47 x 107 | 0.64 x 107!
512 |0.12x 1071 | 0.79 x 1072 | 0.36 x 107! | 0.47 x 107!
64 |0.36x107'|0.17x107! | 0.20 x 107! | 0.85 x 107!
[1/100,1 + ;,1/100] || 128 |0.22x107'|0.79 x 1072 | 0.11 x 107" | 0.60 x 107"
256 | 0.12x1071 | 0.42x 1072 | 0.11 x 107 | 0.38 x 107!
512 |0.59 x1072|0.21 x 1072 | 0.64 x 1072 | 0.28 x 107!

Table 2: Residual
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Matrix Order max ||QTq,- —eille
Ne
Set N ADC B/II CDC QR

64 |0.20 x10° |0.18 x10° | 0.16 x 10° | 0.62 x 10°

Random 128 [ 0.94 x 1071 | 0.30 x 10° | 0.54 x 10! | 0.59 x 10°

256 | 0.66 x 107! | 0.86 x 107! | 0.17 x 10° | 0.54 x 10°

512 |0.35x 107! [ 0.72 x 107! | 0.30 x 10° | 0.47 x 10°

65 |0.15x10° |0.69 x 107! [ 0.77 x 10~! | 0.28 x 10°

Wi 129 |0.78 x 107! | 0.35 x 107! | 0.54 x 10™! | 0.80 x 10°

257 1 0.39 x107! | 0.19 x 107! | 0.89 x 107! | 0.13 x 10!

513 [ 0.19x107!|0.12x107* | 0.72 x 107" | 0.13 x 10!

125 | 0.64 x 107 | 0.36 x 107! * 0.22 x 10°

Wi 275 |0.33 x 107! | 0.17 x 10° * 0.18 x 10°

525 |0.23 x107! | 0.29 x 107! * 0.28 x 10°

125 | 0.64 x 10 | 0.56 x 107* * 0.38 x 10°

Wi . 275 |0.33 x 107! | 0.16 x 10° * 0.31 x 10°

525 |0.20 x 107! | 0.34 x 107! * 0.32 x 10°

64 |0.14 x 10° | 0.50 x 10° | 0.11 x 10° | 0.17 x 10°

[1,2,1] 128 | 0.70 x 1071 | 0.78 x 10° | 0.36 x 10° | 0.13 x 10°
256 | 0.47 x 107! | 0.35 x 10° | 0.18 x 10° | 0.70 x 107!
512 | 0.39 x 107! | 0.21 x 10° | 0.14 x 10° | 0.44 x 107!

64 |0.94x107'|0.10 x 10! | 0.16 x 10° | 0.23 x 10°

1, pi, 1] 128 | 0.62x107' [ 0.92x10° |0.17x10° |0.12 x 10°
256 | 0.49 x 107! | 0.12 x 10 | 0.21 x 10° | 0.62 x 10~*
512 |0.35 x 107! | 0.55 x 10° | 0.76 x 10° | 0.48 x 107!

64 |0.11 x10° [0.62x107']0.71 x10~* | 0.15 x 10°

[1/100,1 + p:,1/100] || 128 | 0.78 x 107 | 0.35 x 107! | 0.91 x 107! | 0.12 x 10°
256 | 0.62 x107' | 0.23 x 107! | 0.11 x 10° | 0.78 x 107!
512 | 0.61 x 107! | 0.21 x 10~! | 0.93 x 10~! | 0.40 x 10~*

Table 3: Orthonormality
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max; ||Tq; — digi]|2

max; ||QTq: — eill»

Matrix || Order | Execution Time NelTT, e
Type N ADC | B/II ADC B/II ADC B/II
64 1.04 2.38 |0.68x107'[0.16 x 107! | 0.11 x 10° | 0.19 x 10°
8 128 | 4.64 8.68 |0.47x107'|0.82x107%|0.86 x 107! | 0.16 x 10°
256 | 24.27 | 33.63 |0.27 x 107! | 0.54 x 1072 | 0.66 x 10~* | 0.25 x 10°
512 | 140.04 | 133.58 | 0.17 x 107! | 0.30 x 1072 | 0.47 x 10~ | 0.21 x 10°
64 0.67 2.38 [ 0.83 x107! | 0.88 x 1072 | 0.20 x 10° | 0.47 x 107*
9 128 2.32 | 12.66 |0.13 x10° |0.14 x1071 | 0.12 x10° | 0.20 x 107!
256 | 9.37 | 76.99 |0.28 x 107! |0.30 x 1072 | 0.53 x 107! | 0.27 x 107!
512 | 44.62 | 517.45 | 0.12 x 107 | 0.92 x 107 | 0.33 x 107! | 0.84 x 107!
64 0.01 1.99 |0.23x107"{0.34 x 107 | 0.16 x 10~ | 0.83 x 10°
10 128 | 0.01 | 12.36 |0.11 x 107! | 0.10 x 107! | 0.14 x 10~* | 0.70 x 10°
256 | 0.04 | 84.54 |0.45x1072]0.70 x 1072 | 0.78 x 102 | 0.52 x 1071
512 | 0.17 | 613.86 | 0.38 x 1072 | 0.21 x 1072 | 0.78 x 102 | 0.21 x 10}
64 1.29 2.21 [0.81 x107' | 0.16 x 107! | 0.11 x 10° | 0.41 x 10°
11 128 | 5.24 8.64 |0.45x 1071 0.11 x 107! | 0.62 x 107* | 0.22 x 10°
256 | 25.88 | 33.52 | 0.28 x 1071 | 0.53 x 1072 0.55 x 10! | 0.17 x 10°
512 | 144.37 | 132.32 | 0.17 x 1071 | 0.29 x 1072 | 0.41 x 10~ | 0.20 x 10°
64 1.03 223 [0.95x 1071 | 0.15 x 107! | 0.11 x 10° | 0.17 x 10°
12 128 | 4.54 8.75 |0.46 x 107 | 0.85 x 1072 | 0.86 x 107! | 0.19 x 10°
256 | 24.44 | 33.94 |0.25x107!|0.54 x 1072 | 0.51 x 10~ | 0.30 x 10°
512 | 141.57 | 133.83 | 0.16 x 107! | 0.31 x 1072 | 0.47 x 107! | 0.20 x 10°
64 1.09 2.20 | 0.70 x 107! | 0.17 x 10™* | 0.12 x 10° | 0.20 x 10°
13 128 | 4.61 8.66 |0.43 x107'|0.69 x 1072 |0.62x 107! | 0.33 x 10°
256 | 23.49 | 33.53 [0.20 x 107! | 0.53 x 1072 | 0.70 x 10! | 0.15 x 10°
512 | 131.57 | 132.03 | 0.13 x 107! | 0.24 x 1072 | 0.41 x 107! | 0.25 x 10°
64 1.30 2.21 |0.13x10° [0.13x107!|0.25 % 10° | 0.19 x 10°
14 128 | 5.16 8.61 |0.46 x 107 | 0.79 x 1072 | 0.12 x 10° | 0.28 x 10°
256 | 24.88 | 33.55 |0.24 x 107! | 0.50 x 1072 | 0.51 x 10~ | 0.39 x 10°
512 | 134.86 | 131.96 | 0.12 x 107! | 0.24 x 1072 | 0.43 x 107! | 0.29 x 10°

Table 4: LAPACK Type 8-14 Matrices
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max; || T'q; — digi|2

max; ||Q%Tq: — &2

Matrix || Order | Execution Time NelTT, Ve
Type N ADC| B/II ADC B/II ADC B/II
64 1.04 2.23 |0.71 x107 [ 0.18 x 107! | 0.16 x 10° | 0.11 x 10°
15 128 | 4.50 871 |0.49x107![0.73 x1072 [ 0.78 x 107 | 0.12 x 10°
256 | 23.44 | 33.99 |0.24 x107! | 0.45x 1072 | 0.41 x 10! | 0.17 x 10°
512 | 131.71 | 133.53 | 0.13 x 1071 | 0.26 x 1072 | 0.41 x 10~* | 0.13 x 10°
64 1.05 2.21 040 x1071]0.16 x 107! | 0.19 x 10° | 0.13 x 10°
16 128 | 4.54 8.68 |0.22x107![0.87x1072|0.11 x 10° | 0.11 x 10°
256 | 24.18 | 33.73 |0.13 x107' | 0.41 x1072 | 0.64 x 107 | 0.93 x 107!
512 | 139.29 | 132.47 | 0.14 x 1071 | 0.19 x 1072 | 0.35 x 107! | 0.15 x 10°
64 0.71 245 048 x1071[0.11 x 107! [ 0.23 x 10° | 0.73 x 107!
17 128 | 2.67 | 12.88 |0.30 x 10™! | 0.30 x 10~2 | 0.11 x 10° | 0.58 x 10!
256 | 11.78 | 76.55 | 0.38 x 107! |0.31 x 1072 | 0.51 x 107! | 0.82 x 107!
512 | 63.23 | 521.70 | 0.16 x 1071 | 0.17 x 1072 | 0.33 x 10~ | 0.29 x 107!
64 0.01 1.99 |0.23 x107* | 0.30 x 107! | 0.23 x 10~* | 0.17 x 10°
18 128 | 0.01 | 12.34 |0.13x107! | 0.78 x 1072 | 0.16 x 107! | 0.39 x 107*
256 | 0.04 | 8395 |0.98x1072|0.39x10720.59 x 10~2 | 0.29 x 107!
512 | 0.17 | 614.26 | 0.44 x 1072 | 0.19 x 1072 | 0.20 x 10~2 | 0.16 x 10°
64 1.24 2.19 [0.39x107'|0.17x10"1 | 0.94 x 107! | 0.62 x 107?
19 128 | 5.08 8.58 |0.25 x 107! | 0.79 x 1072 | 0.90 x 10! | 0.92 x 107!
256 | 25.47 | 33.32 |0.14 x107! | 0.40 x 1072 | 0.70 x 107! | 0.16 x 10°
512 | 142.16 | 131.26 | 0.13 x 107 | 0.20 x 1072 | 0.31 x 107! | 0.97 x 107*
64 1.01 222 038x107'[0.18 x107' | 0.13 x 10° | 0.96 x 107}
20 128 | 4.46 8.68 |0.20 x 107! [ 0.75 x 1072 | 0.62 x 10~ | 0.10 x 10°
256 | 24.12 | 33.72 [0.13 x107! | 0.47 x 1072 | 0.51 x 10~! | 0.17 x 10°
512 |139.29 | 132.75 | 0.13 x 1071 | 0.21 x 1072.| 0.33 x 107! | 0.12 x 10°
64 0.54 243 |0.12x10° |0.81 x1072[0.22 x 10° | 0.31 x 107*
21 128 1.85 | 12.86 | 0.45 x 107! |0.34 x 1072 | 0.70 x 107! | 0.45 x 107?
256 | 6.26 | 75.81 |0.38x107!|0.27x10"%20.35x 107! | 0.16 x 107?
512 | 21.07 | 517.17 | 0.15x 107! | 0.12 x 1072 | 0.31 x 10! | 0.20 x 10~*

Table 5: LAPACK Type 15-21 Matrices
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