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Abstract

Ensemble architectures are interesting candidates for future high performance computing systems. The
ensemble configurations discussed here are linear arrays, 2-dimensional arrays, binary trees, shuffle-
exchange networks, boolean cubes and cube connected cycles. We discuss a few algorithms for arbitrary
data permutations, and some particular data permutation and distribution algorithms used in standard
matrix computations. Special attention is given to data routing. Distributed routing algorithms in which
elements with distinct origin and distinct destinations do not traverse the same communications link
make possible a maximum degree of pipelined communications. The linear algebra computations
discussed are: matrix transposition, matrix multiplication, dense and general banded systems solvers,
linear recurrence sélvefs, tridiagonal system solvers, fast Poisson solvers, and very briefly, iterative

methods.

1. Introduction

High performance in future computing systems to an ever increasing extent has to come from
concurrency in comput.at.ion.o The performance improvements over the last few decades have largely been
due to technological developments. Switching speeds have been improved by about 5 orders of
magnitude, but clock rates only by about 3 orders of magnitude. Architectural innovations have
accounted for 2 - 3 orders of magnitude in increased floating-point, capability per clock cycle, yielding a
total improvement in floating-point speed of 5-6 orders of magnitude. Silicon technology is expected to
offer about one order of magnitude increased switching speed before fundamental limits are reached.

Other technologies, such as gallium arsenide, potentially offer a further factor of 5 to 10 in increased

switching speeds.

Extreme pefrformance in future systems must come from architectural innovations, in particular through
highly concurrent systems. High real performance can also be accomplished through algorithmic
innovations, and such innovations are in general necessary to obtain high real performance on a system of
high nqminal performance. The experience gained from current vector machine architectures, as well as
of the ILLIAC IV, has made the interdependence between -architectures and algorithms very clear. Some

algorithms that are efficient on sequential machines are inherently limited in their ability to benefit from



realistic parallel architectures. Others can be adapted to a variety of such architectures. The adaptation

may be accomplished through algorithm or program transformations.

Abstract representations of algorithms that capture the essence of their behavior are urgently needed, as
are efficient transformation techniques that generate the appropriate data and control structures for the
varget architecture. A suitable abstract representation relieves algorithm designers from all the minute
details of particular machine architectures. The variety of parallel architectures is indeed very large
compared to uniprocessor architectures. In highly concurrent architectures the communication time is of
prime importance. Entirely new algorithms that minimize the times of arithmetic operations and
communications on classes of architectures are likely to be discovered. High real performance and the
success of any architecture depends on effective programming models and systems. Algorithm

transformation techniques will be an important part of such systems.

Many algorithms that are efficient on a single processor are limited in their ability to realize the
potential of a'pa.ra.llel architecture. The computation of inner products is a prime example. For instance,
a lower bound for the parallel arithmetic complexity of solving a linear system of equations by
Householder transformations is O(Nlog2N), because of the need for inner product computations in each
step of the algorithm. This complexity is the same as the parallel complexity of Gaussian elimination
with partial pivoting [85]. The parallel arithmetic complexity of Given’s rotations is O(N), the same as
Gaussian elimination without partial pivoting. The parallel arithmetic complexity of the conjugate
gradient method is O(Nlog2N) {40}, also becapse of the need for inner product computations/distributiions
in each step of the algorithm. In estimates of the computational complexity in highly concurrent
architectures it is also necessary to include the communication time. In the discussion of algorithms

below we focus on the communication requirements.

An ideal architecture must be scalable both with respect to the desired performance and the technology.
It is also highly desirable that the essential architectural characteristics are stable with respect to these
forms of scaling. The technology, the architecture, the algorithms and the applications, and the
programming models and systems, all have different dynamics. It is highly desirable that the dependence
of any one of these components on any others is minimized in order that advances in any one area can be

introduced at the rate they are produced.

2. Ensemble Architectures

Ensemble architectures represent a low cost alternative to future high performance systems. An
ensemble architecture, in the sense used here, is composed of large numbers of relatively simple (small),
mass produced processors, each equipped with local storage. The processor interconnections form a sparse,
regular graph. Control, as well as data, is distributed. There are only a few shared resources where the

bandwidth requirement is low, such as storage at some point in the hierarchy, and certain peripherals.



High performance requires a high rate of instruction execution, given that each instruction has a limited
set of operands, and high storage bandwidth. In the ensemble architectures we use as models for
algorithm development, high instruction execution rates are achieved through replication of processing
units, each executing its own, distinct, instruction stream. We consider architectures classified by Flynn
[21] as MIMD (Multiple Instruction streams Multiple Data streams) architectures. High storage
bandwidth is achieved through a highly partitioned storage. Each processing unit has its own local
storage. A high nominal performance is obtained through replication of mass produced parts

imblemented in state-of-the-art technology for an excellent cost/performance ratio.

A high performance design should also allow high clock rates in any given technology. Simple
processors are smaller than processors with large instruction and register sets. Simple processors can be
designed effectively with regular structures without severe area and performance penalties [27], [28], [74],
[73], [92]. Pipelining of functional units that significantly adds to the complexity of scheduling
operations can be reduced to a minimum. Wire delays are of increasing importance as feature sizes of the
technology are reduced. Indeed, wire delays already are of main concern with respect to performance.
The difference in the effort required for the design of a fast simple and a fast sophisticated processor will

be magnified.in the future.

The same argument applies to storage as well. A large on-chip storage based on an array design may
actually become slower as the feature sizes are reduced. To maintain or improve the speed of storage
with reduced feature sizes it ultimately becomes necessary to structure storage itself [67], which may
reduce the density, and cause access time to be nonuniform. Intermingling of storage and processing
reduces the average area per processing element, and increases the clock rate in a synchronous (non-
pipelined) design. Both the increased ratio of processing capability per unit of storage, and the increased
clock rate contribute to increasing the maximum size of the state that can change in a single clock cycle,

i.e., the rate of computation.

An architecture achieving high nominal performance through replication of parts requires effective
communication and synchronization. As the processors and their storage are reduced in size and increased
in number, the interconnection problem increases both in complexity and importance. The speed of
interprocessor communication relative to the speed of accessing local storage increases with increased
locality of interconnection. Currently, interprocessor communication is generally inter-chip, or inter-

board communication, which presents challenges different from on~chip communication.

The increased importance of interprocessor communication with reduced processor size also stems from
the fact that with reduced granularity of the computations the amount of computation per

communication decreases for large classes of problems. The sensitivity of the performance of the system



to different network configurations increases, as does the sensitivity to data allocations (and
reallocations). In a system of course grain size the sequential time dominates the time for communication
for most computations, reasonable communication speeds, and data allocations, regardless of the

interconnection scheme.

Manufacturability, and scalability of ensemble architectures with respect to performance and the
reduced feature sizes of the evolving technology, are assured by interconnecting the processing elements
sparsely and regularly. The richness of the interconnect is a point of trade-off between performance, fault

tolerance, and design and manufacturing concerns.

High real performance and scalability are accomplished by enforcing the concept of locality wherever
possible. Control and storage are effectively distributed among the processing elements, eliminating
botential bottlenecks and sources of limited scalability. High real performance is achieved by devising
algorithms that minimize the time devoted to arithmetic and communication. Global communication is
accomplished via a succession. of local communications. Algorithms need to be devised with respect to the
communication time required by the best possible embedding of the computation graph in the ensemble
architecture. In some instances a static, properly embedded, data structure allows the computation to be
carried out in minimum total time. Other cases require dynamic data structures (or reallocation of the
data structure). The solution of tridiagonal systems of equations by cyeclic reduction on ensembles
configured as binary trees is an example of the latter kind of computation {41]. It is discussed in some

detail later.

The need for data reallocations, as well as the ease of finding embeddings of computation graphs that
have a low communication time depends on the topology of the ensemble. A topology is said to be more
powerful than another if a sufficiently large class of algorithms that runs in a given time on the latter can
be made to run on the former with an increase in running time by at most a constant factor, but the
converse is not true. For instance, a shuffle-exchange network is considered more powerful than a binary
tree, since any tree algorithm can be made to run on a shuffle-exchange network with the running time
increased by at most a constant factor, but the converse is not true. The computation of the Fast Fourier
Transform is a prime example. The running time of an algorithm on a shuffle-exchange network may be
decreased by a constant factor if the algorithm is mé,pped on to a boolean n-cube. For a discussion on the
computational power of some networks see [107]. Many graphs can be embedded in a boolean cube
preserving proximity. A given data structure can support many types of access schemes without
communication penalty, reducing the need for data reallocations. Recohfigurabilit,y, i.e., programmable

interconnections, also allows a fixed data structure to efficiently support a variety of access schemes.



A high real performance for data independent computations is attained by a comptle time mapping of
the computations on to the processors of the ensembie. Whenever it is possible to find a set of rules for
the mapping of a computation with data independenn control flow on to the ensemble, the mapping can
be made part of the compilation process. The user is relieved of the need to have detailed knowledge of
the architecture. Where compile-time mapping is not used an effective run-time mapping is required.

Such a mapping must take the processor load as well as communication needs and resources into account.

The idea of ensemble architectures is not new. Early examples are the PEPE (Parallel Element
Processing Ensemble), and the ILLIAC IV. A significant difference between the early ensemble
architectures and several of those currently being proposed, or built, exist in the programming model, the
storage organization, and in the communication. The early machines were SIMD (Single Instruction
stream Multiple Data streams) architectures. The Cosmic Cube [91] is a MIMD architecture with
processors with local storage configured as a boolean 6-cube {64 processors). There is no global storage.
The INTEL iPSC with up to 128 nodes is a commercial version of the Cosmic Cube. A similarly
configured machine with processors of much more limited capability is the Connection Machine (30]. The
Ultracomputer (89], [25] is another MIMD architecture that diffiers from the Cosmic Cube and the
Connection Machine in that it has a global storage. Processors with very limited storage are
interconnected to the shared storage via an {2-network (58]. The Heterogeneous Element Processor (HEP)

(98] is a similarly configured MIMD architecture, but with substantially more powerful processors and a
corresponding lower degree of potential concurrency (90], than in the Ultracomputer. Another proposed
ensemble architecture of the MIMD type is the Texas Reconfigurable Array Computer, TRAC [93]. The
TRAC has processors and storage modules on opposite sides of a switch network, like the Ultracomputer.
The CHiP machine [99] is a.iso a reconfigurable architecture. It consists of processors with local storage
interconnected via programmable switches. The Tree Machine (8], [9] is a tree configured MIMD ensemble.
Processors have local storage. The Non-Von computer is another tree configured ensemble. It is of the
SIMD type [95]. The proposed Non-Von IV is of the MIMD variety [96]. Finally, the CEDAR project

(55! should be mentioned as an example of a hierarchical architecture of the MIMD type with both
storage local to a processor, as well as shared storage accessible via a switch network. For further

references on multiprocessor architectures see Hwang [35].

3. Ensemble Configurations

The communication capabilities are of prime importance in an ensembie architecture. The selected
pProcessor interconnection scheme affects scalability, wireability, and performance. Clearly, from a
designers point of view it is desirable to minimize the amount of interconnect, whereas from a
performance point of view a high bandwidth between arbitrary processors is desirable. The feasibility of
different forms of interconnect from a design point of view is related to the granularity of the processors:

a large number of fine grain processing elements may fit on a single chip, but there may be pin-out



difficulties in going off chip, and further difficulties in interconnecting a large number of processors on
chip. The following is a brief review of some of the qualitative communication and design characteristics
of a few processor interconnection networks which are considered in the section on ensemble architecture

algorithms. A survey of interconnection networks is given by Siegel [97], see also Wu {112].

Configuring processors as linear arrays and binary trees requires a total number of interconnections
equal to the number of processors. Both configurations scale in an excellent way. With several processors
on-a single chip, the required bandwidth at the ‘chip boundary grows at the rate of the clock frequency
only, regardless of the number of processors per chip and the size of the machine being built {62]. The
tree has an advantage over a linear array for global communication in that the maximum number of
routing steps between two processors merely grows logarithmically with the number of processing

elements.

However, linear arrays and trees do present communication bottlenecks for large classes of
computations. Richer interconnection networks are 2-dimensjonal meshes, shuffle-exchange networks,
cube connected cycles [75], and boolean n-cubes. The number of interconnections per processor (the
fanout), is 3 for almost all processors in a shuffie-exchange network (half the processors in a binary tree
also have fanout 3), 4 for the square 2-dimensional mesh, 6 for the hexagonal mesh, and logzN for a
boolean cube. The number of edges (communication links) in a binary tree of 2°-1 nodes is 2"2 in a
2-dimensional mesh of 2" nodes it is 2x2" in a shuffle-exchange graph approximately 1.5X2", and in a
boolean cube of 2" nodes it is n/2x2". The diameter of the network topology defines a lower bound for
the speed of computation [23]. The diameter of a binary tree of 2°-1 nodes is 2(n-1). For the shuffle-
exchange network of 2" nodes it is 2n-1, and for the boolean n-cube (2" nodes) it is n. A 2-dimensional
square mesh has a diameter of 2\/§ without end-around connections, \/13 with end-around connections.
Binary trees and shuffle-exchange networks offer a small diameter for few interconnections. The shuffle-
exchange networks are more powerful than the binary tree, but the tree is a recursive structure, which

implies several advantages with respect to construction and programming.

The power of the boolean cube and cube ‘connected cycles networks are obtained at the price of an
increased wiring complexity. The wires also require volume, or area in the event the configuration should
fit in a plane. In the technology of the future a substantial number of processors will fit on a single chip,
even with processors being of significant complexity. Three dimensional technologies may become feasible
at some point in the future, but here we use the required planar area as a measure of the space needed by
the different configurations. A linear array, 2-dimensional mesh, and a binary tree using the H-tree
layout [8], each requires an area of O(N). Complete binary tree layouts with all leal nodes along the
perimeter require area O(NlogzN) (7). Shuffle-exchange networks [61] and the cube connected cycles

network (75| each requires an area of O(N2/log§N), and the boolean cube an area of O(N2) [62]. Wire



length is another important measure of the characteristics of a layout. For the binary tree, the shuffle-
exchange and cube connected cycles network, and the boolean cube, the wire lengths are nonuniform. The
minimum of the maximum wire length is of order O(\/§ /logzN) for the binary tree [72], [82]. For the
shuffle-exchange network the lower bound is Q(N/loggN) and the upper bound O(N/logzN). For a

boolean cube the minmaxx wire length is O(N) [61].

The number of interchip (or interboard) connections grows at a lower rate for the mesh than for shuffle-
exchange networks, that in turn grows at a lower rate than the number of interchip interconnections for a
boolean n-cube [6]. The n-cube has the largest fanout of the configurations considered here, and requires
the largest area, but it offers higher bandwidth between arbitrary processors than any of the other
alternatives. Another definite advantage of the boolean cube over shuffle-exchange networks is that it is
a recursive structure. Extensions of a cube do not require a complete rewiring, but for an easy extension

it needs to be anticipated at design time so that a sufficient number of ports are available.

An alternative to direct links between processors is some form of switch network, such as an (2-network.
The bandwidth of a pipelined {2-network, like that planned for the proposed NYU Ultracomputer (25], is
essentially the same as the bandwidth in a booiean cube, given that the two alternatives have an equal
number of processors. However, the latency in the switch grows logarithmically with the number of
processing elements. In the bpolean cube the number of routing steps for interprocessor communication is
nonuniform. The minimum number of routing steps is 1, the maximum is log2N. Interprocessor

communication in an architecture of the Ultracomputer type always requires 2log2N routing steps.

For a large cube, or a large switch, the time for interprocessor communication in the cube, and the time
between stages of the switch, is likely to grow with the number of processors, due to increased distance of
communication. Though there is a qualitative difference in the communication capabilities, the
quantitative difference depends on various implementation decisions. Furthermore, whether the nominal
difference results in a real performance difference depends on the particular data dependences of the
computation, and the mapping of the computations on to the architecture. With simple switching
elements, and several elements on a chip, the fanout may become a problem in a switch based
architecture at an earlier stage in the evolving technology than in a machine with processor-to-processor
connections. One can view such an architecture as one in which the complexity of the switches is

increased to yield regular processing nodes.

4. Ensemble Architecture Algorithms
An ensemble architecture of extreme concurrency is similar to systolic architectures. However, in
ensemble architectures data management is an even more predominant factor. In most, but not all,

systolic architectures most of the data (input and output) are stored outside the array, and the



management of such data is generally ignored. In algorithms for ensemble architectures it is generally
assumed that initial data, as well as the results, are stored within the ense.mble. Furtherfnore, the
number of nodes in the ensemble is, in general, insufficient to match characteristic parameters of the
problem, but the amount of storage per node is significant. The granularity of computations in ensemble

architectures is often larger than in systolic architectures.

Time-space irade-offs are at the core of ma.pping algoritilms onto ensemble architectures. Data and
control structures, synchronization and communication are, in general, considerably more complex in
ensemble architectures than in systolic designs. The time-space trade-off in ensemble architectures is
often made in favor of minimizing data movement. Systolic designs are of fine grain and designs are
often such that the communication time is comparable to the time for logic or arithmetic operations.
Ensemble architectures are of a coarser grain and interprocessor communication is typically slower than

the execution of arithmetic and logic operations.

Algorithms are devised both in an ad hoc manner and systematically. The first approach may lead to
entirely new, efficient, algorithms. The second approach can be supported by 'algorithm design tools, and
provides the necessary insight to develop compilation techniques that transform abstract representations
of algorithms into efficient code for a variety of architectures. In the systematic approach, which is
followed in the description of sample algorithms below, a computation graph defining the partial ordering
of computations is created from the definition of the computation in a suitable notation. Then, this
computation graph is mapped on to the ensemble. We often carry out this mapping in two stages. First,
a mapping is carried out for the case of a sufficiently large ensemble.. In such an ensemble the mapping of
the computation graph can be made such that all nodes of a given level (order) are assigned to distinct
processors. The situation in this case is similar to what is typical for systolic designs [47], [49], [14], [65],
{70], [69], [76], [64], [16], [18]. In the second step the actual computation graph is mapped on to the
ensemble. This step can often be thought of as a folding of the computation graph on to itself, until the

reduced graph is of a size that fits the ensemble.

In folding the computation graph and mapping it on to a specific ensemble architecture several
performance related issues arise that do not oceur in designs of the systolic type. For instance, in such a
design it is often sufficient for maximum utilization of resources that no two elements compete for the
Ssame communications link at the same stage in the execution of the algorithm. But, in an ensemble
architecture it may be required that for maximum performance communications during different stages of
the algorithm do not compete for the same communijcation link. The ability to establish different
communication paths with a2 minimum number of shared edges becomes important. The size of the

problem relative to the size of the ensemble also affects the optimum embedding in other ways due to

restricted communication.



With larger granularity of computations operations are no longer occurring concurrently to the extent
disclosed by the computation graph. A parallel algorithm that minimizes the time for arithmetic
operations on an unbounded number of processors may have a higher total operations count than ‘an
algorithm minimizing the number of arithmetic operations. Bitonic sort and odd-even cyclic reduction
are examples thereof. In order_t,o minimize the required solution time on an ensemble of finite size a
combination of algorithms may be needed. In some instances such combinations can be obtained through
algorithm transformations. Which a.lgorithn.:l minimizes the execution time may also depend upon the

.number of problems to be solved in that some algorithms are more amenable to pipelining than others.

We will describe some basic ensemble architecture algorithms for computational linear algebra and
sorting, and focus on the issues raised above. The ensemble architecture topologies used as model
architectures are linear arrays, 2-dimensional meshes, binary trees, shuffle-exchange, boolean cube, and
cube connected cycles networks. Before discussing the algorithms we present a few results on graph

embeddings that are used in some of the algorithms.

4.1. Graph Embeddings

The computation graph defines a partial ordering of the computations. Constraints on the realization
of the computation graph are imposed by the ensemble architecture, and are incorporated in the mapping
process. The computations corresponding to the nodes at a given level (order) have to be spread over
time If there are an insufficient number of nodes in the ensemble, or if the communication implied by
directed edges may require more than one communication s},ep. This situation occurs if the operands at
the source and sink of the edge are located at nodes at a distance greater than 1 in the ensemble. In the
interest of conserving storage, nodes of the computation graph are sometimes identified with a given
storage location. Such a strategy results in a variety of access schemes for the same data structure. If the
storage bhas a latency then this strategy has its cost in that the latency may determine the rate of
execution during some part of the algorithm, as is the case for familiar computations such as FFT, and
odd-even cyclic reduction [12] on vector architectures. The bank conflict problem in vector processors is
well known, and architectural solutions (10], (58], [60], (78], as well as solutions at the application

program level for particular aigorithms (51], [34] have been proposed.

The situation is the same within a node in an ensemble architecture, but in addition the time of
accessing storage is not uniform. In a simpliﬁed mode] the storage of nodes with which a given node has
direct connections can be accessed in 1 unit of time, the storage of the neighboring nodes of the immediate
neighbors in 2 units of time, etc. The larger the number of neighbors the larger the number of different
access schemes that can be supported by a fixed data structure at a given number of communication

actions. Reconfigurability through switchable interconnections gives the ensemble the same property.



Commonly appearing data structures are linear or multidimensional arrays. Rosenberg and Snyder [81],
based on results of Sekanina [94], have given a procedure for a prozimity preserving embedding of a 2"-1
node loop in a 2°-1 node binary tree. Let dL(l.j) be the distance between nodes i and j in the loop, and
#(i) and 4(j) be the embeddings of nodes i and j in the tree. Then, dT(¢(i),¢(i+1)) < 3 for all i, where
d.r(i,j) is the distance between nodes i and j in the tree. They have also shown that

Eiﬂ;z dp(6(1).é(i+1)) < 2(|L|-1), i.e., the average distance between adjacent nodes is less than 2. L]
denotes the length of the loop. For any embedding of 2-dimensional arrays of n by n nodes in the leaves
of a complete binary tree DeMillo, Eisenstat, and Lipton (19] have shown that there exist nodes (i,j) and
(i+1,j), adjacent in the array, such that dp(e(i.).e(1+1,1)) > log,n-3/2. Rosenberg and Snyder [81) show
that the average distance for the embedding of a 2-dimensional array in the leaves of a binary tree is at
most 7-2'U°52°J+1. Rosenberg and Snyder also consider the embedding of d-dimensional arrays with nd
nodes in the leaves of 2d-a.ry and binary trees. The average distance between nodes adjacent in a d-
dimensional array when embedded in a 2d-ary tree is at most 4—2’|~l°52n1. The bound for a binary tree is

(4—2'U°52"J)d. The maximum distance is at most 2dlog,n for the binary tree embedding.

Nodes in a boolean cube can be given addresses such that the addresses of adjacent nodes differ in
precisely 1 bit. Furthermore, the number of adjacent nodes for any node equals the number of
dimensions of the cube, i.e., the number of bits in the address. A loop embedding that preserves
proximity is easily obtained for |L|=2" by encoding the indices of the nodes in the loop in a
binary-rc flected Gray code [79]. Such Gray codes have several interesting properties. For instance, it is
easy to show that dC(Gi’G(i +2j)m° d2n)=2 for j > 0. This property is important for algorithms such as the
FFT, bitonic sort, and cyclic reduction. For the FFT and bitonic sort an embedding according to a direct
binary encoding of the indices of the data elements is preferable. However, application programs typically
include the use of several different “elementary” algorithms, and a Gray code embedding may be
preferable for other computations.

Another important property of the binary-reflected Gray code is that for i even dC(Gi’G n)==1.

(i+3)mod2
This property implies that any loop of length 2n'l+2k, k={1,2,...,2°'2} can be embedded in a n-
dimensional cube (n-cube) such that dC(Gi’G(i+1)mod|L|)=1 for i={0,1,...,|L|-1}. For |L| odd there exists a
node i in the loop such that dC(Gi’G(i +1)mo dM)=2. That the minimum maximum distance must be 2 is
easily proved, since if it is equal to 1, then the cube would contain a cycle of length 3, or equivalently,
that adjacent nodes would differ in 2 bits. In the following we refer to binary-reflected Gray codes simply

as Gray codes.

An embedding according to the binary encoding of node indices in a loop dbes not preserve proximity.
For i even dc(¢(i),¢(1+1))=1, but for i odd dC(¢(i),¢(i+1)) falls in the range [2,n]
(dc(¢(2n'1-1),¢(2"’1))=n). A Gray code encoding Gi=(gn‘1,gn_2,...,go) can be rearranged to a binary
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encoding i=(bn_1,bn'2,...,bo) in n-1 routing steps. The highest order bit in the Gray code encoding of an
integer, and the highest order bit in its binary encoding coincide. The eﬁcodings of the last element, N-1,
differ in n-1 bits. An element needs to be routed in dimension j if gj 25} bj=1. Routing the elements such
that successively lower (or higher) order bits are correct yields paths that intersect at nodes only (44].
This form of routing amounts to reflections around certain *pivot® points in the Gray code. The pivot
points are defined by the transitions in the bit being subject to routing. Figure 4-1 illustrates the
sequence of reflections that convert a 4-bit Gray code to binary code. A reflection consists of an exchange
of elements between a pair of processors. Since each dimension is routed only 6nce, no two elements
traverse the same edge in the same direction during the entire process of data reallocation. If there are
multiple data per node the routing of elements can be pipeliﬁed without conflict. This property is

important if a processor can concurrently support communication on all of its communication links.

0 0000 0 0000 0 0000 (o} 0000
1 0001 1 0001 1 0001 1 0001
2 0011 2 0011 2 0011 3 0011
3 0010 3 0010 3 0010 2 0010
4 0110 4 0110 7 0110 6 0110
3 0111 3 0111 6 0111 7 0111
6 0101 6 0101 5 0101 5 0101
7 0100 7 0100 4 0100 4 0100
8 1100 15 1100 12 1100 12 1100
9 1101 14 1101 13 1101 13 1101
10 1111 13 1111 14 1111 15 1111
11 1110 12 1110 15 1110 14 1110
12 1010 11 1010 11 1010 10 1010
13 1011 10 1011 10 1011 11 1011
14 1001 9 1001 9 1001 9 1001
15 1000 8 1000 8 1000 8 1000
. Figure 4-1: Conversion of Gray code to binary code

The embedding of d-dimensional meshes with n 4 nodes in dimension i is easily accomplished by
i
partitioning the address space such that there are |'log2n d] bits (dimensions of the cube) allocated for
i

dimension di of the array. For n d =2k for some k this simple embedding is also efficient in the use of
i
nodes in the cube.

4.2. Data Structures for Sample Problems

Next we present some algorithms for general data permutations (sorting), and routing algorithms used
in forming the transpose of a matrix, multiplying matrices, and solving dense and banded systems of
linear systems of equations. A natural data structure for matrix problems is a 2-dimensional array. For
a boolean cube configured ensemble two obvious candidate embeddings of a 2-dimensional array are a
proximity preserving embedding by éepa.rately encoding the row and column indices in a Gray code, or by

a separate binary encoding of the row and column indices. For an N by N matrix and a 2k-cube with
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N2 > 22k, elements of the matrix have to be identified, and stored in the same node of the ensemble. We

consider two schemes of identifying mati'ix elements with nodes of a 2k by 2k array.

In consecutive storage all elements (L))={0,1,..,.N-1} of a matrix A are identified and stored in
processor (p,q) if p=|i2¥/N| and a=|i2¥/N]. Each processor stores a submatrix of size N%/2%. 1n cyelic
storage the matrix elements are stored such that elements (i,j) are identified with node (p,q) if p=imod2k,

and q=jmod2k. The consecutive and cyclic storage schemes are illustrated in Fléure 4-2.

. 01} ool D1
00 01 02

00i011 10001 01

b1} looby 1

Figure 4-2: Consecutive and cyclic storage of a matrix

With the consecutive storage scheme algorithms devised for the case of N=2k can be employed with the
apparent change of granularity. Operations on single elements are replaced by matrix operations. In the

cyclic storage scheme the processing elements can be viewed as forming a processing plane, and the

plane

All Alz A13 5‘0::52 planes

submatrices as forming st.oraée planes, Figure 4-3.
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Figure 4-3: Processing and storage planes

We find that the cyclic storage scheme enforces a greater insight into the communication and storage
management issues. Elemental operations are of fine grain. For an ensemble architecture with
communication overhead that is nonzero, or that is not proportional to the number of elements
communicated, and that has pipelined arithmetic un_it.s, operations of fine grain should, in general, be

merged for optimum use.. Conversely, if the consecutive storage scheme is used it may be desirable to
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partition the elemental operations to increase the utilization of the ensemble. Either storage scheme
allows for the same optimum use of the resources for the computations treated here. The optimization of
vector length, or communication packet size does not affect the optimum allocation of data, or the choice
of algorithm. The main focus here is on the data and control structures that yield a complexity of

minimum order. The detailed optimization that accounts for specific architectural parameters is left out.

Rearrangement of consecutive to cyclic storage order {or vice versa) can be carried out in time N/ 2k+k
for N elements stored in a 2k processor boolean cube. For this communication complexity it is required
that a processor can support communication on multiple ports, and that the communication for successive
stages can be pipelined. We will now show that pipelining of successive stages is possible. Consider the
local storage of each node as a column of a matrix that has as many columns as there are ‘nodes in the
array. Cyclic storage corresponds to storage of the elements in row major order, and consecutive storage
to storage of elements in column major order. Clearly, if the number of rows is the same as the number
of columns, one is obtained from the other through a matrix transpose operation. However, unlike in

forming a matrix transpose the number of rows and columns does not change with the storage form.

The rearrangement can be made recursively by exchanging elements between pairs of processors
differing in successively lower order address bits. The processors with addresses in the lower half of the
processor address space exchange the elements of the upper half of their local address space with the
contents in the lower half of the local address space of their corresponding processors in the upper half of
the processor address space. The result is that the first half of the processors contain the first half of the
elements. An unshuffle operation on local addresses (or shuffle operation on the data) brings the first half
of the data into row major order in the processors with addresses in the lower half of the address space,
and the second half into row major order in the second half of the set of processors. The procedure is

repeated recursively for each half independently, and concurrently. Figure 4-4 gives an example.
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Figure 4-4: Transforming cyclic storage to consecutive storage

Clearly, the local shuffle operation need not be carried out explicitly. Note that exchanges are always
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performed on half of the local address space, regardless of recursion step, or the number of rows or
columns. This property is not true in forming the transpose of a rectangular matrix. Note further that

the data transfers can be pipelined.

Carrying out the recursion in reverse order transforms a consecutive storage order to a cyclic storage

order.

4.3. Data Permutations

4.3.1. Combining sequential and bitonic sort on a boolean cube

Sorting algorithms can perform general permutations. The bitonic sort {4] fits the topology of a boolean
cube well. Stone [101] observed that the bitonic sort maps well on to shuffle-exchange networks. From
Stone’s observations the implementation on a boolean cube is immediate for one element per node. We
will describe two algorithms for sorting N evenly distributed elements on a K=2k processor boolean gube

for N > K.

The bitonic sort merges sorted sequences recursively. With one element per node the algorithm proceeds
by comparison-exchange operations on elements that are located in nodes differing in 1 address bit, say
the lowest order bit. Then, two sorted sequences stored in two l-cubes are merged into one sorted
sequence in a 2-cube. The sorting order, nonascending or nondescending, is determined by a mask. The
mask is a function of the processor address and the length of the subsequences being merged. In all,
log2N sequences are merged serially. The number of sequences merged concurrently decreases from N /2
to 1. The final step merges two sequences stored in separate (k-1)-cubes into one sequence in a k-cube.
The number of routing steps is k(k+1)/2, independent of the data. Each routing is performed in only one

dimension. An algorithm for the bitonic sort expressed in pseudo code is as follows:
For i:=1,2,...,n do

If i<n do
nodes (an_l,.., a3 B ao), a;=1, set mask==1.
nodes (an_l,.., a8 A, ao), a,=0, set mask=0.

end

For ji=i-1,i-2,...,0 do
nodes (a_, ..., i L3 a,), send their elements to
nodes (an_l, e By 0, R U ao), which compare local

and received elements
nodes with mask=0 keep the smaller element and
nodes with mask=1 keeps the larger
rejected elements are sent to (an_l, o By 1, 3y o ao)
end
end

If there are N elements to be sorted on a k-cube and N > 2k, then additional sequential steps are

necessary. Sorting of the elements into consecutive and cyclic order is considered. Assume for simplicity
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that N==2" The last merge operation involves sequences of length N/2. The merge is accomplished
through a sequence of comparison-exchange operations on subsequences that decrease in length by a factor

of 2 for each step.

With cyclic storage order the first n-k comparison-exchange operations are local to a node. The result is
2“"k bitonic sequences ordered with respect to each other. Each sequence has one element per node. The
last k steps are separately performed on each of those sequences. Carrying out the first n-k local steps as
bitonic sort yields poor performance. The operational complexity of bitonic sort is O(N’loggN), compared
to O(Nlog2N ) for a good sequential sort. The first n-k steps can be carried out as a local merge operation
concurrently in all processors, requiring at most 25"k comparisons (instead of (n-k)2“'k), (42]. The
correctness of the algorithm can be proved by observing that the first n-k steps, given the assumed
storage order, realize 2k independent bitonic sorters each for 2n'k elements, and that corresponding output
elements from these sorters form a bitonic sequence. The last k steps realize 2“’k bitonic sorters for
sequences of length 2k. The situation is a generalization of Batcher’s construction [4] of a 16-sorter out of

4-sorters, see Figure 4-4,
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Figure 4-5: A network of 2* 2™ ¥.sorters followed by 2*¥ 25-sorters.

The time for cyclic sort by the algorithm outlined above is T = 2n’k'1(k(2n-k+1)(4Lc+tce)/ 2 +
2(n-k-1)tce) + v, where t, is the time for communication of an element between a pair of processors, and

b, is the time for a comparison operation. If N3>2* then T is of order O((N/2k)log2N and if Nas2¥ T is

2

of order O(log2N). The speed-up is linear for a small cube and gradually changes to O(N/ log2N ).

With soriing into consecutive storage order the recursion can be carried out such that an increasing
number of elements in a node is part of a given sorted sequence, as in the cyclic sort. It is also possible,

as suggested by Baudet and Stevenson {5], to carry out the recursion over the number of nodes included in
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the sorted sequence. A local sort is performed initially. In each recursion step all elements in a node
belong to the same sorted subsequence. Bitonic sort is used for internode sort. The communication and

comparison complexity is of the same order as for sorting in cyclic order [42].

The running time of bitonic sort does not depend on the data distribution. This property is a drawback
for nearly sorted sequences. The data movement in such instances can be reduced at the expense of
additional logic for determining what subsequences should be exchanged. Such a modification can be
made while preserving one advantage of bitonic sort, namely that the number of elements per node is

kept constant during the sorting process.

4.3.2. Distribution counting

Rank assignment in the context of distribution counting [82] with L counters, or “buckets”, can be
carried out in a time of at most [N/2k+L+k-1]2r,a + [L(1-1/2k)3-i-k]2t.c for 2% <L, and [N/2k+L+k-1]2t,a
+ [6(L-1)-i-5k-310g2L]tc for 2f > L, on a boolean cube [42] (r,a is the time for an arithmetic operation).
For few processors and a large number of elements compared to the number of buckets the algorithm
offers linear speed-up. If the number of buckets is comparable to the number of elements to be sorted the
speed-up is sublinear. For few buckets and few elements per node the speed-up is of order O(N/logzN).
The rank assignment algorithm that yields the complexity estimates above is data independent, as are the
algorithms based on bitonic sort. The rank‘ assighment algorithm is easily modified to deal only with
non-empty buckets, which is efficient if only a few buckets in each node are populated. For particular
distributions of elements the data dependent version will have a complexity of order O(log2L) in the

number of buckets, as in Hirschberg’s shared storage model [31].

In the rank assignment algorithm multiple binary tree like computations are carried out concurrently.
There are L binary trees with N leaf nodes each. The trees form subtrees of a tree with a total of log2NL
levels. Each node has a local copy of each bucket. To find the total number of elements in any bucket
the number of elements in each of all the different copies of a bucket have to be added. This addition is
carried out by the subtrees of log2N levels. For the rank assignment partial sums are distributed from
the root of the trees to the leaves. However, first an accumulation over al] giobal bucket sums has to be
performed. For each tree the summation/rank assignment process is carried out by recursive doubling

[53].

The recursive doubling process is carried out concurrently’in all subtrees of height log2N , by rooting the
subtrees in different nodes of the ensemble. The global sums of different buckets are contained in distinct
nodes. The tree embedding is such that one node in the boolean cube contains log2N-1 non-leaf nodes of a-
subtree, another cube node logzN-2 non-leaf nodes of the same subtree, yet 2 other nodes log2N-3 non-leaf
nodes of the same subtree, etc. After the first step half of the subtrees are treated by distinct halves of

the cube. The divide-and-conquer process is repeated recursively. The speed-up for the subtrees of height
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log2N is of order O(N) for L of at least order O(log2N). The top logZL levels of the tree are embedded

similarly. Figure 4-6 illustrates the computations for N=L==4.
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Figure 4-8: Concurrent tree computations on a boolean cube

4.3.3. Randomized Communication

Recently, several probabilistic algorithms of complexity O(log2N) for arbitrary permutations on a
boolean cube and d-way shuffle networks have been devised. The probabilistic algorithms do not
guarantee an even distribution of elements during permutation. (However, combined with a rank
assignment algorithm the permutation can be specified so that the distribution on completion of the
permutation is even, e.g., for load balancing). The probabilistic algorithms have two phases. First, the

elements are routed to a random location, then the elements are routed to the final destination. The

routing is deterministic.

During routing from the initial location to the final destination during either phase, several elements
may reach a node and then be delayed because of competition for a given communications link, even in
the case that the there is precisely one element per node in initial and final states. Also, several elements
may reside in a single node at the end of the first phase. Valiant and Brebner {109] show that for a
boolean cube with one element per node initially, and after the permutation, the queue length with high
probability is at most of order O(log2N). Indeed, for N/K elements per node they show that the
probability that the permutation will require more than (aN/K+1)log2K routing steps is less than
(e/ 2a)°’(N/ K)I°S2K. They also establish similar bounds for so called d-way shuffle networks (in- and out-
degree of a node is d), which also are considered by Upfal [108] and Aleliunas [38]. It is assumed that a
processor can support communication on all its ports concurrently. Valiant and Brebner also show that
for a k-dimensional mesh with N=nk nodes, the probability that at least one packet has not finished in
3/4

1/2
time (2k-1)(n+an”/®) is less than C*® ° for C < 1. This result compares favorably with the complexity

of Batcher’s bitonic sort or odd-even merge on meshes [106], [71], [56]. The Thompson and Kung
algorithm yields a complexity of approximately 6\/§ for a 2-dimensional mesh, and (3k2+k)N1/ K for a
k-dimensional mesh. Simulations that exhibit a behavior well within the bounds for a variety of ensemble

configurations are also presented.
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4.3.4. One-to-Many Distribution

One-to-many distribution is often called broadcasting. We avoid that term here since it in some
architectures is reserved for particular means of accomplishing data distributions. There exist many ways
of accomplishing the data distribution task in most ensemble architectures. Critical issues are
termination, completeness and uniqueness, i.e., that all nodes have received the message precisely once
upon termination. Furthermore, local control of the distribution algorithm is desirable. As an example
Wwe present the one-to-many distribution algorithm that is used in the Gaussian elimination algorithm
described later. Pivoting is assumed to take place on the diagonal. The distribution algorithm must
guarantee correct order of arrival in addition to the general properties, when used in conjunction with the

elimination algorithm.

One possible algorithm is outlined below. A ticket included in the message carries information about
the order in which dimensions shall be routed, and what dimensions have already been routed. The
routing order is determined by the source node (but need not be). The routing order is the order in which
the dimensions are used in the Gray code encoding of the indices (i+j)mod(2k) for monotonously
increasing values of j={1,2,3,.., 2k-1}. Let Gi be the Gray code encoding of i. The algorithm is described
in a synchronous mode of operation to simplify the arguments of the proof of completeness and

uniqueness.

One-to-all distribution with node G, as source
Node Gi' computes the order in which the cube dimensions shall be routed.

Node Gi sends the message to node G(i +1)mo d(zk)’ and marks the appropriate dimension as being
routed. Node Gi keeps a copy of the ticket.

Upon receipt of a message and the ticket a node resends the message with updated ticket in the
dimension next in the routing order. A node keeps a copy of the message and the updated ticket,
and keeps resending the message in dimensions not yet routed, with the ticket properly updated.

Each node that receives a message can determine the next dimension of communication, or if the
distribution is terminated, from the ticket it receives, or the copy it keeps. Note that in the mode of
operation described above a node only communicates on one port at a time. The control of the algorithm
is clearly distributed. Termiﬁat,ion is assured. This one-to-many distribution algorithm guarantees that
all nodes of! a k-cube receive a message precisely once within at most k routing steps. The cube has its
origin at the source node. The distribution algorithm reaches a new dimension for each routing step.
The source node participates in k distributions for a k-cube, node i+1 in k-1 distributions, etc.
Uniqueness is easily established if the source node is node (00....00). Routing from any other source node

Is identical after relabeling of the dimensions.

The distribution paths formed by the algorithm clearly form a spanning tree rooted at the source node.
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Hence, the completeness, uniqueness, and termination of the algorithm also holds for an asynchronous

algorithm.

The algorithm is order preserving in the sense that elements distributed by nodes encoding consecutive
integers are received in the order distributed. This property is established by noticing that the path i,
f{+1, i+2, ... reaches into 2 dimensions after 2 steps, 3 dimensions after 3 or 4 steps depending on i, and 4
dimensions after a minimum of 5 steps. Distributions from nodes encoding consecutive integers can be

initiated every 2 routing steps.

The behavior of the algorithm for a 4-dimensional cube is shown in Figure 4-7.

Node Gray Source(0) Source(1) Source(2) Source(3)

id cde o 1 2 3| 2 3 4 5| 4 5 6 7| 6 7 8 9
] 0000 * 0000 0000 0000

1 0001 0001 * 0001 0001

2 0011 0011 0011 - * 0011

3 0010 0010 0010 0010 *

4 0110 0110 0110 0110 0110

5 0111 0111 0111 0111 0l11

6 0101 0101 0101 0101 0101

7 0100 0100 0100 0100 0100

8 1100 1100 1100 1100 1100
9 1101 1101 1101 1101 1101
10 1111 1111 1111 1111 1111
11 1110 1110 1110 1110 1110
12 1010 1010 1010 1010 1010
13 1011 1011 1011 1011 1011
14 1001 1001 1001 1001 1001
15 1000 1000 - 1000 1000 1000

Figure 4-7: One-to-Many Distribution in a boolean cube, with sources in sequential order

4.3.5. Matrix transpose

The formation of a matrix transpose is a particular permutation of data elements. The transpose of a

matrix can be formed recursively as illustrated in Figure 4-8.

Figure 4-8: Recursive transposition of a matrix
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In the first step of the recursive procedure the interchange of data is performed on the highest order bit
of the row index and the highest order bit of the column index. In the second step the interchange is
performed on the second highest order bit of the row and column indices, for all combinations of the
highest order bits (i.e., 4 combinations). The number of index sets that differ in one bit of the row and

column indices increases as the procedure progresses towards lower order bits.

For the consecutive storage scheme it is easily seen that with N=2", the first k steps imply
interprocessor communication and the last n-k steps are local to a node in the 2k by 2k array. The last
D-k steps of the recursive procedure consist of local address changes. We presume here that the transpose
is needed with some other data in some computation. Otherwise, the first k steps could also be

accomplished without data movement by a suitable change of processor addresses.

With the cyclic storage scheme the situation is reversed. The first n-k steps amount to local address
changes, whereas the last k steps require interprocessor communication. After the first n-k steps there are
22(n'k) matrices of size 2k by 2k to transpose. All matrices are stored identically.

With cyclic storage and an embedding by binary encoding of the row and column indices two routing
steps are required for each element in each of the last k steps of the recursive procedure. The required
number of element transfer times is 22(n'k)+2k-1 assuming that communication in both directions can take
place concurrently on all of the ports of a processor. That at least 2k routing steps are required is seen
from the encoding of the elemeﬁts (2k'1,2k'1-1) (100...0 011...1) and (2k'1-1,2k°1) (011..1 100..0). With the
consecutive storage model and using the apparent granularity of operations the communication time is
proportional to k><22("'k)+1, which for k large is considerably higher. The difference between the two
expressions is due to pipelining of operations. The paths of elements in forming the transpose intersect
only at nodes. This is easily seen for the binary encoding, since element exchanges take place along

connections in different dimensions for each step of the procedure.

With a Gray code embedding of the array, successive row and column indices are always located in
neighboring nodes of the cube. However, the communication required by the recursive procedure is
between nodes storing elements of rows and columns whose binary encoding differs in successively higher
or lower order bits. Each such communication requires the communication of elements in two dimensions,
since complementing a bit in the binary encoding complements 2 bits in the Gray code encoding (except in

complementing the least significant bit).

With each step of the recursive procedure requiring communication in two dimensions in both the part
of the address space allocated to row addresses and column addresses, it is not immediately clear that
there exists a routing such that element paths intersect only at nodes. However, Routing by Alternating

Descending Order Reflections, guarantees this property. The routing proceeds from the highest order bit
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of the row indices, i.e., of Gi(k)' to the highest order bit of the column indices ,Gj(k), and then further to
successively lower order bits of the encoding of { and j in alternating order. This routing scheme implies
that matrix elements are subject to reflections around the main diagonal, and the anti-diagonal in
alternating order. The behavior of the algorithm is illustrated in Figure 4-9. The numbers on the

diagonals indicate the order of the reflection the submatrices are undergoing.

N\

T

Figure 4-9: Transposing a matrix stored in a binary-reflected Gray code

The maximum path length is clearly 2k. It is also clear that Paths intersect only at nodes. Hence, the
transpose of 2 N by N matrix stored cyclicly in a 2-dimensional array that is embedded in a 2k-cube by a

binary-reflected Gray code can be performed in 2(“'k)+2k~1 routing steps.

The application of the alternating descending order reflection algorithm to a 4-cube is illustrated in

Figure 4-10. The routing algorithm can be made distributed by the same techmque as was used in the
one-to-many distribution algorithm.

In forming the transpose of a matrix half of the edges of the cube in a given dimension are used in a
given step. Performing the transformation by a 2-dimensional mesh algorithm yields a considerably
higher number of routing steps {44], (22("'k)+1)(2k'1-1)/2. The order of complexity of that algorithm

cannot be reduced since N(N-1)/2 elements have to bass through O(2k) nodes, each of which has 4 ports.

4.4. Linear Algebra Computations

4.4.1. Matrix multiplication

Cannon (13] presents an algorithm for computing the product C of two 2X by 2 matrices A and B

stored in column major order in a 2-dimensional array of identical size. The algorithm requires a time

proportional to 2><2k. It has a set-up phase followed by a multiplication phase, and is of the SIMD type.

The purpose of the set-up phase is to align elements from the two matrices such that all nodes in the
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Figure 4-10: Routing paths in transposing a 4 by 4 matrix on a 4-cube
array can perform an inner product computation in every step in the multiplication phase. The
alignment is accomplished by i cyeclic shifts of row i of A and j cyclic shifts of column j of B. This skewing

operation is the same as is seen in many systolic algorithms [57], [47].

The inner products defining the elements of C are accumulated tn-place. Denote the storage cells for A,
B and C by E, F and G. In the set-up phase the shifting yields: E(i,j)<—E(i,(i+j)mod2k),
F(1,J) = F((1+])mod2™,j), G« 0 for (1,i) € {0,1,2,...,251} X {0,1,2,....251}. Clearly E(1,§)XF(Li) is a valid
product for all i and j. In the multiplication phase the following operations are carried out:
G(iJ) = GAH+EL) XF(LI),  E(L) —EG(+1)mod2"), F(iJ) — F((+1)mod2%,i), 1j={0.1,2.....2%1}.
Multiplication of an MXR matrix by an NXM matrix can be accomplished in a time of

max([N/2"],[R/2 ) [M/2M(25- 1), + [N/2¥1 M/ 28 (R /2K (2% 1)(0, +max(e, ¢ ) +2. ).

A drawback of the algorithm by Cannon is that no computations are being performed during the
alignment process. Some elements make almost 2 full revolutions, should only unidirectional
communication be allowed. However, one revolution suffices, and algorithms can be devised such that
successive matrix multiplications can be initiated every 2k "cycles". For instance, using the outer product
formulation [34] of a matrix product, and passing the columns of A along rows (one element per row) in
order of increasing column indices, and rows of B along columns in the direction of increasing row indices.
The distribution of columns of A and rows of B can start from the locations where the elements are
stored [45]. The distribution can be pipelined, and the initiation of the distribution of the different
columns and rows can be spread over time in order that no temporary storage be needed, other than for a
pair of elements to be multiplied. With only unidirectional communication, and end-around connections,

a total time of 5(2k-1) "cycles® is required for one matrix multiplication. The complexity of the
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algorithm may be improved, but with unidirectional data movement pipelining is easy to visualize. The
data movement is similar to that of the dense matrix factorization algorithm (without partial pivoting)

described later.

N
el

Active cycles of row 0 Pipelining of multiple matrix multiplications
Figure 4-11: Pipelined matrix multiplication by the outer product method on a torus

The complexity of the algorithm can be reduced by a term 2k—k, if the alignment can be accomplished in
time k instead of 2k. For matrices of a size comparable to the number of processors this difference is also
significant relative to the total time. Dekel et. al. [17] describes such an algorithm for 2k by 2k matrices
embedded in a boolean cube of 22X nodes by a separate bina.ryﬂ encoding of row and column indices. The
algorithm has a set-up phase in which A and B are arranged such that E(i,j) ~A(l1,ié i) and
F(L1) < B(@ .. Hence, E(Lj)XF(1.j) are valid terms for C(Lj) for (i,i) € {0,...,25-1} X {0,.,..25-1}. The
rearrangement requires exchanges of elements in the dimensions specified by i for A and by j for
B. Clearly, the set-up phase requires k steps, and no two elements traverse the same edge in the same
direction. The set-up phase for multiple multiplication operations can be pipelined so that the total set-

up time for P problems is P+k-1.

In the maultiplication phase nodes exchange their content in an order determined by the transition
sequence of the bits in a binary-reflected Gray code {17]. It follows that the time for multiplying an M by
R matrix B by an N by M matrix A on a boolean 2k-cube, with A, B and C « AXB+C, embedded
according to a separate binary encoding of row and column indices, modulo 2k=\/l?, is at most
'(([N/\/EHrR/\/E])[M/\/E]+1og2K-1)uc + \/I?fN/\/I?][R/\/I?I]'M/\/I?[ma.x(zta,tc) The number of
submatrices of size VK by VK is ([N/\/I?]%—fR/\/I?I)[M/\/I_(]. The number of block matrix
multiplications is ‘|’N/ \/I?H'R/\/I?]fM/ vK]. Cannon’s matrix multiplication algorithm is devised for

SIMD architectures. For mesh or boolean cube configured ensembles of the MIMD type it is possible to
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devise  algorithms with many different kinds of data flow and a complexity of
([N/\/E][R/\/E][M/\/I?]\/E-l)ma.x(zta,tc)+ad-,+-2ta, where d denotes the diameter of the ensemble
configuration and a < 4 [45].

4.5. Multiplication of a full matrix by a triangular matrix

If A is an upper triangular (or lower triangular) N by N matrix, then only half of the arithmetic
operations N(N+1)/2 are nontrivial. The alignment and multiplication phases of Cannon’s algorithm can
be interleaved such that computations start from one corner of the array and progréss towards the
opposite corner. The totai data movement is the same. In this variation of Cannon’s algorithm it is
convenient to use the notion of computational windows. A computational window is defined by the data
elements processed concurrently by the ensemble nodes. The computational window during step j for an
upper triangular matrix A, a.1j=0 for i-j > 0, is shown in Figure 4-12. The Figure also shows the

computational window for step j if A is a strict lower triangular matrix, a‘;j=0’ ij <o.

Figure 4-12: The computational window at step j for computing C «~ A XB+C,
A upper triangular, or strict lower triangular

From Figure 4-12 it is obvious that the multiplication AXB and D XB, where A is upper triangulaf and
D strict lower triangular of dimension 2k by 2?, or A strict upper triangular and D lower triangular can

be performed concurrently on a torus of dimension 2k by 2k, or a boolean 2k-cube.

4.5.1. Matrix-vector Multiplication

The matrix multiplication algorithms described above can also be used for matrix-vector multiplication,
Y=AX. However, the running time is independent of the number of columns of X, and the data
movement is larger than necessary [45]. An algorithm that on a boolean cube is of a lower complexity
than the algorithm by Cannon (adapted to a boolean cube), or the algorithm by Dekel et. al., for a single
vector, or for a matrix X with few columns is obtained by making A stationary, distributing the elements

of X to the proper ensemble nodes, and accumulating the partial products over space to yield C in the

desired location.

To outline the algorithm assume A is a 2k by 2k matrix and x a 2k vector with components X, and that

both A and x are stored in row major order. First X is rotated i steps in direction of increasing column
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index for i={0,1,...,2k-1}, then each x-value is distributed to all nodes in column i, and the products
'comput.ed. Finally, the products are accumulated. Each of these steps can be carried out in a time
proportional to k. With the matrix embedded by separately encoding row and column indices in a Gray
code, the shifting is performed in different subcubes, and no communication conflicts occur. The routing
of elements for a given shift s can be carried out by comparing the Gray codes of i and i+s and moving
towards the desired address by one dimension at a time in any order. The one-to-many distribution
algorithm can be used within columns. A similar algorithm can be used for the accumulation of inner
products. Complexity estimates for algorithms computing matrix-vector products by accumulating inner

products in-space are given in [45) for dense matrices and in [46] for banded matrices.

4.5.2. Factorization of dense matrices

The algorithms for Gaussian elimination and Gauss-Jordan elimination described below can be viewed
as modifications of systolic algorithms [57], {36]. The modification of the symmetric versions of Gaussian
elimination such as Cholesky’s, Crout’s, and Doolittle’s methods can be carried out in a similar way.
Systolic algorithms for mesh configured ensembles for Cholesky’s method are given in {2], [37], for Given’s
rotations in [24], (26], (2], [38], and for Householder transformations in [39]. Given’s and Householder’s

methods make use of unitary transformations and are numerically stable.

The factorization of a linear system Ax==y into a lower triangular matrix L. and an upper triangular

matrix U, is carried out such that the product form of Ltis computed, L’1=LN_1LN_2.Q.L1. A=LU and

Ux=L°1ye The elements of the factors are stored in the same locations as the elements of the matrix to

’

be factored.

N1

The non-trivial elements of a factor become known after the preceeding factors have been applied to A,

Le., 1, k={i,....N-1} equals the corresponding elements of A=L, A ;. Ag=A. The application of the

factors can be pipelined, as is done in systolic algorithms. In Gauss-Jordan elimination the inverse is also
expressed in product form, A.1=JN_1‘YN-2"“J0" The non trivial column of Ji is determined by the

corresponding column of A=J, A ..
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We again assume that A is stored in a 2-dimensional array in row major order. We first present
algorithms for 2-dimensional arrays, and then describe modifications that can take advantage of the
added communication capability of a boolean cube. In the application of Li to ‘A”; row i (the pivot row) is
distributed to rows k, k > i, and column i to columns I, 1 >1i. In Gauss-Jordan elimination the pivot row
is distributed to all other rows. If the matrix is of the same dimension as the array, i.e., there is only one
matrix element per node, then Gauss-Jordan elimination can be completed in the same time as Gaussian

elimination. An increasing number of processors become idle in Gaussian elimination.

For A large compared to the array only the diagonal blocks are diagonalized, with A being stored
cyclicly. The storage of the pivot row and columns [45] and their distribution is illustrated in Figure
4-13. Each application of a factor is similar to performing a column by row product in the outer product

matrix multiplication algorithm.

Figure 4-13: Storage and distribution of pivot row and column in dense matrix factorization

For each column elimination operation a number of elements needs to be distributed along rows, and a
number along columns. The number of elements distributed along rows equals the number of submatrices
on and below the diagonal. The number of elements distributed along columns is equal to the number of

blocks on, and to the right of the diagonal, including the right hand sides.

A boolean cube offers a capability of carrying out the distribution of the pivot row to other rows and
the pivot column to other columns in less than linear time. For the factorization of a matrix by Gaussian
elimination without partial pivoting this capability does not lower the complexity of the elimination, but

it does in the event of partial pivoting. However, in forward substitution on multiple right hand sides,
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and in Gauss-Jordan elimination the communication capability of the boolean cube can be used to reduce
the complexity of the propagation term. The order of the complexity is still linear in the size of the
matrix, which is intrinsic to Gaussian elimination without partial pivoting. Faster methods for band

matrix problems are described in the next section.

In performing the data distribution in Gaussian elimination, or ‘Gauss-Jordan elimination, without
partial pivoting the source nodes are consecutively indexed. A correct result is guaranteed if data arrives
in the same order as its distribution is initiated. This condition is sufficient, but not necessary for
correctness. The one-to-many distribution algorithm described earlier guarantees the same order of
arrival as that of distribution [46]. Note that in Gaussian elimination the distribution for the last several

equations only needs to cover successively smaller cubes.

4.5.3. Linear Recurrences

A number of methods for the solution of general linear recurrences Lz=y (y and z are vectors, L. a lower
triangular matrix) on architectures with global storage have been proposed, and their complexity analyzed
assuming zero communication cost. Sameh [85] gives a survey of such algorithms and their properties.
We present an algorithm for mesh or boolean cube configured ensembles (44]. It is an adaptation of the
binary tree algorithm by Johnsson [40], which in turn is a particular instantiation of the column-sweep
algorithm described by Kuck [54]. We assume that the vectors y and z are stored in row major order,
and L in column major order (LT is stored in row major order). In the algorithm outlined below Y and 2z

are stationary, L communicated along rows, and partial inner products along columns.

The elements of a éolumn of L are passed along rows of the array. The elements of a column are passed
in order of increasing row index. The first element of a column of L is »used to compute a new component
of z. Subsequent elements of a row of LT are multiplied by this z component, added to the corresponding
partial inner product passed along columns in direction of increasing row indices, and the result passed to
the next processor in the same column. The first partial inner product that reaches a processor is used to

update the right hand side, before a new z is computed. Hence, a processor in row i when first activated

1-1
computes z, then computes the product lkizi’ adds this product to Zj=0 lka.I received from the preceeding

row, and outputs the result to the succeeding row.

This algorithm for solving linear recurrences progresses from one row to the next at the rate ¢ a2,
ignoring communication time (t d is the time for division of two floating-point numbers). For a 2-
dimensional array of 2k by 2k processors, the service of a processor is requested for a new row every
(t d+2ta)2k units of time. If L is a banded matrix with m nonzero diagonals, then a processor needs a time
of t d-4»2(m-1)t‘.a to complete the computations for one column of L. The time to solve the linear recurrence

by this algorithm is approximately
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Figure 4-14: Data movement in a linear recurrence algorithm on a torus
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For banded systems a recurrence solver can also be based on the partitioning method [87]. This
approach can further reduce the complexity of solving linear recurrences. The partitioning method is

discussed further in the next Section.

4.5.4. Banded System Solvers

Tridiagonal systems

Irreducible tridiagonal systems of equations can be solved in 2log2N steps using O(N) arithmetic
operations by odd-even cyclic reduction (12]. The method has been modified by Hockhey [34] to yield a
solution in logzN steps, but at the expense of O(Nlog2N) arithmetic operations. For highly concurrent
ensembles it is of interest to find mappings of the computation graph on to the nodes of the ensemble
such that the communication complexity is no higher, or at least of the same order as the parallel
arithmetic complexity. Binary trees, shuffle-exchange networks, and boolean cubes allow for global

communijcation {n a time proportional to k for K=2k-1 and K=2k processors respectively.

The solution of tridiagonal systems on binary trees is interesting not only for the importance of efficient
tridiagonal solvers, and the relative simplicity of constructing large tree ensembles, but also from an
algorithm design point of view. First, there exists a mapping of the computation graph for cyclic
reduction on N equations on to a binary tree of N nodes such that the communication complexity is
3log2N. A comparable communication complexity is also obtainable on shuffle-exchange networks and
boolean cubes {41]. Second, for N > K, the mapping principle providing minimum communication
complexity for N=K does not yield the desired communication complexity, but the use of two different
embeddings does. Rearrangement from one embedding to the other is made at a certain stage in the
algorithm. Third, a poly-algorithmic approach yields a communication complexity of minimum order.

The third property is also true for the shuffle-exchange and boolean cube configured ensembles.

The computation graph of cyclic reduction is shown in Figure 4-15. For N=K mapping the equations

~
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on to nodes in the tree in inorder for every level of the computation graph, yields a map with the desired
order of complexity. The first reduction step requires a time proportional to k, the second a time
proportional to k-1, etc. But, the reduction steps can be pipelined, and the total time is proportional to k

(41], [22]. The inorder mapping is shown in Figure 4-16.
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Figure 4-18: Inorder mapping of cyclic reduction on to a binary tree

For N=2"-1 > K it is necessary to map several equations on to a tree node. One natural approach is to
first map the computation graph in inorder on to an abstract tree of size N, and then to map this
abstract tree on to the ensemble tree. This mapping can be done by folding the tree on to itself, or
mapping several adjacent levels of the abstract tree into one level of the processor tree. However, such an
approach does not yield an efficient algorithm in the case of cyclic reduction, neither with respect to the

balance of computational load, nor with respect to communication.

Another natural approach to the mapping of the computation graph on to the tree is the formation of a
quotient graph from the computation graph by combining a number of successively indexed nodes at each
level of the computation graph into a node in the quotient graph. This approach Is similar to domain

decomposition in the solution of partial differential equations. The nodes at each level of the quotient
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graph are then mapped on to the proceséor tree in inorder. The number of quotient nodes at the leaf
level of the computation graph with [N/K] equations is 2°™0dk1 wpich corresponds to a nmodk level
binary tree. In the formation of the quotient nodes the computation graph is effectively partitioned into
“vertical* slices, with one quotient node per slice and level for n-k levels starting with the leaf level. In
another view the same levels have been collapsed into one level. The quotient graph approach provides

the best possible computational balance.

A critical observation in finding a communication efficient mapping is that the communication between
some pair of partitions alternates in direction for every level (reduction step) of the computation graph.
The efficiency of the inorder map relies on the fact that the communication is unidirectional, and can be
pipelined. A communication (and arithmetically) efficient map in the case of cyclic reduction on a
"large" set of equations on a “small* tree ensemble is obtained by a proximity preserving map of the
quotient graph on to the tree, for the first several steps until there is one “active" node per quotient node,
followed by an inorder map for the last k reduction steps. The remapping can be done in k-3 routing

steps [41]. Figure 4-17 illustrates a proximity preserving embedding of a path in a binary tree. The

embedding is a minor variation of the embedding by Rosenberg and Snyder [81].
8

Figure 4-17: A proximity preserving path embedding in a binary tree

Hence, in the case of cyclic reduction on 2 binary tree ensemble, and N > K, the use of two different
embeddings yields a communication complexity of the same order as the arithmetic complexity on a
parallel processor with unbounded parallelism and shared storage, i.e., O(logzN), whereas for N=<K one

embedding yields the same result.

However, cyclic reduction with a proximity preserving embedding for the first n-k reduction steps and
an inorder embedding during the last k reduction steps does not yield a communication complexity of
minimum order, which is O(log2K). A tridiagonal solver having a communication complexity of
minimum order, without increased arithmetic complexity, can be obtained by combining Gaussian
elimination and cyclic reduction, even though Gaussian elimination essentially is a sequential method.

For N > K, Gaussian elimination can be used concurrently in all processors, reducing the set of equations
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forming a node in the quotient graph to a single node. Fill-in is created, but the arithmetic complexity is
approximately the same as for cycli¢ reduction {111]. _In this reduction only one interprocessor
communication is needed, compared to 1og2(N/K) for cyclic reduction on a binary tree. The reduced
system is of the form shown in Figure 4-18. The reduced system is then solved by cyclic reduction using

an inorder map. The total complexity is of order O(N/K+log2K) [41].
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Figure 4-18: Combining Gaussian elimination and cyclic reduction for tridiagonal systems

The combined algorithm is of minimum order of complexity both with respect to communication and
arithmetic. The communication time is proportional to the diameter of the ensemble. This minimum
order algorithm is of the poly-algorithmic type. However, the pure cyclic reduction algorithm may have
advantages in the case of truncated cyclic reduction. But, Reiter and Rodrigue {80] have showed that
under certain conditions the fill-in elements decrease in magnitude, and a truncation of the reduction
process may be possible for the poly-algorithmic approach as well.. The reduction in computational
complexity accomplished by truncating the reduction process is relatively much more significant in a
highly concurrent system than in a single processor system. For N=K the running time is proportional to
the reduction steps executed, while on a single processor architecture half of the total (untruncated)
execution time is spent in the first reduction step, a quarter in the second, etc. -The speed-up for cyclic
reduction and N==K is O(N/logzN), but approaches O(N) if the reduction process can be terminated after

a fixed number of steps, as in strongly diagonally dominant systems.
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On a boolean cube a static data structure yields an implementation of cyclic reduction of
communication complexity of order O(logzN). Combining Gaussian elimination and cyclic reduction
Yields a total complexity of minimum order with quotient sets mapped to nodes according to a Gray code.
Unlike algorithms such as the FFT or bitonic sort each step of the cyclic reduction algorithm involves 3
nodes of the computation graph. An embedding according to a binary encoding would require k routing
operations for the first step of the algorithm, k-1 for the 2nd, k-2 for the 3rd etc. The binary-reflected
Gray code also allows for simple, "distributed control. Each processor can determine with which
neivghboring processor to communicate, and what information shall be transmitted/received from its
address, and the reduction step currently being executed [41]. Because of the properties of the binary-
reflected Gray code each step requires only 2 routing steps. One of these routing steps can be carried out
as an exchange operation (but need not be). In such a case successive levels of the computation graph are
mapped into subcubes of monotonously decreasing dimensionality. For N=K all processors participate in
the first reduction step, about half of which only perform communication. The equations participating in
the second reduction step are moved to one half of the cube, and the process is repeated recursively.

Figure 4-1¢ illustrates a few steps in the reduction process for N=K==8.
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Figure 4-19: Cyclic reduction on a boolean cube

If multiple independent tridiagonal systems are to be solved, then eithér all problems can be distributed
over the entire ensemble, or the ensemble can be logically partitioned such that each problem is solved by
a partition. For tridiagonal systems and the solution methods discussed here, it is always advantageous

to partition the ensemble, even in the event of negligible communication time [41].

General Banded Systems

The partitioning technique used in the communication efficient tridiagonal system solver can also be
applied to banded systems. Sameh and collaborators [87], [69], [20], use the partitioning technique to
reduce banded systems of bandwidth 2m+1 to dense, block pentadiagonal, systems of order 2m(P-1) for P
partitions. The blocks are of size m by m. The solution of the reduced system by Gaussian elimination
on a linear array is considered by Lawrie and Sameh [69], and the solution by block-Jacobi and
preconditioned conjugate gradient methods by Dongarra and Sameh [20]. Reiter and Rodrigue [80], and

Johnsson [43] analyze a modification that reduces the banded system to a dense, block tridiagonal system
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of order mP. Reiter and Rodrigue give conditions under: which diagonal dominance is preserved during
the Gaussian elimination part of the algorithm. Johnsson shows that the arithmetic complexity in
deriving the tridiagonal system is approximately 1/3 of that required in deriving the peniadiagonal
system, and analyze the complexity of solving the reduced system by Gaussian elimination and block

cyclic reduction on linear arrays, binary trees, shuffle-exchange networks and boolean cubes.

The optimum number of partitions Popt depends on m, N, and the ratio of the communication and
computation bandwidths. Popt. for Gaussian elimination on a linear array is of order O(V N/m) and the

corresponding complexity is of order O(m2v Nm). Block cyclic reduction yields a lower complexity under

a variety of conditions, even on a linear array. The value of P opt falls in the range

O(\/_ N) <L P < O(N/m), and the corresponding complexity is in the range O(mz\/— N+m logzN) to
O(m +m log2(N/ m)) [43]. For binary trees, shuffle-exchange networks, and boolean cubes Popt is of order
O(N/m) and the corresponding complexity of order O(m3+m3log2(N/m)). For small matrix bandwidths

this algorithm yields good speed-up, but as the bandwidth increases the speed-up becomes low.

The above results apply under the assumption that there is one processor per partition. The number of
partitions is constrained to be at most N/m. However, it is possible to exploit concurrency in the
operations also within the partitions, which for m of order O(N) is the main source of concurrency. For
instance, one can use Kc < m2 processors configured as a mesh or a boolean cube during the elimination
of the elements in one column, as in systolic algorithms [57] [36], but use the dual formulation in which
the factors are computed in-place. The sbeed—up is of order KC. The computations proceed in two
phases: factorization with forward substitution, and backsubstitution. The factorization can proceed from
the first to the last column, or from both ends concurrently. In the latter case an m by m dense system
of equations must be solved for the *middle* equations before backsubstitution takes place. A dense m
by m system is also solved in the 1-way elimination scheme (the last m equations). The backsubstitution
consists of solving a linear, banded recurrence. The technique discussed previously can be used. Figure

4-20 illustrates an intermediate state of the factorization process.

The one-to many distribution algorithm can be used to reduce the propagation time for a boolean cube,
and multiple right hand sides. The propagation time then becomes of lower order even in the case of
K —-m2 and N~ m. The complexity of solving banded systems by this approach is O(mz\I/K ) (P=1)
[46]. PFor symmet,nc matrices storage as well as time can be saved using a parallel version of Cholesky’s

method (2], [37].

The two methods can be combined such that Kc processors are used for each partition. Such a set of
processors is referred to as a cluster. With P clusters of Kc processors each, intracluster connections in

the form of a 2-dimensional mesh (or torus) or boolean cube, and intercluster connections forming a
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Figure 4-20: Band matrix factorization on a 2-dimensional array or boolean cube

binary tree, shuffie network, or boolean cube, the minimum time complexity is of order
O(m+mlog2(N/m)), and Popt of order O(N/m), and K, of order O(m2) {46]. Note that for a boolean

opt
cube a subcube can be considered as a cluster.

The combined algorithm degenerates to the simple band matrix algorithm proceeding along the band
from one corner to the other for m==N-1. For m==1 it degenerates to the tridiagonal solver described

previously.

4.5.5. Fast Poisson Solvers

Fast Poisson solvers combine Fast Fourier Transforms (FFT) with tridiagonal system solvers, and block
cyclic reduction to achieve a minimum arithmetic complexity of order O(Nlog2log2N) for an N by N grid
[32], [33], (102]. Stone [101] observed that the FFT can be carried out in log,N steps on an N-node
shuffle-exchange network. The modification of Stone’s algorithm for a boolean cube is straightforward.
Shuffle operations become unnecessary. The butterfly operations are simply carried out on elements
residing in processors adjacent in different dimensions. This property holds for decimation-in-time (DIT)

as well as decimation-in-frequency (DIF) FFT.

With multiple elements per processor the initial (and transformed) sequence can be stored in either
consecutive or cyclic storage order. In either case, and depending on whether a DIT or a DIF FFT is used
the first, or the last, log2(N/K) butterfly operations are local to a node. The arithmetic complexity is of
order O((N/K)log,_,N) and the communication complexity is of order O((N /K)logzK). The speed-up is
proportional to K. FFT algorithms for linear arrays are given in a number of references [77], [47], [48].
An early description of a FFT on a 2-dimensional array is given by Stevens {100]. An analysis of the

area-time aspects of the FFT on a variety of ensemble configurations is given in [105].

The solution of Poisson’s problem on a rectangle can be obtained by a 2-dimensional FFT, by a number

of 1-dimensional FFTs that decouple the equations into a set of independent tridiagonal systems, or by a
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combination of block cyclic reduction, FFT, and tridiagonal system solvers, and the so called FACR
method (32}, [33], [12], [11], [102], [103], (104]. By exploiting symmetries and using real transforms the
number of arithmetic operations per point is less than 2.Slog2N in the FFT computation. Using Gaussian
elimination with precomputed factors {103] the number of arithmetic operations per point for the
tridiagonal solvers is 4, or approximately 4 if advantage is taken of the fast convergence of the elements
of the factors (88]. Hence, the arithmetic operations count i§ less for solving the tridiagonal systems by
Gaussian elimination than by FFT, solution of a diagonal system, and inverse FFT (IFFT). A cyclic

reduction algorithm could be used, but the operations count per point with precomputed factors is 6.

In a highly concurrent system the differences in complexity between the FFT and tridiagonal system
solvers are much smaller. To amplify this issue consider the case with N2 nodes in an ensemble
configured as a boolean cube. The solution of Poisson’s equation either by a 2-dimensional FFT, or by a
combination of 1l-dimensional FFT’s and tridiagonal system solvers based on cyclic reduction, then
requires a time of order O(logzN), including communication. For this extreme case Gaussian elimination
is not of interest with respect to computational complexit& since it is inherently sequénbial. The number
of routing steps in the boolean cube is ﬂog2N for cyclic reduction, the same as for a FFT followed by an
IFFT. With a butterfly operation carried out entirely in one node, solution of the tridiagonal systems by
FFT, solution of a diagonal system, followed by IFFT would require 12log,N arithmetic operations in
sequence, assuming no concurrency within an ensemble node. Sharing the computations among a pair of
nodes would bring the operations count for the FFT tridiagonal solver QOwn to 7log2N. The cyclic
reduction based solver requires Slog2N operations with precomputed coefficients. A direct 2-dimensional
FFT could potentially yield a comparable or slightly lower operations count. In the FFT approach all
nodes‘are used in all steps, but in the cyclic reduction tridiagonal system solver the number of active
nodes decreases. In the FFT tridiagonal system solver O(N"log2N) operations are performed, in the cyclic
reduction tridiagonal system solver O(N) operations. Furthermore, most of the tridiagonal systems are
sufficiently diagonally dominant that the reduction process can be truncated. This does not reduce the
total solution time in this extreme case, but a significant fraction of the processors in the ensemble can be

used for other tasks.

Sameh (86] presents a method for the solution of the 2-dimensional Poisson equation on a ring of
processors, and for the solution of the 3-dimensional problem on a cylinder of processors. In the 2-
dimensional case FFT’s are performed on data local to a processor, and the tridiagonal systems solved by
a modification of the partitioning method (87]. The modification is made to take advantage of the
Toeplitz form of the tridiagonal matrices. The reduced systems are solved by pipelined Gaussian
elimination within the ring. In the 3-dimensional case 1-dimensional FFT’s are performed, first local to a
processor, then a new set of 1-dimensional FFT’s are performed within a ring, resuiting in N2 independent
tridiagonal systems, with each tridiagonal system spread across the rings. The tridiagonal systems are

solved by Gaussian elimination.
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Whether Gaussian elimination or cyeclic reduction is preferable with respect to computational complexity
for the solution of the tridiagonal systems depends on the ensemble topology, K, N, and «, the ratio of
the arithmetic bandwidth to the communication bandwidth. The following complexity estimates can be
derived: Gaussian elimination 4N2/K+2N+a\/lz on an ensemble configured as a & by \/E mesh,
partitioning based entirely on Gaussian elimination 9N2/K+4N/&+(2+a)&, and partitioning with
cyclic reduction for the reduced system and an ensemble configured as a boolean cube
9N2/K+N/ &(3+2a)log2K. Precomputed coefficients are assumed for these estimates. Cyclic reduction
for the reduced system becomes competitive for K approaching N on a boolean cube configured ensemble.
On a linear array the logarithmic term premultiplied by « is replaced by a term linear in & as for
Gaussian elimination. Which method is preferable on a linear array is critically dependent upon a, K,
and N. An accurate comparison should also account for the fact that the truncation process can be
terminated for a large fraction of the systems. With respect to performance the benefit of truncating the
reduction process is particularly large on linear arrays, since the largest communication expense occurs in

the last few reduction steps using an in-place algorithm [41].

4.5.8. Iterative methods

Conjuga.t,e Gadient Methods

The conjugate gradient method [29] is a direct method for the solution of linear systems of equations.
However, it is often used as an iterative method, and combined with preconditioning is an effective
iterative technique, in particular for sparse systems. The conjugate gradient method solves a linear
system of N equations in N steps. Each step requires O(NZ) arithmetic operations for a system Ak=y in
which A has NZ non-zero elements. Hence, the arithmetic complexity is of the same order as for
elimination methods, Given’s rotations, and Householder transformations if the matrix A is dense. But,
because of fill-in in those methods, the conjugate gradient method often yields a lower complexity for
sparse systems, in particular if acceptable accuracy in the solution is obtained in less than N steps

(possibly much fewer steps).

The minimum time per iteration is O(log2N) because of global communication in each step. In each
iteration an inner product including the entire state is computed, and used (distributed to all Processors)
in the computation of the new state. Pipelining of successive steps is not possible. The minimum parallel
arithmetic complexity of the conjugate gradient method is O(Nlog2N), the same order as that of
Householder’s method. Preconditioning that would allow the iterative process to be terminated in less
than N/logzN steps could possibly yield a lower complexity, but the complexity of each step has to be
included. With the original system matrix used as a preconditioner one iteration suffices, but the original

system of equations has to be solved in that step.

So far very few studies have been carried out for parallel versions of the conjugate gradient method.
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Adams [1] has investigated the convergence of various preconditioners, and in particular their feasibility
with respect to implementations on the Finite Element Machine. Saad and Sameh have investigated the
conjugate gradient method on multiprocessors with shared global storage [84], and linear arrays {83]. The
implementation of the preconditioned conjugate gradient method with various preconditioners has also
been investigated by Kamath and Sameh [50]. They consider the solution of 2-dimensional elliptic partial
differential equations on a ring of processors, and the solution of the 3-dimensional problem on a torus.
The adaptation of the conjugate gradient method to binary tree architectures is described by Johnsson
[46]. The effect of preconditioning on the computational complexity is analyzed. Van Rosendale
[110] has proposed a modification of the inner product computation in which it is computed recursively.

Only local computations are carried out in each step. However, global communication is still required in

each step.
Asynchronous methods

In the classical iterative methods a number of matrix vector products are computed. Each such product
requires global communication. In a highly concurrent system this global communication will limit the
speed-up, unless several iteration steps can be pipelined. A large fraction of the processors in the
ensemble are idle. So called asynchronous iterative methods, or chaotic relaxation, attempt to fully
exploit the concurrency in multiprocessor systems by not enforcing global synchronization between each
step of the iterative process. Chazan and Miranker [15] give necessary and sufficient conditions for
convergence of chaotic relaxation applied to the solution of linear systems of equations. The results are
extended by Miranker [68]. Baudet [5] gives necessary and sufficient conditions for convergence for
nonlinear problems, and history dependent iterations, and some bounds on the efficiency, as well as some
experimental results obtained on the C.mmp (113]. Recently, asynchronous iteration has also been
studied by Lubache‘vsky and Mitra [686].

5. Summary

The power of an ensemble configuration can be measured in several different ways. One way is to
measure the time required to perform arbitrary permutations. Such permutations of N elements on a
binary tree of N nodes may require a time proportional to N+O(log2N). Arbitrary permutations can be
performed on a 2-dimensional mesh in time 6VN (106], on the shuffle-exchange network in time
logzN(logzN-l), and on the boolean cube in time 1/2log2N(logzN+1) using the deterministic algorithm of
Batcher, or with high probability in clogzN time for ¢ a small integer using a randomized algorithm. The

cube connected cycles network has the same capability of performing arbitrary permutations.

Another way to measure the power of an ensemble configuration is to determine to what extent one

configuration can emulate another at an increase in running time by at most a constant factor, for certain
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classes of algorithms. Of the networks discussed here the shuffle-exchange, boolean cube and cube
connected cycles networks are the most powerful for so called normal algorithms [107]. The boolean cube
and cube connected cycles network may yield an improved performance by a constant factor over the
shuffle-exchange network for normal algorithms. The tree network is significantly less powerful in that

the running time for many algorithms is higher by more than a constant factor.

The diameter of a configuration gives a lower bound for the time required for a given operation.
Whether the dia.ineter appears as an additive term or multiplicative factor in treating "large" problems
on “small" ensembles depends on how communication paths with distinet origins and destinations
intersect. We illustrated this point by forming a matrix transpose on a 2-dimensional mesh with end-
around connections and on a boolean cube. The transpose of a \/E by \/E matrix can be formed in
(1 /2\/E-1) routing steps on the mesh configured ensemble, and log2K routing steps on the boolean cube.
This difference becomes significant first for fairly large K. However, the transpose of a N by N matrix on
a \/I_{ by \/E mesh requires a time -of at least order O(N2/\/E), and can be performed in
1/2([ N/\/Iz]2+1)(1/2&-1) routing steps [44]. On the boolean cube the transpose can be performed in
([ N/ &]2+log2K-1) routing steps, an improvement by a factor of approximately \/E/-i over the mesh.

The finite communication capability of ensemble configurations affects the performance adversely,
sometimes significantly. The time for arithmetic operations decreases, but the time for communication
may increase with the ensemble size. For most ensemble configurations and computations there exists an
optimum size of the ensemble beyond which- the performance decreases. For instance, in the case of the
solution of tridiagonal systems of equations by combining Gaussian elimination and cyclic reduction the
optimum sizes and minimum solution times are as follows for a few configurations: linear array
Koptwﬁ\/N/_a and Tminw'y\/ltl, 2-dimensional mesh Koptwﬁ(N/a)zla and Tmin~7N1/3, binary tree,
shuffle-exchange, and boolean cube networks KoptwﬁN/(l-i-a) and Tminks'ylo%N, where a is the ratio
between the arithmetic and communication bandwidths [41]. For band matrix solvers based on the
partitioning technique the optimum number of processors configured as a linear array is of order
O(M) for matrices of bandwidth 2m+1, and O(N/m) for binary tree, shuffle-exchange and boolean
cube networks. The corresponding solution times are of order O(m2\/N_m) and O(m3+m310g2(N/m)),
respectively {45]. For ensembles configured as boolean cubes, band matrix solvers of complexity

O(m+mlog2(N/m)) can be devised [41].

With insufficient number of interconnections, or with inappropriate topology, different embedding
strategies may have to be applied not only for different problems, but also for different phases of a given
algorithm. This need was exemplified by cyclic reduction on a binary tree. On a boolean cube 2 single
embedding strategy yields a computational complexity of minimum order. Of relevance for many

computations is the embedding of 1-dimensional, or multidimensional arrays. Linear arrays can be
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embedded in binary trees preserving proximity, but for d-dimensional arrays embedded in ﬁhe leaves of
the tree the average distance between nodes adjacent in the mesh is (4—2'|~l°32°-|)d when embedded in the
tree. The maximum distance is of order O(dlogzn). Both 1-dimensional and multidimensional arrays can
be embedded in boolean cubes preserving proximity. If the number of elements in each dimension is
slightly less than or equal to a power of 2, then this embedding Is also efficient in terms of processor
utilization. The impact of a given embedding on performance is in some instances determined by the

average distance between array nodes, whereas in others it is determined by the maximum distance.

Ensemble architecture algorithms. can be obtained by first generating a computation graph from a
description of the computation in a conventional mathematical notation, and then mapping this graph on
to the ensemble. This mapping process has many characteristics in common with the mapping carried
out in finding efficient systolic algorithms. But, there are also several aspects of the mapping of
computation graphs on to ensemble architectures that do not require attention in the systolic case. One
similarity is the need to treat temporal as well as spatial aspects of computations, with a nonuniform
access time to different parts of the storage. Preserving locality is also important in both architectures.
However; the embedding of the computation graph in an ensemble architecture often has to satisfy
additional criteria compared to what is required in the systolic case in order to yield maximum processor
utilization, or minimum solution time. The need for different embedding strategies during different

phases of the execution of an algorithm may depend on the size of the problem relative to the size of the

ensemble, as in the case of cycllc reduction.

With the additional sequencing of operations caused by mapping several nodes of a given level of the
computation graph on to the same ensemble node, instead of distinct nodes as in the systolic case,
independence of communication paths becomes an issue. If communication paths with distinct origins and
destinations intersect at nodes only, and the processor can support concurrent communication on all its
ports, then communication actions can be pipelined to a maximum extent. In effect, the ensemble is

configured optimally for the desired operation. This issue was f{llustrated by performing a matrix

transpose on a boolean cube.

Another difference compared to algorithms of extremely fine grain is that whereas in such a case an
efficient parallel algorithm may be lde;a.l, in particular if it can be mapped on to an ensemble with only
local communications without loss of efficiency, this is not necessarily true on an ensemble architecture.
More operations are carried out in sequence, and the sequential operations count may be higher for an
algorithm of minimum parallel complexity than for a sequential algorithm of minimum complexity. For
instance, bitonic sort requires O(NloggN) operations compared to O(NlogzN) operations for a good
sequential sort. In the case of tridiagonal system solvers, cyclic reduction requires approximately twice

the number of operations needed by Gaussian elimination. A combination of algorithms may Yyield a
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lower complexity than any single algorithm. In some instances, such as in the solution of tridiagonal
systems by elimination methods, it may be possible to obtain the combined algorithm by algorithm
transformation techniques. Elementary rules of algebra may be used to reduce the number of arithmetic
operations carried out sequentially, as in mapping the computation of the Discrete Fourier transform on
to a linear array. The result is an FFT algorithm with defined data and control structure {49]. However,
the most interesting aspects of algorithm transformation techniques is that a user may not have to worry
about all the minute variations of algorithms and architectural details, and that for ensemble

architectures more efficient algorithms may be discovered.

In the architectural model used here it is essential that the control of execution is distributed, in order
to prevent bottlenecks and avoid sources of limited scalability. All of the algorithms presented here have
local control, including the routing algorithms. The architecture allows each node to0 execute a
substantially different piece of code. However, in most of the concurrent algorithms we know there is a
high degree of regularity, not only in the communication pattern, but also in the instruction streams
being executed. Typically there are 3 - 4 different pieces of code. In algorithms for 2-dimensional meshes
boundary nodes often perform somewhat different tasks, like computing rotation factors in the case of
Given’s method. In binary tree algorithms the root, the leaves, and the intermediate level nodes often
have ;heir unique pieces of code [8]. This characteristic also simplifies the problem of downloading code if
the ensemble serves as an attached processor. The code can be replicated within the ensemble (63], and

thereby comsiderably reduce the potential bottleneck caused by external input/output operations.

A large class of problems not discussed here is that of computations with data dependent control flow.
For data independent computations it is possible in principle to map the computations on to the nodes in
the multiprocessor system at "compile time*. For simple problems mappings that are optimal with
respect to some criteria, like time, can be found at a small or moderate expense. However, finding
optimal mappings for most problems is, in general, an NP-complete problem. For data dependent
computations good strategies for run time mappings of computations on to processors are needed. To
avoid potential bottienecks it is desirable that load balanging use only local information, and that global

information is gathered through a sequence of local communications.
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