Partial Evaluation for Dictionary-free Overloading

Mark P. Jones
Research Report YALEU/DCS/RR-959
April 1993

This work is supported jointly by DARPA contract number
N00014-91-J-4043 and NSF contract number CCR-9104987.

Partial Evaluation for Dictionary-free Overloading

Mark P. Jones
Yale University, Department of Computer Science,
P.O. Box 2158 Yale Station, New Haven, CT 06520-2158.
jones-mark@cs.yale.edu

Research Report YALEU/DCS/RR-959 April 1993

Abstract

It has long been suggested that parametric polymorphism
might be implemented by generating a distinct version of
the code for each monomorphic instance of a function that
is used in a given program. However, most implementations
avoid this approach for fear that it could lead to a substantial
increase in the size of the compiled program - a so-called
code explosion - and that it would complicate the process of
separate compilation.

An alternative, used in many systems, is to have a single im-
plementation of each polymorphic function and use a uni-
form (or boxed) representation for all values. This avoids
the risk of code explosion but makes it more difficult to sup-
port parametric overloading. In addition, the use of boxed
representations for even the most primitive values may carry
a significant run-time cost.

This paper presents a new approach that lies between these
two extremes. The resulting system can be used to obtain an
efficient implementation of overloading and to avoid the use
of boxed representations of values in common cases (by re-
ducing it to a particular form of overloading). We describe
a compiler for a Haskell-like language that supports over-
loading using a system of type classes. The compiler gener-
ates distinct implementations for each overloaded function
that appears in a given program but only a single version of
the code for pure polymorphic values. This avoids many of
the problems associated with the use of dictionaries in pre-
vious implementations of type class overloading. Further-
more, comparing the output from our compiler with that of
an earlier dictionary-based implementation we find that, for
realistic applications, there is no code explosion.

The new compiler has been obtained by adding a simple
partial evaluator to the dictionary-based system. The re-
sults of this paper therefore provide further motivation for
including a more general partial evaluation system as part
of production quality compilers for such languages.

We do not attempt to deal with the interaction between
partial evaluation and separate compilation although our
results certainly suggest that further work in that area would
be beneficial.

1 Introduction

The inclusion of a polymorphic type system in the design of
a programming language recognizes the fact that many use-
ful algorithms can be described in a uniform manner without
full knowledge about the kind of values on which they op-
erate. For example, if all lists are implemented in the same
way within a particular programming language, then the
process of calculating the length of a list is independent of
the type of values that it contains.

In his seminal paper on polymorphism in programming lan-
guages [14], Milner used a polymorphic ‘type system as a
means of identifying a large class of programs in an untyped
A-calculus whose execution would not “go wrong”. Objects
in the underlying semantic model can have many different
types; for example, there is a unique identity function Az.z
that serves as the identity for all types. With this in mind,
it is quite natural to consider an implementation in which
all versions of a particular polymorphic function are imple-
mented by the same section of program code. This approach
is simple and has worked well in many practical implementa-
tions, including those which support separate compilation.
Unfortunately, it is difficult to support parametric overload-
ing in this framework; for example, we may need to rely on
run-time tags [1] or additional parameters such as dictionar-
ies in Haskell [7, 21]. In addition, it is necessary to use a
uniform representation for run-time values, typically a single
machine word. Objects that do not fit into this space must
be allocated storage elsewhere and represented by a pointer
to that value. This is known as a bozred representation and
can cause substantial performance overheads.

Another possibility is to use a simply-typed A-calculus as
the underlying model, with a semantic domain D, for each
type 7. This leads to an implementation in which distinct
sections of code are used to implement different instances
of a polymorphic function. For example, the polymorphic
identity function mentioned above is treated as a family of
functions, indexed by type, with a different implementation,
Az : 1.z, for each type 7. This is by no means a new idea;
similar suggestions have been made many times in the past
both as an implementation technique (for example, in [15])
and as a theoretical tool for describing the semantics of ML-
style polymorphism [16]. It is easy to deal with overloading
and to avoid the need for uniform representations using sets
of values indexed by type; there is no need to insist that the
indexing set includes all types or that the implementations
are always substitution instances of a single simply-typed
term.

There are two reasons why this approach has not been widely
adopted in concrete implementations; first that it might lead
to an explosion in the size of the compiled program, second
that it does not interact well with the use of separate compi-
lation. It is not particularly difficult to demonstrate how a
code explosion might occur. For example, suppose that we
define a sequence of functions in a Haskell program using:

A (z,9) (u,v)
£ (z,9) (u,v)
f3 (3’ y) (“1 v)
fs (z,9) (u,v)

hhzu && foyv
fizu && fiy v
Lzu && foyv
fszu && fsyv

where fp has type a = a —+ Bool. It is easy to show that,
in the general case, a call to f; will involve 2*~7 different
versions of f; for each 0 < j < i. However, this worst-
case exponential behaviour may not occur in practice. For
example, if the only instance of fp that is actually used has
type Int — Int — Bool, then it is only necessary to generate
one version of the code for each of the functions f;.

This paper describes our results with a compiler that uses
a cambination of the typed and untyped models described
above, generating distinct versions of the code for overloaded
functions, but only a single version for all other functions.
Input programs for the compiler are written in a Haskell-like
language with support for user-defined overloading based on
an extended system of type classes [7, 11, 21]. All current
Haskell systems make use of dictionary values at run-time
to implement type class overloading and this can have a sig-
nificant effect on run-time performance. As a result, some
Haskell programmers have resorted to including explicit type
information in programs to avoid the use of overloading in
performance-sensitive applications, but loosing much of the
flexibility that overloading can provide. By generating dis-
tinct versions of the code for overloaded operators we have
the potential to avoid many of these problems because dic-
tionary values are no longer involved. In effect, we can offer
the performance of an explicitly typed program without the
need for explicit type signatures, compromising the flexibil-
ity of type class overloading.

The dictionary-free implementation is obtained by special-
izing the output of an previous version of the compiler that
does rely on the use of dictionaries at run-time. As might
be expected, there is a very close connection with standard
techniques used in partial evaluation; a production com-
piler providing dictionary-free overloading in this way would
probably use a more general partial evaluation system t
achieve the same kind of results. :

The principal objective of the work presented in this paper
was to assess what kind of impact, if any, the code explosion
problems described above might have in realistic program-
ming examples. The results are very promising, suggesting
that, for realistic programs the code explosion problem does
not occur. Indeed, in all the cases that we tried, the size of
the compiled program was actually reduced!

The remainder of this paper is organized as follows. We be-
gin with a brief introduction to the use of type classes in
Haskell in Section 2, describing the way in which overloaded
functions are defined and extended to work on a range of
datatypes. All current implementations of Haskell are based
on the dictionary passing style discussed in Section 3. The
need to eliminate the use of dictionaries motivates the use

of a form of partial evaluation in Section 4 which produces a
dictionary-free implementation of programs using type class
overloading. We provide some measurements of program
size for a collection of ‘realistic’ programs using both the
dictionary passing style and the dictionary-free implementa-
tions. Another benefit of a dictionary-free implementation is
that it considerably reduces the motivation for the ‘dreaded
monomorphism restriction’ in Haskell, making it possible to
eliminate this in future versions of Haskell. This is discussed
in Section 5. Another application, described in Section 6, is
to allow thie use of more efficient (i.e. non-uniform) represen-
tations for certain frequently used data types. This is made
possible by treating the familiar constructor functions and
pattern matching constructs as overloaded values. Finally,
Section 7 gives some pointers to further work, in particular
to the problems of combining global partial evaluation and
separate compilation.

2 Type classes

Type classes were introduced by Wadler and Blott [21] as a
means of supporting overloading (ad-hoc polymorphism) in
a language with a polymorphic type system. This section
gives a brief overview of the use of type classes in a language
like Haskell and provides some examples that will be used
in later sections. Further details may be found in [6, 7].

The basic idea is that a type class corresponds to a set of
types (called the instances of the class) together with a col-
lection of member functions (sometimes described as meth-
ods) that are defined for each instance of the class. For
example, the standard prelude in Haskell defines the class
Num of numeric types using the declaration:

class (Eq a, Text a) = Num a where

(+); (), (=) a—>a—a
negate 2 a—a

abs, signum a—a
fromInteger Integer = a
T—y = =+ negalte y

The first line of the declaration introduces the name for
the class, Num, and specifies that every instance a of Num
must also be an instance of Eq and Text. These are two
additional standard classes in Haskell representing the set
of types whose elements can be compared for equality and
those types whose values can be converted to and from a
printable representation respectively. Note that, were it not
for a limited character set, we might well have preferred
to write type class constraints such as Num @ in the form
a € Num.

The remaining lines specify the operations that are specific
to numeric types including simple arithmetic operators for
addition (+), multiplication (*) and subtraction (—) and
unary negation negate. The fromInteger function is used
to allow arbitrary integer value to be coerced to the cor-
responding value in any other numeric type. This is used
primarily for supporting overloaded integer literals as will
be illustrated below. Notice the last line of the declaration
which gives a default definition for subtraction in terms of
addition and unary negation. This definition will only be
used if no explicit definition of subtraction is given for par-
ticular instances of the class.

Instances of the class Num are defined by a collection of
instance declarations which may be distributed throughout

the program in distinct modules. The program is free to
extend the class Num with new datatypes by providing ap-
propriate definitions. In the special case of the built-in type
Integer (arbitrary precision integers or bignums), the in-
stance declaration takes the form:

instance Num Integer where
+) = primPlusinteger

fromInteger z = =

This assumes that the implementation provides a built-in
function primPlusInteger for adding two Integer values. Note
that, for this special case, the implementation of fromInteger
is just the identity function. The Haskell standard prelude
also defines a number of other numeric types as instances
of Num including fixed precision integers and floating point
numbers. The definition of fromlInteger is typically much
more complicated for examples like these.

Other useful datatypes can be declared as instances of Num.
For example, the following definition is a simplified version
of the definition of the type of complex numbers in Haskell:

data Complez a = a:4a

instance Num @ = Num (Compler a) where
(z:4y)+(u:4v) = (z+u):+(y+v)

fromInteger z = fromInteger z :4fromInteger 0

We can deal with many other examples such as rational
numbers, polynomials, vectors and matrices in a similar way.

As a simple example of the use of the numeric class, we can
define a generic fact function using:

fact n = ifn==
then 1
else n * fact (n—1)

Any integer constant m appearing in a Haskell program
is automatically replaced with an expression of the form
fromInteger m so that it can be treated as an overloaded
numeric constant, not just an integer. If we make this ex-
plicit, the definition of fact above becomes:

fact n = if n == fromInteger 0
then fromlinteger 1
else n x fact (n — fromInteger 1)

As a result, the fact function has type Num a = a = a
indicating that, if n is an expression of type a and a is an
instance of Num, then fact n is also an expression of type
a. For example:

fact 6 = 720
fact (6.0 :40.0) = 720.0:40.0

The type system ensures that the appropriate definitions of
multiplication, subtraction etc. are used in each case to pro-
duce the correct results. At the same time, an expression
like fact 'f' will generate a type error since there is no decla-

ration that makes Char, the type of characters, an instance
of Num.

3 Dictionary passing implementation

This section outlines the technique of dictionary passing and
explains some of the reasons why it is so difficult to produce
efficient code in the presence of dictionary values.

The biggest problem in the implementation of overloading
is that of finding an efficient and effective way to deal with
method dispatch — selecting the appropriate implementation
for an overloaded operator in a particular situation. One
common technique is to attach a tag to the run-time repre-
sentation of each object; each overloaded function is imple-
mented by inspecting the tags of the values that it is applied
to and, typically using some form of lookup table, branching
to the appropriate implementation.

Apart from any other considerations about the use of tags,
this approach can only deal with certain kinds of overload-
ing. In particular, it cannot be used to implement the
fromInteger function described in the previous section; the
implementation of fromInteger depends, not on the type of
its argument, but on the type of the value it is expected to
return!

An elegant solution to this problem is to separate tags from
objects, treating tags as data objects in their own right.
For example, we can implement the fromInteger function
by passing the tag of the result as an extra argument. This
amounts to passing type information around at run-time but
is only necessary when overloaded functions are involved.
There are, in fact, several different choices for the kind of
values that are used as tags (corresponding to the notion
of evidence in the theory of qualified types [8, 9]). For ex-
ample, Thatte [20] suggests using types themselves as tags,
extending the implementation language with a typecase
construct that supports ‘pattern matching’ on types to deal
with method dispatch.

A more concrete approach — based on the use of dictionary
values — was introduced by Wadler and Blott [21] and has
been adopted in all current Haskell systems. A dictionary
consists of a tuple that contains the implementations for
each of the member functions in a given class. Superclasses
can be dealt with by storing a pointer to the appropriate
class in the dictionary. For example, Figure 1 illustrates the
structure of a dictionary for the Num class, including the
auxiliary dictionaries for the superclasses Eq and Tezt.

Specific instances of this structure are constructed as neces-
sary using the instance declarations in a program. We use
the names of the member functions as selectors that can
be applied to a suitable dictionaries to extract the corre-
sponding implementation. For example, if dictNumlInteger
is the dictionary corresponding to the instance declaration
for Num Integer given in Section 2, then:

(+) dictNumlInteger 23 = primPlusinteger 2 3
) = 5
fromInteger dictNumlInteger 42
= 42

Notice that these overloaded primitive functions are dealt
with by adding an extra dictionary parameter. The same
technique can be used to implement other overloaded func-
tions. For example, adding an extra dictionary parameter to
the fact function given above and using member functions

Num Eq

(+) (==)

*) (/=)

negate
abs Text
signum showsPrec
fromInteger showList
readsPrec
readList

Figure 1: Dictionary structure for the Num class

as selectors, we obtain:

fact d n
= if (==) (eqOfNum d) n (fromInteger d 0)
then fromInteger d 1
else (¥) d n (fact d ((=) n (fromInteger d 1)))

(writing eqOfNum for the selector function which extracts
the superclass dictionary for Eq from the dictionary for the
corresponding instance of Num.) Further details about the
translation process are are given by [2, 17, 19, 21].

The dictionary passing style is reasonably simple to under-
stand and implement and is well-suited to separate compi-
lation; only the general structure of a dictionary and the set
of instances of a particular class (both of which can be ob-
tained from module interfaces) are needed to compile code
that makes use of operators in that class. Unfortunately, the
use of dictionaries also causes some substantial problems:

¢ Unused elements in a dictionary cause an unwanted
increase in code size.

o In the general case, the selectors used to implement
method dispatch are higher-order functions. It is well-
known that efficient code generation and static analy-
sis are considerably more difficult in this situation.

e The need to construct dictionary values and pass these
as additional parameters at run-time adds further over-
heads.

For the purposes of this paper, we concentrate on the use
of dictionaries although many of our comments apply more
generally to any implementation of type class overloading
which makes use of evidence values at run-time, whatever
concrete form that may take.

3.1 Dictionaries increase program size

In an attempt to reduce the size of executable programs pro-
duced by a compilation system, many systems use some form
of ‘tree shaking’ to eliminate unused sections of code from
the output program. This is particularly important when
large program libraries are involved; the standard prelude
in Haskell is an obvious example.

The idea of grouping related operations into a single class is
certainly quite natural. In addition, it often results in less
complicated types. For example, if Haskell used separate
classes Eq, Plus and Mult for each of the operators (==),
(+) and () respectively, then the function:

pythz yz = zsxztyxy==2z%z2
might be assigned the type:
(Eq a, Plus a, Mult a) = ¢ = a = a — Bool
rather than the simpler:

Num a = a = a =+ a = Bool.

A disadvantage of grouping together methods like this is that
it becomes rather more difficult to eliminate unwanted code
as part of the tree shaking process. For example, any pro-
gram that uses a dictionary for an instance of Num will also
require corresponding dictionaries for Eq and Text. Many
such programs will not make use of all of the features of
the Text class, but it is still likely that large portions of the
standard prelude dealing with reading and printing values
will be included in the output program. In a similar way,
even a program where only Int arithmetic is used, the need
to include a fromInteger function as part of the dictionary
may result in compiled programs that include substantial
parts of the run-time support library for Integer bignums.

Another factor that tends to contribute to the size of pro-
grams that are implemented using the dictionary passing
style is the need to include additional code to deal with the
construction of dictionary values (and perhaps to implement
the selector functions corresponding to each member func-
tion and superclass).

3.2 Dictionaries defeat optimization

It is well known that the presence of higher-order functions
often results in significant obstacles to effective static anal-
ysis and efficient code generation. Exactly the same kind
of problems occur with the use of dictionaries — the selec-
tor functions used to implement member functions are (usu-
ally) higher-order functions — except that the problems are,
if anything, more severe since many of the most primitive
operations in Haskell are overloaded.

To illustrate the problems that can occur, consider the fol-
lowing definition of a general purpose function for calculat-

ing the sum of a list of numbers:

sum : Numa=[a]>a
sum zs = loop 0 zs

where loop tot [] = tot
loop tot (z:25) = loop (tot+ z) zs

After the translation to include dictionary parameters this
becomes:

sum d zs = loop d (fromInteger d 0) zs
where loop d tot [] = tot
loop d tot (z:2s) = loop d ((+) d tot z) zs

As the original definition is written, it seems reasonable that
we could use standard strictness analysis techniques to dis-
cover that the second (accumulating) argument in recursive
calls to loop can be implemented using call-by-value so that
the calculation of the sum runs in constant space. Unfortu-
nately, this is not possible because we do not know enough
about the strictness properties of the function (+) d; even if
the implementation of addition is strict in both arguments
for every instance of Num in a particular program, it is still
possible that a new instance of Num could be defined in an-
other module which does not have this property. The code
for sum has to be able to work correctly with this instance
and hence the implementation of sum will actually require
space proportional to the length of the list for any instance
of Num.

The implementation of sum given above also misses some
other opportunities for optimization. For example, if we
were summing a list of machine integers (values of type Int)
then the second argument to loop could be implemented
as an unboxed value, and the addition could be expanded
inline, ultimately being implemented by just a couple of low-
level machine instructions.

3.3 The run-time overhead of dictionary passing

There are a number of additional run-time costs in an im-
plementation of type class overloading based on dictionaries.
The construction of a dictionary involves allocation and ini-
tialization of its components. Our experience suggests that
the number of distinct dictionaries that will be required in
a given program is usually rather small (see Section 4.3 for
more concrete details) so the cost of dictionary construction
should not, in theory, be too significant. However, there are
many examples which show that the same dictionary value
may be constructed many times during the execution of a
single program. Some of these problems can be avoided by
using more sophisticated translation schemes when dictio-
nary parameters are added to Haskell programs, but others
cannot be avoided because of the use of contezt reduction in
the Haskell type system (see [9] for further details).

There is also a question about whether dictionary construc-
tion is implemented lazily or eagerly. In the first case, every
attempt to extract a value from a dictionary must be pre-
ceded by a check to trigger the construction of the dictionary
if it has not previously been evaluated. (Of course, this is
entirely natural for a language based on lazy evaluation and
standard techniques can be used to optimize this process in
many cases.) The second alternative, eager construction of

1Augustsson [2] uses essentially the same example to demonstrate
similar problems.

dictionary. values, risks wasted effort building more of the
dictionary structure than is needed. This is a real concern;
with the definitions in the standard prelude for Haskell, the
dictionary for the instance RealFloat (Complez Double) in-
volves between 8 and 16 additional superclass dictionaries,
depending on the way in which equivalent dictionary values
are shared. With a lazy strategy, all of the member func-
tions for the RealFloat class can be accessed after building
only a single dictionary.

Finally, there is a potential cost of manipulating the addi-
tional parameters used to pass dictionary values. For exam-
ple, it may be necessary to generate extra instructions and
to reserve additional space in a closure (or allocate more
application nodes in a graph-based implementation) for dic-
tionaries. However, our experience suggests that these costs
are relatively insignificant in practice.

3.4 The use of explicit type signatures

One common optimization in current Haskell systems is to
recognize when the dictionaries involved in an expression
are constant and to extract the implementations of member
functions at compile-time. This often requires the program-
mer to supply additional type information in the form of an
explicit type declarations such as:

fact :: Int — Int.

(Int is a built-in type of fixed-size integers, typically 32 bit
values.) The translation of fact can then be simplified to:

fact n
= if primEqlnt n zero
then one
else primMultint n (fact (primSubInt n one))

where primEqInt, primMullnt and primSubint are primitive
functions which can be recognized by the code generator and
compiled very efficiently, and zero and one are the obvious
constant values of type Int.

. In current Haskell systems, adding an explicit type signature

like this in small benchmark programs which make extensive
use of overloading typically gives at least a ten-fold improve-
ment in program execution time! (Of course, the speedups
are much more modest for ‘real-world’ programs.) As a re-
sult, it has become quite common to find Haskell programs
that are sprinkled with type annotations, not so much to
help resolve overloading, but rather to avoid it altogether.

We should also mention that identifying the correct place to
insert an explicit type signature to avoid overloading is not
always easy. For example, changing the type declaration for
the sum function in Section 3.2 to:

sum :: [Int]— Int

does not necessarily avoid the use of dictionaries. According
to the standard typing rules, the local function loop will
still be treated as having the polymorphic overloaded type
Num a = a — [a] = a and the corresponding translation
is:

sum z8 = loop dictNumlnt zero 3
where loop d tot [] = tot
loop d tot (z:z8) = loop d ((+) d tot) zs

Instead, we have to add a type signature to the local defini-
tion:

sum zs = loop 0 z3

where loop Int - [Int] > Int
loop tot [] = tot
loop tot (z : zs) = loop (tot+ z) zs

This allows the code generator to use the optimizations de-
scribed in Section 3.2, but the flexibility and generality of
the original sum function has been completely lost.

4 A dictionary-free implementation

Haskell type classes have proved to be a valuable extension
to the Hindley-Milner type system used in languages like
ML. The standard prelude for Haskell included in [7] illus-
trates this with a range of applications including equality,
ordering, sequencing, arithmetic, array indexing, and pars-
ing/displaying printable representations of values. However,
it is clear from the comments in the previous section that
any implementation based on the use of dictionary passing
faces some serious obstacles to good run-time performance.

The possibility of a dictionary-free implementation was men-
tioned by Wadler and Blott in the original paper introducing
the use of type classes [21], together with the observation
that this might result in an exponential growth in code size.
This was illustrated by considering the function:

squares (z,y,2) = (z*z,y*y,z%2)
which has type:
(Num a, Num b, Num c) = (a,b,c) = (a,b,c).

Notice that, even if there are only two instances of the class
Num, there are still eight possible versions of this function
that might be required in a given program.

But do examples like this occur in real programs? Other
situations where the apparent problems suggested by theo-
retical work do not have any significant impact on practical
results are well known. For example, it has been shown
that the complexity of the Damas-Milner type inference al-
gorithm is exponential, but the kind of examples that cause
this do not seem to occur in practice and the algorithm be-
haves well in concrete implementations.

In an attempt to investigate whether expanding programs to
avoid the use of dictionaries results in a code explosion, we
have developed a compiler for Gofer, a functional program-
ming system based on Haskell, that does not use make use
of dictionary parameters at run-time. The compiler is based
on an earlier version whose output programs did rely on the
use of dictionaries. The main difference is the use of a spe-
cialization algorithm, described in Section 4.1, to produce
specialized versions of overloaded functions. Not surpris-
ingly, the same results can be obtained using a more general
partial evaluation system and we discuss this in Section 4.2.
Comparing the sizes of the programs produced by the two
different versions of the compiler, we have been able to get
some measure of the potential code explosion. We had ex-
pected that expanding out all of the definitions of overloaded
functions in realistic applications would produce larger com-
piled programs, but we hoped that our experiments would
show that the increases in code size are usually fairly mod-
est. To our surprise, we were somewhat surprised to find

that, for all the examples we have tried, the ‘expanded’ pro-
gram is actually smaller than the original dictionary based
version!

4.1 A formal treatment of specialization

This section describes an algorithm for converting the code
for a dictionary-based implementation of a program with
overloading to a specialized form that does not involve dic-
tionaries. Although our presentation is rather formal, the
algorithm itself is simple enough; starting with the top-level
expression in a given program, we replace each occurrence of
an overloaded function f, together with the dictionary values
d that it is applied to, with a new variable, f'. The resulting
expression is enclosed in the scope of a new definition for f’
that is obtained by specializing the original definition for f
and using the corresponding dictionary arguments d.

4.1.1 Source language

The algorithm takes the translations produced by the type
checker [9] as its input; the syntax of these terms is given
by the following grammar:

M u= ze variables
| MM application
| Az.M abstraction
|

let Bin M local definitions

The symbol z ranges over a given set of term variables, and
e ranges over (possibly empty) sequences of dictionary ex-
pressions. In addition, B ranges over finite sets of bindings
(pairs of the form z = Av.M) in which no variable z has
more than one binding. The symbol v used here denotes a
(possibly empty) sequence of dictionary parameters. The set
of variables z bound in B will be written dom B. An addi-
tional constraint that is guaranteed by the type system but
not reflected by the grammar above is that every occurrence
of a variable in a given scope has the same number of dic-
tionary arguments (equal to the number of class constraints
in the type assigned to the variable and to the number of
dictionary parameters in the defining binding).

Note also that the language used in [9] allows only single
bindings in local definitions; of course, an expression of the
form let £ = M in M’ in that system can be represented
as let {z = M} in M’ in the language used here. The mo-
tivation for allowing multiple bindings is that we want to
describe the specialization algorithm as a source to source
transformation and it may be necessary to have several spe-
cialized versions of a single overloaded function.

4.1.2 Specialization sets

Motivated by the informal comments above, we describe the
algorithm using a notion of specializations each of which is
an expression of the form f d ~» f’ for some variables f and
f' and some sequence of dictionary parameters d. As a con-
venience, we will always require that f' is a ‘new’ variable
that is not used elsewhere. Since a given program may actu-
ally require several specialized versions of some overloaded
functions, we will usually work with (finite) sets of special-
izations. To ensure that these sets are consistent, we will
restrict ourselves to those sets S such that:

(zd~2'), (ye~mz)esS = =y Ad=e.

In other words, we do not allow the same variable to repre-
sent distinct specializations. This is precisely the condition
needed to ensure that any specialization set S can be inter-
preted as a substitution where each (zd ~ z’) € S repre-
sents the substitution of z d for the variable z’. For example,
applying the specialization set {z d ~» y} as a substitution
to the term (Ay.y)y gives (Ay.y)(z d).

In practice, it is sensible to add the following restrictions
in an attempt to reduce the size of specialization sets, and
hence the size of compiled programs:

¢ Avoid duplicated specialization of the same function:
if (xd~z'), (3d~ y') €S, then 2’ = y'.

o Avoid unused specializations: there is no need to in-
clude (rd ~ z') € S unless z actually occurs with
dictionary arguments d in the scope of the original
definition of z.

Note however that these conditions are motivated purely by
practical considerations and are not required to establish the
correctness of the specialization algorithm.

It is convenient to introduce some special notation for work-
ing with specialization sets:

o If V is a set of variables, then we defined Sy as:
Sy ={(zd~3z')eS|z¢g V}

In other words, Sy is the specialization set obtained
from S by removing any specializations involving a
variable in V. As a special case, we write Sz as an
abbreviation for S(z;.

o For any specialization set S, we define:

Vars § = {z | (zrd~2z')e S}.

o We define the following relation to characterize the
specialization sets that can be obtained from a given
set S, but with different specializations for variables
bound in a given B:

S’ exstends (B, S) <= 35". Vars §" C dom B A
S'= S(dom By U S".

4.1.3 The specialization algorithm

The specialization algorithm is described using judgments of
the form S+ M ~+» M’ and following the rules in Figure 2.
The expression M is the input to the algorithm and the
output is a new term M’ that implements M without the
use of dictionaries and a specialization set S for overloaded
functions that appear free in M.

Note that there are two rules for dealing with variables. The
first, (var-let), is for variables that are bound in a let ex-
pression or defined in the initial top-level environment; these
are the only places that variables can be bound to over-
loaded values, and hence the only places where specializa-
tions might be required. The second rule, (var-)), deals with
the remaining cases; i.e. variables bound by a A-abstraction
or variables defined in a let expression that are not over-
loaded. Although it is beyond the scope of this paper, we
mention that this distinction can be characterized more for-
mally using the full set of typing rules for the system.

. (zgd~2')ES e=d
(var-let) Staze~ 1’
¢ Vars S
A r
(var-2) SFzoz
(app) SFM~M SHFN~ N’
PP SFMN~ M'N’
) Se kM~ M
(abs) SFAz.M ~ Az. M’
S,S'FB~+B S'FM~ M
S’ eztends (B, S)
let
(let) Sklet Bin M~ let B' in M’

Figure 2: Specialization algorithm

The hypothesis e = d in the rule (var-let) implies the compile-
time evaluation of the dictionary expressions e to dictionary
constants d. In order for the specialization algorithm to be
part of a practical compiler, we need to ensure that this
calculation can always be carried out without risk of non-
termination. See Section 4.1.6 for further comments.

We should also mention the judgment S, S’ F B ~» B’ used
as a hypothesis in the rule (let). This describes the process
of specializing a group of bindings B with respect to a pair
of specialization sets S and S’ to obtain a dictionary-free
set of bindings B’ and is defined by:

S$,8'F B~ B’
=
B'={z'=N'"|(z=XMv.N)EB
A(ze~z") €S’
AStk[e/vJ]N~ N'}

Note that, for each variable bound in B, only those that
also appear in Vars S’ will result in corresponding bindings
in B'. Assuming we follow the suggestions in the previ-
ous section and do not include unused specializations in S’,
then the specialization algorithm also provides tree shaking,
eliminating redundant definitions from the output program.

It is also worth mentioning that the (let) rule can very easily
be adapted to deal with recursive bindings (often written
using let rec in place of let). All that is necessary is to
replace S,5'+ B ~ B’ with §',8'+ B~ B'.

The motivation for specialization was to produce a dictionary-
free implementation of the input term. It is clear from the
definition above that the output from the algorithm does
not involve dictionary values, but it remains to show that
the two terms are equal. This, in turn, means that we have
to be more precise about what it means for two terms to
be equal. For the purposes of this paper we will assume
only the standard structural equality together with the two

axioms:

let {1‘1 = Ml,...,.Z'n = Mn} in M
= [M[/I[,...,Mn/z‘n]M
(Av.M)e = [e/v]M

The second of these is simply the familiar rule of 8 reduc-
tion, restricted to dictionary values arguments. The care-
ful reader may notice that the statement of this rule uses
dictionary parameters and expressions in positions that are
not permitted by the grammar in Section 4.1.1. For the
purposes of the following theorem, we need to work in the
slightly richer language of [9] that allows arbitrary terms of
the form Me or Av. M.

With this notion of equality, we can establish the correctness
of the specialization algorithm as:

Theorem 1 If S+ M ~ M', then M = SM'.

Proof: The proof is by induction on the structure of S F
M ~+ M' and is straightforward, except perhaps for the (let)
rule. In that case we have a derivation of the form:

S,5'F B~ B' S'estends (B,S) S'FM~ M'

Sklet Bin M~ let B'in M'

The required equality can now be established using the fol-
lowing outline:

let Bin M = [MAv.N/z]M
[Av.N/z)(S'M") (*)
[Av.N/z][ze/z')(SM')
[((Av.N)e/z)(SM")
[fe/oIN/="\(SM")

= [SN'/2(SM") *)
= S(N'/z'|M')

= S(let B'in M')

(The two steps labeled (%) follow by induction. The other
steps are justified by the properties of substitutions.) O

4.1.4 A simple example

This section illustrates the way that the specialization algo-
rithm works by considering how it deals with a simple input
term:
let {f = Av.Az.(+) v z z} in f d one
where d denotes the dictionary for Num Int. We begin with
the specialization set S = {(+) d ~ primPlusInt}. Writing
B={f=MN} N=2Xz(+)vzz, M =fdoneand
using the rule (let), we need to find B’ and M’ such that:
Sklet Bin M ~+let B'in M’
where S,$'F B~+ B’ and S' + M ~+ M’ for some S’ such
that S’ ertends (B,S). Taking S' = SU{f d ~ f'}, it
follows that M’ = f’ one. We can also calculate:
B’ {f'=N"|SF[d/vJN~ N'}
{f'=N"|SFAz(+)dzz~ N'}
{f' = Az.primPlusint z z}

Hence the complete specialized version of the original term
is:

let {f' = Az.primPlusInt = z} in f' one.

4.1.5 The treatment of member functions

Specializations involving member functions can be handled
a little more efficiently than suggested by the description
above. In particular, given a specialization of the form
(m d ~ z') where m is a member function and d is an appro-
priate dictionary, there is no need to generate an additional
binding for z’. Instead we can extract the appropriate value
M from d-during specialization, find its specialized form M’
and use that in place of z' in the rule (var-let). Thus spe-
cialization of member functions might be described by a rule
of the form:

me=M SFM~M
SkFme~ M’

(var-member)

The expression m e = M represents the process of evalu-
ating e to obtain a dictionary d, and extracting the im-
plementation M of the member function for m. This rule is
essential for ensuring that the output programs produced by
specialization do not include code for functions that would
normally be included in dictionaries, even though they are
never actually used in the program.

4.1.6 Termination

Were it not for the evaluation of dictionary expressions in
rule (var-let) and the specialization of member functions
in rule (var-member), it would be straightforward to prove
termination of the specialization algorithm by induction on
the structure of judgments of the form S F M ~» M'. To
establish these additional termination properties (for Gofer
and Haskell), it is sufficient to observe that both the set
of overloaded functions and the set of dictionaries involved
in any given program are finite and hence there are only
finitely many possible specializations. (We assume that a
cache/memo-function is used to avoid repeating the special-
ization of any given function more than once.)

The fact that there are only finitely many dictionaries used
in a given program depends critically on the underlying type
system. In particular, it has been suggested that the Haskell
type system could be modified to allow definitions such as:

f i Eq a=> a — Bool
fz = z==1z1&& f [z].

This would not be permitted in a standard Hindley/Milner
type system since the function f is used at two different in-
stances within its own definition. Attempting to infer the
type assigned to f leads to undecidability, but this can be
avoided if we insist that an explicit type signature is in-
cluded as part of its definition. The set of dictionaries that
are required to evaluate the expression f 0 is infinite and
the specialization algorithm will not terminate with this pro-
gram. Fortunately, examples like this are usually quite rare.
If the Haskell type system is extended in this way, then it
will be necessary to use the dictionary passing implementa-
tion to deal with examples like this, even if dictionaries can
be avoided in most other parts of the program.

4.2 The relationship with partial evaluation

Technique's for program specialization have already been
widely studied as an important component of partial eval-
uation. Broadly speaking, a partial evaluator attempts to

produce an optimized version of a program by distinguish-
ing static data (known at compile-time) from dynamic data
(which is not known until run-time). This process is often
split into two stages:

¢ Binding-time analysis: to find (a safe approxima-
tion of) the set of expressions in a program that can
be calculated at compile-time, and add suitable anno-
tations to the source program.

¢ Specialization: to calculate a specialized version of
the program using the binding-time annotations as a
guide. ‘

The specialization algorithm described here fits very neatly
into this framework. One common approach to binding time
analysis is to translate A-terms into a two-level A-calculus
that distinguishes between dynamic and static applications
and abstractions [5]. The dynamic versions of these op-
erators are denoted by underlining, thus M_N denotes an
application that must be postponed until run-time, while
M N can be specialized at compile-time. Any A-term can
be embedded in the two-level system by underlining all ap-
plications and abstractions, but a good binding time analysis
will attempt to avoid as many underlinings as possible.

For the purposes of the specialization algorithm described
here, all the binding time analysis need do is mark standard
abstractions and applications as delayed, flagging the cor-
responding dictionary constructs for specialization with the
correspondence:

standard Az.M ~ Az M delaved
operations MN ~ MN e

dictionary Av. M ~ XM eliminated by
operations Me ~ Me specialization

Thus dictionary specialization could be obtained using a
more general partial evaluator, using the distinction between
dictionaries and other values to provide binding time infor-
mation. Even better, we could use this information as a
supplement to the results of a standard binding-time analy-
sis to obtain some of the other benefits of partial evaluation
in addition to eliminating dictionary values.

4.3 Specialization in practice

The specialization algorithm presented here has been imple-
mented in a modified version of the Gofer compiler, trans-
lating input programs to C via an intermediate language
resembling G-code.

Figure 3 gives a small sample of our results, comparing the
size of the programs produced by the original dictionary-
based implementation with those obtained by partial eval-
uation. For each program, we list the total number of
supercombinators in the output program, the number of G-
code instructions and the size of the stripped executable
compiled with cc -0 on a NeXTstation Turbo (68040) run-
ning NeXTstep 3.0. The figures on the first row are for the
dictionary-based implementation and the expressions n/m
indicates that a total of n words are required to hold the m
distinct dictionaries that are required by the program. The
figures in the second row are for the partially evaluated ver-
sion, and each expression of the form n ~+ m indicates that,

Program | Total number of | G-code | Executable
name supercombinators instrs size
anna 1509 (814/151) 58,371 851,968
1560 (170~+259) | 56,931 819,200

veritas 1032 (105/22) 32,094 499,712
990 (36~+49) 30,596 483,328

infer 394 (67/13) 6,069 131,072
361 (29~+43) 5,210 114,688

prolog 256 (76/14) 5,590 114,688
177 52 1~+32) 3,207 81,920

expert 235 (66/12) 5,774 114,688
. 141 (23~28) 3,315 81,920
calendar | 188 (46/8) 3,901 90,112
86 (8~9) 1,273 49,152

lattice 190 (293/48) 3,880 90,112
134 (47~101) | 1,810 57,344

Figure 3: Code size indicators

of the total number of supercombinators used in the pro-
gram, m supercombinators were generated by specialization
from n distinct overloaded supercombinators in the original
program.

The programs have been chosen as examples of realistic ap-
plications of the Gofer system:

o The largest program, anna is a strictness analyzer writ-
ten by Julian Seward. Including the prelude file, the
source code runs to a little over 15,000 lines spread
over 30 script files.

e veritasis a theorem prover written by Gareth Howells
and taken from a preliminary version of the Glasgow
nofib benchmark suite.

o infer is a Hindley/Milner type checker written by
Philip Wadler as a demonstration of the use of monads.

e prolog is an interpreter for a small subset of Prolog.

e expert is an minimal expert system written by lan
Holyer.

e calendar is a small program for printing calendars,
similar to the Unix cal command.

o latticeis a program for enumerating the elements of
the lattice D3 where Do = Bool and Dp4+1 = D — Dy
as described in [10]. It is included here as an exam-
ple of a program that makes particularly heavy use of
overloading (as the figures indicate, 75% of the super-
combinators in the output program are the result of
specialization).

The same prelude file was used for all these tests; a version of
the Gofer standard prelude modified to provide closer com-
patibility with Haskell (including, in particular, a full defini-
tion of the Tezt class). Some of these programs made use of
Haskell-style derived instances. This allows the programmer
to request automatically generated instance declarations for
standard type classes when defining a new datatype. Our
system does not currently support derived instances and
hence it was sometimes necessary to add explicit declara-
tions. It is worth mentioning that, in the case of the anna

.

benchmark, the code for derived instances caused an in-
crease in the size of the final executable of over 15% for
both versions of the compiler.

These figures are of interest in their own right; we are not
aware of any previous work to make a quantitative assess-
ment of the degree to which overloading is used in realis-
tic applications. For all of the examples listed here, the
output program produced by specialization is smaller than
the dictionary-based version; in fact, we have yet to find
an example where the dictionary-based version of the code
is smaller! Not surprisingly, the benefits are greatest for
the smaller programs. But even for the larger examples it
seems clear that the ability to eliminate redundant parts of
dictionaries and to avoid manipulating dictionary parame-
ters more than ‘pays’ for the increase in code size due to
specialization.

In the special case of the anna the specialization algonthm
increases compile-time (i.e. translation to C) by approxi-
mately 15%, from 20.3 user seconds for the dictionary pass-
ing version to 23.2 when specialization is used. However, the
code generator is very simple minded and we would expect
that a high quality, optimizing code generator would have a
more significant effect. It is also possible that there would
be further overheads in the presence of separate compila-
tion; Gofer does not support the use of modules; a program
is just a sequence of script files loaded one after the other.

The time required to translate Gofer code to C is only a
fraction of the time required to compile the C code. Using
anna again as a typical example, translation to C takes only
3% of the total compilation time. Furthermore, the fact that
the specialized version of the program is a little smaller than
the dictionary-based version means that the total compile-
time is actually slightly lower when specialization is used.
Clearly, there are much more pressing concerns than the
relatively small costs associated with a more sophisticated
C code generator.

The run-time performance of our programs is improved only
marginally by the use of partial evaluation; our code gener-
ator does not carry out any of the optimizations described
in Section 3.2; unlike most Haskell systems, the addition
of explicit type signatures as described in Section 3.4 does
not give any noticeable increase in performance for either
the dictionary or specialization based implementations. In
addition, the implementation of dictionaries in Gofer is al-
ready very efficient, avoiding most of the problems described
in Section 3.3. In particular, all dictionary values are con-
structed before the execution of a program begins so there
is no need to produce code for dictionary constructor func-
tions, there are no problems with repeated construction, and
dictionary components can be extracted without having to
check for unevaluated dictionaries. We would expect much
greater increases in run-time performance in a system using
the standard Haskell implementation of dictionaries together
with a more sophisticated code generator.

5 Goodbye to the monomorphism restriction!

One of the most controversial features of Haskell is the so-
called monomorphism restriction which limits the combi-
nation of polymorphism and overloading in certain cases.
The current definition of Haskell imposes a much less severe
restriction than earlier versions when it was sometimes re-
ferred to informally as the ‘dreaded’ monomorphism restric-

10

tion. Nevertheless, it remains as an added complication to
the language and still causes a few surprises for beginners.

The principal motivation for using any form of monomor-
phism restriction is to avoid problems with the let ... in
construct. From a type-theoretic perspective, this construct
is intended purely as a means of defining new polymorphic
values within a program. However, in practice, the same
construct is also used for other purposes such as shared eval-
uation or creating cyclic data structures. Unfortunately, in
an implementation of type class overloading based on the use
of dictionaries, these two applications may conflict with one
another. It is necessary to compromise either polymorphism
or sharing for the benefit of the other.

To illustrate this, the Haskell report [7] suggests the follow-
ing expression as a typical example:

let z = fact 1000 in (z,z).

The fact function used here is assumed to be overloaded
with type. Num @ => @ — a. Furthermore, the integer
value 1000 is implicitly treated as an overloaded constant
of type Num a = a. Applying an unrestricted form of the
standard type checking algorithm to this expression allows
us to assign a polymorphic type Num a = a to the local
definition of z and use this value at two different instances
to obtain a type (Num a, Num b) = (a, b) for the complete
expression. The corresponding translation is:

let zd = fact d (fromInteger d 1000)
in (z da,z dp)

where dq and dp are two (potentially dlstmct) dictionaries
for the Num class. The problem here is that, whereas the
user may have expected the definition of z to be shared by
the two components of the pair, the translation may actually
repeat the evaluation of fact 1000, even if the two compo-
nents of the pair will actually be used at the same type!

In effect, there are situations where the type system must
choose between sharing and polymorphism. The problems
and confusion occur when this choice differs from what the
programmer expects.

In an implementation of type class overloading based on the
techniques described in this paper, the need for any form of
monomorphism restriction is significantly reduced?. For the
example above, if the two components of the resulting pair
are both subsequently used with distinct types then the first
step in the specialization of the translation produces:

let o = fact dg (fromInteger ds 1000)
T, = fact dp (fromlInteger d 1000)
in (2a,2

before going on to produce appropriate specializations of
fact and fromInteger. If, on the other hand, both compo-
nents are used at a single type then the first step in the
specialization process gives:

let z = fact d (fromInteger d 1000) in (z,z)

and there is no loss of sharing.

Thus the system is able to choose between sharing and
polymorphism (a.nd possibly other alternatives m-between)
based on the way in which defined values are actually used in
the program under consideration rather than making some,
almost arbitrary decision based on the syntactic form of the
definitions for those values.

2] am indebted to ‘Martin Odersky for this observation

6 Specialized representation

The decision to implement all instances of a polymorphic
function by a single section of code forces us to use a uni-
form representation for those arguments whose type may
vary between different calls of that function. One common
approach is to represent objects by a pointer to some part of
the heap where the object is stored; this is often referred to
as a bozed representation, while the object that is pointed to
is called an unbozed value. The amount of storage required
for the unboxed representation of a value (and of course, its
interpretation) will vary depending on the type of the object.
On the other hand, by using boxed values in the implemen-
tation of polymorphic functions, all objects are represented
in the same way, independently of their type.

Unfortunately, the use of boxed representations for poly-
morphic functions makes it more difficult to use unboxed
representations when the types of values are fully deter-
mined at compile-time. Extracting values from their boxed
representation to carry out some operation and then box-
ing the result have significant overheads. For example, cre-
ating a new boxed value will often involve storage alloca-
tion. In addition, the use of boxed values may limit the
usefulness of standard compiler optimizations such as pass-
ing function arguments and results in registers. Some so-
lutions to this problem have been proposed but require, ei-
ther that the language is extended to deal explicitly with
boxed/unboxed representations as in [18], or that we use a
more sophisticated type system to discover where coercions
between boxed and unboxed representations are required as
in [12, 13].

This section describes a new approach to these problems,
avoiding the need for uniform boxed representations by gen-
erating specialized versions of polymorphic functions. Obvi-
ously, this fits in very closely with the work in the first part
of the paper; indeed, we show how this can be described as
a particular example of overloading using a system of para-
metric type classes [4].

We should point out that, unlike the work described in the
previous sections of this paper, the ideas described here have
not yet been implemented. A second caveat is that the use of
non-uniform representations is likely to be more useful in a
strict language than in a non-strict language. This is a result
of the fact that types in the latter provide less information
about the run-time representation of values than those in
the former. For example, a value of type Int in a strict
programming language can always be guaranteed to be an
integer. In a non-strict language we must also allow for the
possibility that the value is an unevaluated expression which
must be evaluated before the corresponding integer value is
obtained.

6.1 Datatypes and boxed values

We start by recalling how new datatypes are introduced in
Haskell. For example, one standard way of defining a type
of lists is given by:

data List a = Nil | Cons a (List a)
This is a compact way of defining several new related values,
the most obvious of which are the unary type constructor

11

List and the constructor functions:

Nil
Cons
that can be used to build values of the new type. In addi-

tion, we must also provide some means of supporting pattern
matching, for example, using a function:

List a
a — List a = List a

caseList List a & b — (6 = List a = b) = b.

This last component uses a standard technique for encod-
ing datatypes in the A-calculus; the intended semantics of
caseList can be described by:

case d of Nil

Cons z zs

caselist d nc = - n

-+ CcT3z8

For example, the familiar map function defined by:

map (a — b) - (List a - List b)
map f Nil = Nil
map f (Cons z z8) = Cons (f z) (map f zs)

might be implemented by translating it to:

map f ys
= caseList ys Nil (\z zs = Cons (f z) (map f zs))

(Note that we would not expect or require the programmer
to make explicit use caseList; functions like this are intended
for internal use only.)

Some authors do not consider functions like caseList to be
one of the values defined by a datatype definition, but this
is only possible because they have a particular concrete im-
plementation of constructor functions and case expressions
in mind. For example, the unboxed representations for ex-
pressions of the form Nil and Coris z zs might be:

Nil |Cons| T | T8 I

where each box represents a single machine word. If we use
this representation for all types of list then the two com-
ponents in a Cons value must be boxed values. Hence the ‘
singleton lists containing the values 42 :: Int and 2.71828 ::
Double would be represented by: _
| |

IComI I 1
AN RN
L42] [a]| [2mses | [wi |

I Cons l l

respectively, assuming that floating point values of type Double
require two machine words while integers of type Int require
only one. (A concrete implementation may attach tags to
the numeric values in these examples, but this has no real
bearing on the current discussion.)

6.2 Spe;:ialized representations using overloading

A slightly more efficient way to represent the two lists above
would be to use unboxed representations of the form:

|Consl] 42 | Nult| |ConsH 2.71828 | Null |

allowing the size of a Cons value to vary and using a ‘null
pointer’, Null, as the representation of Nil. The problem
with this idea is that there is no simple rule for determining
the size of the z field or the starting position of the zs field
in a list of the form Cons z zs and hence it is difficult to
implement functions like map that work with both kinds of
list. One possibility would be to use different tags such as
the Consl and ConsD tags above and allow the implementa-
tion of map to obtain the required information by inspecting
these tags. However, it would certainly be better if we could
avoid this interpretive overhead.

A better way to deal with this problem is to treat the con-
structor functions and the associated pattern matching con-
structs as overloaded values:

class list :: List a where

Nil list
Cons a — list = list
caseList list 5 b— (a— list 5> b) > b.

Note that parametric type classes [4] are necessary here be-
cause the implementation of a constructor function will, in
general depend both on the datatype itself (in this case,
List) and on the type of the arguments that it is applied
to. These dependencies cannot be expressed using either
standard Haskell type classes [7] or constructor classes [11].
Parametric type classes can be implemented using the same
dictionary passing style described in Section 3, and hence
the specialization techniques presented in this paper can be
used to ensure that we do not incur any run-time costs from
the use of overloading.

With this framework in mind, the definition of the map func-
tion in terms of caseList is unchanged, but the type of map,
at least for the compiler’s purposes becomes:

map :: (la:: List a,1b:: List b) = (a = b) — (la = Ib)
map f ys
= caseList ys Nil (\z zs — Cons (f z) (map f zs))

Note that this type reflects the fact that the representation
for the two lists involved in this function. The implementa-
tion of caseList used in the definition depends on the rep-
resentation of la, while the interpretation of Cons and Nil
will depend on 1b.

As we have already indicated, we would expect the use of
overloading to deal with specialized representations to be
largely hidden from the programmer. The information that
would normally be obtained from class and instance dec-
larations can be generated automatically within the com-
piler and the whole system can make use of many of the
mechanisms already included in the compilation system for
supporting the use of type classes.

6.3 Another chance for code explosion?

Some experimental work is required to assess whether code
explosion problems are likely when specialized representa-
tions are used. Almost every function in a typical program
makes use of some simple kind of data structure, so some
degree of code explosion seems very likely.

Although we are not yet in a position either to confirm or
refute this behaviour, we have carried out some prelimi-
nary tests to investigate the kind of code explosion that
would occur in the most extreme case when every distinct

12

monomorphic instance of a polymorphic function used in a
given program is implemented by a distinct section of code.
The results for some of the larger benchmarks are shown in
Figure 4. These figures show the number of distinct binding

Program | poly | mono | ratio | hsts | pairs
anna 1,653 | 3,207 | 1.94 | 153 | 136
veritas | 1,128 | 1,646 | 1.46 44 47
infer 186 434 | 2.33 14 25
prolog 138 255 | 1.85 23 25
expert 146 239 | 1.64 14 8

Figure 4: Code explosion with full monomorphization

groups that are actually used in the original program (poly)
and the number of monomorphic binding groups that would
be required in a fully specialized version of the same pro-
gram (mono). Note that these figures do not take account of
the use of dictionaries or of the introduction of new binding
groups during compilation, for example, in the implemen-
tation of list comprehensions. The figures suggest a typical
twofold increase in the number of binding groups but it is
not clear how this will relate to code size. For example, the
most commonly used function in anna is map with 187 dis-
tinct instances. But the code for this function is fairly small
and some optimizing compilers might normally choose to ex-
pand its definition inline so that there will actually be very
little noticeable change in code size for this example. The
number of instances of other functions in the program are
substantially lower than this.

The most frequently used data structures in all of these pro-
grams are lists and pairs and we have included the number
of distinct instances of each in the table above. The infer
program is a small exception; two of the monads defined in
this program have 15 and 18 distinct uses respectively in
comparison to the 14 instances of lists.

Further work is needed before we can judge whether the
techniques for using specialized representations described
here will be useful in practical systems. In the meantime, it
is worth mentioning that, to the best of our knowledge, there
does not seem to be any other work studying of the extent
to which polymorphism is actually used in real programs.
This kind of information would be useful in its own right,
for example, helping to identify where program optimization
is likely to have the greatest impact.

7 Further work

Haskell type classes provide a useful extension to a language
with a polymorphic type system but the dictionary-passing
style used in all current Haskell systems can incur substan-
tial overheads. Expanding the definitions of all overloaded
functions in a given program to avoid the problems caused
by the use of dictionaries can, in theory, result in an expo-
nential increase in the size of the program code. However,
our experience with an implementation of type classes based
on this approach suggests very strongly that this does not
occur in realistic programs.

The biggest outstanding problem with the work described
here is its interaction with separate compilation. In many
systems, the source code for a program may be spread over

several modules. Each program module can be compiled
separately. The standard approach is to parse, validate and
type check each module and compile it to some appropri-
ate intermediate language. This is then passed to a code
generator to obtain an object code file. Once the object
code files for all of the source modules in a given program
have been produced, they can be passed to a linker that re-
solves inter-module references and generates the executable
program. The complete process is illustrated in Figure 5.

I L I 1

Source modules
L ;L)

IR A I

f 1 I i

Intermediate code
L 1)

L T

1 |
Object code
i L

I S N

Compilation

Code generation

Linker

!

[N
Executable program
—

Figure 5: Standard approach to separate compilation

One of the most important benefits of this approach is that,
if we make a change to the source code, only those modules
that are affected must be recompiled. The full set of object
files is required to build the final executable program, but
the cost of linking is usually fairly small. A second benefit
is that it is not necessary to have all of the source code
available when the program is linked; only the object code
is required.

To make use of program specialization, we need to postpone
code generation as illustrated in Figure 6. This requires a
more sophisticated linker that works at a higher level - with
the intermediate language rather than the object code. The
main problem now is that, when source code changes, the
high-level linker will produce a new program to be special-
ized and the complete specialized program will be passed
through the code generator. As we have already mentioned
in Section 4.3, code generation in our current implementa-
tion is by far the most time-consuming part of the compila-
tion process. The result is that the cost of making even a
simple change to the source code is very high.

There are a number of ways that this might be avoided; for
example, by adopting some of the techniques used to sup-
port incremental compilation or further ideas from partial
evaluation. Another interesting possibility would be to post-
pone some code generation until even later than suggested
by Figure 6, so that specialized versions of some parts of the
program could be generated dynamically at run-time. Sim-
ilar techniques have been used with considerable success in
the implementation of the object-oriented language Self [3].

13

Source modules
1 1L]

SR S S

Intermediate code
L] L J

R S

Compiler

High-level linker

l Specialization
|
Specialized program
—

l Code generation

|
Object code
| S—
l Low-level linker

|
Executable program
L

Figure 6: Separate compilation with specialization

We should also point out that, despite the problems associ-
ated with dictionary passing, the level of performance pro-
vided by current Haskell systems is already good enough
for a lot of program development work. We might therefore
expect to use dictionary-based implementations during the
prototyping and development stages, viewing specialization
more as a way of improving the performance of the final
product.

The current module system in Haskell has been criticized
as one of the weakest parts of the language and there have
been suggestions that future versions of Haskell might adopt
a more powerful system. With the comments of this paper
in mind, one of the factors that should strongly influence
the choice of any replacement is the degree to which it sup-
ports optimization, analysis and specialization across mod-
ule boundaries.

Acknowledgments

This work was supported in part by grants from DARPA,
contract number N00014-91-J-4043, and from NSF, con-
tract number CCR-9104987. Thanks to Martin Odersky
and Kung Chen for their comments on this work, to Ju-
lian Seward for encouraging me to take my original experi-
ments a little further and for providing me with my biggest
benchmark, anna. Thanks also to Paul Hudak for getting
me thinking about the relationship between datatype defi-
nitions and type classes.

References

[1] A. Appel. Compiling with continuations. Cambridge
University Press, 1992.

[2] L. Augustsson. Implementing Haskell overloading. To
appear in Conference on Functional Programming Lan-
guages and Computer Architecture, Copenhagen, Den-
mark, June 1993.

[3] C. Chambers, D. Ungar and E. Lee. An efficient imple-
mentation of Self, a dynamically-typed object-oriented
language based on prototypes. Lisp and symbolic com-
putation, 4, 3, 1991.

{4] K. Chen, P. Hudak, and M. Odersky. Parametric type
classes (Extended abstract). ACM conference on LISP
and Functional Programming, San Francisco, Califor-
nia, June 1992.

[5] Carsten K. Gomard and Neil D. Jones. A partial evalu-
ator for the untyped lambda-calculus. Journal of Func-
tional Programming, 1, 1, January 1991.

[6] P. Hudak and J. Fasel. A gentle introduction to Haskell.
ACM SIGPLAN notices, 27, 5, May 1992.

[7] P. Hudak, S.L. Peyton Jones and P. Wadler (eds.). Re-
port on the programming language Haskell, version 1.2.
ACM SIGPLAN notices, 27, 5, May 1992.

[8] M.P. Jones. A theory of qualified types. In European
symposium on programming. Springer Verlag LNCS
582, 1992.

[9] M.P. Jones. Qualified types: Theory and Practice. D.
Phil. Thesis. Programming Research Group, Oxford
University Computing Laboratory. July 1992.

[10] M.P. Jones. Computing with lattices: An application of
type classes. Journal of Functional Programming, Vol-
ume 2, Part 4, October 1992.

[11] M.P. Jones. A system of constructor classes: overload-
ing and implicit higher-order polymorphism. Functional
Programming Languages and Computer Architecture,
Copenhagen, Denmark, June 1993.

[12] X. Leroy. Efficient data representation in polymorphic
languages. INRIA research report 1264, July 1990.

{13] X. Leroy. Unboxed objects and polymorphic typing. In
ACM Principles of Programming Languages, New York,
January 1992.

[14] R. Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17, 3,
1978. .

[15] R. Morrison, A. Dearle, R.C.H. Connor and A.L.
Brown. An ad-hoc approach to the implementation
of polymorphism. ACM Transactions on Programming
Languages and Systems, 13, 3, July 1991.

[16] A. Ohori. A simple semantics for ML polymorphism. In
4th International Conference on Functional Program-
ming Languages and Computer Architecture, Imperial
College, London, September 1989. ACM Press.

[17] J. Peterson and M. Jones. Implementing Type Classes.
ACM SIGPLAN ’93 Conference on Programming Lan-
guage Design and Implementation, Albuquerque, New
Mexico, June 1993.

14

[18] S.L. Peyton Jones and J. Launchbury. Unboxed values
as first class citizens in a non-strict functional language.
In Functional Programming Languages and Computer
Architecture, Cambridge, MA, Springer Verlag LNCS
582, August 1991.

[19] S.L. Peyton Jones and P. Wadler. A static semantics for
Haskell (draft). Manuscript, Department of Computing
Science, University of Glasgow, February 1992.

[20] S. Thatte. Typechecking with ad hoc polymorphism
(preliminary report). Manuscript, Department of math-
ematics and computer science, Clarkson University,
Potsdam, NY. May 1992.

[21] P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad-hoc. In 16th ACM annual symposium on
Principles of Programming Languages, Austin, Texas,
January 1989.

