Boolean Cube Emulation of Butterfly Networks
Encoded by Gray Code

S. Lennart Johnsson and Ching-Tien Ho

YALEU/DCS/TR-764
February 1990

This work has been supported in part by AFOSR-89-0382
and by NSF/DARPA grant CCR-8908285.

Boolean Cube Emulation of Butterfly Networks Encoded by Gray Code

S. Lennart Johnsson and Ching-Tien Ho
Department of Computer Science
Yale University

February 1990

Abstract

We present algorithms for butterfly emulation on binary-reflected Gray coded data that
require the same number of element transfers in sequence in a Boolean cube network as for a
binary encoding. The required code conversion is either performed in local memories, or though
concurrent exchanges not effecting the number of element transfers in sequence. The emulation
of a butterfly network with one or two elements per processor requires n communication cycles
on an n-cube. For more than two elements per processor one additional communication cycle
is required for every pair of elements. The encoding on completion can be either binary, or
binary-reflected Gray code, or any combination thereof without affecting the communication
complexity.

1 Introduction

In this paper we show that butterfly emulation on binary-reflected Gray coded data embedded in
a Boolean cube multiprocessor can be performed with the same communication complexity as if
the data had been encoded in binary code. The order on completion is shuffled with respect to
the input ordering, and the encoding can be in either binary code, or binary-reflected Gray code.
A straightforward emulation on Gray coded data results in a communication complexity twice
that of binary encoding for both packet and circuit switched communication. The communication
complexity is affected by the scheme for assigning multiple elements to a processor when there are
more elements than processors. We show that cyclic allocation yields the lowest communication
complexity.

Boolean cube networks are versatile interconnection networks for distributed memory multi-
processors. Several other networks can be emulated with no loss of efficiency. The butterfly
network is ideal for many important computations, such as Fast Fourier Transforms, parallel prefix
operations and sorting. In distributed memory architectures the efficient utilization of the communi-
cation system is important with respect to performance. This problem consists of two components:
data placement to minimize the need for communication, and data routing and scheduling to max-
imize the use of the available bandwidth (ideally for minimum length paths) while minimizing the
congestion.

The number of data elements often exceeds the number of available processors. Two common
schemes for allocating elements evenly to the memory units are consecutive and cyclic [4]. With
the first type of allocation data elements with successive indices are allocated to the same memory

unit. In cyclic allocation consecutive elements are allocated to successive processors. For a Boolean
n-cube and a data set with P = 2P elements, p > n the n least significant bits of the data index
determine the processor address in cyclic allocation. In consecutive allocation the n most significant
bits of the data index determine the processor addresses.

A Boolean n-cube contains meshes of up to n dimensions as subgraphs. Hence, the adjacency
defined by a multi-dimensional mesh can be preserved by an appropriate addressing scheme, or
data encoding. This fact has made the binary-reflected Gray code [14] a frequently used addressing
scheme for Boolean cubes [11, 4]. The Gray code encoding can be applied to the entire address
field, only to the processor address field, or independently to the processor and local memory
address fields. In combination with the different schemes for allocating multiple data elements to
the memories of the processors the following combinations arise.

Consecutive allocation

Cyclic allocation

(Gray code)

paddr maddr
(Gray code || Gray code)

(Gray code)
R , N
maddr Paddr
(Gray code || Gray code)

paddr maddr maddr paddr
(Gray code || Binary code) allocation | (Gray code || Binary code)
paddr maddr maddr paddr
(Binary code) (Binary code)
S—— Y ——
paddr ™addr maddr Ppaddr

A Boolean n-cube has N = 2" nodes, and node i is connected to nodes i ® 27, j € {0...n—1}.
A butterfly network with P = 2P rows has p + 1 columns. A node in row ¢,7 € [0, P — 1] and
column j,j € [0,p] is connected to nodes in rows 7 and 7 @ 27 in column j + 1, or to nodes in
rows 7 and 7 ® 2P~ 177 in column j + 1. The two definitions correspond to networks that are mirror
images of each other. In a mapping of a butterfly network to a Boolean cube such that all butterfly
nodes in a row are mapped to the same cube node, and rows assigned to cube nodes acccording
to the binary encoding of the row index, the required communication for emulating the butterfly
network corresponds exactly to the connections in the Boolean cube. The different stages of the
butterfly network corresponds to communication in different dimensions of the Boolean cube. All
communication steps are nearest neighbor communications.

All elements in a processor must be communicated in the same dimension for a given butterfly
stage. Pipelining [8, 10], or multi-sectioning [8, 9] can be used to increase the utilization of the
communication system. In cyclic data allocation the first p— n stages are local for a data set of size
P = 27, with the emulation proceeding from the most significant dimension to the least significant
dimension. The last n stages require inter-processor communication. In consecutive data allocation
the first n stages require inter-processor communication and the last p — n stages are local. Each
of the % local memory addresses defines a butterfly network emulation with one data point per
processor. These emulations are independent. For a binary encoding pipelining the computations
yields % +n —1 element transfers in sequence [8]. Multi-sectioning by R = 27, r < n, together with
pipelining of the emulation on blocks of R memory locations vield a communication complexity of
5% +(2 - 1)1—22 [9], which for —}% > n is approximately half of what is required for the pipelining
approach.

With the data encoded in a binary-reflected Gray code G the addresses of G(i) and G(i @ 2)
differ in two bits, implying distance two communication. Those paths for distinct pairs of elements

can be made edge-disjoint [3]. However, in a butterfly network emulation every dimension, except
the most significant, is used twice. Hence, for the emulation of multiple butterfly networks each
with one element per processor the emulation of different networks can only be initiated every other
cycle. The contention for communication channels results in a doubling of the communication time
compared to a binary encoding. Converting the binary-reflected Gray code encoding to binary
code, and then performing the butterfly emulation also results in a time complexity proportional
to 2%’7 for 715' > n.

The communication in one of the two dimensions required for butterfly emulation on binary-
reflected Gray coded data is performing code conversion. By using bi-sectioning the code conversion
can be made in local memory, if there is at least four local elements. The element pairs required
for a butterfly computation are local as well. With more than four elements per processor, the
emulation for different sets of four elements can be pipelined. For two elements per processor
both bi-sectioning and code conversion require communication under the assumption of a balanced
load. But, these two communications can be performed concurrently by organizing the data motion
such that every element is only communicated in one dimension. Every dimension is used twice,
except the most significant dimension. In the case of a single data point per processor a data
replication /reduction is performed in every emulation stage such that distance one communication
suffices in every stage. (The total amount of communciation is twice that of the binary encoding).
The final data encoding for any of the algorithms can be either binary, or binary-reflected Gray
code. The control for all algorithms is derived from the local memory addresses, the processor
address, and the butterfly stage being emulated. No tags are needed, and the control is completely
distibuted.

The outline of this paper is as follows. Section two introduces some properties of the hbinary code
and the binary-reflected Gray code. Section three presents the results for the case with processor
addresses in a binary-reflected Gray code and local memory addresses in binary code. Section
four treats the case with the entire address space in Gray code. Cyclic and consecutive allocation
is considered in both sections three and four. The case with one data element per processor is
discussed in section five. A summary and discussion is given in section six.

2 Preliminaries

A Boolean n-cube has N = 2" nodes, and every node has n neighbors. The nodes model the
processors and the edges model the communication channels of the network. n address bits, or
dimensions, are required for the processor address field and p — n bits for the local memory address
field. Each processor can concurrently communicate with all n neighbors. The total machine
address field is denoted (ap—1ap—2...0an|lan—1.-.ag), where || denotes concatenation of two binary
strings. We arbitrarily assume that the memory address field defines the high order bits of the
machine address. Subcube 0; contains all processors whose jth bit is 0. Subcube 1; is similarly
defined. The symbol * denotes 0 or 1, and @ the bit-wise ezclusive-or operation. Bit 0 is the least
significant bit. (17) is a string of j instances of a bit with value one, with the least significant bit
being bit zero. The binary encoding of 7 is B(z) = (bp—1bp—2...b9) and the binary-reflected Gray
code of 7 is Gn(2) = (gn-19n-2 - --9o)- When the encoding of i is of no particular interest we write

i = (tn-1in-2.--%0)- 7| = ;‘;& i; is the number of bits in i with value one. i& = (4_45_5...%)

is the integer defined by the k least significant bits in the encoding of 7. * = (fp—18p—2...1p_k) is
the integer defined by the k most significant bits in the encoding of . Zy = {0,1,---,N — 1} is

Integer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Binary | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Gray 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 { 1100 | 1101 1111 | 1110 | 1010 { 1011 | 1001 | 1000

the set of natural numbers less than N. (’}':1 is the sequence of n-bit binary-reflected Gray codes for

Figure 1: A binary-reflected Gray code and Binary code.

Zn, iey Gn = (Ga(0), Gr(1),- -+, Ga(2" — 1)).

A butterfly network on P = 2P rows has p + 1 columns. We assume that a node in row i and
column j is connected to nodes in rows ¢ and 7 @ 2°~~! in column j + 1 for j = {0,1,...,p - 1}.
This order is used for computation of the Fast Fourier Transform with data in normal order.

Definition 1 [14] The binary-reflected Gray code for all integers in Zy is defined recursively.

and

Then

In the following we always refer to the binary-reflected Gray code defined above. The inverse

Let G7 = (G1(0), G1(1)), where G1(0) = 0, G41(1) = 1.

Gni1 =

Q
3
Il

011G (0)
011G (1)
0//Gn(2” — 2)
0llGn(2* — 1)
1[Ga(2" — 1)
1]|Gn(2™ - 2)
11Ga(1)
116 (0)

9

or alternatively,

——

Gny1 =

of G,(i) is G;', where G,,;1(G,(4)) = i. Figure 1 shows a four bit code.

Corollary 1 The value of the most significant bit is the same in binary code and a binary-reflected
Gray code. The remaining bits in G,(i),i € Zn are defined by G,_1(i). The remaining bits in
2

(0)lfo
(0)llx
(D11
~(1)]/0
(2
(2

n

n

n(2)/10
~(2)[11

NDAaNNQN

G2 — 1)1

\ G.(2" - 1)|l0

Gnh(i),i € ZNy — Zn are defined by G,,_1(7), where i is the bit-wise complement of i, or
2

GC((in-1in-2---10)) = {

4

in—l”Gn—-l((in<2£n—3 . '3'0)),
in——lHGn-l((in—Zin-S. cce z.0))7

2f th-1=0,
otherwise.

Conversely, processor (ap_1@n_3...a) encodes the integer i = G ((an—1an-2...a9)), where

an—lHG;il((an—Zan—S * "aO))$ ifan—l = 01

an-lllG;il((an_zan_g ---ag)), otherwise.

Gr—zl((an—lan—z "'ao)) = {

The proof of corollary 1 follows from Definition 1. Corollary 2 is also immediate.

quollary 2 The integer encoded at Hamming distance one of G,(i) in dimension j is G,(i ®
(1J+1))7 t.e., Gn(z) ®2 = Gn(z ® (1J+l))‘

With a binary-reflected Gray code encoding of 7 the two inputs to a butterfly computation differ
in precisely two bits, since ¢; = b;41 @ b;.

Lemma 1

27 42971 ifji >0,

Gn(i)GBGn(i@?j):{l, ifj = 0.

The implication of lemma 1 is that with the emulation proceeding from the most significant
dimension to the least significant dimension the kth butterfly stage requires communication in
dimensions p — k — 1 and p — k — 2 for a p bit code, and the first stage being stage zero.

Lemma 2 With the entire address space of p bits encoded in a binary-reflected Gray code and a
cyclic mapping to an n-cube, p > n, memory location m of processor G,(i%) contains the integer
Gp—n(m)||2, if |Gp_n(m)| is even, and Gp_n(m)|[i2 if |Gp_n(m)| is odd.

The lemma follows from the construction of the binary-reflected Gray code [14]. The address
computation for the allocation of the data element with index i for the different data allocation
and encoding schemes are summarized in Table 1.

Allocation Encoding Memory address Processor address
G(i mod £} if |G([3Z])] is even ;
G —_—N P G(liN
ray G(i mod £) if |G(|*5])! is odd (L P D
Consecutive | Gray||Gray G(i mod %) G(L%J)
Binary||Gray | B(i mod —g) G(L*5))
Binary B(i mod £) B([*&]) G
i G(i mod N} if |G(| +])| is even
Gray L)) G(Tmod N) if |G([2])| is odd
Cyeclic Gray||Gray G(l%)) G(i mod N)
Binary||Gray | B(l%)) G(i mod N)
Binary B(lx]) B(imod N)

Table 1: Address of element 7 in a data set of size P = 2P allocated to an n-cube, n < p.

All our algorithms combine code conversion with butterfly emulation. The conversion from
a binary-reflected Gray code to binary code is defined by b; = (E;-‘;-l g;) mod 2, and conversely,

paddr 0000 | 000 0011 | o010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000
integer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
step 1 0 1 2 3 4 5 6 7 15 14 13 12 11 10 9 8
step 2 0 1 2 3 7 6 5 4 12 13 14 15 11 10 9 8
step 3 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8

Figure 2: Conversion of a binary-reflected Gray code to binary code.

gi =bjy1®b;,0<i<n-1,and g,—1 = bp—1. Depending upon whether the emulation starts from
the most or least significant bit, and what the final encoding shall be, one of the following four
code conversion algorithms is used.

msb—1lsb

Isb— msb

msb—lsb

Isb—msb

Converting binary-reflected Gray code to binary code

for k := n — 2 downto 0 do
if ap4+1 =1 then
(an—1@n-2.--a...a0) = (@n-1Gn-2...Tk ... Gg)
endif
enddo

fork:=0ton-2do
ifa, 1®an_2®---Dag+; =1 then
(@p_1an_2---ax...ap) — (@n-1an_2...qk ... ag)
endif
enddo

Converting binary code to binary-reflected Gray code

for k := n — 2 downto 0 do
ifan_l ®a, P9---& ar+1 = 1 then
(@n_1@n_2--.ax...a9) = (@n-1Gpn_2...T ... ag)
endif
enddo

for k:=0ton—-2do
if ap41 = 1 then
(ap_1@n_2-..ax-..a0) — (@n_1Gn_2...Tg ... o)
endif
enddo

The data motion for the first algorithm is depicted in Figure 2. Initially, index 7 is assigned to
processor Gy (z). After conversion, processor G, (i) contains data with index B, *(G,(%)). Elements
subject to an exchange operation are in boldface.

3 Binary coded memory addresses, Gray coded processor ad-
dresses.

3.1 Cyclic allocation

With the butterfly emulation starting from the most significant bit the first several steps are local
with cyclic data allocation. Then, there are in effect a number of independent butterfly emulations,
each with one data point per processor. The data organization for all emulations is the same. We
first treat the case with at least four elements per processor, then the case with two elements per
processor.

3.1.1 Four or more elements per processor

The algorithms below perform the conversion from binary-reflected Gray code to binary code in
local memory. First an all-to-all personalized communication is performed in all 2-cubes defined by
the two most significant processor dimenssions. It allows for the local emulation of the first butterfly
stage. Then, each (n — 2)-cube contains two independent sequences, each with two elements per
processor. Each sequence of length % is allocated within the (n — 2)-cubes as if it was encoded
in a binary-reflected Gray code, and the data allocation cyclic. By performing a bi-section on
the appropriate memory locations and cube dimension each sequence is split into two sequences
each with two elements per processor in cubes of one dimension less. The allocation of each new
sequence within its subcube is similar to the allocation of the original sequence within the (n — 2)-
cube. Hence, for each communication step one additional butterfly stage can be emulated. The
communications for different sequences can be pipelined. The main result is

Theorem 1 A butterfly emulation on P = 2P elements distributed cyclicly among N = 2™ pro-
cessors, p > n + 2, with binary encoded memory addresses and binary-reflected Gray code encoded
processor addresses can be performed in at most % + n — 2 element transfers in sequence. The
encoding of the processor addresses on completion can be either binary, or binary-reflected Gray
code.

Below we provide the insight and the algorithms for a proof of the theorem by induction. We
represent the data allocation by the assignment of logic dimensions to machine dimensions. The
full address space is considered for scheduling of communications, and for some details of the proof.

Emulation by dimension exchange sequences

The initial data assignment is:

Machine addr. field: (ap-1 @p—2 ... @n || @n-1 @n-2 an-3 ... ag)
T i T 1 T T 7 T 1
Logic address field: (bp—1 bp-2 ... by || boo1 Gn-2 Gn-3 -.- o)

where b; denotes a bit generated with a binary encoding and g; a bit generated by a binary-
reflected Gray code. The most significant bit in a binary code and a binary-reflected Gray code are

the same, i.e. g,_; = bn_1. The first step in the emulation is to perform an all-to-all personalized
communication [7], or four-sectioning in all 2-cubes defined by the two most significant processor
dimensions. Performing this operation such that it is equivalent to the following two exchanges
(refered to as i-cycles in [15])

ifa,;1 ®a,-1 =1 then

(ap-18p-2...an118n||@n-1an_2...a0) = (@p_1ap_2 ... TnF1ax|[@T1an-2- .. ao)
endif
ifa, ®a,_» =1 then

(ap—1ap_2 ... @ns18n||@n_18n_3...a0) = (ap_1ap_2...an418n||an-1Tn 3z . .. ag)
endif

yields the data allocation in the second row of Figure 3. With the two most significant dimensions
of the data subject to butterfly emulation in local memory the first rank of the emulation can be
carried out locally, and concurrently for all processors. For the next emulation step dimensions
n — 2 and n — 3 are required by Lemma 1. By performing the exchange between dimensions n + 1
and n — 3 the two lowest order local memory dimensions are assigned g,_3 and g,_», respectively.
The next butterfly emulation step can be performed locally, and concurrently for all processors.

Initial | Machine addr. field: (ap-1 @p—2 ... @n41 an | @nc1 @n—2 an-3 ... ao)
T T T T T 7 T 7 7 T
alloc. LOgiC addr. field: (bp—l bp_2 “ee bn+1 bn I bn—l gn-2 n-3 SN go)
First Machine addr. field: (ap—1 ap—2 ... @n-1 an I anc1 @n—2 an—3 ... ao)
emul. T T T T T T T T T T
step Logic addr. field: (bp—1 bp—2 ... bp_1 Gn—2 || bat1 bn 9n—3 ... go)
2nd Machine addr. field: (ap—1 ap—2 ... @an41 an | @nc1 @n—2 @n-3 ... ap)
emul. T T T T T 7 T 7 T T
step Logic addr. field: (bp—1 bp—2 ... Gn-z Gn-2 || bas bn b1 ... go)

Figure 3: The dimension exchanges for the first two emulation steps.

The local memory strides are somewhat complicated. The stride becomes two for the first
emulation stage, if gn_2 is converted to binary code. The code conversion is accomplished by the
local memory exchange

ifa, 1 =1 then

(a.p,lap_z “ee an+1an||an_1an_2 RN (lo) - (ap_lap_z e an+1a:[|an_1an_2 e ao)
endif

which implements the operation b,_5 = b,_1 ® gn_». At the next bi-section step g,_3 is brought
into local memory. Using the algorithm converting a binary-reflected Gray code to binary code
starting from the most significant dimension, the required operation is b,_3 = b,_2 ® gn_3, or

ifa, =1 then

(ap—-lap—z ce an+lan”an—1an—2 cee aO) ad (ap—lap-—2 cee an+lan”an—1an—2 o aO)
endif

Note that the stride for the butterfly computations corresponding to dimension n — 2 is one, since
this dimension is assigned to the least significant local memory address. If the dimensions in
local memory are changed to binary code before the butterfly computation, and then moved to
the processor address field through exchange operations, then the processor address field will be
encoded in binary code on completion. For a binary-reflected Gray code encoding on completion
the encoding should be changed in memory before the dimensions are exchanged with processor
dimensions. Using the apropriate code conversion algorithm the local exchange is controlled by the
leading processor address bits:

for k := n — 2 downto 0 do
ifa, 1®a,_2®---® apy; =1 then
ifn—-2—-—kmod2=0then
(ap—lap—2 s an+lan”an—lan—2 <o aO) - (ap—lap—-‘z cee an+la—n-||an—1an—2 ce- aO)
else
(ap-1Gp—2...ant1an||an_1an_2...a0) = (ap_1ap-2...Bn518n||@n_1an_2...a0)
endif
enddo

Detailed exchange schedules

The code conversion can be combined with the multi-sectioning [5]. Consider the first four
memory locations in a 2-cube. In the algorithm

forall (a;a0) do
if a3 @ a;||laz ® ap = 11 then
(azazllara0) — (@zaz|[atao)
if as @ (11”(12 ® ag = 01 then
(azazlla1a0) — (as@z||a;d)
endforall
forall (a;a0) do
if a3 ® a;||las ® ap = 11 then
(asazlla1a0) — (asa3||a1do)
if a3 @ a;||laz ® ap = 10 then
(azaz|laiao) — (@3az|[a1ao)
endforall

all processors perform exchanges in both dimensions of the 2-cube in each of the two forall state-
ments. Figure 4 shows the data motion and final encoding for a 2-cube with memory addresses
in binary code and processor addresses in binary-reflected Gray code. All four subcubes have the
same encoding on termination. The final processor encoding is in binary code, and the memory
encoding is in binary-reflected Gray code. The encoding of each axis is preserved during the trans-
position. The elements subject to exchange in a step of the algorithm is highlighted in boldface.
The exchange dimension is indicated by a superscript. In each of the two steps every processor
communicates in both of its inter-processor dimensions.

Changing the memory encoding to a binary encoding requires that a code conversion is per-
formed on the least significant memory dimension. A local exchange is required, if the most

maddr paddr paddr

00 01 11 10 00 01 11 10
00 | (0[l0) | (oll1)” | (ol|2)" | (0I3) (oflo) | @aflo) | (2[l1)” | (0o][3)*
o1 | (alo)” | (afj1) [@N2) |@Ns)” | = |(olly Qi) |@al2)]| Gl =
10 [(2M0))" [(202)"]2l3) (2]10) | (0ll2)” | (3]13) | (2[3)
11 [(3[0) [(Bl [(G2) [(313)" (113)% [3111)* | (8]12) | (2012)
00 (oflo) | (1ffo) | (3[[0) | (2[l0)
01 = | (01) [@l1) |El) | (f1)
10 (0f13) | (1l13) | (8[13) | (2[3)
11 (ol2) | @fi2)](@2) |22

Figure 4: All-to-all personalized communication in 2-cubes without code conversion.

significant dimension is one. An exchange algorithm that changes the encoding of the axes such
that the memory encoding is in binary code, and the processor encoding is in binary-reflected Gray
code both before and after the transposition, is depicted in Figure 5. As in the previous algorithm
each processor communicates in both of its dimensions in both cycles.

We now consider the data organization that results when the algorithms depicted in Figures 4
and 5 are applied to n-cubes. Memory location zero in the four processors with the same n — 2
least significant bits stores data elements with the following four indices according to corollary 1.

Processor Index
0,-10n_28n_3a44_4...a0 G 1(00)||G;12((a,, 3an_4...00)) = ;12((%—3411» 4...00))
0,,..11,1_2(1-,,,..3(1@_4 ...Qap G2 1(01)” 2(((1.,, 3an -4 .ao)) = +Gn 2((an 3qn_—4 . ao))
lan1lp_2an_3an_4...00 ()”Gn—Z((aﬂ 3Gn— 40‘0)) = _«% +G n— 2((0’11 3An-4 - ao))
1,104 28n_3an_4...00 (0)||G—12((an—3an—4~--ao)) _4'1\!' +G,2 2((an 3Qn—4 . aO))

The rearrangement defined by the all-to-all personalized communication moves all four data
elements into the same processor. The algorithm depicted in Figure 4 results in the data organi-
zation shown in Figure 6, and the algorithm in Figure 5 results in the organization in Figure 7,
where 1222 = G;lz(an- 3Gp_4...09). The encoding of the data after the all-to-all personalized com-
munication allows for a butterfly emulation on the most significant memory dimension (originally
assigned to processor dimension n — 1), but not on the least significant memory dimension. After
the emulation step on the most significant memory dimension, the remaining emulation consists of
two independent emulations. The data set for each such emulation has two elements per processor
in an (n — 2)-cube, with binary-reflected Gray code encoding of data allocated cyclicly.

With the data allocation within each (n—2)-cube being the same after the all-to-all personalized
communication, it suffices to consider subcube 0,,_10,_2. Moreover, since the two most significant
bits in the data index is independent of memory location we exclude them. The indices stored in
the first four memory locations of the subcubes follows from corollary 1. They are shown in Figure
8, where i2=2 = G;la(an_,;an_g, ...ap). The memory encoding is in binary code. An exchange

10

maddr

00
01
10
11

00
01
10
11

Figure 5: All-to-all personalized communication in 2-cubes with code conversion of both axes.

~ Figure 6: Data indices after all-to-all personalized communication in 2-cubes without code conver-

sion.

Figure 7: Data indices after all-to-all personalized communication in 2-cubes with code conversion

paddr paddr

00 01 11 10 00 01 11 10
(0[lo) | (ol]1)" | (of12) T (0[I3) (0[jo) | (1]jo) | (3[[1)" | (ol|3)*
(o) [(1) [af2) [ams)t| = [(o) [l [@afz)t]2l
(2ll0)” | (2/]1) | (2l12) [(2[]3)° (1l13)” | 2[[1)* [(2l2) [(3I2)
(3M10) @[T [(3112)" [(3I3) (3[10)T [(o]2)" [(2113) | (3II3)
(0flo) [(1]o) T (2l]o) T (30)

== [(0]]1) | (tflr) | (2[) [(@E[)

(ol2) | (1|2) | (2[2) [(8l2)

(0113) | (1fI3) | (2[13) | (8[I3)

of both axes.

maddr

00
01

10
11

maddr

00

01
10

11

OOan_g ‘e

0|jo]ji2=2)

(
(of[1]|:==
(

(ofj2{}s==

2)
0[[3[[=== 2)
)

ap Olap_3...

paddr

(flofl==2) (3llofl:2=2
=) =2
(1f3]la2=2) (3]I3l:==2
(1i2fl==2) l2)l2=2

ag 11(1»,,__3...

)
%)
%)
%)

agp IOan_a...ao

(2llo]:==2)
(2lf]jie=2
(2lB3]1:2=2)
(2ll2l]==2)

paddr
000,,,,_3...(1,0 01(1,;_3...(10 llaﬂ_g...ao 100.,1_3...0.0
(olloll®=2) (floln=2) (2lfollin=2) (3ljolliz=2)
(0[[:==2) (1][1]l:>=2) (2lill|i1‘—’3) (3Hlil”‘)
(oll2112=2) (20l2=2) @li2lliz=2) (2ll2)l2=2)
©sli=2) (pla=) @lplE=E) (2lBlEs)

11

maddr paddr

(0,,_341,,-4 .o ao) (1,;__3(),,._.4 [N ao)

00 (00fjof]:2=2) (00f[1[}:2=2
01 (01]j1]}~=2) (01fj0l}:2=2)
10 (10]jo]|i2=2) (10][1]}:2=2)
11 (11f]1]}:2=2) (11f]o[}:2=2)

Figure 8: Data indices within (n — 2)-cubes after all-to-all personalized communication in 2-cubes.

maddr paddr

(On-38n-4...a0) (ln-30n_4-.-a0)

00 (=2) (10]jo]l2=2)
01 (01]1]]:2=2) (11]]1]]2=2)
10 (00][1]]i==2) (10]]1]]==2)
11 (01]o]j=2) (11]jo]j==2)

Figure 9: Data indices within (n — 2)-cubes after all-to-all personalized communication in 2-cubes,
and an exchange in dimension n — 3.

operation on the most significant memory dimension and processor dimension n — 3 yields the
index allocation of Figure 9. The leading dimension of the data index is equal to a,_3 in both
subcubes. By performing a cyclic shift on the last three memory locations the data allocation
within all (n — 3)-cubes defined by the three leading dimensions are as given in Figure 10 (the
three leading dimensions in both the processor address and data index are omitted). An induction
argument now follows easily. Two communications are required for the first two dimensions, and
two for each subsequent dimension. Sets of four elements can be pipelined, with a new set initiated
every two cycles. Some local moves can be avoided by combining the memory reordering with the
exchange. This detail is omitted for simplicity.

The communication time of the algorithm can be improved by a factor of two by extending the
pipelining to every sequence, not only to pairs of sequences. After the first exchange in a dimension,
k, a processor contains three half length subsequences of one sequence, and one half subsequence
of the other sequence. The latter is yet to be communicated in dimension k. Each processor can
perform a butterfly emulation step on half a sequence. Since each emulation step recursively splits
a sequence into two new sequences, the butterfly computation after communication in dimension &
creates one half of two new sequences. An exchange can be performed in dimension k — 1 for these
two new sequences concurrently with the remaining exchange in dimension k. The first few steps
are illustrated in Figure 11. The butterfly stage being emulated is indicated by a subscript, and
the dimension of exchange by a superscript.

With the pipeling of individual sequences Theorem 1 follows.

12

maddr paddr

00 (00]}i=2)
01 (01]}:2=32)
10 (10])i2=2)
11 (11]|i"=3)

Figure 10: Data indices within (n — 3)-cubes after all-to-all personalized communication in 2-cubes,
exchange in dimension n — 3 and memory reordering.

maddr paddr
(O'n—son-—ian—s e 0'0) (On—3 In_4@n-s... ao) (ln—.'! ln_4@n_s... ao) (ln—30n—4an-5 .o aO)
00 (00joo]|:2=2) (0ofjo1]}s2=2 (00||10]}:2=2)"~3 (00]|11]jiz=2)"?
01 (01]j11]}i2=2) (01]10]}i2=2 (01fo1|}:==2) (01}]00|:2=2)
10 (10[joo}|i2=2)"~2 (10]jo1||s2=2)~3 (10]10}}:2=2 (10]]11][:2=2)
no (ahfle== (11]]10][i2=2) (11]jox[:=== (11]]0o]}:2=2)
U
00 (ool|oo| "") (oojjo1|}s==2 (lOIIOIHz"")"IQ (10]j00|[i2=2),,
01 (01f]11]}:2==)3 (011110llt— n—2 (01}jo1j[i=2)"2 (01]joo|}s2=2)"~*
10 (OOHIIHz— n-2 (00f]10||:2=2)7 =3 (10]]10]}:2=2 (10]]11][:2=2)
1 (11fj11]}s== in=t)n3 (12])10}jiz=2)—3 (11]j01]i2=2), 2 (11}jo0|[i2=2)7 23
U
00 (00]]00]i2=2)n—2,n—3 (00]|01]]5 jn=t)" (11]}00]|i2=2),_, (10]|00}js2=2)
01 (OOHlOHz""")n_; (o1]]10][i== (11}110}}i2=2) 2 ,n—3 (11||11]|"‘-‘ g
10 (00||ll||z (01||11[|#:1 n_3 (10]|10}}s2=2 ::; (10||ll||z— n_2,n—3
11 (o1}joo||iz=2)=3 (01||01||z1:1 n-2,n—3 (11]|01]}i2=% (10||01||zm 3

Figure 11: Data indices within (n — 2)-cubes after all-to-all personalized communication in 2-cubes.

Time
—
-l
n-1-
— -] o
2_' o °
1 . .
0
T 1 T T . .
0]1 > l n-1 Dimension

Figure 12: Scheduling of communications for bi-sectioning with local code conversion.

13

Remark: After the initial all-to-all personalized communication a communication in dimension
n — 3 for half of the local data converts the memory encoding from Gray code to binary code,
and an additional butterfly stage can be emulated. Then, there are four independent emulation
problems each with the same data encoding as in the original problem. However, the communication
complexity of such an algorithm is & + 4[2] — 6, i.e., twice that of the algorithm above. Four
cycles are required for every pair of dimensions and set of four elements.

3.1.2 Two or more elements per processor

The algorithms described in this section consistently operate on two independent sequences allo-
cated to cubes of successively decreasing dimension. The algorithms rely on bi-section in one cube
dimension concurrent with code conversion in the next lower cube dimension. Half of the data for
one of the two butterfly emulations is communicated in one of the two required dimensions, and
the other half of the data for the same butterfly emulation in the other cube dimension. The data
for a butterfly stage meet in a processor adjacent to the two initially holding the data. In every
stage each data set that interact in the remaining emulation is allocated to a subcube defined by
the processor dimensions on which bi-section have been performed. Figures 13 and 14 show the
data motion for a 3-cube with two data points per processor. The initial data allocation is cyclic
and the encoding is by a binary-reflected Gray code. The output ordering is by binary code, and
binary-reflected Gray code respectively. The final allocation is consecutive. The communication
channels in every 2-cube are fully utilized, and the load is balanced. After one communication step
butterfly computations for both emulations can be performed. The main result is

Theorem 2 The emulation of butterfly networks on P = 2P elements allocated cyclicly to N = 2"
processors, p > n+ 1, with binary memory encoding and binary-reflected Gray code encoding of the
processor address field can be performed in at most % + n — 2 element transfers in sequence. The

processor encoding on output may be either binary or binary-reflected Gray code.

Below we provide the arguments for a proof by induction. The algorithms described below
can be used for more than two elements per processor, for instance by pipelining successive pairs.
However, for four or more elements the previous algorithms yield a lower time complexity by
approximately a factor of two.

Binary coded processor addresses on termination.

The address space and its encoding on input is

Machine addr. field: (ap-1 @p—2 ... an || @1 Gu_2 @n_z ... ap)
T 7 T i i i T 1
Logic address field: (bp—1y bp—2 ... by || bu-1 Gn-2 Gn-3 ... go)

For a binary processor encoding and a binary local memory encoding the following algorithm can
be used. It uses the least significant local memory dimension for all bi-sections.

14

6,14 8,12 9,13

::-:3,1 2,
=
5,13 1.15 14
0,47 15
1315 12,14 14,15 12,13
o oy e
0,2: - 1.3 : 0,1, : 2,3’ :
: : : : =" : : :
S &10 - 9 : 8.9 1011
PO S
5,7 10 6,7 45

Figure 13: Bi-sectioning with inter-processor code conversion for cyclic data allocation, binary
coded memory addresses and binary-reflected Gray code encoded processor addresses. The proces-
sor addresses are encoded in a binary-reflected Gray code on completion.

8,12 9,13
3,7 2,6}
> >
1.15 ,14
0,4 1.5
11 810 SO 10,11
- = S
02> 13 01 23
: : : : == : : :
12,14 13,15 : 12,13 14,15
FEEe S -
5.7 1.6 4,5 6,7

Figure 14: Bi-sectioning with inter-processor code conversion for cyclic data allocation, binary
coded memory addresses, and binary-reflected Gray code encoded processor addresses. The pro-
cessor addresses are in binary code on completion. '

15

maddr paddr

(00a,_3an_4...a0) (0lan_3an—4...a0) (1lan_3an_4...a0) (10an_3an_4...a0)

0 (olj00ji2=2) (olj01]|i2=2) (oll0]}i2=2) (olf11fj:2=2)

1 (1]joofi2=2) (1jo1/|==2) (1ll10]|i2=2) (1j11)j2=2)
U

0 (o]jo1}j==Z) (0]00][i2=2) (1/01][2=2) (1]/00||s2=2)

1 (0l[11]i2=2) (ol]10]li2=2) (1111ji2=2) (1]]10]l:2=2)

Figure 15: Data allocation before and after bi-section and inter-processor communication for code
conversion.

for k =n -1 downto 0 do
ifa, ® ar =1 then
(ap_lap_g e anHan_lan-g SRS § SO ao) — ((Lp_lap_z .o .a_nHan._lan_z . a_k e ao)
else
(@p—1ap—2 - --ap||an-18n-2... Q-1 ---a0) = (ap_18p_2 ... an|lan_18n_2... @7 ... ao)
endif
fa 108 30...0 a7 =1 then
(ap——lap—'Z R anHan—lan—2 .. aO) - (aP—laP-—Z . -a“an——lan—Z s a'O)
endif
endfor

The first assignment statement performs the bi-section. The second assignment statement
performs the inter-processor communication required for code conversion. The last assignment
performs a local memory reordering when required. The local memory moves for reordering can be
avoided by writing the result of a butterfly computation back in inverted order, when a move would
otherwise be required. The local memory reordering assures that the memory dimension used in
the next exchange is in binary order. With the memory dimension used for the bi-sectioning always
being in binary code, the final processor encoding is binary.

To prove the correctness of the algorithm we begin by considering the first iteration. In the first
assignment dimensions n and n — 1 are exchanged. Both dimensions are in binary code. The second
assignment converts processor dimension n — 2 from binary-reflected Gray code to binary code in
subcube 1,,_; for the data set in odd memory locations. The same assignment statement causes
dimension n — 2 of the data set in even memory locations in subcube 0,,_; to be complemented
as well. The data allocation before and after the first if statement in the first iteration of the
algorithm is given in Figure 15, where i2=2 = G} ,((an-3an—4-...a)). The data allocation follows
from corollaries 1 and 2. After the first iteration sequences originally in even memory locations
are allocated to subcube 0,,_;, and sequences in odd locations are allocated to subcube 1,_;.
Furthermore, within each subcube the first half of a sequence is in an even memory location, and
the second half in the next odd memory location. With respect to the subsequent emulation steps
each such half is an independent sequence. The data index assigned to processor (@,—28n-3 ... ao)
in subcube 1,_; is *=2 = G7!;((¢n-2an-3...a0)). The same processor within subcube 0,_ is

16

maddr paddr

(000.“_3(1“_4...(10) (Olan_aan_q...ao) (llan_3an_4 ao) (10(1,,._3(1"_4...(10)

° (oliiz==) (0lj10]j:2=2 (ollo1]==2) (0ll00]Jiz=2)
(lullﬂzﬁ) (1”10”1&) (1|101”lﬂ_2) (l[l00||z1’-—“-3)
y
° (0101122 (olj11)j2=) (1l110]ji=2) alES)
b (oleolkE=) (0ljo1][==3) (1lj00][2=2) (1llo1 =)
y
(0]loo][s2=2) (0l]o1]j:2=2) (1]]00]¢2=2) (1lj01/[E=2)
1 (0]]10]}:2=2) (0]]11]]i2=2) (1]]10]]i2=2) (1|11[E=2)

Figure 16: Data allocation before and after bi-section and inter-processor communication for code
conversion. Reflected sequences.

assigned index i®=1. Clearly, in subcube 1,,_; the data allocation after the first step is cyclic, the
memory address encoding binary and the processor address encoding a binary-reflected Gray code.

In this subcube the remaining emulation problem is identical to the original problem, except it is
half the size.

Now, consider an emulation on two sequences allocated in reverse order in an n-cube. The
initial data allocation, the allocation after the first execution of the first if statement, and the
allocation after the first execution of the second if statement are given in Figure 16. After the first
if statement the first subsequence is allocated to subcube 0,,_; and the second to subcube 1,_;.
However, the first half of each sequence is in the second memory location and the second half in the
first memory location. The second if statement reorders the local memories such that the first half
is in the first memory location, and the second half in the second location. Subcube 0,_; encodes
i2=1 and subcube 1,,_; encodes i2=L,

The number of reflections required for the conversion of bit k from a binary-reflected Gray
code to binary code is |gn—1gn—2 ... gk+1/- But, in the butterfly emulation algorithm a reflection is
performed in all dimensions, except the most significant. Hence, the number of excessive reflections
is |[gn_1gn—2..-Jks1l- If the excessive number of reflections is even, then the encoding is indeed
binary, but if it is odd the encoding is inverted.

The first two emulation steps are shown in Figure 17. The second exchange in a butterfly
emulation step does not affect the local memory encoding, only the processor encoding. Local
memory reordering is required in subcube 0,,_; in order to convert the dimension used for bi-section
to binary code. In subcube 1,_; the memory encoding is binary, and no change of the encoding
is required. Since gn_2 = bp_s if by_; = 0 the data encoding of the memory is binary after the
two first emulation steps, including the memory reordering. The next butterfly emulation step
moves b,,_» into the processor address field. This dimension is correctly encoded for all processors.
The communication in dimension n — 3 converts the binary-reflected Gray code to binary code in

17

Initial | Machine addr. field: (ap-1 ap-2 ... an Il @n-1 @n-2 @n_s ... ao)
alloc. 1 T T T 7 T 1 T T
LOgiC addr. field: (bp._l bp._z e bn H bn——l 9n-2 gn-3 e go)
First Machine addr. field: (ap-1 ap—2 ... an I 0 Qn_2 Gn-3 ... Qp)
T T T T T T T T T
emul. Logic addr. field: (bp—1 bp—2z ... bp_1 || bn Jn-2 Ggn-3 --- Go)
Machine addr. field: (ap-y ap—2 ... an 11 1 Qn_2 @n-3 ... Gg)
step 7 T 1T T T T T T T
LOgiC addr. field: (bp-] bp._z e b-,._l H bn bn_z gn-3 . e go)
First Machine addr. field: (ap-1 ap-2 ... an] 0 Gn—2 Gn-3 ... Qo)
exch. 7 T T T T T T T T
in Logic addr. field: (bp—-] bp_z oo gn-2 ” bn bn_x gn-3 oo go)
2nd Machine addr. field: (ap-1 ap—2 ... an Il 1 Gn_2 Gn-3 ... Qo)
emul. T T T T T T T 1) T
st.ep LOgiC addr. field: (bp_1 bp_z e bn_g “ bn bn—-l In-3 P go)
2nd Machine addr. field: (ap-1 @p—2 ... an I 0 Gn-2 @n-3 ... ag)
7 T T T T T T T T
emul. LOgiC addr. field: (bp_l bp_z cee m ” bn bn_.] g_n'__;' . go)
Machine addr. field: (ap-1 ap-2 ... an I 1 Gn-2 @n-3 ... @g)
step T T T T 7 T T T T
Logic addr. field: (bp—1 bp—2 ... bn_a || bn b1 Gn=3 ... Go)
Local Machine addr. field: (ap-1 ap—2 ... an] 0 @n—2 @n-3 ... Qo)
mem. T T T T T T T T T
reord. | Logic addr. field: (b1 bp—2 ... gn-2 |l bn b1 Gn=s .- go)
Before | Machine addr. field: (ap-1 ap-2 ... an | @n-1 an—2 @a—z ... ao)
3rd T T T T T T T T T
step Logic addr. field: (bp=1 bp—2 ... baz2 | b bn-1 Gn-3 ... Go)

Figure 17: The two first emulation steps for bi-sectioning with inter-processor code conversion.
Binary output order.

subcube 1,,_11,_3, i.e., in this subcube g3 = b,,_3. In subcube 1,_,0,_5 the complementation
should not take place with respect to code conversion, and hence §,_3 # b,_3. In subcube 0,_,
the ordering is inverted with respect to dimension n — 2 from the first emulation step. To restore
the ordering @,_7 should be used for the control of the conversion of the next dimension. Hence,
in subcube 0,,_10,-2 Jn_3 = b,_3, but in subcube 0,,_11,_2 Fn_3 # bn_3.

Binary-reflected Gray code encoding of processor addresses on termination.

The local memory reordering in the algorithm above ensures that the memory dimension used
for the exchange is in binary code. By instead reordering the memory such that the dimension
is encoded in a binary-reflected Gray code the processor encoding on completion is in a binary-
reflected Gray code. A sample pseudo code is given below. On termination processor dimension
k is assigned logic dimension k+ 1, k € {0,1,...,n — 1}. By using the least significant memory
dimension for all exchanges the assignment of logic dimensions to memory dimensions is the same
as initially, except the least significant dimension (n) is assigned logic dimension zero.

for k = n — 1 downto 0 do
ifa, ® a, =1 then
(ap-1ap—2 ... anll@n-1an_2...ak...a0) — (@p_18p—2...Tx||Gn-18n-2... Tk ... ag)

18

else

(@p_1ap_2- .- an|lan-1an_2...A_1...0) = (AGp_18p_2...an||lan_1an_2...TG_7--- a0)
endif
iflo1®...01@a, =1 then

e
n—k—2

(ap_lap_z...anHan_lan_g...ao)-—»(ap_lap_g...&ZHan_lan_g...ao)

endif
endfor

Note that the only difference between the two algorithms for binary encoded or binary-reflected
Gray code encoded output is in the local memory reordering. To produce a binary-reflected Gray
code encoding of the processor address field the dimension that is moved into the processor di-
mension k shall be inverted if @ = gn—1 ® gn_2® ... D gr+1 = 1. The memory dimension used for
the exchange is inverted if 8 = g1 ® Fn2 @ ... ® Jry2 = 1, since the dimension in memory is
processor dimension k + 1. Local memory reordering is required if « = 1 and § = 0, or @ = 0 and
B = 1 which reduces to 1® 1@ ... ® 1®a, = 1. For instance, a memory reordering is performed in

n—k-2
subcube 1,,_; before the first exchange of the second butterfly emulation step. The first emulation
step is independent of output order, and the result is

Machine addr. field: (ap-1 @p-2 ... @ || 0 an_z2 an_z ... ao)
7 T 7 7 T 7 i T
Logic address field: (bp—1 bp—2 ... bn-1 || bn Fn-z Ggn-3 ... Go)
and
Machine addr. field: (ap-1 a@p—2 ... an || 1 @Gn—2 an-3z ... ao)
7 T i 7 i i i T 1
Logic address field: (bp—1 bp—2 ... bn-1 || bn bn—2 gn-3 ... go)

But, since if b,_1 =1 g,_2 = b,,_» a memory reordring is required in subcube 1,_;.

With all partitioning steps using the same local dimension the result on completion is an un-
shuffle on this storage dimension and the processor dimensions. By using successively lower storage
dimensions starting from the most significant dimension, and restarting from the most significant
dimension cyclicly, the n most significant logic dimensions will be assigned to the processor address
field. The final data allocation is consecutive, with the possible exception that the local memory
may need to be reordered.

3.2 Consecutive mapping

Theorem 3 The emulation of a butterfly network on P = 2P elements allocated consecutively and
evenly to N = 2" processors, p > n + 1, with memory addresses in binary code and processor
addresses in binary-reflected Gray code can be performed in at most % + max(n,%) element
transfers using a bi-sectioning algorithm with local code conversion. The required number of element
transfers in sequence for the bi-sectioning algorithm with code conversion through inter-processor
commaunication is Z—Pﬁ + max(n, %) The encoding of the processor address field on output can be
etther binary or binary-reflected Gray code.

19

-~ o0
— Ol
- — s
2 — oo
1 —
0
0 ; é rrrr ‘nl-l Dimension

Figure 18: Scheduling of communications for the bi-sectioning algorithm with inter-processor code
conversion.

The communication complexity for consecutive allocation, binary encoded memory addresses
and binary-reflected Gray code encoding of the processor address field may be as much as twice
that of cyclic allocation.

With a consecutive mapping and a binary-reflected Gray code encoding of the processor ad-
dresses and binary encoding of local memory addresses the initial data allocation is

Machine addr. field: (ap_y ap_z ap_3 - Gy || @y @y an_z ... ao)
T i 7 T 1 7 T 7 T 7
Logic address field: (bp—n—1 bp-n-2 bp_n-3z ... bo || bp_1 Gp—2 Gp-3 ... Gp-n)

If there is at least four data points per processor and the two most significant local memory
dimensions are used for the first two exchange operations, then the data allocation becomes

Machine addr. field: (ap—1 a@p—2 @p-s ... an || @n-1 @n_2 Qn_3 ... ao)
T 7 7 7 1 T 7 i 7 7
Logic address field: (bp—1 gp—2 bp_n—z ... bo || bp_n—1 bp_n-2 Gp-3 ... Gp—n)

The first n emulation steps are identical to the last n steps for cyclic data allocation. Emu-
lation steps n + 1 and n + 2 require communication as well, since the first all-to-all personalized
communication moved these dimensions into the processor address field. The two most significant
processor dimensions are used twice in the algorithm for four or more data elements per processor.
After these emulation steps all subsequent steps are local. If some memory dimensions other than
the two most significant are used for the first two exchange steps, then there may be some local
emulation steps before the second communication in the two most significant processor dimensions.

By moving only one processor dimension to local memory the algorithm for two data points
per processor can be used in a manner analogous to the case for cyclic data allocation. The most
significant processor dimension is used twice.

The scheduling of processor dimensions for local and inter-processor code conversion is shown
in Figure 19.

20

Time

— o
R °° Time
- o
—4 . — o
- —pe O .
n-1- n-1- o—o
- 4
—— — SO
- — R d
- o o — — GO
2+ ° ° 2+ — oo
1 1- —
(U N S e e et o . . o N S e s e e . .
012 n-1 Dimension 012 n-1 Dimension
Local code conversion Inter-processor code conversion

Figure 19: Scheduling of communications for bi-sectioning, consecutive allocation.
4 The entire address space in Gray code

4.1 Cyclic mapping

Theorem 4 The emulation of butterfly networks on P = 2P elements allocated cyclicly to N = 2™
processors, p > n + 1, with the entire address space encoded in a binary-reflected Gray code can be
carried out in at most ?PIV +n—1 element transfers in sequence by using the bi-sectioning algorithm
with local code conversion. Bi-sectioning with inter-processor code conversion results in -f\—:; +n-1
element transfers in sequence. The output encoding can be either binary or binary-reflected Gray

code.

With the entire address space encoded in a binary-reflected Gray code, and cyclic data allocation
butterfly stages 0 though p — n — 1 are entirely local. For the butterfly stage corresponding to
dimension n in the binary encoding communication in dimension n — 1 is required by lemma 1.
By lemma 2 memory location m is assigned G(m)||i2, if |G(m)| mod 2 = 0, otherwise G(m)|[iZ.
With four data points per processor (or multiples thereof) the data allocation is identical to the
allocation within the four (n — 2)-cubes after the all-to-all personalized communication stage in
the case of cyclic allocation and binary encoded memory, with the exception of the local memory
ordering.

Table 2 gives an example of the emulation of a five stage butterfly network on a 3-cube, assuming
cyclic data allocation with the entire address space encoded in a binary-reflected Gray code. The
sequence of dimension assignments are shown in Table 3. The scheduling of communications are
shown in Figure 20.

For the bi-sectioning algorithm with inter-processor code conversion an exchange in dimension
n — 1 is required for memory locations with |G(m)| mod 2 = 1. Such a communication changes
the allocation to cyclic with binary encoded memory addresses. All processors encode G(m)||2.
Examples of the data motion is shown in Figures 21 and 22. The scheduling of communications
are shown in Figure 20.

21

paddr G(7) 000 001 011 010 110 111 101 100
B(1) 000 001 010 011 100 101 110 111
Initial 00000 | 00001 | 00010 | 00011 | 00100 | 00101 | 00110 | 00111
01111 | 01110 | 01101 | 01100 | 01011 | 01010 | 01001 | 01000
alloc. 11111 | 11110 { 11101 | 11100 | 11011 | 11010 | 11001 | 11000
10000 | 10001 | 10010 | 10011 | 10100 | 10101 | 10110 | 10111
After 00000 | 00001 | 00010 | 00011 | 11100 | 11101 | 11110 | 11111
exch. 01111 | 01110 | 01101 | 01100 | 10011 | 10010 | 10001 | 10000
dim. 2 00111 | 00110 | 00101 | 00100 | 11011 | 11010 | 11001 | 11000
and 4 01000 | 01001 | 01010 { 01011 | 10100 | 10101 | 10110 | 10111
After 00000 | 00001 | 00010 | 00011 | 10011 | 10010 | 10001 | 10000
local 01111 | 01110 | 01101 | 01100 | 11100 | 11101 | 11110 | 11111
conv. 00111 | 00110 | 00101 | 00100 | 10100 | 10101 | 10110 | 10111
dim 3 01000 | 01001 | 01010 | 01011 | 11011 | 11010 | 11001 | 11000
After 00000 | 00001 | 01110 | 01111 | 11111 | 11110 | 10001 | 10000
exch. 00011 | 00010 | 01101 | 01100 | 11100 | 11101 | 10010 | 10011
dim 1. 00111 | 00110 | 01001 | 01000 | 11000 | 11001 | 10110 | 10111
and 3 00100 | 00101 | 01010 | 01011 | 11011 | 11010 | 10101 | 10100
After 00000 | 00001 | 01001 | 01000 | 11000 | 11001 | 10001 | 10000

local 00011 | 00010 | 01010 | 01011 | 11011 | 11010 | 10010 | 10011
conv. 00111 | 00110 | 01110 | 01111 | 11111 | 11110 | 10110 | 10111
dim 4 00100 | 00101 | 01101 | 01100 | 11100 | 11101 | 10101 | 10100
After 00000 | 00111 | 01111 | 01000 | 11000 | 11111 | 10111 | 10000
exch. 00011 | 00100 | 01100 | 01011 | 11011 | 11100 | 10100 | 10011

dim. 0 00001 | 00110 | 01110 | 01001 | 11001 | 11110 | 10110 | 10001
and 4 00010 | 00101 | 01101 | 01010 | 11010 | 11101 | 10101 | 10010

Table 2: Bi-sectioning with local code conversion applied to a 32 node butterfly network emulation
on a 3-cube with cyclic data allocation and the entire address space in a binary-reflected Gray code
on input. The processor addresses are encoded in binary code on output.

Initial | Proc. addr. field: (ap—1 @p—2 ... @ni1 an Il @anci @a—2 @n-z ... aq)
alloc. T 7 T T T 7 7 T 7 T
Logic addr. field: (bp—1 gp—2 ... gnt1 gn | gn-1 Gn-2 Ggn-3 ... go)
Local | Proc. addr. field: (ap—1 @p—2 ... @n41 an | @n-t @n-2 @n-z ... ao)
reord. T T T T T T 1 T T T
n+1 | Logic addr. field: (gp—1 gp—2 --- bay1 n | gn-1 Gn-2 Gn-3 ... go)
Exch. | Proc. addr. field: (ap-1 @p—2 ... ant1 an I @n-y @n—2 @n—s ... o)
dim. 7 T T T 7 T T T T T
n—1 Logic addr. field: (g,,._l gp—-2 cee gn-1 gn bn+l gn-2 gn-3 con go)
Local | Proc. addr. field: (ap—1 @ap—2 ... @ni1 an, Gn_y Gn_2 Gp_3 ... ag)
reord. T 7 T T T 1 T T 1T T
dim n | Logic addr. field: (gp—1 gp—2 ... Gn-1 bn bnti gn—2 gn-3 ... o)
Exch. | Proc. addr. field: (ap—-1 ap-2 ... @an-1 an G@n-1 Gn_2 @Gn-3 ... Q)
dim. T T T T T T T T T T
n—2 | Logic addr. field: (gp—1 gp—2 ... Ggn-1 Gn-2 || bap ba 9n-3 ... Go)

Table 3: The first two dimension exchanges for bi-sectioning with local code conversion applied to
cyclicly allocated data encoded in a binary-reflected Gray code. Processor addresses in binary code
on output.

22

- -
- 4o
- — GO
n-1- n-1—4—
— e Ll
— — OO
— — [—— —0
-— o — O
2 24 — o
14 14 —
0. 0
Jrroorororo T T T T T T T 71 . .
01 n-1 Dlmensmn 012 n-1 Dimension
Local code conversion Inter-processor code conversion

Figure 20: Scheduling of communications for the bi-sectioning algorithm. The entire address space
in binary-reflected Gray code, cyclic data allocation.

1.9 3,11 37 15
7 o ol
4,13 0,4° P
3 = .
v AY) 6,13 9,13 11,15 =
2, 10,15 8,'!
/ / M
Y
13,15 12,13 10,11

N ’ - . b -
12,1/' '8,1/ My 89"

Figure 21: Bi-sectioning with inter-processor code conversion applied to binary-reflected Gray code
encoded data indices, consecutive data allocation. The encoding on termination is in a binary-
reflected Gray code with the dimensions cyclicly shifted one step to the right.

4.2 Consecutive mapping

The first n— 1 emulation steps are identical for the entire address space encoded in a binary-reflected
Gray code, and only the processor address field in such a code. The emulation step on the least
significant processor dimension differs compared to binary encoded memory addresses only in the
local memory addressing scheme. All emulation steps corresponding to memory dimensions in the
binary encoding requires no inter-processor communication, with the exception of the dimension(s)
moved to the processor address field in the first exchange(s). However, the local memory accesses
differ compared to a binary encoded memory. The communication complexity is given by theorem
3. Examples of the data motion are shown in Figures 21 and 22.

23

4,15 12.13 1.9 3,11 3.7 1.5
. L ——
0.1 2, | 6.1 4.1 0.4 70
- L = =
9 1 15 13 913 11,15
6, 45 1007 517

0.8 2,

/1,3 5.7 .2.3 '6,7
02 as 01' a8
=
9,11 13.13 %0,11 1.4,15

8,1/ 12,1/ 8.9 12,13

Figure 22: Bi-sectioning with inter-processor code conversion applied to binary-reflected Gray code
encoded data indices, consecutive data allocation. The encoding on termination is in binary code
with the dimensions cyclicly shifted one step to the right.

5 One data point per processor.

With one data point per processor the lower bound for the number of element transfers in sequence
is n. An obvious way to perform the emulation is to apply the algorithm using a single memory
dimension. The second memory location is initially empty and the communication in the most
significant memory dimension is a send operation, not an exchange. After the initial step there
are two elements per processor in an (n — 1)-cube. A final splitting is required to restore one
element per processor. The total number of communications is n + 1. We will now prove that n
communication steps suffice.

Theorem 5 An emulation of a butterfly network of N = 2" points allocated to a Boolean n-
cube with one point per processor by a binary-reflected Gray code can be performed with n element
transfers in sequences. The output can be encoded in either binary code or binary-reflected Gray
code.

The idea is that each node sends a copy of its data to both its neighbors in the 2-cube. Hence,
both neighbors can compute the complete butterfly. But, each node only computes one output of
the butterfly. Which output is computed determines the final data ordering. The rule for deciding
which output to compute is that after stage k the k + 1 most significant bits of the output must
agree with the final data encoding. With the emulation proceeding from the most significant bit to
the least significant bit the encoding is generated in the same order. The communication in each
step of the algorithm is the same as in the algorithm using a single memory dimension. The second
memory dimension is a copy of the first location.

It follows from the discussion of the bi-section algorithm with inter-processor code conversion
that after the first communication step the n — 1 least significant bits of the original data in-
dex in processor (@n—2an-3...Gg) is 2= = G771 ((@n-2an-3-..a0)) in subcube 1,_; and ol =
G;ll((a,,_zan_g ...ag)) in subcube 0,_;. Subcube 0,_; computes the “top” of a butterfly, and
subcube 1,_; the “bottom”, with indices increasing from top to bottom. The index assigned to a
processor is that originally assigned to the neighbor in dimension n — 2. Figure 23 illustrates the
data motion in a 3-cube with input and output in a binary-reflected Gray code.

24

7 6 40 31 2y 5
0 1 3 ? 2.8 3 Z
== >
4 5 13 52 7 /
3 2 04 L3 0
7.I‘ SIA - YG." 41 7” 6” »,7}[/7 o .61"
% U o AR
4;’. 6[o 5.1, 7' == ‘ 4” X 5” = .4"/ v.slll
YK Gy N ammme o o

Figure 23: Emulation of a 2" node butterfly network on an n-cube with binary-reflected Gray code
encoded addresses.

In the seond stage with the final order being binary-reflected Gray code a node computes the
butterfly output that corresponds to the current index of the neighbor across dimension n — 2.
Hence, dimension n — 2 is complemented twice, and the initial ordering restored. For each pair of
steps the Gray code encoding is restored. If n is odd, then the last stage is an exchange step, and
a computation of the butterfly output corresponding to the local index.

In the sample code below for input and output in a binary-reflected Gray code order, the
butterfly computation in processor i and stage k is denoted f(z,y,7,7). ¢ and y are the butterfly
inputs. z has the smaller index in a pair, i.e. z,_;_; = 0and y,,_4_; = 1. 2 « (7,y) denotes
a communication from variable y of processor j to variable z of the current processor. Local
assignment is denoted by the symbol :=.

/* Code for processor i: */
bstage := 0;
for j:= n — 1 downto mod(n,2) do
z — (1@ 27, m[0));
y — (i ® 2771, m[0));
if (even(bstage)) then
m[0] := f(z,y,G7 (i ® (19)),5);

else
m[ﬂ] = f(zv Y, G_l(i)aj);
endif
bstage := bstage + 1;
endfor

if (odd(n)) then
if (even(G~1(i))) then

z := m[0];
y < (i ® 1,m[0]);
else
z «— (i ® 1,m|0]);
y := m[0];
endif

25

Initial Encoding Bi-section Bi-sectioning
Allocation | memory||processor | interpr. code conv. | with local code conv.
gray”G 33 + max(n, &) 3 + max(n,)
: ray||tsray P P P P
Consecutive Binary||Gray 53 + max(n, §) 3% + max(n, 55)
gray”(’ —1%+n—1 7%—--’;—11—1
. ray||Gray p P
Cyel : Pin_2 P in-
yehe Binary||Gray Ntn oy T -1

Table 4: Data transfer times for the bi-sectioning algorithms for binary-reflected Gray code encoded
data.

endif
m[O] = f(zay’G—l(i)a 0);

For a binary coded output the only difference compared to the above algorithm is the butterfly
output a node computes in a given stage. If the data allocation on input to emulation step k is
normal (z-’-‘:ﬁ), then a processor with a,_;_x = 1 computes “bottom” and the other processors

compute “top”. If the allocation is reversed (i2=%), then for a binary ordered output processor
@n-1-k = 1 instead computes “top”.

6 Summary and discussion

Table 6 summarizes the communication complexities of the bi-sectioning algorithms with local code
conversion, or inter-processor code conversion. The emulation for one or two elements per processor
requires n communication cycles, each of which sends data in two dimensions. For more than two
elements per processor one additional cycle is required for every pair of elements. The encoding
of the data on termination of the algorithms can be either in binary code, or binary-reflected
Gray code. The control of the data motion is a function of the encoding of data before and after
the emulation, the allocation (cyclic or consecutive), and the emulation step. The control can
be completely distributed. It is derived from local memory addresses, the processor address, the
emulation step, and the original final data encoding. All communication channels of the Boolean
cube can be used through pipelining, or multi-sectioning.

The bi-sectioning algorithms results in a permutation of the assignment of logic dimensions
to machine dimensions. To restore the original dimension assignment a dimension permutation
is required. Concurrent algorithms for dimension permutation are given in [2, 6]. (Sequential
algorithms are given in [12, 13, 1, 15]). The dimension permutation algorithms can be pipelined with
the emulation algorithms, but for % > n the communication time for emulation with restoration
of dimension assignment is approximately twice that of emulation alone.

Throughout the paper we have assumed that the emulation is starting from the most significant
dimension. If the emulation instead is starting from the least significant dimension, then the
algorithms for code conversion starting from the least significant dimension should be used. The
communication complexity remains the same as if the emulation starts from the most significant
dimension.

26

In 27-sectioning r processor dimensions are used for partitioning of the data set. This partition-
ing is an all-to-all personalized communication with code conversion within r-cubes. The number
of element transfers in sequence for this operation is —g with at least 7 communication start-ups [7].
The first multi-sectioning allows for local emulation of » — 1 butterfly stages by lemma 1. For the
emulation on dimension n — r half of the data in each processor needs to be exchanged in dimension
n—r—1. For 7’% > R pipelining can be used for the emulation of different sets of R butterfly net-
works. For cyclic allocation with binary coded memory addresses and binary-reflected Gray code
encoded processor addresses the total number of element transfers in sequence is % +(2 - 1)-‘;3,
r < n. The second term can be reduced further if pipelining is applied to the n — r dimensions
remaining after the first 2"-sectioning. The pipeline delay is entirely avoided for » = n. Pipelined

bi-sectioning, or four-sectioning, are second best to IN-sectioning.
A cknowledgement

This work has been supported in part by AFOSR grant AFOSR-89-0382 and by NSF/DARPA
grant CCR-8908285.

References

[1] Peter M. Flanders. A unified approach to a class of data movements on an array processor.
IEEE Trans. Computers, 31(9):809-819, September 1982.

[2] Ching-Tien Ho and S. Lennart Johnsson. Stable dimension permutations on Boolean cubes.
Technical Report YALEU/DCS/RR-617, Department of Computer Science, Yale University,
October 1988.

[3] S. Lennart Johnsson. Odd-even cyclic reduction on ensemble architectures and the solution of
tridiagonal systems of equations. Technical Report YALE/DCS/RR-339, Dept. of Computer
Science, Yale University, October 1984.

[4] S. Lennart Johnsson. Communication efficient basic linear algebra computations on hypercube
architectures. J. Parallel Distributed Comput., 4(2):133-172, April 1987.

[5] S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on Boolean n-cube configured
ensemble architectures. SIAM J. Matriz Anal. Appl., 9(3):419-454, July 1988.

[6] S. Lennart Johnsson and Ching-Tien Ho. Shuffle permutations on Boolean cubes. Technical
Report YALEU/DCS/RR-653, Department of Computer Science, Yale University, October
1988.

[7] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcasting and per-
sonalized communication in hypercubes. IEEE Trans. Computers, 38(9):1249-1268, September
1989.

[8] S. Lennart Johnsson, Ching-Tien Ho, Michel Jacquemin, and Alan Ruttenberg. Computing
fast Fourier transforms on Boolean cubes and related networks. In Advanced Algorithms and
Architectures for Signal Processing II, volume 826, pages 223-231. Society of Photo-Optical
Instrumentation Engineers, 1987. '

27

[9] S. Lennart Johnsson, Michel Jacquemin, and Ching-Tien Ho. High radix FFT on Boolean
cube networks. Technical Report Department of Computer Science, Yale University, Technical
Report YALEU/DCS/RR-751, November 1989, Thinking Machines Corp., November 1989.

[10] S. Lennart Johnsson, Robert L. Krawitz, Douglas MacDonald, and Roger Frye. A radix-2 FFT
on the Connection Machine. In Supercomputing 89, pages 809-819. ACM, November 1989.

[11] S. Lennart Johnsson and Peggy Li. Solutionset for AMA/CS 146. Technical Report
5085:DF:83, California Institute of Technology, May 1983.

[12] David Nassimi and Sartaj Sahni. An optimal routing algorithm for mesh-connected parallel
computers. JACM, 27(1):6-29, January 1980.

(13] David Nassimi and Sartaj Sahni. Optimal bpc permutations on a cube connected simd com-
puter. IEEE Trans. Computers, C-31(4):338-341, April 1982.

[14] E M. Reingold, J Nievergelt, and N Deo. Combinatorial Algorithms. Prentice-Hall, Englewood
Cliffs. NJ, 1977.

[15] Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197-210, 1987.

28

