Polynomials are one of principal tools of classical numerical analysis. When a function
needs to be interpolated, integrated, differentiated, etc., it is assumed to be approximated
by a polynomial of a certain fixed order (though the polynomial is almost never constructed
explicitly), and a treatment appropriate to such a polynomial is applied. We introduce anal-
ogous techniques based on the assumption that the function to be dealt with is band-limited,
and use the well-developed apparatus of Prolate Spheroidal Wave Functions to construct
quadratures, interpolation and differentiation formulae, etc. for band-limited functions.
Since band-limited functions are often encountered in physics, engineering, statistics, etc.
the apparatus we introduce appears to be natural in many environments. Our results are
illustrated with several numerical examples.
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Prolate Spheroidal Wave Functions, Quadrature, and
Interpolation

1 Introduction

Numerical quadrature and interpolation are a well-developed part of numerical analysis;
polynomials are the classical tool for the design of such schemes. Conceptually speaking,
one assumes that the function is well-approximated by expressions of the form

Y aa, | (1)
i=0

with reasonably small n, and designs algorithms that are effective for functions of the
form (1) (needless to say, one almost never actually computes the coefficients {a;}; one
only uses the fact of their existence). Obviously, the polynomial approach is only effective
for functions that are well-approximated by polynomials.

When one has to handle functions that are well-behaved on the whole line (for ex-
ample, in signal processing), polynomials are not an appropriate tool. In such cases,
trigonometric polynomials are used; existing tools are very satisfactory for dealing with
functions defined and well-behaved on the whole of R!. Such tools, in effect, make the
assumption that the functions are band-limited or nearly so; a function f : R — R is
said to be band-limited if there exist a positive real ¢ and a function o € L?[—-1, 1] such
that

1
flz) = / et a(t) d. 2)
However, in many cases, we are confronted with band-limited functions defined on inter-
vals (or, more generally, on compact regions in R™). Wave phenomena are a rich source
of such functions, both in the engineering and computational contexts; they are also
encountered in fluid dynamics, signal processing, and many other areas. Often, such
functions can be effectively approximated by polynomials via standard tools of classical
analysis. However, even when such approximations are feasible, they are usually not
optimal. Smooth periodic functions are a good illustration of this observation: while
they can be approximated by polynomials (for example, via Chebyshev or Legendre
expansions), they are more efficiently approximated by Fourier expansions, both for an-
alytical and numerical purposes. It would appear that an approach explicitly based on
trigonometric polynomials could be more efficient in dealing with band-limited functions.

In the engineering context, such an apparatus was constructed more than 30 years
ago (see [20]-[21], [7]-[9]). The natural tool for analyzing band-limited functions on R is
the Fourier Transform, unless the functions are periodic, in which case the natural tool is
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the Fourier Series. The authors of [20]-[21] observe that for the analysis of band-limited
functions on the interval, Prolate Spheroidal Wave Functions are likewise a natural ap-
proach. The authors also construct a multidimensional version of the theory, though
their apparatus is only complete for the case of spherical regions.

The present paper constructs tools for the use of the approach of [20]-[21] in the
modern computational environment. We construct a class of quadratures for band-
limited functions that closely parallel the Gaussian quadratures for polynomials. The
nodes are very close to being roots of appropriately chosen Prolate Spheroidal Wave
Functions, the resulting quadratures are stable, and all weights are positive. As in the
case of polynomials, there are interpolation, differentiation and indefinite integration
schemes associated with the obtained quadratures, exact on certain classes of band-
limited functions. These procedures are the main tools necessary for the numerical use
of spectral discretizations based on Prolate Spheroidal Wave Functions, instead of on
the usual polynomial bases. When dealing with band-limited functions, the number of
nodes required by these procedures to obtain a prescribed accuracy is much less than
that required by their polvnomial-based counterparts. An additional bonus is the fact
that the condition number of differentiation of prolate spheroidal wave functions is less
than that of differentiation of the usual polynomial basis functions (see Section 8 below).

This paper is organized as follows. Section 2 summarizes various standard mathemat-
ical facts used in the remainder of the paper. Section 3 contains derivations of various
results used in the algorithms described in later sections. Section 4 describes algorithms
for evaluation of prolate spheroidal wave functions and associated eigenvalues. Section 5
describes a construction of quadratures for band-limited functions. Section 6 describes
an alternative approach to arriving at such quadratures; it shows that roots of appropri-
ately chosen prolate spheroidal wave functions can serve as quadrature nodes. Section 7
analyzes the use of prolate spheroidal wave functions for interpolation. Section 8 con-
tains results of our numerical experiments with quadratures and interpolation. Section 9
contains a number of miscellaneous properties of prolate spheroidal wave functions, and
Section 10 contains generalizations and conclusions.

2 Mathematical Preliminaries

As a matter of convention, in this paper the norm of a function is, unless stated otherwise,
its L? norm:

15 =/ [ 1 (@)l da. 3)




2.1 Chebyshev systems

Definition 2.1 A sequence of functions ¢1,..., ¢, will be referred to as a Chebyshev
system on the interval [a,b] if each of them is continuous and the determinant

é1 (1131) SRR} (xn)
: : (4)
¢n($1) e ¢n(xn)

s nonzero for any sequence of points xi,...,ZT, Such thata < 17, < Z3...<z, <b.

An alternate definition of a Chebyshev system is that any linear combination of the
functions with nonzero coefficients must have fewer than n zeros.

Examples of Chebyshev and extended Chebyshev systems include the following (ad-
ditional examples can be found in [11]).

Example 2.1 The powers 1,z,z2,...,z" form an extended Chebyshev system on the
interval (—o00, 00).

Example 2.2 The exponentials e ™% e~22% .. e~*% form an ertended Chebyshev sys-
tem for any Ay,..., A\, > 0 on the interval [0, 00).

Example 2.3 The functions 1, cos z, sin z, cos 2z, sin 2z, . . . , cos nx, sin nx form a Cheby-
shev system on the interval [0, 27].

2.2 Generalized Gaussian quadratures

A quadrature rule is an expression of the form
n
> wid(zs), | (5)
Jj=1

where the points z; € R and coefficients w; € R are referred to as the nodes and weights
of the quadrature, respectively. They serve as approximations to integrals of the form

/ab é(z) w(z) dz, (6)

with w being an integrable non-negative function.

Quadratures are typically chosen so that the quadrature (5) is equal to the desired
integral (6) for some set of functions, commonly polynomials of some fixed order. Of
these, the classical Gaussian quadrature rules consist of n nodes and integrate polynomi-
als of order 2n — 1 exactly. In [13], the notion of a Gaussian quadrature was generalized
as follows:




Definition 2.2 A quadrature formula will be referred to as Gaussian with respect to a

set of 2n functions @1, ..., ¢ : [a,b] = R and a weight function w : [a,b] — R, if it
consists of n weights and nodes, and integrates the functions ¢; ezractly with the weight
function w for alli=1,...,2n. The weights and nodes of a Gaussian quadrature will be

referred to as Gaussian weights and nodes respectively.

The following theorem appears to be due to Markov [14, 15]; proofs of it can also be
found in [12] and [11] (in a somewhat different form).

Theorem 2.1 Suppose that the functions ¢1,..., ¢ : [a,b] = R form a Chebyshev
system on [a,b]. Suppose in addition that w : [a,b] — R is a non-negative integrable
function [a,b] — R. Then there ezists a unique Gaussian quadrature for the functions
$1,. .., Pon 0N [a,b] with respect to the weight function w. The weights of this quadrature
are positive.

While the existence of Generalized Gaussian Quadratures was observed more than
100 years ago, the constructions found in [14, 15], [6, 12], [10, 11] do not easily yield
numerical algorithms for the design of such quadrature formulae; such algorithms have
been constructed recently (see [13, 25, 2]).

Remark 2.1 It might be worthwhile to observe here that when a Generalized Gaussian
quadrature is to be constructed, the determination of its nodes tends to be the critical
step (though the procedure of [13, 25, 2] determines the nodes and weights simultane-

ously). Indeed, once the nodes 21, z, . . . , T, have been found, the weights w1, ws, ..., wn
can be determined easily as the solution of the n X n system of linear equations
n b
Yoy di(es) = [ ¢i(a) da, ™
=1

withi=1,2,....n.

2.3 Legendre Polynomials

In agreement with standard practice, we will be denoting by P, the classical Legendre
polynomials, defined by the three-term recursion

2n+1 n
Pn+1(x) - n+ 1 z n(z) - n+ 1 Pn-—l(x)a (8)
with the initial conditions
P(z) = 1, (9)

Pl(l') = T




as is well-known,
P(1) =1 (10)
for all k=0,1,2,..., and each of the polynomials Py satisfies the differential equation

B Al A Sl A VAT
(1-12%) T 2z T

The polynomials defined by the formulae (8),(9) are orthogonal on the interval [—1,1];
however, they are not orthonormal, since for each n > 0,

[ (B@) do = — (12)

+ k- (k+1) Py(z) = 0. (11)

the normalized version of the Legendre polynomials will be denoted by P,, so that

P.(z) = Py(z) - /n+1/2. (13)

The following lemma follows immediately from the Cauchy-Schwartz inequality and from
the orthogonality of the Legendre polynomials on the interval [—1, 1]:

Lemma 2.2 For all integer k > n,

1 —_ 2
k
/_1 +* By(x) dx‘ <=5 (14)
For all integer 0 < k < n,
1 —_
I [ #E@ dx‘ —0. (15)
-1

2.4 Convolutional Volterra Equations

A convolutional Volterra equation of the second kind is an expression of the form
o@)= [ K@z —t)o(t) dt + o(z) (16)

where a,b are a pair of numbers such that a < b, the functions ¢, K : [a,b] — C are
square-integrable, and ¢ : [a,b] — C is the function to be determined. Proofs of the
following theorem can be found in [4], as well as in many other sources.

Theorem 2.3 The equation (16) always has a unique solution on the interval [a,b]. If
both functions K, o are k times continuously differentiable, the solution ¢ is also k times
continuously differentiable.




2.5 Prolate Spheroidal Wave Functions

In this subsection, we summarize certain facts about the Prolate Spheroidal Wave Func-
tions. Unless stated otherwise, all these facts can be found in [20, 17].

Given a real ¢ > 0, we will denote by F, the operator L?[—1,1] — L?[-1, 1] defined
by the formula

Flo)@) = [ e (t) dr (17)

-1
Obviously, F, is compact; we will denote by Ao, A1,...,An,... the eigenvalues of F,

ordered so that |A;_;| > |);| for all natural j. For each non-negative integer j, we will
denote by 1; the eigenfunctions corresponding to A;, so that

Ajthj(z) = /_ 11 et ;(t) dt, (18)

for all z € [-1,1]; we adopt the convention that the functions are normalized such that
19;llz2j-1,) = 1, for all j.!' The following theorem is a combination of several lemmas
from [20],[6],[11].

Theorem 2.4 For any positive real c, the eigenfunctions vy, 1,. .., of the operator F,
are purely real, are orthonormal, and are complete in L?[—1,1]. The even-numbered
eigenfunctions are even, and the odd-numbered ones are odd. All eigenvalues of F,
are non-zero and simple; the even-numbered eigenvalues are purely real, and the odd-
numbered ones are purely imaginary; in particular, \; = i*|\;|. The functions 1; consti-
tute a Chebychev system on the interval [—1,1]; in particular, the function v; has ezactly
1 zeroes on that interval, for any 1 =0,1,...,.

We will define the self-adjoint operator @, : L?[-1,1] — L?[-1, 1] by the formula,

1 1 sin(c- (z—1))
(o) = = : 19
Qulp) == [ ZEEEZ o) at (19)
a simple calculation shows that
c %*
chg'Fc'Fm (20)

that Q. has the same eigenfunctions as Fi, and that the j-th (in descending order)
eigenvalue p; of Q. is connected with A; by the formula

c 2
Hi =5 Il (21)
!This convention differs from that used in [20]; however, the present paper is concerned almost

exclusively with approximation of functions on [-1,1], and in that context, the convention that the
functions {%;} have unit norm on that interval is by far the most convenient.
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The operator Q. is obviously closely related to the operator P, : L*[—o00, 00] — [—00, o0]
defined by the formula

0 g7 . —_
P(p) = [~ 22D g, (22)
which, as is well known, is the orthogonal projection operator onto the space of functions
of band limit ¢ on (—o0, c0).

For large c, the spectrum of ), consists of three parts: about 2c/m eigenvalues that
are very close to 1, followed by order log(c) eigenvalues which decay exponentially from 1
to nearly 0; the remaining eigenvalues are all very close to zero. The following theorem,
proven (in a slightly different form) in [19], describes the spectrum of Q. more precisely.

Theorem 2.5 For any positive real ¢ and 0 < a < 1 the number N of eigenvalues of
the operator Q). that are greater than « satisfies the inequality

2¢ 1 l-a
= - -10- 2
+ ( log )log(c) 10-log(c) < N < (23)

2 —
=Z4 (;—rl— log ! > a) log(c) + 10 - log(c).

By a remarkable coincidence, the eigenfunctions 1, 91, - - -, %, of the operator Q, turn
out to be the Prolate Spheroidal Wave functions, well-known from classical Mathematical
Physics (see, for example, [16]). The following theorem formalizes this statement; it is
proven in a considerably more general form in [21].

Theorem 2.6 For any c > 0, there ezists a strictly increasing sequence of positive real
numbers Xo, X1, - - - such that for each j > 0, the differential equation

(1 =2 9" (z) — 229 (z) + (x5 — 2 z2) (z) = 0 (24)

has a solution that is continuous on the interval [-1,1]. For each j > 0, the function (2
(defined in Theorem 2.4) is the solution of (24).

3 Analytical Apparatus

3.1 Prolate Series

Since the functions g, ¥1, ..., ¥n, ... are a complete orthonormal basis in L?[—1,1], any
formula for the inner product of prolate spheroidal wave functions with another function
f is also a formula for the coefficients of an expansion of f into prolate spheroidal func-
tions (which we will refer to as the prolate expansion of f). Thus the following theorem
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provides the coefficients of the prolate expansion of the derivative of a prolate spheroidal
function, and also the coefficients of the prolate expansion of a prolate spheroidal wave
function multiplied by z. Those coefficients are also the entries of the matrix for differen-
tiation of a prolate expansion (producing another prolate expansion), and the entries of
the matrix for multiplication of a prolate expansion by z, respectively. (These formulae
are not, however, suitable for producing such matrices numerically, since in many cases
they exhibit catastrophic cancellation.)

Theorem 3.1 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m = n (mod 2), then

[ 4@ ¥n(z) da = [ 290 (w)din(a) da = 0. (25)
If m # n (mod 2), then
222,
[t @ s = 53 7 ¥m(1) (1), (26)
/_1x¢n(x)¢m(x) dz = %/\T’\%wm(l)%(l). 27)

Proof. Since the functions 1; are alternately even and odd, (25) is obvious. In order to
prove (26), we start with the identity

1
Mthn = [ e ,(1) dt (28)
-1
(see (18) in Subsection 2.5). Differentiating (28) with respect to z, we obtain
1 . -
Mt (z) = ic / t ot . (1) dt. (29)
-1

Projecting both sides of (29) on v, and using the identity (28) (with n replaced with
m) again, we have

1
M [ (@) m(2) da
- 1 1 icxt
= zc/_lwm(x)/_lte Un(t) dtdz
1 1 .
= zc/_1t¢n(t) /;le Ym(z) dz dt
= icAm /_ 11t1,bn(t) Ym(t) dt. (30)




Obviously, the above calculation can be repeated with m and n exchanged, yielding the
identity

Am / Y ( dz=ich, / £ () Y (£) d (31)
combining (30) with (31), we have
/¢’/%mm—p/¢Mx<)x (32)
On the other hand, integrating the left side of (32) by parts, we have
1
[ 4@ n(a) da
= $n()¥n(1) = Yn(-1 - [ @ n@) d (@3)
Since m # n (mod 2), we rewrite (33) as
1
IRACY
= 2¢n(1 / ¥4 (2) Ym() da. (34)
Now, combining (32) and (34) and rearranging terms, we get
272
[, 440 n(e) do = 5572 (1) 1. (35)

Substituting (30) into (35), we get

/ 11 Z Yn(2) Ym(z) dx

= 22 [ @) (o) ds

1, 22
= o 2 1o Ym()¥a(1)
2 AmA

a

The following corollary, which is an immediate consequence of (32), finds use in the
numerical evaluation of the eigenvalues {\;}:
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Corollary 3.2 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m # n (mod 2), then

[ 44() Y (z) da
= . (37)

[, nlz) ()

2
_m

2
An

3.2 Decay of Legendre Coefficients of Prolate Spheroidal Wave-
functions

Since each of the functions 1; is analytic on C, on the interval [-1,1] it can be expanded
in a Legendre series of the form

z) = i B Pe(), (38)
k=0

with the coefficients 8, decaying superalgebraically; the following two theorems establish
bounds for the decay rate.

Lemma 3.3 Let Py(z) be the n-th normalized Legendre polynomial (defined in (13)).
Then for any real a,

r
/ e'** P,(z) dz
-1
= > ak/ 1% P, (z) dz + Eﬂk/ 1 P (z) dz. (39)
k=ko -1 k=ko 1
where
\ a2k )
@ a2k+1
ke = |n/2]. (42)
Furthermore, for all integer m > |e - |a|] + 1,
1
/ e“* P, (x dx—z ak/ z* P, (z) dz
-1 k=ko
1 2m
—zZB/ 2 x)dx<() . (43)
k=ko 2
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In particular, if
n=2(lelal]+1), (44)

then

‘ 1. 1 n—1

i [ e Pia) dx'<(§> . (45)
-1

Proof. The formula (39) follows immediately from Lemma 2.2 and Taylor’s expansion
of €. In order to prove (43), we assume that m is an integer such that

m2>le-la|]]+1. (46)
Introducing the notation
oo 1 o 1 —_
Rp=3" ak/ * Po(z) dz+1 Y ,Bk/ 1 B (z) d, (47)
k=m -1 k=m -1

we immediately observe that, due to Lemma 2.2 and the triangle inequality,

|Rm| < k=22:m (-k—, : \/m)

o0

ak
< X '—k-‘,— (48)

k=2m
Since (46) implies that

la| laf 1 1
o e 1 2 49
om+k 2m 2% % (49)

(2m) 1 27 4
l alZm
2
< em)l’ (50)
and obtain (43) immediately using Stirling’s formula. Finally, we obtain (45) by choosing
m=le-|a|]]+1. (51)
O
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Theorem 3.4 Let ¢, (x) be the m-th prolate spheroidal function with band limit c, let
Py(z) be the k-th normalized Legendre polynomial (defined in (18)), and let Am be the
eigenvalue which corresponds to Y (z) (as in Theorem 2.4). Then for all integer m > 0
and all real positive c, if

E>2(le-c)+1), (52)

then
1 - k-1

[ 4@ Bi(a) dxl < ﬁ (-;-) . (53)
Moreover, given any e > 0, if

k>2(le-c] +1)+log, <1>+log2 ()\1 ) (54)
then

[_11 Ym(z) Pe(z) dz| < €. (55)

Proof. Obviously
/ Ym(z) P x) dz

_ )\1 ( / ¢icet By (1) dt) dx'
- ezt O
< I/\ml / |Ym ()] - V P (2) dt‘ dz . (56)
Introducing the notation
a = cz, (57)
and remembering that
1
| m@)dz =1, (58)
we observe that the combination of (56), (57), (58), and Lemma 3.3 implies that
1
[ #4n@) Pe(a) dz
1 1 k-1 1
< (5) /_1 [Ym(z)| dz
1 1 k-1
= 5 (.2.) . (59)
Substituting (54) into (53), we immediately see (55). m]
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4 Numerical Evaluation of Prolate Spheroidal Wave-
functions

Both the classical Bouwkamp algorithm (see, for example, [1]) for the evaluation of the
functions v;, and the algorithm presented in this paper for the same task, are based on
the expression of those functions as a Legendre series of the form

bi(@) = 3 axPila); (60)
k=0

since the functions 1; are smooth, the coefficients a; decay superalgebraically (with
bounds for that decay being given in Theorem 3.4). Substituting (60) into (24), and
using (8) and (11), we obtain the well-known three-term recursion

(k+2(k+1) 5
@k+3)(2k+5) ¢ 2T
(k(k- +1)+ ( ;:ff;; (12)14_-11) ¢ - x,-) Cag + (61)
k(k — 1) \ 0
2k—3)(2k—1) ¢ H2=T

Combining (61) with (13), we obtain the three-term recursion

(k+2)(k +1)

(2k+3)y/(2k +5)(2k+1) ¢ Paa
(k(k +1)+ (22:55“?3(12;__11) - xj> B+ (62)
(2k — 1);((:/9_—1;)(% 1) ¢ Blr =0
for the coefficients 3], 57, ... of the expansion
v =Y. 8- Fila) (63)

k=0

for each 7 =0,1,2,..., we will denote by (3 the vector in [? defined by the formula
5= (6,68, ..). (64)

The following theorem restates the recursion (62) in a slightly different form.
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Theorem 4.1 The coefficients x; are the eigenvalues and the vectors 3¢ are the corre-
sponding eigenvectors of the operator 12 — 1 represented by the symmetric matriz A
given by the formulae

2k(k+1)-1

Akr = k(k+1 .
bk E+D+ Grrae=n (65)
E+2)(k+1
Apkr2 = ( X ) - (66)
(2k + 3)y/(2k + 1)(2k + 5)
kE+2)(k+1
Akt2 (k+2)(k+1) - (67)
(2k +3)\/(2k + 1) (2k + 5)
forallk =0,1,2,..., with the remainder of the entries of the matriz being zero.

In other words, the recursion (62) can be rewritten in the form
(A=x;-D(F) =0, (68)

where A is separable into two svmmetric tridiagonal matrices A..., and A,q,, the first
consisting of the elements of A4 with even-numbered rows and columns and the second
consisting of the elements of A with odd-numbered rows and columns. While these two
matrices are infinite, and their entries do not decay much with increasing row or column
number, the eigenvectors {3’} of interest (those corresponding to the first m prolate
spheroidal functions) lie almost entirely in the leading rows and columns of the matrices
(as shown by Theorem 3.4). Thus the evaluation of prolate spheroidal functions can be
performed by the following procedure:

e 1. Generate the leading k rows and columns of A, where k is given by (54).

e 2. Split the generated portion of A into A.... and A,., and use a solver for the
symmetric tridiagonal eigenproblem (such as that in LAPACK) to compute their
eigenvectors {3’} and eigenvalues {x;}.

e 3. Use the obtained values of the coefficients ,Bg, ,8{ , ,8% ,- .. in the expansion (63) to
evaluate the function v; at arbitrary points on the interval [—1,1].

Obviously steps 1 and 2 can be performed as a precomputation, for any given value of
c. As a numerical diagonalization of a positive definite tridiagonal matrix with well-
separated eigenvalues, this precomputation stage is numerically robust and efficient,
requiring O(cm) operations to construct the Legendre expansions of the form (64) for the
first m prolate spheroidal functions; each subsequent evaluation of a prolate spheroidal
function takes O(c) operations.
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4.1 Numerical Evaluation of Eigenvalues

Although the above algorithm for the evaluation of prolate spheroidal wave functions also
produces the eigenvalues {x;} of the differential operator (24), it does not produce the
eigenvalues {A;} of the integral operator F, (defined in (17)). Some of those eigenvalues
can be computed using the formula

1 ‘
M) = / e (1) dt, (69)
-1
evaluating the integral on the right hand side numerically; however, that evaluation
obviously has a condition number of about 1/};, and is thus inappropriate for computing
small A\;. A well-conditioned procedure is as follows:

e 1. Use (69) to calculate )y, evaluating the right hand side numerically, and with
z = 0 (so that ¥o(z) is not small).

e 2. Use the calculated )y, together with Corollary 3.2, to compute the absolute val-
ues |A;|, for j =1,2,...,m, computing each |};| from |A;_;| (and again, evaluating
the required integrals numerically).

e 3. Use the fact that \; = #/|);| (see Theorem 2.4) to finish the computation.

5 Quadratures for Band-Limited Functions

Since the prolate spheroidal wave functions g, ¥1,. .., %y, ... constitute a complete or-
thonormal basis in L?[-1,1] (see Theorem 2.4),
. o) 1
et = Y ([ e uy(r) dr) i), (70)
j=0 V-1

for all z,t € [—1, 1]; substituting (18) into (70) yields
et =3 A () ¥5(2), (71)
Jj=0

Thus if a quadrature integrates exactly the first n eigenfunctions, that is, if

i we;(zk) = / 11 ¥;(2) dz, (72)
k=1 -
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for all j =0,1,...,n—1, then the error of the quadrature when applied to a function
f(z) = e***, with a € [-1, 1], is given by

m . 1 .
1CaTE __ icaz g
:L;lwke /_ € dg
= Zw(ZA% w,xk)—/ (ZA% ) dz
k=1 =0 - 7=0

m

= D w (_ Aj¥i(a) ¥; iEk)) —/_11 (Z_: A ¥i(a) %‘(x)) dz.  (73)

Due to the orthonormality of the functions {%,},

«l > A (74)

From (74), it is obvious that the error of integration (73) is of roughly the same mag-
nitude as A, provided that n is in the range where the eigenvalues {)\;} are decreasing
exponentially (as is the case for quadratures of any useful accuracy; see Theorem 2.5)
and provided in addition that the weights {wy} are not large.

Now, the existence of an n/2-point quadrature that is exact for the first n Prolate
Spheriodal Wave functions follows from the combination of Theorems 2.1, 2.4; an al-
gorithm for the numerical evaluation of nodes and weights of such quadratures can be
found in [2]. An alternative procedure for the construction of quadrature formulae for
band-limited functions (leading to slightly different nodes and weights) is described in
the following section; a numerical comparison of the two can be found in Section 8 below.

Z/\ ¥;(a) ¥;(z)

Jj=

Remark 5.1 The above text considers only the error of integration of a single exponen-
tial. For a band-limited function g : [-1,1] — C given by the formula

g(z) = /:_ 11 G(t) e dt, (75)

for some function G : [-1,1] — C, the error is obviously bounded by the formula

> wgler) ~ [ gla) da

where ¢ is the maximum error of integration (73) of a single exponential, for any ¢ €
[~1,1]. While ||G|| might be much larger than ||g|;—1,1) (as it is if, for instance, g = ¥30.5),
if the same equation (75) is used to extend g to the rest of the real line, then by Parseval’s
formula ||G|| = ||g]|(=c0,00); that is to say, although the error of such a quadrature when
applied to a band-limited function is not bounded proportional to the norm of that
function on the interval of integration, it is bounded proportional to the norm of that
function on the entire real line.

< e-lGll, (76)
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6 Quadrature Nodes from Roots of Prolate Func-
tions

An alternative to the approach of the previous section is to use roots of appropriate
prolate spheroidal wave functions as quadrature nodes, with the weights determined via
the procedure described in Remark 2.1. The following theorems provide a basis for this;
numerically (see Section 8) the resulting quadrature nodes tend to be inferior to those
produced by the optimization scheme of [13, 25, 2]; however, they are useful as starting
points for that scheme, or as somewhat less efficient nodes which can be computed much
more quickly.

6.1 Euclid Division Algorithm for Band-Limited Functions

The following two theorems constitute a straightforward extension to band-limited func-
tions of Euclid’s division algorithm for polynomials. Their proofs are quite simple, and
are provided here for completeness, since the author failed to find them in the literature.

Theorem 6.1 Suppose that o, ¢ : [0,1] = C are a pair of c*—functions such that
p(1) # 0, (77)

c 18 a positive real number, and the functions f,p are defined by the formulae
1 .
fl@)= [ ot)e®= g, (78)

1 , ‘
pa) = [ o(t) e dt. (79)
Then there ezist two c*-functions n,£ : [0,1] — C such that

f(z) =p(z) q(z) + r(z) | (80)
for all z € R, with the functions q,7 : [0,1] = R defined by the formulae

ale) = [ nfe) = at, Gl

@)= Ce() et . (82)
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: S

0
Figure 1: The split of integration range that yields (85)

Proof.
Obviously, for any functions p, ¢ given by (79), (81),

@) o) = [ e@e=tdr - [Cnir)e= ar

1 1 ,
= /0 /0 o(t) n(7) e dr dt.

Defining the new independent variable u by the formula
u=t+4r,

we rewrite (83) as

p(z)q(z) = /01 gleus /Ou o(u—7)n(7) drdu

/ul o(u—7)n(r) dr du

-1

(see Figure 1). Substituting (78), (82), and (85) into (80), we get
1 . U )
ew“w/o o(u—7)n(r) dr du
ereue /1 o(u—7)n(7) dr du + /1 £(t) e dt
u—1 0

1/2 . 1 .
= / o(t) e®e dt + / o(t) ¥t dt.
0 1/2

+
_—
[V
®
g.
IS
8

(83)

(84)

(85)

(86)

Due to the well known uniqueness of the Fourier Transform, (86) is equivalent to two

independent equations:

. U 1 .
/: e“’”‘/o o(u—7)n(7) dr du-i-/0 E(t) et dt

1/2 ,
= / o(t) et dt,
0
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/2 icuz ! ( ) ()d d _/1 t Ziwtdt 88)
e /u_lcpu T)n(7) dr du = 1/20'()«3 . (

Now, we observe that (88) does not contain &, and use it to obtain an expression for 7
as a function of ¢, o. After that, we will view (87) as an expression for £ via ¢, o, 1.
From (88) and the uniqueness of the Fourier Transform, we obtain

[ olu=m)nr) dr=o() (59)

for all u € [1,2]. Introducing the new variable v via the formula

v=u-—1, (90)
we convert (89) into
1 1
[ elw+1-r)u(r) dr = o(*1=), (91)

which is a Volterra equation of the first kind with respect to 7; differentiating (91) with
respect to v, we get

o)1) + [ G+1-r)(r) dr = 3o'(“E0), (92

which is a Volterra equation of the second kind. Now, the existence and uniqueness
of the solution of (92) (and, therefore, of (89) and (88)) follows from Theorem 2.3 of
Section 2. '

With 7 defined as the solution of (89), we use (87) together with the uniqueness of
the Fourier Transform, to finally obtain

éw=0(3) - [ elu-m)n(r) dr, (93)

for all u € [0, 1].

The following theorem is a consequence of the preceding one.

Theorem 6.2 Suppose that o,¢ : [-1,1] = C are a pair of c>—functions such that
©(=1) # 0, (1) # 0, c is a positive real number, and the functions f,p are defined by
the formulae

1

f(z) B o(t) ¥t gt (94)
p(z) t)

1 .
/_ . ©(t) e dt. (95)
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Then there ezist two c'-functions n,€ : [—1,1] — C such that

f(z) = p(z) q(z) + r(z) (96)
for all x € R, with the functions g,r : [-1,1] — R defined by the formulae
! ezt
a(z) = [ n(t) e dt, (97)
-1
1 ‘
r(z) = / £(1) €t d. (98)
-1
Proof.
Defining the functions f., f_,p., p_, by the formulae
1 A
fo@) = [ oty at, (99)
0
0 ,
fo(z) = / o(t) e¥t dt, (100)
-1
1
p+(z) = / S(t) € dt, (101)
0
0 .
p-(2)= [ c(t)e=tat, (102)
-1

we observe that for all r € R!,

f(z) = f-(z) + f-(2), (103)

p(z) = p+(z) + p-(2). (104)
Due to Theorem 6.1, there exist such n,, n_, &, £_, that

f+(z) = p+(2) 4+ (2) + 74 (2), (105)

f-(z) = p_(2) g-(2) + r_(2), (106)
with the functions ¢, q_, 7., 7_ defined by the formulae

0r(@) = [ ni(0) e at (107)

oz = [ n ()= a, (108)
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re@) = [ &0 e as (109)

0 .
r_(z) = / £_(t) €2t dt. (110)
-1
Now, defining ¢, by the formula

q(z) = ¢-(z) + ¢4(2) (111)

for all z € [—1, 1], we have

p(z)q(z) = (p-(2)+p+(2)) - (¢-(2) + ¢4 (2))

= p+(2) ¢+(2) + p-(2) ¢-(2) + p-(2) ¢+ (2) + p+(2) ¢~ (2), (112)

and we define r(z) by the obvious formula
r(z) =r_(z) + r4(z) — (p-(z) ¢+ (2) + p+(z) ¢ (). (113)
O

6.2 Quadrature nodes from the division theorem

In much the same way that the division theorem for polynomials can be used to provide
a constructive proof of Gaussian quadratures, Theorem 6.2 provides a method of con-
structing generalized Gaussian quadratures for band-limited functions. The method is
as follows.

To construct a quadrature for functions of a bandwidth 2¢, prolate spheroidal wave
functions corresponding to bandwidth ¢ are used. (Thus the eigenvalues {);} and eigen-
functions {%,} are in this section, as elsewhere in the paper, those corresponding to
bandwidth ¢). The following theorem provides a bound of the error of a quadrature
whose nodes are the roots of the n’th prolate function 1,, when applied to a function
f which satisfies the conditions of the division theorem, in terms of the norms of the
quotient and remainder of f divided by ,:

Theorem 6.3 Suppose that z1,Zs,...,Z, € R are the roots of 1,. Let the numbers
wy, Wo, . . ., Wy, € R be such that

i'wk%’(wk) = / 11 b;(z) dz, (114)
k=1 -
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for all j =0,1,...,n — 1. Then for any function f : [-1,1] — C which satisfies the
conditions of Theorem 6.2,
1
- [ @) dz
-1

Al + Tl 3= - sl - (2 3 o) (15)

where the functions n,€ : [-1,1] = C are as defined in Theorem 6.2.

Proof. Since f satisfies the conditions of Theorem 6.2, there exist functions g, r
[-1,1] = R defined by (97),(98) such that

f(@) = ¥a(z) g(2) + r(2). (116)
Then, defining the error of integration E for the function f by

By = Z wif()~ [ 7(a) da (117)
we have
By = [ w (o) alo) + r(ae) - [ () a(e) + (@) ds
< En_: Wk Yn(zk) g(zk) /%(m q(z) dz
- /_ 7(e) do (118)
Since the nodes {z;} are the roots of ¥n,
5 i () ala) = 0. (119)
Thus -
E; < | [ $u(z)a@) d:v’+ > = [ r(a) da|. (120)
Now
[ n@a@is = [ wala) [ nte) e drda
- /_ () /_ (@) € dzdt
= [ 102000 d. (121)
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Using the Cauchy-Schwartz inequality and the fact that the function 1, has unit norm,
we get from (121) that

[, enl@)a(a) da| < Dxal- Il (122)

Also,

kZ::lwkT(xk) - /_llr(x) dz
_ g:wk (/_11 £(t) eieost dt) B /_11 (/_llf(t) gicat dt) dz

n

/_11 E(t) <Z wye'Et — /_11 etert dx) dt. (123)

k=1

Substituting (73) into (123), and using the Cauchy-Schwartz inequality, we get

S wir(e) - / llr(:v) dz
= [ew (i i (f: A0 wjm))
- /_ 11 (ﬁ; X 95 (1) zpj(x)) d:c) dt
< Bl - - (2 3 ) (124
Combining (120), (122), and (124), we get

B < Dal-Inll + Tl 32 Dl i1 - (2+ kZuwkn). (125)
j=n =1

a

Remark 6.1 The use of Theorem 6.3 for the construction of quadrature rules for band-
limited functions depends on the fact that the norms of the band-limited functions ¢
and 7 in (116) are not large, compared to the norm of f (both sets of norms being on
[—00,00]). Such estimates have been obtained for all n > 2¢/7 + 10log(c). The proofs
are quite involved, and will be reported at a later date. In this paper, we demonstrate
the performance of the obtained quadrature formulae numerically (see Section 8 below).
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Remark 6.2 It is natural to view (116) as an analogue for band-limited functions of
the Euclid division theorem for polynomials. However, there are certain differences. In
particular, Theorem 6.1 admits extensions to band-limited functions of several variables,
while the classical Euclid algorithm does not. Such extensions (together with several
applications) will be reported at a later date.

7 Interpolation via Prolate Spheroidal Wavefunctions

Interpolation is usually performed by the following general procedure: assuming that the
function f : [a,b] — C to be interpolated is given by the formula

f(z) = a1¢1(z) + caa(z) + . . . + cndn(z), (126)
where @1, 2,...,¢n : [a,b] = C are a fixed sequence of functions (often polynomials),
solve an n X n linear system to determine the coefficients c;, ¢y, . . ., ¢, from the values of

f at the n interpolation nodes, then use (126) to evaluate f wherever needed. As is well
known, if f is well-approximated by a linear combination of the interpolation functions,
and if the linear system to be solved is well-conditioned, then this procedure is accurate.

As shown in Section 5 in the context of quadratures, a linear combination of the first
n prolate spheroidal functions vy, %1, ..., %¥n—1 for a band limit ¢ can provide a good
approximation to functions of the form e*®, with t € [—1,1] (see (71,74)); in the regime
where the accuracy is numerically useful, the error is of the same order of magnitude as
|An|. This, in turn, shows that they provide a good approximation (in the same sense as
in Remark 5.1) to any band-limited function of band limit ¢. Thus, if ¥, %1, . .., %¥,—1 are
used as the interpolation functions in this procedure, they can be expected to yield an
accurate interpolation scheme for band-limited functions, provided that the matrix to be
inverted is well-conditioned. The following theorem shows that if the interpolation nodes
are chosen to be quadrature nodes accurate up to twice the bandwidth of interpolation,
with the quadrature formula being accurate to more than twice as many digits as the
interpolation formula is to be accurate to, then the matrix inverted in the procedure is
close to being a scaled version of an orthogonal matrix.

Theorem 7.1 Suppose the numbers wy, ws,...,w, € R and z,,,,...,2, € R are such
that
1 n .
/ % dz — 3 w;e¥| < g, (127)
-1 :
=1
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for all a € [-1,1], and for some ¢ > 0. Let the matriz A be given by the formula

Yo(z1) Yi(z1) ... Yno1(z1)
100(5172) %(272) ¢n—1($2)

A= , , , , (128)
¢0($n) ¢1 (xn) e ¢n—1(xn)

let the matriz W be the diagonal matriz whose diagonal entries are wy, wa, ..., W,, and
let the matriz E = [ej] be given by the formula

E=1-A"WA. (129)
Then

2e
eix| < |[—|. 130
e3¢ Ajo1Ak-1 (130)

Proof. Clearly
e = Oy = w1 (x) Yeo1(), - (131)
=1

where d;; is the Kronecker delta function. Using (18), this becomes

- L 1 L.
€k = O — Zwl . -)\-——/ € wzlt’gbj_l(t) dt
=1 j—17-1

1
L e Yp-1(7) dr
/\lc-l -1
1 1 n . .
= Op—= / / Vi1 (t) Yr-1(1) Y wie™* T didr. (132)
j—1Ak—1 /-1J-1 =1

Using (127), this becomes

e]k—éjk 1)\k 1/ / ¥j-1(t) Yi-1(7) (133)
(/ —iest glosT s — fe(t+7')) dt dr,
-1
where f : [-2,2] — C is a function which satisfies the relation

|fe(z)] <, (134)
for all z € [-2,2]. Thus

1
: = o — —icst _icsT
€k Ojk )\J 1)\k 1/ / (7 1(t) Y1 (T )/-16 e7 dsdtdr

+XTJET / / i1 (8) Y- (7) felt + 7) dtdr (135)
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Using (18), this becomes
1
ejr = Ojk —[_1 Y;-1(8) Yr-1(s) ds
1 1 1
+m /__1¢k-1(7') /_1 Yj-1(t) fe(t + 1) dtdr. (136)
Due to the orthonormality of the functions {%,}, this becomes
1 1 1
e = 5 [ ¥ea(n) [ 5a0) fult+ 1) dtar. (137)

Using the Cauchy-Schwartz inequality, this becomes

1 11 2
ekl < SV llbe-1ll \//_1 ,/_1¢j—1(t)fe(t+7') dt| dr

1 1 1
_ 112 (T 2dt d
| el [t et

1 1 1
= |— 2 dt
|| [ e o

2e
< | 138
Aj—1 k-1 (138)

<

O

From inspection of Theorem 2.5, it can easily be seen that the number N of eigenval-
ues needed for a bandwidth of 2¢ and an accuracy of £ is roughly twice the number of
eigenvalues needed for a bandwidth of ¢ and an accuracy of . Thus a generalized Gaus-
sian quadrature for a bandwidth 2¢ and an accuracy 2 has roughly the same number
of nodes as are needed for interpolation of accuracy €. In our numerical experiments,
this correspondence was found to be much closer than the rough bounds in Theorem 2.5
indicate; in the results tabulated in Section 8, the number of nodes for an interpolation
formula of a desired accuracy € was always chosen to be the number of quadrature nodes
for a desired accuracy £2 for twice the band limit (that number, in turn, being chosen
as indicated in Section 5); the correspondence between the desired accuracy and the
experimentally measured maximum error can be seen in Tables 3 and 4.

The coefficients ¢, cy,...,¢, produced by this interpolation procedure (see (126))
can, of course, just as easily be used for evaluating derivatives or indefinite integrals of
the interpolated function, as they can for computing the function itself.
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8 Numerical Résults

The algorithms of Sections 5-7 have been implemented in double precision (64-bit floating
point) arithmetic, with results shown in Tables 1-4. Tables 1 and 2 show the perfor-
mance of quadrature nodes produced by the schemes of Sections 5 and 6, when used as
quadrature nodes; Tables 3 and 4 show their performance when used as interpolation
nodes. These are not actually the same sets of nodes; even with the bandwidth c for in-
terpolation being half of the bandwidth for quadrature (as it is in the tables), more nodes
are needed to achieve a given accuracy of interpolation than are needed to achieve a given
accuracy of quadrature, as can be seen by comparing the number of nodes (printed in
the column labeled n in each table). The error figures in the tables are approximations
of the maximum error of interpolation or of the quadrature, when applied to functions
of the form cos(az) and sin(az), with 0 < a < ¢; they were computed by measuring the
error at a large number of points in a (for interpolation, in both a and z), including the
extremes. The column labeled “Roots” contains the errors for the nodes produced by
the scheme of Section 6; the column labeled “Refined” contains the errors after those
nodes, used as a starting point, have been run through the scheme of Section 5. The
variable € which appears in the tables is the requested accuracy, used to determine the
number of nodes in the ways described in Sections 5 and 7.

Also tabulated are the numbers of Legendre nodes required to achieve the same
accuracy € using polynomial interpolation or quadrature schemes. Since Chebyshev
nodes are generally known to be superior for interpolation, for that case the numbers of
Chebyshev nodes required to achieve the same accuracy are also tabulated.

Figure 2 contains the maximum norm of the derivative of each prolate function ¥;(z),
for ¢ = 200 and z € [-1,1], as a function of j; also graphed, for comparison, is the
maximum norm of the derivative of each normalized Legendre polynomial P;(z) over
the same range; and graphed below, on the same horizontal scale, are the norms of the
eigenvalues );. The graph shows that, for this value of ¢, computing the derivatives of
a function given by a prolate series is a better-conditioned operation than computing
the derivatives of a function given by a Legendre series of the same number of terms.
(Obviously, if the number of terms can also be reduced, as in the situations of Tables 1-
4, there is a further improvement in the condition number.) The same general pattern
of behavior is exhibited for other values of ¢; as ¢ approaches zero (and the prolate
functions approach the Legendre polynomials), the value of j at which the maximum
norm of the derivative rises sharply also approaches zero (as is to be expected, since for
¢ = 0 the prolate functions reduce to Legendre polynomials). Finally, Tables 5 and 6
contain samples of quadrature weights and nodes.

Remark 8.1 In this paper, detailed discussion of issues encountered in the implemen-
tation of numerical algorithms has been deliberately avoided, as well as any discussion of
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CPU time requirements, memory requirements, etc. Thus, we limit ourselves to observ-
ing that all algorithms have been implemented in FORTRAN, that with the exception of
the procedure for the evaluation of Prolate Spheroidal Wave functions described in Sec-
tion 4, we have not designed or implemented any new or original numerical algorithms,
and that the procedure of Section 4 consists of applying standard tools of numerical
analysis (diagonalization of a tridiagonal matrix) to the well-known recursion (61). The
resulting algorithm for the evaluation of prolate spheroidal wave functions has the CPU
time requirements proportional to c?, with a fairly large proportionality constant. The
procedure of [2], when applied to the system of functions %o, 91, . . ., Yan41 requires order
n3 operations, also with a fairly large proportionality constant. On the other hand, the
cost of finding all roots n of the function v, lying on the interval [—1, 1] is proportional
to n, and the proportionality constant is not large. The largest ¢ we have dealt with in
our experiments was about 6000, with resulting quadratures having about 1900 nodes.
In this regime, the construction of the quadrature (both nodes and weights) took several
minutes on the 300-m/eéﬂop SUN workstation; while there are fairly obvious ways to
reduce the cost of the calculation (both in terms of asymptotic CPU time requirements
and in terms of associated proportionality constants) we have made no effort to do so.

The following observations can be made from the examples presented in this section,
and from the more extensive tests performed by the authors.

1. When the nodes obtained via the algorithm of [2] are used for the integration of band-
limited functions, the resulting quadrature rules are significantly more accurate than the
quadratures obtained from the nodes of appropriately chosen prolate functions; however,
the difference between the numbers of nodes required by the two approaches to obtain
a prescribed precision is not large. When the nodes obtained via the two approaches are
used for the interpolation (as opposed to the integration) of band-limited functions, the
performances of the two are virtually identical.

2. For large ¢, the number of nodes required by a quadrature rule for the integration
of band-limited functions with the band-limit c is close to £; the dependence on the
required precision of integration is weak (as one would expect from Theorem 2.5 and

subsequent developments).

3. The numbers of nodes required by our quadratures rules to integrate band-limited
functions is roughly 7/2 times less than the numbers of Gaussian nodes; the numbers
of nodes required by our interpolation formulae in order to interpolate band-limited
functions is roughly 7/2 times less than the number of Chebychev (or Gaussian) nodes.
Again, the dependence of the required number of nodes on the accuracy requirements is
weak.

4. The norm of the differentiation operator based on our nodes is of the order ¢*/2, as
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compared to the norm of the spectral differentiation operators obtained from classical
polynomial expansions; this might be useful in the design of spectral (or pseudospectral)
techniques.

9 Miscellaneous Properties

Prolate spheroidal wave functions possess a rich set of properties, vaguely resembling the
properties of Bessel functions. This section establishes some of those properties. Some
of the identities below can be found in [20],[17],[5]; others are easily derivable from the
former.

The identity

éent = 5\ 5(2) (1), (139)

=0

(see Section 5) has a number of consequences which, while fairly obvious, seem worth
recording, since similar properties of other special functions have often been found useful.
Differentiating (139) m times with respect to z and n times with respect to ¢ yields the
formula

myn _icxt 1 (m+n) = (m) (n)
gmnegiet — (ZE) S 98 (@) v (2), (140)
=0

for all z,t € [-1,1]. Multiplying (139) by e~**, and integrating with respect to t,
converts it into
sin(c- (z —u))
zT—u

=§§¥WW%M, (141)

Taking the squared norm of (139), and integrating with respect to z and ¢, yields the
formula

Y NP =4 (142)

=0

combining this with (21) yields

ad 2c
D pi = (143)
3=0
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Setting z =t = 1 converts (139) into
e =" Xvi(1). (144)
Jj=0
The identity

1
-1

Mii(e) = [ et (e) dt (145)

(see Section 2.5) also has a number of simple but potentially useful consequences. Dif-
ferentiating it k£ times with respect to z, we get

1
MP(e) = () [ ettt uy(0) (146)
We next consider the integral
1 eicz:t
@)= fla,a) = [ T—u;) ot (147)
Differentiating (147) with respect to z, we have
d ] 1 teicmt
—f(a,3) = ic /_ () . (148)
Multiplying (147) by ica, and subtracting it from (148), we obtain
2 f(a2) ~icaf(aa) = ic [ e=t(e) de (149)
7/ (a,2) —icaf(a,2) = LY
= iC)\jlpj (.'D)
In other words, f satisfies the differential equation
£(z) — icaf (&) = ichsws (@). (150)

The standard “variation of parameter” calculation provides the solution to (150):

f(z) = ich; /0 " emicale=0 (1) dt + £(0) €. (151)

Introducing the notation

D=—o0— (152)
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(i.e. D is the product of multiplication by 1/ic and differentiation), we rewrite (146) as

1 -
k(o . —- k icxt ), .
Do) = 5 | et (153)
for an arbitrary polynomial P (with real or complex coefficients),
1 ! icxt
POD)(Wy)(@) =+ [ P(t) = y5(t)dt. (154)
/\j -1
By the same token, the function ¢ defined by the formula
1 eicxt
6@)= [ | e (155)

satisfies the differential equation

P(D)(¢)(z) = Am¥m(z). (156)

The following lemma provides a recursion connecting the values of the k-th derivative
of the function 1, with its derivatives of orders k — 1, &k -2, k-3, k—4.

Lemma 9.1 For any positive real ¢, integer m > 0, and z € (—00, +00),

(1-2%) p+d(z) — 2 (k+ 1)zt ()
+ (xm — k (k+1) = ¢ 2°) P (z)
—28kzyp*(z) =Pk (k- 1) (z) =0 (157)

for all k > 2. Furthermore,

(1= 2?) Yn(z) = 429n(2) + (Xm — 2 — ¢ 2%) Y, (2)
-2 29Yn(z) =0. (158)

In particular,

= 2(k+ 1) (1) + (xm — k (£ +1) = &) P (1)

-2 kY1) =k (k-1)¢¢ D) =0 (159)

for all k> 2, and |
= 295,(1) + (Xm = ¢*) ¥m(1) = 0, (160)
— 49 (1) + (xm = 2= €)Y (1) = 2% P (1) = 0. (161)
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Furthermore, for all integer m > 0 and k > 2,

PEF(0) + (xm — k (k + 1)) 9 (0)

—ck(k-1)y¥20)=0. (162)
For all odd m,
Ym(0) + (Xm — 2) ¥, (0) =0, (163)
and for all even m,
Pm(0) + Xm ¥m(0) = 0. (164)
Finally, for all integer m > 0, k > 0,
Ym(1) #0, (165)
YD 1(0) =0, (166)
Er(0) =o0. (167)

Proof. All of the identities (157) — (164), (166), (167), are immediately obtained by
repeated differentiation of (24).
In order to prove (165), we assume that

Ym(1) =0 (168)

for some integer m > 0, and observe that the combination of (168) with (159), (160), (161)
implies that

YP(1) =0 | (169)

forall £ =0,1,2,.... Due to the analyticity of ¥,,(z) in the complex plane, this would
imply that

Ym(z) =0 ' (170)

for all z € RL.
O

The following is an immediate consequence of the identity (160) of Lemma 9.1.

Corollary 9.2 For all integer m,n > 0,

"Mn(l) : wn(l) - %(1) : wm(l) = (Xn - Xm) : ¢n(1) : d)m(l) ’ (171)
where Xm, Xn € R are as defined in Theorem 2.6.

32




Theorem 3.1, in Section 3.1, gives formulae for the entries of matrices for differen-
tiation of prolate series and for multiplication of prolate series by z. Matrices for any
combination of differentiation and of multiplication by a polynomial can obviously be
constructed from these two matrices; for instance, calling the differentiation matrix D,
and the multiplication-by-z matrix X, the matrix for taking the second derivative of a
prolate series, then multiplying it by 5 — 22, is equal to (5] — X?)D2.

In many cases, however, there are simpler formulae for the entries of such matrices,
that is, for inner products of 1;(z) with its derivatives and with polynomials. The follow-
ing theorems establish several such formulae, as well as a few formulae for inner products
which do not involve 1;(z) itself but only its derivatives. We start with Theorem 3.1,
restated here for consistency.

Theorem 9.3 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m = n (mod 2), then

/ U4 (2) Ym(a) da = [ 1la:wn(x)z/)m(x) dz = 0. (172)

If m # n (mod 2), then
[ @) () d = o gn(1) 1), (73
[z 0n@)n(a) do = 530 (1) (). (74

Theorem 9.4 Suppose that ¢ is real and positive, and that the integers m and n are
non-negative. If m # n (mod 2), then

/ 11 2. (2) U(z) dz = 0. (175)

If m =n (mod 2), then

/ 11 2 (2) Y (z) dz = AmA: = (261 6a(1) = 5m) (176)

Proof. Identity (175) is obvious since the functions 1, are alternately even and odd (see
Theorem 2.4). In order to prove (176), we consider the integral

[ 29(2) Ym(2) da
- Al_n/_ll”” (/_11 €7t 1 (t) dt); V() dz
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Z Y (T (/ tn(t) ee®? dt) dx

<
L i
[

>’|3>'=>'|<°§ ;%In

In other words,

/_11 9(2) Ym(2) dz = 2 / !, (%) () dz. (177)

On the other hand, integrating the left side of (177) by parts, we obtain
[, 2942 ¥m(s) o
= 20nW (D) = [ (ale) ¥l2) 5+ () Ym(@)) d
= 20n() (1) = [, 29n(@) ¥n(z) @ = G

Combining (177) and (178), we have
Am 1
52 [ vn(@) tn(s) do

= Wn(U)%1) = [ 590(2) Yn(e) dz ~ G,

from which (176) follows directly. O

Theorem 9.5 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m # n (mod 2), then

/ 11 22 ! (&) tn(z) dz = 0. (178)

If m=n (mod2) and m # n, then
[ 29 (@) nle) o
= 22n 1 ' (1 1
" (VA1) Y (1) = ¥1n (1) ¥a(1))

T ¥n(1) ¥m(1) (179)

A+)\
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= An (Xn = Xm) ¥n(1) Ym(1)

Am — An
Yn(1) ¥m(1), (180)

4,
where Xm, Xn € R are as defined in Theorem 2.6.

An+ A

Proof. Clearly (178) is true, since the functions ¢; are alternately even and odd. In
order to prove (179) and (180), supposing that m = n (mod 2) and m # n, we consider
the integral

[, 2 44(2) Ym() ds
_ ;\1_ /1 2. (/—1 et 1)y (£) dt): Ym(z) dz

2

n J—1 1
= —;—/_11 V() 2% - (/1 t2 4 (t) €% dt) dz
%2-/1 (/ Vm(z) T° “”dm) U (t) 2 dt

1 —_

= / £, (£) :,

which is summarized as

/ 11 220! (2) o (z) d = i—’: [ 11 22 (2) () dz. (181)

On the other hand, integrating the left side of (181) by parts, we have
1
/_1 2% Y (2) Y (z) dx
i 1 ! I 2
= 29.(1) ¥m(1) -/ W, (z) ( 1(2) 2% + 22 Ym(z)) do

29 (1) P (1 —2/ 2) Ym(2)  dz
—/ ! (z) YL (z) 22 dz. (182)

Due to Theorem 9.4 and the fact that m # n, we immediately rewrite (182) as

[, 2 4@) gm(o) do

= 2’(%1(1) Ym(1) — X 21)\ 29n(1) Ym(1)
- [ @) dha(a) de, (183)
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which we rewrite as

[, S @) v dz

= 29 (1) Ym(1) - /\jim/\n Yn(1) Ym(1)

- /_11 22 Y (2) Y (z) doz.

Swapping m with n, we convert (184) into
1
[, S 4@) ¥inle) deo

= 29 (1) ¥a(l) - /\:j‘_"/\n Pn(1) Ym(1)

- [, # @ o) do.

Combining (184) and (185), we obtain

[, 2 V@) () do = 2900 (1) + T 1) (D)

= /_ 11 2® Y (z) Yn(z) dz — 29,(1) ¥a(1) + X:—fX;%(” bm(1),

which is obviously equivalent to

[, #4@) dn(z) do

[ 2 @) $a(z) a2 (U40) Y1) = (1) (1)
An = Am

HAE S (1) Um().

Finally, combining (181) with (187), we have

é\ﬂ / 11 22! (2) () dz

[ 11 229! (2) (@) da +2 (Wo(1) Ym(1) — ¥ (1) Ba(1))

An = Am
4T (1) Um(D),
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which is easily rewritten as

(% - 1) /_11 ? Y, (z) ¥n(z) dz
= 2 (YL(1) Ym(1) — 9 (1) ¥n(1))
Ar = Am

+4 o Yn(1) ¥m(1),

or

[, @) bale) de

2\, , 1
= o @) ¥n@) —¥m1) (1)
4\,

T A+ Am

We finally rewrite (188) as (180) using Corollary 9.2. o
The following theorem is an immediate consequence of combining the preceding theorem
with equation (184) from its proof.

¥n (1) Ym(1) . (188)

Theorem 9.6 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m # n (mod 2), then

/ ’l 224! (2) ¥ (z) dz = 0. (189)
If m=n (mod2) and m # n,

/ 11 2 (z) ¥ (z) dx

= 26+ T W) - YD) (190)
= 201 Y1) + T (1) YD) — U1 ¥a(D) (191)
= (1) %n() (A”‘—fn"#—cz)- (192)

Theorem 9.7 Suppose that c is real and positive, and that the integers m and n are
non-negative. If m # n (mod 2), then

/ 11 Yn(z) Yin(a) dz = | 11 2200 (z) ¥n(z) dz = 0 (193)
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If m =n (mod 2) and m # n, then

[y

- Af ” 7 (51(0)¥m(2) = (1) ¥ 1) (194)
- )\2)\ /\2( Xm) wm(l) 2/)17.(1)7 (195)

/11 2% 1, () Y (z) dz
2 Amn ,

= 5 A (D) — () Y1) (196)
= _Cl_z X%’__%\)\—% (Xn - Xm) "pm(l) "/)n(]-)7 (197)

where Xm, Xn € R are as defined in Theorem 2.6.

Proof. Identity (193) is obvious, since the functions 1; are alternately even and odd.
In order to prove (194)-(197), we start with the expression

nw” — / t2 zcxt,¢ (198)

Taking the inner product of (198) with vy, (z), we have

An /_ 11 Ur(z) Ym(z) dz

= —c /_11 (/_11 2 1 (t) €7 °%F dt) Ym(z) dz
= —¢ /_11 t24hn (1) (/_11 Ym(z) €467 dx) dt

= - 2)‘m /11 t2 ¢n(t) wm(t) dt,

which we summarize as

L dr=—=2n [1 g d 199
[, @ vn@)tnl@) dz = —5 " [ () Yu(a) do. (199)
Swapping n, m, we rewrite (199) in the form of
/.7 e e
= -m- [ @) va(z) do (200)
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Combining (199) and (200), we get

' i )‘72n ! "
/_1¢n(x) Ym(z) dz = Y /1 " () () dz .

On the other hand, integrating the left side of (201) by parts, we have
[ ¥ (e ez
= Y@ ¥nV) (D ¥m(-1) - [ ¥,)¥(a) do
= 29,(1) ¥m (1) — (¥n(1) Y (1) — ¢n(=1) ¥, (=1))
1
+ /;1 Yn(z) Y () dz.
We rewrite (202) in the form of
[ 44(2) Ym(o)
= 2 Y1) = a () U(V) + [ () Ba(z) d
We combine (201) and (203) and get
A2 1
(T}f - 1) [, ¥n(@)vn(a) da
= 2 (¥p(1) ¥m(1) — ¥a(1) ¥pn(1)) .

(201)

(202)

(203)

Since m # n, we easily rewrite (203) as (194). We obtain expression (196) by combin-
ing (200) and (194). The identities (195), (197) follow from (194), (196) immediately

due to Corollary 9.2.

O

Theorem 9.8 Suppose that c is real and positive, and that the integers m and n are

non-negative. Let
y
V,(y) = n(Z) dz .
) = [ 4n(2) da
If n is odd and m is even, then

[, 3 on®rentt)

2Am An

Am 11
A2+ 22 (1)

= 1cC

+2

(204)

(205)
(206)

(207)




If m =n (mod 2), then

11

_ Z 'an(t) wm(t) dt=0.
Proof. We start with the identity

A Un(z) = /_ 11 ¢ty (t) di

Integrating (209) with respect to z, we have
Y
An n(2) d
| ¥n(@)do
y L
= ot (¢ dt) d
L ([ e unte) dt) a
— / ")[)n / ixct dz dt
1

= — —¢n() evdt—— [ ¢n() ;

1c

which we summarize as

A Un(y) = / ~ a(t) €V d t——/ twnt)dt.

Taking the inner product of (213) and %, (y), we obtain
An / dy
1 :
— ¢m(y) ( / %’lﬁ (t) e*¥t dt) dy
/ Um@) ([ 3 n(0) at) dy
1
= = [ 000 ([ ¥ vmty) ) at
1
Ty Z@bn(t) dt'/_l Ym(y) dy
= 2m 1 t) Y (t) dt
T twn() m

1 11 1 ,
= [ 7wt [ vnlw) ay,
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(209)

(210)
(211)

(212)

(213)

(214)

(215)

(216)




which we summarize as
1
[, 340 6m(t)
-1t
- zc—/ U (£) Yrm(2) dt

1
+};/.1 A0

Exchanging m with n, we convert (217) into

and combining (217), (218), we get
Am . !
U, (8) Y (t) dt — —)\—;zc/_I
11 1
o, g dte [ va0) a

1 11
—;;/_1 ()

dt-/ilwm(y)dy

dt - /_ 11 Um(t) di

(217)

(218)

U (t) Yn(t) dt

(219)

Suppose that m is even and 7 is odd; then the first product in the right hand side of (219)

is zero, so
ey
= ——/ 00 dt- [ gm0

which is equivalent to
1
me%wﬁ

- L

)\zc

() ¥n(t) d
wn ) dt - / U (2)
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()mﬂ)dv———w/"w

(t) ¥n(t) dt

t, (220)

¢ (221)




or

/ 11 U, () o (2) dt

A2 1
=2/ lwn(t)wm(t) dt
An 1

On the other hand, 1ntegrat1ng the left side of (222) by parts, we obtain

[ e nlt)
Wo(1) (1) = Cn(=1) U (=1) = [ W(6) Ya(t) . (223)

Since the product ¥,,(z) ¥, (z) is an odd function when m # n (mod 2), we rewrite (223)
as

[ Tn@ ) at
= 20, (1) Ta(1) - [ 11 U (8) (1) dt. (224)
The combination of (222) and (224) implies that

/_11 VU (t) Ym(t) dt + :\'\—;/ Uy (t) Ym(t) dt

= 20 () ¥a() - 33 Zc/ tzp,, ) dt - /11¢m(t) dt, (225)
or ‘
A2+t
et [ T Ynle) dt
An
- zwn(nwm(l)—;\—;ii 0@ dt [ gm0 (226)

which is equivalent to

/_ 11 U, (8) Y (t) dt
2 \2

A2+ A2 "‘( )
TR+ AL dc - ¢n ) dt - / Ym(t) dt . (227)
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Finally, combining (217) and (227), we have

11
[, 70 ¥m(®)
2 m A
Az + A2,

/\m 11 1
+)\721+)\%1 /:_1 ;wn(t) dt'/_l")/)m(t) dt. (228)

= ¢

Un(1) ¥m(1)

Equation (208) is easily proven since the product } 1m () %s(z) is an odd function when-
ever m =n (mod 2). a

The above theorems do not use much of the detailed structure of the integral operators
of which the functions {v;} are eigenfunctions. Thus many of them generalize easily to
the case of an operator L : L?[0,1] — L?[0, 1] defined via the formula

1
Lw)iz) = [ K@t)v(e) dt, (229)
for some function A" : [0.1] — C; the following theorem is an example of this.

Theorem 9.9 Let A\;. A, be two eigenvalues of the operator L defined by (229), that is,
1
/0 Kirt)ui(t) dt = Mhi(z), (230)
1
/0 Kizt)vs(t) dt = Aoth(). (231)
Then
! !
Ay /(; z Y (z) ¥a(z) dz
_— = T
M e i(a) da

provided that neither A\ nor the denominator of the right hand side of (232) is zero.

, (232)

Proof. Differentiating (230), (231) with respect to z, we get
1
[t @@ d = A, (233)

[ K@) v & = aia) (234)
Multiplying (233) by z v2(z), we have

2 0,(2) s (&) = 7 o (2) /0 LK (2t) 0 (1) . (235)
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Integrating on the interval [0, 1], we obtain
1 1 1
A /0 2 (2) Yo(z) dz = /0 2o (z) /0 t K'(at) v (2) dt dz (236)
- | Lt (2) / e K'(3t) Yo(z) dzdt. (237

Renaming the variables of integration on the right hand side from z to ¢ and vice versa,
we get

A /1x¢’(x)'¢) (z) dz = /1x¢ (z) /ltK'(:ct)z,b (t) dtdz (238)
1 0 1 2 0 1 0 2 .
Substituting (234) into (238), we obtain
1 , 1 ,
M / 2¥,(2) ta(z) dz = Mo / 2 (z) ¥ (x) d, (239)
0 0
from which (232) follows immediately, as does its caveat. O

The following theorem establishes the relation between the norm of each function ¥;
on [—1,1] (which in this paper is taken to be one), and its norm on (—o0, 00).

Theorem 9.10 Suppose that c is real and positive, and that the integer n is non-
negative. Then

o 1
2(z) do = —. 240
| i) o= (240)
where pi, is given by (21).
Proof.
00 o [ 1 1l in(c- (z —t
[ i@ = [ (7% [ waley 22 2 20) dt) bals) da
1 1 fo sin(c- (z —t))
T —1¢"(t) . <;r- /—oo z—t ¥n() da:) dt
_ Lot
= [ w0
- L
e

]

The following theorem extends Theorem (9.10) to any band-limited function with
band limit c.
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Theorem 9.11 Suppose that c is real and positive, that the integer n is non-negative,
and that f : R — C is a band-limited function with band limit c. Then

/_0:0 Yn(z) f(z) dz = ;Ll_n/jl ¥n(z) f(2) dz. (241)
Proof.
[ tnle) f(a) do
- [ (= [ e g o) 1) as
= L[ (2 2D ) a0)
- i; ) £0) a.
)

Theorem 9.12 Suppose that ¢ is real and positive, and that the integer m is non-
negative. Then

oo . ér'rkwm(a:), Zf —-l<z<l,
/ ezcmtwm(t)dt — Hm

-0

(242)
0, if x>1 or < -1.

Proof. Since 1, is an eigenfunction of the operator Q. defined in (19), and u,, is the
corresponding eigenvalue,

() = = [ S ) gy, (243
Thus
/_ ~ gicat Um(t) dt
L% (L sl
= /e (ﬂ/_l — zpm(u)d> dt (244)
o 1qn 1 o sin(c: (=) om
= — [ (;/_w =2 dt) du (245)
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Since the innermost integral is the orthogonal projection operator onto the space of
functions of band limit ¢ on (—o0,00), applied to the function €*®*, it follows that:

/_ % gieat U (t) dt
_ 1 lwm(u) ({ e, if —1<z<l, }) du (246)

0, if z>1 or z< -1

Hm /-1
1 .
——/ Um(u) €™ du, if —1<z<1,
= { Hm1 (247)
0, if z>1 or z < -1,
from which (242) follows immediately. O

The following five theorems establish formulae for the derivatives of prolate functions
and their associated eigenvalues with respect to c.

Theorem 9.13 For all positive real ¢ and non-negative integer m,

2 -
D\ 2WEM -1

oc ™" 2c (248)
Proof. We start with
Amtbm(z) = [ 11 eiot g (1) dt. (249)
Differentiating (249) with respect to ¢, we obtain
i 11 Tt (t) di + [ 11 iest —a—‘f’gc—(” dt. (250)

Multiplying by ¥m(z) on both sides of (250), and integrating on the interval [—1,1], we
get

/ 11 ¥ (2) (%%m m(Z) + A Wgc(“’) ) dz (251)

= /1 U (T) /1 izte ™, (t) dt dz
" 1 "

! b icat 0Um(2)
+/_1 1,0,,1(:12)/_1 e t—a—dtdx,

C
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which we rewrite as

OAm 1 O ()
.6_0_ + A /_ ——gc—’(ﬁm(x) dx

1 1
= /_ it Y (t) / e x P (z) dz dt

+ / 1 ‘%’m / ety (z) dz dt (252)

B . 1 9Ym(t)
- )\m/q ztwm( ic e at

+ Am /_ 11 Mg‘c(t) Ym(t) dt, (253)

which we summarize as

____=—/ t i (£) 51/)m ) (254)

On the other hand, integrating the right-hand side of (254) by parts, we have

/_ 11 t P (t) awgt(t) dt (255)

= W+ -1 [ g2 g

which we rewrite as

[ a0 22 g =gy - 1. (256)

Finally, substituting (256) into (254), we get
Om | 29% H-1

= A
oc m 2¢ (257)
O
Theorem 9.14 For any positive real ¢ and non-negative integer m,
Opim _ 2 2
_ = 1).
30 c /J’m d)m( ) (258)
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Proof. We start with the identity

i =%,\ Am (259)

Differentiating (259) with respect to ¢, we get

Opm _ 2¢ (= OAm N 2
Substituting Lemma 9.13 into (260), we get
Otim, 2c < 292 (1) -1 2<
— = — 2\ Ay ——+ = 261
oc T Am 2c T Am A (261)
_ 2y (1) -1 1
= 2 MHm 2¢ + c Hm
2 9 1 1
= —Um 1) — - m -
c prm Y (1) c Hm + - Hm
2
= ~tm¥n(l). (262)
O
The following theorem immediately follows from Theorems 9.13 and 9.14.
Theorem 9.15 For all positive real ¢ and non-negative integer m, n,
A\ Am L
(52) =323 (ew-ww), (263
Hm , _bBm 2 9 2
(fn) =22 () - 2) (269

Theorem 9.16 Suppose that c¢ is real and positive, and the integers m,n are non-
negative. If m # n, then

awn ~ 2 A
[ mtt) = =2 25 L) ¥a(1). (265)
If m = n, then
/ Ym () ad’" dt = 0. (266)
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Proof. Since the norm of ¥, on [—1, 1] remains constant as ¢ varies, 1, must be orthog-
onal on [—1,1] to its own derivative with respect to ¢, which immediately yields (266).
To establish (265), we start with the identity

.
Antn(z) = / et yn(t) dt. (267)
Differentiating (267) with respect to c, we get

0 0,

e Ul g
1 . .

= / (z Tt e oy, () + e ?—%ﬁc—(tl) dt. (268)

-1

Multiplying both sides of (268) by ¥ (z) and integrating with respect to z, we have
1
)\n/ Ym () 8’40716(-’1»') d

- 3% (t)

- __/ 2, (z) Y (z) dT + A / Ym(t) =5 dt, (269)
which, using (176), we rewrite as

! On (t)
()‘n - )‘m) /_1 wm(t) T dt

= A A (9 (1) 6a(D) — Srn) (270)

I W e " m
Assuming that m # n, and dividing by A\, — A, we then get (265). m]

Theorem 9.17 Suppose that c is real and positive, and the integer m is non-negative.
Then

QX_m _ 9 / Y (271)
Proof. Due to Theorem 2.6,
(1 — 22y () — 229, () + (Xm — €*22) Y (z) = 0. (272)

Making the infinitesimal changes ¢ = ¢+ h, Xm = Xm + €, and ¥ (z) = Yn(z) + 6(2),
this becomes

(1= 2?) - (Y (2) + 8" (2)) — 22 - (Y, (2) + 6 (2))
+ (Xm + € — (c+ R)%2?) - (Ym(z) + 6(z)) = 0. (273)
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Expanding each term, discarding infinitesimals of the second order or greater (that is,
products of two or more of the quantities h, €, and d(z)), and subtracting (272), we get

(1—2%)6"(z) — 228 (z) + (xm — 222 6(z) + (¢ — 2cha®) Y, (z) = 0. (274)

Let the self-adjoint differential operator L be defined by the formula

L(f)(2) = (1 = 2*) f"(z) = 22f'(z) + (xm — ¢*2°) f(2). (275)
Then, multiplying (274) by v, (z)/h and integrating on [—1, 1], we get
[ L) @) (e da &~ [ 2eau3 () = (276)

Now £ = a—g,‘cﬂ. In addition, since L is self-adjoint,

O, M
/_IL( g) (2) ¥m(2) dﬂ””/_l ;"c () L(¢m)(z) de. (277)
But due to (272), L(¢m)(z) = 0 for all z € [—1,1], so the integral (277) is zero.
Thus (276) becomes

% = 2% / 222 (z (278)

a

10 Generalizations and Conclusions

In this paper, we design quadrature rules for band-limited functions, based on the prop-
erties of Prolate Spheroidal Wave Functions (PSWFs), and the connections of the latter
with certain fundamental integral operators (see (17), (19) in Section 2.5). The quadra-
tures are a surprisingly close analogue for band-limited functions of Gaussian quadratures
for polynomials, in that they have positive weights, are optimal in the appropriately de-
fined sense, and their nodes, when used for approximation (as opposed to integration),
result in extremely efficient interpolation formulae. Thus, Sections 5-7 of this paper can
be viewed as reproducing for band-limited functions much of the standard polynomial-
based approximation theory (for which see, for example, [24]). Generally, there is a
striking analogy between the band-limited functions and polynomials.

Obviously, there are certain differences between the resulting apparatus and the stan-
dard numerical analysis. To start with, where the classical techniques are optimal for
polynomials, the approach of this paper is optimal for band-limited functions; whenever
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the functions to be dealt with are naturally represented by trigonometric expansions on
finite intervals, our quadrature and interpolation formulae tend to be more efficient than
those based on the polynomials. When the functions to be dealt with are naturally rep-
resented by polynomials, the classical approach is more efficient; however, many physical
phenomena involve bend-limited functions, and very few involve polynomials.

Qualitatively, the quadrature (and interpolation) nodes obtained in this paper behave
like a compromise between the Gaussian nodes and the equispaced ones: near the middle
of the interval, they are very nearly equispaced, and near the ends, they concentrate
somewhat, but much less than the Gaussian (or Chebychev) nodes do. For large c, the
distance between nodes near the ends of the interval is of the order -cz%, with the total
number of nodes close to Z. In contrast, the distance between the Gaussian nodes near
the ends of the interval is of the order 517, with n the total number of nodes. A closely
related phenomenon is the reduced norm of the differentiation operator based on the
prolate expansions: for an n—point differentiation formula, the norm is of the order n%/2,
as opposed to n? for polynomial-based spectral differentiation. Thus, PSWF's are likely
to be a better tool for the design of spectral and pseudo-spectral techniques than the
orthogonal polynomials and related functions.

Much of the analytical apparatus we use was developed more than 30 years ago
(see [20]-[21], [17], [18]); the fundamental importance of these results in certain areas of
electrical engineering and physics has also been understood for a long time. However,
there appears to have been no prior attempt made to view band-limited functions as a
source of numerical algorithms. Generally, there is a fairly limited amount of information
in the literature about the PSWFs, especially when compared to the wealth of facts on
many other special functions. Section 9 of this paper is an attempt to remedy this
situation to a small degree.

The apparatus built in this paper is a strictly one-dimensional one. Obviously, one
can construct discretizations of rectangles, cubes, etc. by using direct products of one-
dimensional grids; the resulting numerical algorithms are satisfactory but not optimal.
Furthermore, representation of band-limited functions on regions in higher dimensions
is of both theoretical and engineering interest. Obvious applications include seismic
data collection and processing, antenna theory, NMR imaging, and many others. When
the region of interest is a sphere, most of the necessary analytical apparatus can be
found in [21]. At the present time, we have constructed and implemented somewhat
rudimentary versions of the relevant numerical algorithms; we are conducting numerical
experiments with these, and will report the results at a later date. A much more difficult
set of questions is presented by the structure of band-limited functions on more general
regions.
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Table 1: Quadrature performance for varying band limits, for ¢ = 10~7

c n | Maximum Errors | Npal
Roots | Refined
10.0 9 | 0.96E-05 0.51E-07 13
20.0 13 | 0.17E-04 0.94E-07 19
30.0 17 | 0.12E-04 0.50E-07 25
40.0 20 | 0.70E-05 0.30E-06 31
50.0 24 | 0.35E-05 0.83E-07 37
60.0 27 | 0.25E-04 0.27E-06 43
70.0 31| 0.11E-04 0.66E-07 48
80.0 34 | 0.48E-05 0.17E-06 54
90.0 38 | 0.21E-05 0.40E-07 59
100.0 41 | 0.12E-04 0.91E-07 65
200.0 74 | 0.24E-05 0.86E-07 | 118
300.0 106 | 0.32E-05 0.21E-06 | 171
400.0 139 | 0.52E-05 0.62E-07 | 223
500.0 171 | 0.56E-05 0.88E-07 | 275
600.0 203 | 0.58E-05 0.11E-06 | 326
700.0 235 | 0.57E-05 0.12E-06 | 377
800.0 267 | 0.55E-05 0.13E-06 | 428
900.0 299 | 0.53E-05 0.14E-06 | 479
1000.0 331 | 0.50E-05 0.14E-06 | 530
1200.0 395 | 0.44E-05 0.13E-06 | 632
1400.0 459 | 0.38E-05 0.11E-06 | 734
1600.0 523 | 0.31E-05 0.97E-07 | 835
1800.0 587 | 0.28E-05 0.80E-07 | 937
2000.0 651 | 0.23E-05 0.64E-07 | 1038
2400.0 778 | 0.29E-05 0.15E-06 | 1240
2800.0 906 | 0.19E-05 0.84E-07 | 1442
4000.0 1288 | 0.37E-05 0.17E-06 | 2047
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Table 2: Quadrature performance for varying precisions, for ¢ = 50

€ n | Maximum Errors | Ny
Roots | Refined

0.10E-01 19 | 0.45E-01 0.10E-01 | 30
0.10E-02 20 | 0.70E-02 0.13E-02 | 32
0.10E-03 21 | 0.91E-03 0.14E-03 | 33
0.10E-04 22 | 0.82E-04 0.13E-04 | 34
0.10E-05 23 | 0.54E-04 0.11E-05| 36
0.10E-06 24 | 0.35E-05 0.83E-07 | 37
0.10E-07 25 | 0.33E-05 0.57E-08 | 38
0.10E-08 26 | 0.18E-06 0.36E-09 | 39
0.10E-09 26 | 0.18E-06 0.36E-09 | 40
0.10E-10 27 | 0.17E-06 0.21E-10 | 42
0.10E-11 28 | 0.79E-08 0.11E-11 | 43
0.10E-12 29 | 0.78E-08 0.56E-13 | 45
0.10E-13 30 | 0.31E-09 0.27E-14 | 55
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Table 3: Interpolation performance for varying band limits, for ¢ = 10~7

c n | Maximum Errors Npo
Roots | Refined | Cheb. | Leg.
5.0 13 | 0.12E-06 0.12E-06 17 17
10.0 18 | 0.12E-06 0.13E-06 24 25
15.0 22 | 0.24E-06 0.25E-06 31 32
20.0 26 | 0.26E-06 0.28E-06 37 39
25.0 30 | 0.22E-06 0.23E-06 43 45
30.0 33 | 0.67E-06 0.73E-06 49 51
35.0 37 | 0.42E-06 0.46E-06 55 57
40.0 41 | 0.25E-06 0.27E-06 61 63
45.0 44 | 0.54E-06 0.60E-06 67 69
50.0 48 | 0.29E-06 0.33E-06 73 75
100.0 82 | 0.39E-06 0.46E-06 128 131
150.0 115 | 0.52E-06 0.64E-06 182 186
200.0 147 | 0.12E-05 0.15E-05 235 239
250.0 180 | 0.83E-06 0.11E-05 287 292
300.0 212 |0.13E-05 0.17E-05 340 345
350.0 245 | 0.75E-06 0.10E-05 392 398
400.0 277 | 0.10E-05 0.14E-05 443 450
450.0 309 | 0.13E-05 0.18E-05 495 502
500.0 341 | 0.16E-05 0.22E-05 547 554
1000.0 662 | 0.16E-05 0.24E-05 | 1058 1068
1500.0 982 | 0.15E-05 0.25E-05 | 1566 1578
2000.0 1301 | 0.20E-05 0.35E-05| 2072 2086
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Table 4: Interpolation performance

for varying precisions, for ¢ = 25

€ n | Maximum Errors Npol

Roots | Refined | Cheb. | Leg.
0.10E-01 21 | 0.38E-01 0.43E-01 31 34
0.10E-02 23 | 0.37E-02 0.41E-02 34 36
0.10E-03 25 | 0.29E-03 0.31E-03 37 39
0.10E-04 26 | 0.74E-04 0.81E-04 39 41
0.10E-05 28 | 0.44E-05 0.47E-05 41 43
0.10E-06 30 | 0.22E-06 0.23E-06 43 45
0.10E-07 31 | 0.46E-07 0.49E-07 45 47
0.10E-08 32 | 0.95E-08 0.10E-07 47 49
0.10E-09 34 | 0.36E-09 0.38E-09 49 51
0.10E-10 35 | 0.67E-10 0.70E-10 51 52
0.10E-11 37 | 0.21E-11 0.22E-11 53 54
0.10E-12 38 | 0.36E-12 0.37E-12 54 56
0.10E-13 39 | 0.59E-13 0.63E-13 98 61

Table 5: Quadrature nodes for band-limited functions, with ¢ = 50 and &€ = 10~7

This table contains only half of the nodes and weights, in particular those for which the
node is less than or equal to zero; reflecting these nodes around zero yields the remaining
nodes, the weight for the node at —z being the same as the weight for the node at z.

Node

Weight

—.9904522459960804E+00
—.9525601106643832E+00
—.8927960861459153E4-00
—.8186117530609125E+00
—.7350624131965875E+00
—.6452878027260844E+00
—.5512554698695428 E+00
—.4542505281525226E+00
—.3551568458127944E+00
—.2546173463813596E+00
—.1531287781860989E+00
—.5110121484050418E-01

0.2413064234922188E—-01
0.5024347217095568E—01
0.6801787677830858E—01
0.7952155999100788E—01
0.8706680708376023E—01
0.9216240765763570E—01
0.9569254015486106E—01
0.9817257766311556E—01
0.9990914516102242E—01
0.1010880172648715E+00
0.1018214308931439E+00
0.1021735189986602E+00
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Figure 2: Maximum norms of derivatives of prolate spheroidal wave functions for ¢ = 200,
and of normalized Legendre polynomials
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Table 6: Quadrature nodes for band-limited functions, with ¢ = 150 and ¢ = 10~

This table contains only half of the nodes and weights, in particular those for which the
node is less than or equal to zero; reflecting these nodes around zero yields the remaining
nodes, the weight for the node at —z being the same as the weight for the node at z.

Node

Weight

—.9982883010959975E+00
—.9911354691596528 E+00
—.9788315280982487E+00
—.9621348937901911E4-00
—.9418386698454396E+00
—.9186509576802944E+00
—.8931541850293142E+00
—.8658083894041821E+00
—.8369709588254746 E-+00
—.8069187108185302E+00
—.7758670331396409E-+00
—.7439849501152674E+-00
—.7114064976175457E~+00
—.6782391686910609E4-00
—.6445701594098660E+00
—.6104710013384929E+00
—.5760010202980960E-+00
—.5412099413257457E+00
—.5061398697742787E4-00
—.4708268134473433E+00
—.4353018643598344E+00
—.3995921259242572E+00
—.3637214481257228E+00
—.3277110167114320E+00
—.2915798305819667E+-00
—.2553450930388687E~+00
—.2190225363501577E+00
—.1826266945721476 E+00
—.1461711362450572E+00
—.1096686661347072E-+00
—.7313150339365902E—-01
—.3657144220122915E-01
0

0.4374483371752129E—-02
0.9842619236149078E—02
0.1463518300250369E—01
0.1862396111287527E—01
0.2184988739217138E—01
0.2442858670932862E—01
0.2648864579258096E—01
0.2814375940413615E—01
0.2948528624795690E—01
0.3058356160435090E—01
0.3149181066633766E—01
0.3225015506203403E—-01
0.3288893713079314E—-01
0.3343126421620424E—01
0.3389488931551181E—-01
0.3429358206877410E—01
0.3463812513892117E—-01
0.3493704033879884E—01
0.3519712095895683E—01
0.3542382499917732E—-01
0.3562156808557525E—01
0.3579394352776868E—01
0.3594388900778062E—01
0.3607381381247460E—01
0.3618569660385742E—01
0.3628116095737887E—01
0.3636153393399723E—01
0.3642789154364812E—01
0.3648109393796617E—01
0.3652181242257066E—01
0.3655054982303338E—-01
0.3656765531685031E—01
0.3657333451556860E—01
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