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A Psychophysical Study of

Dominant Texture Detection∗

Jianye Lu, Alexandra Garr-Schultz, Julie Dorsey, and Holly Rushmeier

Abstract

Images of everyday scenes are frequently used as input for texturing
3D models in computer graphics. Such images include both the texture
desired and other extraneous information. In our previous work, we
defined dominant texture as a large homogeneous region in an input
sample image and proposed an automatic method to detect dominant
textures based on diffusion distance manifolds. In this work, we ex-
plore the identification of cases where diffusion distance manifolds fail,
and consider the best alternative method for such cases. We conducted
a psychophysical experiment to quantitatively study the human per-
ception of dominant texture, by asking subjects to compare the anal-
ysis and synthesis results of dominant texture detection from different
input images generated using different techniques. We then applied
Analysis of Variance (ANOVA) to determine significant preference of
one technique over another; paired comparison scaling (PC-Scaling) to
quantitatively evaluate technique performance; multidimensional scal-
ing (MDS) to further classify texture samples based on their paired
comparison scales; and correlation estimation to reveal certain conven-
tional texture descriptors that are suitable to predict dominant texture
detection technique performance for texture samples. Our experiment
confirmed that diffusion distance manifolds produce the best results
for texture selection for a large number of image classes. Based on our
experiment, we propose a technique for identifying cases where diffu-
sion distance manifolds may fail, and suggesting the best alternative
method for these cases.

∗This material is based upon work supported by the National Science Foundation under
Grant No. 0528204.

3



input texture

dominant texture synthesis with synthesis with 
mask whole image dominant texture

Figure 1: Dominant texture and homogeneous texture synthesis.

1 Introduction

Texture mapping is a standard technique for adding detailed variation of
color and tone to three-dimensional digital models. Texture maps may be
defined procedurally, or by image exemplars [18]. Images of natural scenes
may be used as sources for exemplars. Finding an image that consists of a
homogeneous texture alone – e.g. an area of grass with no anomalous weeds
or flowers, or a brick wall with no singular cracks or holes – can be difficult.
Natural images need to be edited to extract the desired texture and remove
irrelevant regions of the image. In our previous work [22], we defined dom-
inant texture as a large homogeneous region from an input texture sample;
identifying such regions can improve the quality of texture synthesis results
(see Figure 1.)

There are a variety of approaches to detect dominant textures. In Sec-
tion 7 in [22], we provided digitally rendered results based on four different
techniques, and required viewer’s subjective judgement on quality evalua-
tion. In this work, we explore the evaluation and classification of methods to
automatically extract the region of dominant texture from an image. Based
on the results of a psychophysical experiment, we propose a method for
identifying the best method to perform such texture extraction. This work
represents the last step in the process of our dominant texture detection
system of appearance analysis, synthesis and validation.

In the rest of this report, we first review dominant texture and previous
psychophysical studies in graphics in Section 2. Second, we introduce our
experimental design in Section 3. Next, we detail data analysis with Analysis
of Variation (ANOVA), multidimensional scaling (MDS), and scaling meth-
ods in Section 4. Then we study correlation between technique performance
and conventional texture descriptors in Section 5. Finally, we conclude with
several interesting points and possible improvement in Section 6.
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2 Psychophysical Studies and Computer Graphics

One goal of computer graphics is to provide photo-realistic visual experience,
where our eyes are the ultimate judge of photo-realism. However, currently
we do not have complete knowledge of the human visual system. There-
fore, we have to rely on the response from human visual systems using psy-
chophysics studies. In this section, we briefly review several widely applied
psychophysical experiments and their applications in computer graphics.

2.1 Diffusion Distance Manifolds

Recently we developed a new method for dominant texture detection [22].
The input is an image selected by the user that has a large area of the desired
texture. The method has two phases. First, using Fourier analysis, the scale
of the most common image feature is detected. Second, clusters of image
patches of the size found in the first phase are formed. Each patch of n pixels
is considered an n-dimensional vector. The image patches form a lower-
dimensional manifold in n-dimensional space. The key insight into finding
clusters of patches is to measure the distance between patches using the
diffusion distance between the vectors in patch space. The diffusion distance
accounts not only for the distance between patches within the manifold, but
the number of paths between the patches. This property of the diffusion
distance makes the cluster classification robust (e.g. see [5]). The patches
in the largest cluster of patches form the dominant texture.

In [22], we presented comparisons among the diffusion distance manifold
approach to the normalized-cut texture segmentation [29], and clustering
with Euclidean distances and with using no dominant texture detection on
input images. For images with obvious “contamination” of the dominant
texture, the diffusion distance manifold approach appears to give the best
results. However, for some classes of images, the dominant texture is not
well detected. In this work, we explored in more depth identifying the cases
where the diffusion distance manifold method fails, and considering the best
alternative method.

2.2 Psychophysical Experiments

Ferwerda et al. presented fundamental rules about how to design, conduct,
and analyze perceptual experiments in computer graphics [8, 9]. They also
detailed several methods for data analysis.
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In order to select the right psychophysical experiment and data anal-
ysis method, we first need to consider: What to learn from our subjects?
There are two fundamental psychophysical quantities: absolute/difference
thresholds (that measures the perception limits) and scales (that measures
everything else). If we want to measure perception limits, we can use Fech-
ner’s classical threshold methods; if we want to reveal some quantitative
properties, we can use scaling methods; or, if we want to study the struc-
ture of our data, we can use Multidimensional Scaling (MDS).

In most of the cases, we are interested in some quantitative measure (or,
scales) of our samples. If participants can provide direct numerical values
to their perception, we can use direct scaling methods (such as Equisection,
Magnitude Estimation, and Magnitude Production); otherwise, we use indi-
rect scaling methods (such as Rating Scaling, Paired Comparison Scaling,
Ranking Scaling, and Category Scaling) where we only require participants
to make simple judgments (such as sorting or grouping) and derive scale
values using statistics.

We create a decision tree (as showed in Figure 2) that helps us narrow
down the selection of scaling methods based on our answers to questions so
far. We also need to consider some constraints when we design our experi-
ments:

• Rating Scaling is known to subject to problems of range effects, fre-
quency effects, and distribution effects;

• Paired Comparison Scaling requires significantly more trials when then
number of sample set is large;

• Ranking Scaling requires relatively complicated user interaction;

• Category Scaling requires reliable predefined description of user per-
ceptions (such as bright/dark);

• All direct scaling methods require continuous stimuli under samples;

• Equisection and Magnitude Production also require interactive-time
sample generation given any stimuli, either online or offline.

In this study, we build on earlier work in computer graphics to evaluate
alternative computational techniques and organize the results to form the
basis of a new method. Following the work, such as that described in [15],
we use a two-alternative forced choice (2AFC) method to compare compu-
tational techniques. Using the method given in [6] we convert these judge-
ments into interval scales. Like [25] we use multidimensional scaling (MDS)
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Q: What to learn?

Multi-Dimensional Scaling Scaling Methods Threshold Methods

Indirect Scaling Direct Scaling

Q: What subject input?

dimensions scales thresholds

indirect direct

Ranking Scaling

Rating ScalingPaired Comparison Scaling

Category Scaling

Equisection

Magnitude Production

Magnitude Estimation

Method of Adjustment

Method of Limits

Method of Constant Stimuli

* *

Figure 2: Decision tree that narrows down psychophysical experiment selec-
tion. ∗: See Section 2.2 for further comparison between these methods.

to form a 2D map to organize the results of the experiment. And similar
to [28], which develops a new computational method from psychophysical
results, we use the 2D organization from MDS as the basis of a classification
method for determining the best technique for detecting dominant texture
in a particular image.

2.3 Psychophysics Applications in Graphics

There are two challenges in realistic modeling and rendering.

1. It is difficult to build up a model that looks exactly the same as it
physically should be, either because of our lack of understanding of the
natural processes, or because of the limited computational resources.

2. It is difficult to quantitatively evaluate the performance of existing
models because human perception is too subjective to quantify. For
example, we demonstrated the quality of existing methods in weath-
ered appearance generation is difficult to assess because of the rather
limited validation data (see Table 1 in [23].) Many methods have not
been validated at all. Where validation has been performed, it has
generally not been applied to reproducing the full appearance caused
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by aging effects, but has been focused on particular aspects of the
phenomenon being studied, such as the time of onset of cracks, or the
general shape of patterns being formed.

In either case, psychophysical studies help develop more effective model (by
selecting the right features), more efficient implementation (by computing
only what is necessary), and more effective application and user interfaces
(by measuring user experience).

Psychophysical methods from experimental psychology have been widely
applied in graphics, such as in research work about reflectance models [10,
24, 25], texture models [13, 14, 16], color-to-grayscale conversion [3], tone
mapping [2,4,11,17], visual complexity [26,27], visual equivalence [28], user
interface [19], visual realism [7], and so on (see Appendix A for detailed
description of these work.) Closely related to our work, Longhurst et al.
conducted psychophysical experiments to validate that adding visual imper-
fections (like dust, dirt and scratches) indeed made images perceived more
realistic [20]. All those research topics either lack clear description or lack
quantitative models.

In our work of dominant texture, we had a good description but no
quantitative definition of what dominant texture is, especially when we are
talking about a broad range of natural appearance samples. In addition, it
is difficult to quantitatively evaluate the performance of existing models be-
cause human perception is too subjective to assign numbers. Therefore, we
rely on a psychophysical experiment to quantitatively validate our selection
of diffusion distance manifolds for dominant texture detection.

3 Experimental Method

To compare different dominant texture detection techniques, we apply the
Two-Alternative Forced Choice (2AFC) method to collect a subject’s re-
sponse, where participants are required to select one over the other when
images from the same source sample but with two different processing tech-
niques are presented along with the source sample as reference. We detail a
few experiment elements as follows:

Stimuli

We selected 17 texture sample images that capture natural variances, such as
material weathering effects, or combination of different objects in a natural
scene (see Figure 3.) These images include texture samples we already used
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#1 #2 #3

#4 #5

#6

#7 #8 #9 #10 #11 #12

#13 #14

#15

#16 #17

Figure 3: Texture samples we used in our psychophysical experiment.

in [22]. Given an input texture sample, we follow the processing pipeline in
Section 5 in [22] and apply four different techniques to estimate dominant
texture masks and generate larger uniform texture patches:

1. nCut : Normalized-Cut-based method as discussed in Section 7.4 in [22]
and in [29];

2. Diff : Diffusion-distance-based method as detailed in Section 4 in [22];

3. Eucl : Euclidean-distance-based method as discussed in Section 7.3
in [22];

4. None: No preprocessing and use the whole input image for synthesis.

Graphical User Interface

Participants are shown a series of image sets on the screen. Each set con-
tains three images: a source texture image at the center as reference, and two
texture images generated based on different techniques on the sides. Partic-
ipants are required to decide which of the two side images (left or right) he
thinks better capture the underlying homogeneous texture of the reference
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o  the one on the left

Which of the side images (left or right) looks more similar to the 
basic underlying texture from the reference image in the middle?

reference

o  the one on the right

NextNext

38 comparisons remaining

Figure 4: Graphical user interface for our psychophysical experiment.

image at the center, while preserving realistic appearance of the reference
image, by simply clicking the radio button below that image. Then they
click the “Next” button to proceed to the next set of images. Participants
need to respond before going on to the next set of images, and cannot quit
without responding to all sets of images. There is a prompting at the lower
right corner of the dialog that tells participants how many comparisons are
left to respond. See Figure 4.

Participants

We have 21 participants in our study who are all affiliated with Yale Univer-
sity. All participants are 18 years old or above, but no other demographic
information has been collected due to privacy consideration.

Software and Hardware

The experiment was coded and conducted in Matlab R7.6 on a machine
running Microsoft Windows XP (SP2). We use a 19-in Dell 1901FP flat
panel color monitor and a USB mouse to simplify user interaction.

Procedure

Upon participation, subjects were given an informed consent form and a
standardized written instruction sheet. During the experiment, image sam-
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ples were arranged and presented in a way that any pair of images from the
same source texture but with different processing techniques were displayed
exactly once, and the orders of samples and processing technique pairs were
completely randomized. After participants finished all image comparisons,
they were given contact information in case of further questions.

Pilot Test

As a means of determining the actual experiment, we conducted a pilot
test with our preliminary instruction sheets and test image samples within
a small group of graduate students in the computer graphics lab. We ad-
dressed the following user comments to refine our experimental design:

1. Many participants considered our initial instruction confusing; thus,
their response turned out to be away from our interests. We carefully
redesigned the instruction sheet and asked participants to select the
image that “looks more similar to the basic underlying texture from the
reference image in the middle.” We also provided two visual examples
on the instruction sheet to help further clarify our purpose;

2. Many participants complained that testing time was too long. We
selected only 17 representative texture samples into our actual ex-
periment, and reduced the testing time to around 10 minutes, which
became acceptable for most participants;

3. Many participants complained that they felt lost not knowing how
many comparisons were still left. We added a text indicator at the
low right corner of the dialog, which eased the user anxiety;

4. Some participants suggested adding two more options for image com-
parison: “Both Images Look Good” and “Neither Image Looks Good
Enough.” However, we decided not to provide such extra options and
force participants to select one image over another.

Data Collection

We maintain a 4-D binary matrix R17×21×4×4 to collect subject responses:
when subject p prefers the image with processing technique j over that with
technique i with respect to texture sample t, we assigned 1 to R(s, p, i, j)
and 0 to R(s, p, j, i), then 0 to all R(s, p, i, i) for any s and p. This matrix
is the starting point for our data analysis in the following sections.
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4 Subject Response Analysis

4.1 Analysis with ANOVA

In statistics, analysis of variance (ANOVA) is a collection of methods to
compare variables based on their variances. It has wide applications in
data analysis in psychophysical experiments. In this section, we assume
the responses from different subjects to a particular texture sample, with a
particular technique are distributed as a normal function, and we study the
statistical significance between techniques by a series of two-sample t-tests
with a threshold of α = 0.05, implemented by function ttest2 in Matlab.

• Across all participants and all texture samples: We summed up
responses for a particular technique j to a scalar Rj

1
=

∑
s,p,i R(s, p, i, j)

and run the test between each of them. We found that textures pro-
cessed by Diff were selected significantly more than those by None
(p < 0.001), nCut (p < 0.001), and Eucl (p < 0.001);

• Across participants but separated by texture samples: We
summed up responses for a particular texture sample s to a vector
Rs

2(j) =
∑

p,i R(s, p, i, j) and run the test between each of them. Fig-
ure 5(a) summarizes technique preferences, and Figure 6 details sta-
tistical significance we found with respect to different input texture
samples. Most samples agree on the best performance of Diff ;

• Across texture samples but separated by participants: We
summed up responses from a particular participant p to a vector
Rp

3
(j) =

∑
s,i R(s, p, i, j) and run the test between each of them. Fig-

ure 5(b) summarizes technique preferences, and Figure 7 details statis-
tical significance we found with respect to different participants: the
majority agreed on the best performance of Diff, while participants
#1, #4, #6 as well as #7 showed no preference, and participants #2,
#16 as well as #21 provided almost opposite replies from most others.

4.2 Analysis with MDS

In this section, we apply Multi-Dimensional Scaling (MDS) on subject re-
sponse to evaluate response consistency across different texture samples and
across different participants. MDS is a set of techniques to visualize informa-
tion in high dimensional space. One of its variations, metric MDS, projects
data points to a low-dimensional configuration while preserving pairwise
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000None

1409Eucl

171414Diff

400nCut

NoneEuclDiffnCut

000None

1409Eucl

171414Diff

400nCut

NoneEuclDiffnCut

(a) ANOVA based on 17 textures

323None

701Eucl

12712Diff

631nCut

NoneEuclDiffnCut

323None

701Eucl

12712Diff

631nCut

NoneEuclDiffnCut

(b) ANOVA based on 21 testers

Figure 5: Technique preferences based on ANOVA. Each number in the cell
indicates how many textures or testers prefer the technique to its left rather
than the technique to its top. See Figures 6 and 7 for detailed statistical
significance for each texture sample and each tester.

distances. We consider pairwise Euclidean distances between user response
and apply metric MDS (shortened as “MDS” hereafter) for subject response
analysis.

• MDS across participants: We define a 2-D distance matrix Dparticipant
21×21

with entries of pairwise distances between any two participants, as

Dparticipant
m,n = |R(s, pm, i, j), R(s, pn, i, j)|2, m, n = 1, 2, 3, 4; (1)

where |·, ·| is the Euclidean distance. Then we apply MDS on this
matrix to extract a 2-D configuration. Figure 8 shows the pairwise
distance matrix Dparticipant and its 2-D configuration, where we can
clearly see that participants #2, #16, and #21 form a small cluster
away from all others. This confirms our observation in Section 4.1
that those participants have quite different response patterns from all
others.

• MDS across texture samples: Similarly, we define another 2-D
distance matrix Dsample

17×17
with entries of pairwise Euclidean distances
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Figure 6: Statistical significance between techniques nCut, Diff, Eucl, None
across participants but separated by texture samples. Notation of X > Y
means that texture sample generated by technique X is significantly pre-
ferred than that by technique Y . Comparison not listed were found not
statistically significant.
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Figure 7: Statistical significance between techniques nCut, Diff, Eucl, None
across texture samples but separated by participants. Notation of X > Y
means that texture sample generated by technique X is significantly pre-
ferred than that by technique Y . Comparison not listed were found not
statistically significant.
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(b) Participants on a 2-D MDS configuration

Figure 8: Participants distribution on a 2-D MDS configuration. We
can clearly see outliers of participants #2, #16 and #21 from bright
rows/columns in (a) and as an isolated cluster in (b).
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between any two samples, as

Dsample
m,n = |R(sm, p, i, j), R(sn, p, i, j)|2, m, n = 1, 2, 3, 4. (2)

We then repeat our analysis as above, and plot pairwise distance ma-
trix Dsample and texture sample distribution on MDS 2-D configu-
ration in Figure 9(a). It is not clear how such texture images are
organized: there is no obvious image clustering or sorting pattern we
can find from this figure.

• MDS across selected texture samples: Finally, we exclude re-
sponse from participants #2, #16, and #21, then repeat the previous
analysis. The resulted texture sample distribution in the new 2-D con-
figuration (as showed in Figure 9(b)) seems not significantly different
from Figure 9(a) with all participants. We argue that our MDS-based
analysis approach is very robust; its analysis result cannot be skewed
by up to 3/21 = 15% of outliers among our test participants.

4.3 Analysis with Scaling

In this section, we assume subject response distributed as a normal function
and apply Thurstone’s Law of Comparative Judgments, Case V, to derive
interval scales as quantitative measure of technique performance from pair-
wise ordinal comparisons [6].

Figure 10 illustrates the work flow of paired comparison scaling, us-
ing texture sample #10 in Figure 3 as an example: we first tabulate user
response into a frequency matrix Mf (as shown in (a)), where each en-
try Mf (i, j) shows how many participants prefer synthesis result based on
technique j than that based on technique i given two results presented side-
by-side; then we convert Mf into a proportion matrix Mp by dividing each
entry in Mf by the number of participants (as shown in (b)), and estimate
a matrix MiCDF where each entry is the inverse cumulative distribution
function (CDF) associated with the standard normal distribution (as shown
in (c)); the column averages of MiCDF provide a quantitative measure of
relative performance between all four techniques on this texture sample (as
shown in (d)): higher the better.

Figure 11 shows scale values of the four techniques with respect to 17
texture samples, from which we can draw some preliminary conclusions:

• Diff has the best or above average performance for most texture sam-
ples;
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(a) Textures on a 2-D MDS configuration with all participants
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(b) Textures on a 2-D MDS configuration without participant outliers

Figure 9: Texture samples distribution on 2-D MDS configurations (a) with,
and (b) without responses from participant outliers #2, #16, and #21.
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(a) frequencies (b) proportions

(c) inverse CDF (d) scale values
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0.76190.90480.7619None
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nCut = 0.2147

Eucl = -0.0149

None = -0.6835

Figure 10: Paired comparison analysis on texture sample #10. Diffusion-
distance-based technique (Diff ) is the best among the four techniques.

• Eucl and nCut have mixed performances;

• None has poor performance for more than half of the samples, except
for samples that have smooth transition across regions (#4, #9, #12,
#14) and that has few outliers (#15);

• Participants cannot tell much difference between all techniques on sam-
ple #6 (“cracks”).

To further analyze texture samples based on their responses to differ-
ent techniques, we assign a four-element vector to each texture sample by
concatenating scale values from the four techniques, and use MDS to study
their distribution on a 2-D configuration (as showed in Figure 12). We also
list correlation coefficients between these vectors in Table 1, based on which
we have the following observations:

• Diff successfully covers most texture samples and is the clear win-
ner among the four techniques. This is further validated from the
correlation matrix showed in Table 1, where no significantly positive
correlation is found between Diff and any other technique;

• nCut and Eucl have almost opposite classifiers, which means they pre-
fer very different input texture samples and can serve as complements
with each other (!). This observation is further validated by the ma-
trix showed in Table 1, where correlation coefficient between nCut and
Eucl is close to -1;

19



0 2 4 6 8 10 12 14 16 18
-1.5

1

-0.5

0

0.5

1

1.5
scales from paired comparison:

texture sample index

sc
al

es
nCut Diff Eucl None

Figure 11: Paired comparison scaling values of the four techniques with
respect to all 17 texture samples.

nCut Diff Eucl None

nCut - 0.1059 -0.7237 -0.2426
Diff 0.1059 - -0.2532 -0.4534
Eucl -0.7237 -0.2532 - -0.3279
None -0.2426 -0.4534 -0.3279 -

Table 1: Linear correlation coefficient matrix between paired comparison
scaling values using different techniques, with diagonals of 1’s omitted. The
only significant correlation is −0.7237 between techniques nCut and Eucl.

• None has poor performance for most of the texture samples. It is also
negatively correlated with all three other techniques, which put it at
the bottom among the four;

• Texture samples around the crossing area of three dotted lines are
difficult to call: scaling values do not have much variances among
the four techniques for texture samples #6 and #11. Those are crack
pattern and a pattern with smooth transition texture, similar to failure
cases we listed in Figure 8 in [22].

5 Texture Features

In Figure 12, we lay out texture samples on a 2-D plane based on human
responses to different dominant texture detection techniques. We would like
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(a) 2-D configuration of texture samples with MDS based on scaling values
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Figure 12: Texture samples distribution based on scaling-value-based MDS.
(a) 2-D configuration of texture samples. Dotted lines are classifiers that
roughly divide texture samples into two parts: those with high scaling values
(on the side of the dotted lines with “+” marks) and those with low scaling
values (on the side of the dotted lines with “−” marks). Lines in different
colors indicate classifiers for different techniques: blue for nCut, red for Diff,
green for Eucl, and black for None. (b)–(e) Scaling values interpolation in
the 2-D configuration space with respect to different techniques. Colors
change from red, yellow, green, cyan, to blue as scaling values decrease.
Classifiers in (a) roughly correspond to the 0-value contours in (b)–(e).
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to identify regions where Diff is likely to fail (e.g. textures S15 and S12),
and suggest an alternative technique (perhaps None for textures similar to
S15 and Eucl for textures similar to S12.) However, it is not clear how
to align texture distribution patterns we found with conventional texture
features. Solving this problem would likely suggest a way to identify the
best technique to detect dominant texture for a new texture sample, and
provide more insights about the black box through which a human perceives
natural appearance.

To address this problem, we first select a few texture descriptors:

• 6 color descriptors: we consider the average red, green, blue, hue,
saturation, and intensity values of each image;

• 9 dimensionality descriptors: we consider the patch size, linear di-
mensions, diffusion manifold dimensions, and Gaussian kernel sizes as
discussed in [22];

• 484 co-occurrence matrix descriptors: we convert input textures into
8-level grey images, create co-occurrence matrices with offsets up to
10 pixels from each direction, and study the Contrast, Correlation,
Energy, Homogeneity properties of those co-occurrence matrices [12];

• 120 FFT descriptors: we apply 2-D Fourier transform to the grey im-
age and collect response for the first 30 pixel units along the directions
of 0, 45, 90 and 135 degrees.

Next, we assume there exists a monotonic function that describes the re-
lationship between a texture descriptor and the performance of a technique,
without making any other assumptions about the particular nature of the
relationship. To verify this assumption, we estimate Spearman’s rank cor-
relation coefficient, ρ, between any pair of texture descriptor and technique
performance, as shown in Figure 13.

We can see that the performance of Eucl is easier to predict using some
dimensionality descriptors. For example, we define the following quantity
to describe the nonlinear nature of a texture image:

DimNonlinear = 1 − DimDiffmap/DimPCA999, (3)

where DimDiffmap is the manifold dimension defined in [22], and Dim-
PCA999 is the number of eigen-patches needed to preserve 99.9% energy
based on PCA; the larger the value of DimNonlinear is, the more likely a
nonlinear manifold is embedded in the feature space. The negative corre-
lation between DimNonlinear and scale-Diff, as found in Figure 13, reveals
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Figure 13: Spearman’s rank correlation between texture descriptors and
technique performance (scale-MDS-0 and scale-MDS-1 are the coordinate
of each texture image in Figure 12.) Coefficients are colored from white to
red with increasing positive values, and from white to blue with decreasing
negative values.

23



nCut Diff Eucl None MDS-0 MDS-1

DimNonlinear − +

Contrast − + −

Correlation − +
Energy + − +

Homogeneity + −

Table 2: Qualitative correlation between texture descriptors and technique
performance for dominant texture detection. “+” indicates positive corre-
lation, “−” indicates negative correlation, and an empty cell indicates that
no significant correlation is found.

that the Euclidean-distance-based technique will not work for texture images
characterized by manifolds, which is consistent with our intuition.

Moreover, we notice from Figure 13 that scaling values of all four tech-
niques have relatively high correlation with co-occurrence matrix properties,
as summarized in Table 2. Especially for nCut and Diff, which involve com-
plicated and non-linear operations, those co-occurrence matrix properties
better predict their performance while simple color descriptors and Fourier
transform coefficients fail.

These observations suggest a method for determining an appropriate
dominant texture detection technique for a given texture image by estimat-
ing technique performance based on proper texture descriptors as studied in
Figure 13. Furthermore, as shown in the two rightmost column in Figure 13,
we can also use the co-occurrence matrix property values to predict the po-
sition of a texture image in the 2-D configuration in Figure 12, using the
average Contrast value for the first coordinate and the average Energy value
for the second. Once we place a texture image in such a 2-D configuration,
we can select the appropriate technique based on its position with respect
to all of the classifiers.

6 Conclusion

Based on our analysis of ANOVA and scaling, we quantitatively confirmed
that the diffusion-distance-based technique (Diff ) proposed in our previ-
ous work [22] works for a broad spectrum of texture samples and is the best
among all four techniques. Textures of cracks and those with smooth transi-
tions are difficult to analyze; none of the four techniques gives us significantly
better result. Also, the combination of paired comparison scaling and mul-
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tidimensional scaling (MDS) provides quantitative and robust measurement
of technique performance in our psychophysical experiment.

Furthermore, we studied the correlation between scaling values and dif-
ferent texture descriptors, and discovered certain dimensionality descriptors
and co-occurrence matrix properties that can be used to predict the tech-
nique performance. The correlation is qualitative, but it suggests a way to
select the appropriate dominant texture detection technique, given a new
texture image.

Our work is preliminary and suggests the need for additional studies
with more texture descriptors and a wider range of natural texture images.
In addition, we can design a more reliable experiment that avoids texture
synthesis and focuses only on difference that is due to distance metric selec-
tion.

This experiment is our attempt to include the study of the perception
process (as illustrated in Figure 1-1 in [21]) which was simply ignored in
most previous work. We can further extend such validation throughout the
pipeline of appearance capture, analysis, and transfer. Such psychophysical
study will help us gain insights before model development, select algorithm
and tweak parameters during model development, and evaluate our models
after model development.

A Collection of Psychophysical Studies in Graph-

ics

Below, we list a few studies in graphics where researchers designed and
conducted psychophysical experiments to gain insights of human perception,
to build computational models, to accelerate certain computation, and to
validate quantitative models.

• Reflectance Models: Pellacini et al. developed a psychophysically-
based reflectance model with two perceptually meaningful uniform di-
mensions [25]; Matusik et al. showed that there are consistent transi-
tions in perceived properties between large set of BRDF samples [24];
Filip et al. studied BTF perception quality and its data compression
parameters, and proposed a perception-related metric to automati-
cally determine compression rate on given materials preserving visual
fidelity [10];

• Texture Perception: Julesz examined whether there are texture chan-
nels in human visual system by showing observers computer generated
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patterns, and found our vision systems are tuned to pick up features
of different orientations and spatial frequencies [16]; his work was later
exploited for texture synthesis by Heeger et al. [13]; Holten et al. de-
rived a three-dimensional model (including contrast, spatial frequency,
and spectral purity) for isotropic textures that is perceivably compa-
rable to the RGB model [14];

• Color-to-Grayscale Conversion: Čad́ık evaluated the accuracy and
preference of seven state-of-the-art color-to-grayscale conversions with
subjective experiments, using multifactorial analysis of variance (ANOVA)
and paired comparison scaling [3];

• Tone Mapping : Several researchers conducted separate work of tone
mapping algorithms comparison in terms of overall preference and ren-
dering accuracy for high dynamic-range (HDR) scenes [2,4,17]; Grave
et al. compared tone mapping operators specifically for road visibil-
ity [11].

• Visual Complexity : Ramanarayanan et al. developed psychophysical
experiments to explore overall properties of aggregates (including nu-
merosity, variety, and arrangement), derived metrics to predict when
two aggregates have similar appearance, then applied the result to re-
duce modeling complexity [26,27]. Although the actual problem might
be more complicated than a few axes they introduced, their research
work, along with other practical applications under development, is
believed to be an important step towards realistic rendering [1];

• Visual Equivalence: Ramanarayanan et al. explored how object ge-
ometry, material, and illumination interact to provide information
about appearance, then proposed visual equivalent predictors to im-
prove rendering efficiency by properly blurring and warping illumina-
tion maps [28];

• User Interface: Lécuyer et al. validated and fine-tuned the Size and
Speed Technique for simulating pseudo-haptic bumps and holes by a
series of psychophysical experiments [19].

• Visual Realism: Elhelw et al. investigated the perception of visual
realism of static images with different visual qualities based on eye
tracking, and categorized image attributes affecting the perception of
photorealism [7].
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