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Abstract: We describe a fault-tolerant distributed storage system for local area networks.
Our system implements Persistent, Associative, Shared Object (PASO) memory. A PASO
memory stores a set of data objects that can be accessed by associative search queries
from all nodes in an ensemble of machines. This approach to distributed memory has
been used in a number of systems, and provides a convenient and useful model for parallel
and distributed applications. PASO memory is amenable to adaptive implementations that
relocate data objects in response to changing network configurations and access patterns,
making it a good candidate for an efficient, fault-tolerant storage system. The paper defines
the semantics of PASO memory, gives a basic design strategy, discusses memory primitives
and their costs, and discusses adaptive techniques for improving efficiency.

1 Introduction

This paper presents PASO, a Persistent, Associative, Shared Object memory, and stud-
ies algorithms that implement fault-tolerant and efficient PASO memories using adaptive
algorithms for data replication.

PASO memories store data objects that can be accessed by associative search queries,
based on “search criteria”, from all nodes in an ensemble of machines. An object in a PASO
memory is a tuple of values drawn from ground sets of basic data types. The memory con-
tains a collection of objects, each of which has an arbitrary number of fields. Programs ma-
nipulate the PASO memory through three atomic operations: insert, read, and read&del.
A PASO memory is associative in the sense that objects are accessed by pattern-matching.
For example, a read takes an object template (search criterion) specifying acceptable val-
ues for each field, and returns any one object matching that template. There is no modify
operation; modifying a field is logically equivalent to destroying the old object and creating
a new one. There is no loss of generality, since a mutable distributed data structure can be
built out of collections of immutable atomic objects. The memory is “shared” in the sense
that any object can be read or deleted by any participating process. It is “persistent” in the
sense that once an object is inserted into the memory, it remains there until it is deleted,
irrespective of whether its creating process is still alive.

A PASO memory is built on a network of n machines, each of which has local memory
and supports a set of compute processes and one memory server. A compute process
executes a user program that generates requests for access to the PASO memory by means
of the basic PASO operations. A memory server manages some collection of PASO objects
stored in the local memory of the machine and is responsible for serving the PASO requests
generated by compute processes. The primary type of fault we consider are crash errors, in
which a machine crashes and all processes on that machine are halt.

Shared memories that qualify informally as PASOs have been used as coordination lan-
guages in a variety of parallel programming systems, e.g., in the context of C (10], Scheme
[18], Prolog [9], distributed object-oriented systems [24], Modula-2 (8], program visualization
systems [25], math libraries [11], and as part of other coordination mechanisms (1, 22]. They
have proven to be an effective basis for concurrent programming in many multi-processing
environments [10].

Despite these various implementations, there is no widely accepted formal semantics
for PASO memories (often referred to as “tuple spaces” in the literature). One of the




contributions of this paper is a simple semantics for PASO systems that covers most tuple-
space implementations. The fact that informal PASO memories are a pragmatic success
makes them good candidates for formal, algorithmic, and theoretical research that aims at
improving them. Kambhatla and Walpole make a case that tuple spaces are “a particularly
suitable model for fault-tolerant applications” [20], because of the “highly asynchronous” or
“uncoupled” nature of the tuple space model. (Because processes are mutually anonymous
and never deal with each other directly, it becomes relatively simple to substitute a new
process for a failed one.)

A PASO memory that is able to tolerate many rapidly occurring failures is especially
useful in designing parallel algorithms that adapt to changing availability of computational
resources—adaptive parallelism [15]. Today’s ubiquitous work-station networks are huge
reservoirs of power and wasted potential, reservoirs that can be tapped by adaptive paral-
lel programs designed to gain or lose processing units during the computation. Adaptive
fault-tolerant techniques can allow a distributed application to retire gracefully from work-
stations that are being reclaimed for personal use, and expand onto nodes that become
available. It has been argued that adaptive-parallel programs executing on networked mul-
tiprocessors will be one of the most important arenas for high-performance computing over
the next decade[16] .

In fault-tolerant systems data must be replicated to survive machine failure. The main
drawback of fault-tolerant systems has been that the benefits of preserving data in the face
of failures may be outweighed by the loss of efficiency when errors are infrequent. Recent
research in on-line algorithms using competitive analysis [23, 21] has presented schemes for
adaptive file replication and migration that reduce overall message complexity in distributed
file management (e.g. [3]). This paper suggests using the same adaptive on-line techniques
to provide both efficiency and fault-tolerance. We consider adaptive object replication in
PASO memory management, with the goals of reducing response time, message cost, and
total workload.

We assume a basic communication and coordination mechanism based on the ISIS {7, 17]
model of virtual synchrony. The mechanism is discussed in further detail in Section 3. ISIS
offers elegant tools to deal with faults, and basing our PASO system on ISIS allows us to
focus on the issues that are of main interest to us, namely, efficient replication of objects.
The ISIS fault model covers a large range of frequently occurring faults, and the ISIS system
is widely used. A prototype PASO system built on top of ISIS is currently running at Yale.

In previous work, Xu and Liskov [28] discuss the use of the virtual partition algorithm
to maintain the consistency of tuple replicas in the tuple space. Bakken and Schlichting
[4, 5] assume a reliable tuple space, and propose a new atomic tuple-swap operator that
can be used to build reliable applications of a certain type (“bag of task” applications).
Anderson and Shasha’s [2] work on Persistent Linda includes support for transactions, but
doesn’t focus on the problem of reliable distributed tuple spaces. Kambhatla and Walpole
[20, 27] discuss reliable tuple spaces, and the use of a reliable tuple space to build a reliable
application. The degree to which this previous work is generalizable is not clear, however,
since current implementations of tuple spaces restrict searches in various ways that are
not true of our more general PASO model. This becomes quite significant when making
a system fault tolerant, since permitting general search criteria implies a need for more
synchronization among the processors, which is harder to achieve in the presence of faults.




In addition, these papers do not directly address efficiency considerations.

The paper is organized as follows. Section 2 presents the semantics of the PASO. Section
3 describes the physical model, fault model, and communication model. Section 4 presents a
family of algorithms that implement PASO primitives and their cost. The algorithms in this
family differ in their assignment of the “write groups” which determine on which machines
objects are replicated. Section 5 discusses adaptive strategies for assigning write groups
whose goal is to reduce the overall workload. The strategies are analyzed using competitive
analysis.

2 Semantics of PASO

The PASO model is similar to the Linda model. Unfortunately, there is no formal semantics
for Linda that is accepted and used [14]. Recently, Jagannathan proposed a semantics for
multiple tuple spaces [19], which does not extend to the multi-process case. The semantics
outlined here was derived by studying operational Linda and Network Linda implementa-
tions; hence, it captures the semantics of the currently running Linda-like systems. A full
description of the semantics is in [29].

The set of objects is denoted by O. Each object has a “life”. It is initially prenatal. If
inserted, the object becomes live. If read&deled, the object becomes dead. Search criteria,
used as arguments in read and read&del commands, are predicates over (). We assume a
set P of processes, each executing some program. The programs are “standard” programs
(e.g., C) augmented with the special PASO primitives: insert, read, and readdel.

A global state of a PASO system consists of the local states of each of the processes and a
mapping from the objects to their state. An initial state is a global state where all objects
are prenatal, all processes are at their initial local states, and the value of the local variables
of each process is as indicated by the program code.

All non-PASO commands are assumed to be atomic. Each PASO command is associated
with two atomic commands, its issuing, and its return. A joint transition is defined by a set
of (possibly null) atomic commands for each of the system’s processes. Each joint transition
defines a (global) state-to-(global) state successor function. For the non-PASO commands
in the joint transition, this successor function is the obvious one.

A run of a PASO system is a sequence of alternating global states and joint transitions,
starting with a state, and, if finite, ending with a state, such that the first state is initial
and every state is the successor of the previous one under the successor function of the joint
transition in between them.

Properties (A1)—(A3) describe the life-cycle of objects in every run of a PASO system.
Property A1 describes the life cycle of an object in the run. Property A2 describes what in
the run determines an object’s life. Property A3 describes the processes in the run.

A1l (a) A prenatal object may remain so forever or become alive.

(b) A live object may live forever or die.
(c) A dead object remains dead.

A2 An object may become alive only after it is inserted. It may later die if returned
from an read&del. Moreover, there is at most one insert(o) command and at
most one read&del command that returns o.




A3 The individual run of each process as determined by the run is indeed a plausible
run of the process.

It remains to describe the rules of each of the PASO commands. From A2 it follows that
an object becomes alive only after an insert command. The rules of the insert commands
require objects to become alive after being inserted. A read command returns either fail
or an object that satisfies the search criterion and is alive at some time in between the issue
and the return of the read. It may return fail only when there is no object that satisfies
the search criterion and is consistently alive from the time the read is issued until the read
returns. The rules of the read&del command are similar to the rules of the read command,
but, in addition, require that an object that is returned from a read&del dies sometimes
after the issue of the read&del. Note that the read and read&del operations defined here
are “non-blocking”. The operations defined in Linda are blocking. The semantics of the
~ blocking version of read and read&del is rather straightforward. In Section 4, we discuss
how to implement them.

3 The Physical Model

This section defines the fault model and the basic communication primitives and their cost.
The communication model described here is motivated by ISIS [17], which offers correct
and efficient implementation of these communication primitives. In fact, the PASO system
now being implemented at Yale is running on top of ISIS.

3.1 Fault Model

A PASO system consists of a set Mach of machine. Let n denote the size of Mach. Each
M € Mach supports a a set of processes which are either compute processes or memory
servers. A memory server manages some collection of PASO objects stored in the local
memory of the machine. For simplicity, we assume that every M € Mach supports a single
memory server. Machines may crash and leave the system, and then be fixed and re-join
the system.

We expect our system to tolerate up to A simultaneous crash crashes of machines where
A < n is some fixed constant. When a machine crashes, all its local memory is erased,
and, consequently, the memory server hosted on it fails. When a faulty machine re-joins
the system, the memory server hosted on it performs an initialization phase during which
it obtains copies of the objects that it supports.

The time the initialization phase lasts depends on the the set O of objects the PASO
memory can handle, the topology of the network, and the set SC of search criteria used in
read and read&del operations. We assume it is bounded above and below. Both upper and
lower bounds on the initialization phase are expected to be several minutes. The roughly
correspond to the maximal and minimal time it takes to boot a machine. '

A machine is considered faulty while in its initialization phase. Hence, we assume that
at any time, there are at least n — A servers in the system that are past their initialization
phase and are hosted on operational machines.




3.2 Synchronization

The main tool for achieving communication and synchronization in the system is the notion
of “groups”, which are essentially equivalent to the ISIS groups ([17]).

Let Names be a set of group names. Let group: Mach — oNames e o partial function
that maps every operational machines to set of named groups. The group function is
dynamic—at any point in a run, it may assign different groups to different machines. Group
membership is determined by both the servers, who can leave and join groups at will, and
by crashes that force servers on crashed machines to leave the groups they belong to.

To leave a group g-name, a server residing on an operational machine M (where g-name €
group(M)) can execute a g-leave operation. To join a group g-name ¢ group(M ), the server
can execute a g-join operation. Both g-leave and g-join operation have two parameters: the
name of the groups to be left or joined, and a name of a procedure that is executed to
terminate of initiate the group change.

All communication occurs by means gcast operations: The operation gcast(g-name, msg, resp)
broadcasts a message msg to each server currently subscribing to the group g-name. It is
assumed that each of the servers that receives the message processes it and produces a
response. One of these responses is sent to the issuing process and stored in (the local
variable) resp. While this definition may seem unintuitive, in our model all responses are
equal, hence, sending only one of them is used for efficiency.

The gcast primitive is assumed to be reliable. Namely, it eventually delivers the des-
ignated message to all group members. Moreover, the messages are delivered to all group
members in the same order. Finally, all gcasts from the same process to the same group
reach the group’s members in the order they are sent. We assume that the groups are al-
ways in a stable state when receiving a gcast—memory servers cannot join or leave a group
during a gcast to the group. In addition, all g-leave and g-join events to the same group are
notified to all group members, in the same order they occur. In fact, every group member
receives all message addressed to the group, and g-join and g-leave operations to the group
in the same order. (The ISIS primitives provide for all of these properties.) Thus, there is
some synchronization (called “virtual synchrony” in ISIS) in the system guaranteed by the
group structure.

3.3 Communication Cost

We assume that the cost of transmitting a message msg is msg-cost{msg) = a + |msg|
where a and § are some constants. Hence, msg-cost(msg) consists of an initial startup cost
a and a cost which depends on the msg’s length.

We assume no multicasts are available. (A multicast allows a single message to be
sent to multiple recipients using only one bus transmission; this assumption is pessimistic,
but is the actual situation in standard Unix work-station Ethernet systems.) Executing
gcast(g-name, msg, resp) then involves sending msg to all members of g-name and gather-
ing responses from them. Since only one of the responses is sent to the issuing process, and
this response is stored in resp, the cost of transmitting this single response is a + (|resp].
However, this response is sent only after all members of g-name have finished processing
their copy of msg. We therefore assume that each of g-name’s members sends an empty mes-
sage to some designated server (g-name’s “leader”) indicating that it has finished processing




msg. Putting it altogether, we get

msg-cost(gcast(g-name, msg, resp))

= |g-name|(a + B|msg|) + |gname|a + a + B|resp|
= a(2 - |g-name| + 1) + B(|msg| - |g-name| + |resp])
~ |g-namel(2 - a + A(/msg| + [resp]))

where |g-name| = |{M € Mach : g-name € group(M)|.

4 A Basic Strategy

The section presents a family implementations of PASO systems. Without loss of generality,
assume that every object can be inserted once. This is easily guaranteed, for example, by
attaching to each object some unique identification signed by its creating process. Section
4.1 introduces the write groups. The write groups determine where objects are stored and
how queries are answered. Section 4.2 describes the algorithms run by the memory servers,
and Section 4.3 describes the macro expansions of the PASO primitives.

4.1 Write Groups

Objects are stored and searched for by partitioning them into object classes and associating
a write group with every class. Each server of the write group stores every live object of
the object class. All requests to insert a particular object are made to the write group of
the (object class of the) object. All requests to read of remove an object based on a search
criterion are made to write groups of classes that may include object satisfying the search
criterion.

Let C be a set of object classes. Let obj-cls: O — C be a function that partitions O into
set of object classes, and for every global state g, let wg,:C — Names be a function that
maps every object class to a group, whose members replicate the objects in the class. to be
replicated.

From the definition it follows that the write groups of a class may change over time. In
addition, as described in Section 3.2, group membership can change over time. To guarantee
‘the correctness of the system, at any time, each living object should have at least one copy.
We therefore require that in every run, in every global state g in the run, if there are £ < A
memory servers that have failed, then for all C € C, |{M € Mach : wg,(C) € group(M)}| >
A — k for every class C € C. This condition is called the fault tolerance condition.

Let SC be the set of search criteria. Each sc € SC is a subset of object. Let sc-list: SC —
C* be such that sc-list(sc) is an exhaustive list of classes that may contain objects in
sc. Formally, we require that for every sc € S, if sc-list(sc) = Co,Cy,...,Cp, then sc N
obj-cls™}(C) # 0 for each 1 = 0,...,n, and sc C (U~ obj-cls™1(C).

4.2 Memory Servers

For every machine M € Mach, the memory server that resides in M supports three atomic
operations: storeps takes an object and stores it in the memory. Objects are stored
according to their object class and in the order in which the stores occur. mem-readys -




takes an object class C and a search criterion sc, and returns an C-object in sc if M
has contains such an object, or fail otherwise. removeps has the same parameters as the
mem-read; It returns the oldest C-object in M satisfying sc and removes it from M if such
an object exists, and otherwise it returns fail.

Recall (Section 3) that servers join groups by performing some “initiation” procedure.
The procedure is such that each server receives the objects that are in the classes supported
by the group it joins. Therefore, when M performs g-join to g-name, one of g-name’s
servers, say M’, is chosen to supply M with the appropriate information. That is, M’ sends
M all the objects that it has in classes whose write group is g-name. Until this transfer is
completed, no communication to g-name is to be processed by any of g-name’s members.
Hence, when M becomes a member of g-name, its state is consistent with the state of all
g-name’s object with respect to the information (i.e., classes) that g-name is in charge of.

When M leaves g-name (by performing g-leave), it should “erase” all the g-name infor-
mation it has. The algorithms presented below would work even if servers do not erase the
relevant information when they leave groups, however, for sake of space efficiency, servers
should erase all information when leaving a group.

Finally, when a machine is restarted, the memory server residing on it should determine
which groups it belongs to, and, one by one, g-join these groups.

4.3 Implementing PASO Primitives

We next describe the expansion of each of the PASO macros: insert, read, and read&del.
We chose to describe the algorithms in details since their exact description is of crucial
importance to both their correctness proof and their cost analysis. There are three cost
measures associated with each of the PASO primitives: msg-cost measures the message cost,
time measures the amount of time required to complete the macro, and work measure that
amount of work the macros requires. Roughly speaking, time is the maximum amount of
time any single server spends on completing the macro, and while work is the sum of the
times the various severs spend to complete the macro. The complete macro expansions are
described in Appendix A.

When a process wants to insert an object o in memory, it issues an insert(o) command.
When an insert(o) is issued, the message “store(o)” is gecasted to wg(obj-cls(0)). No
response is expected.

To read an object based on a search criterion, a process p computes a the search list
of the search criterion. Let M be the memory server residing on the same machine p is
on. The process p then goes through the classes in the list. For each class C that M is a
member of its write group, M performs mem-read(sc,C) and returns the result to p. For
each class C' that M is not a member of, p gcasts wg(C) a request to mem-read(sc,C). The
procedure terminates when p receives some non-fail response or when all classes return a
fail response (and then read returns fail.)

To implement a blocking read (see Section 2), one can use our non-blocking read and
busy-wait while cycling among the classes. This strategy may be inefficient when only a
small number of the requests are expected to be satisfied. An alternative to busy-waiting
is to leave read-message markers at nodes supporting each class. There are also hybrid
approaches in which read-markers are left and then expired.




r H msg-cost [ time | work
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Figure 1: Costs of PASO Operations

Since the size of the write groups is unbounded, and a read entails no changes to the
memories, there is some inefficiency involved in gcasting the read requests to all members of
the write groups. Suppose that for every class C there is a read group, rg(C) C wg(C), such
that at every point A—k < |rg(C)| < A+1 where k is the number of non-operational machines
in the system. Note that rg(C) satisfies the fault tolerant condition. Then obviously it
suffices to geast read requests only to the members of the read group.

The read&del routine is similar to the read routine. However, since all the servers in
the write groups have to remove an object once an object is found, there is no reason to
deal with requests locally. Just like the read, a blocking read&del can use busy-waiting
and suffers from the drawbacks discussed above. To use markers here is more complicated
than in the previous case, and will be studied further in the future.

The cost of all the operations is summarized in Table 1. Since both read and read&del
are implemented by a sequence of blocking operations, when measuring their cost we con-
sider the cost of performing a single non-blocking operation. In Table 1, g denotes the set of
processes to whom the gcast is directed, live(C) denotes the set of live objects in the object
class C, |r| is the size object returned (in read and read&del) if such an object is found and
0 when the operations fails, I(.) is a function that determines the time complexity of the
store operation, Q(.) is a function that determines the time complexity of the mem-read
operation, and D(.) is a function that determines the time complexity of the remove oper-
ation. If a read group is used in read operations, then the |g| in the third entry of Table 1
should be relaced by a number that is bounded from above by A + 1.

In the full version of the paper we prove:

Theorem 1 Assume that at any point, for every object class C, wg(C) satisfies the fault tol-
erance condition. Then, the PASO implementation above satisfies the semantics of Section?.

5 Optimizing Performance

In this section we present and analyze some simple adaptive algorithms intended to improve
the performance of the system. We study the total work incurred during a run of the system.
On a bus-based local area network, the total message cost is a lower bound on the time to
complete the run, since messages must be sent one-at-a-time. The total work divided by
the number of processors is also a lower bound on the time to complete the run.

We do not directly examine message cost or response time in this paper. The on-line .
algorithm described below for minimizing work can also be used to minimize message cost,
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since the relationships between message cost for reads and updates and the message cost
for copies is essentially the same, and that is what determines the nature of the algorithm.
Response time is a valid concern, and a load-balancing scheme designed to reduce response
time is described in [13]. It remains an open problem to design a system with guaranteed
good behavior in all three cost measures.

In this paper we concentrate on optimizations local to the management of a given object
class. That is, we will attempt to minimize the cost of reading and updating an single object
class, in the hope that these local optimizations will lead to global efficiency over all object
classes. Since object classes form the basic structures of PASO memory this is a reasonable
approach.

Fix an object class C. Assume that all the objects in C are roughly of the same size. Let
£ denote the number of live objects in C, Depending on the type of queries to be supported,
the data structure implementing the local storage for the class may be one of various kinds:
a hash table for dictionary queries; a binary search tree for range queries; a linear list for
text pattern matching. In fact, several such data structures may be used for a single class.
However, time(g-join(C)) should almost always be O(¢) since all is required is to copy the -
memory containing the data structure as is.

To present the basic algorithm, we make some simplifying assumptions. We assume
read&del and insert operations to C come in pairs, and hence £ remains fixed. We
assume I(.) = D(.) = Q(.) = O(1), as in a hash table, and normalize the costs with respect
to the most expensive of these operations, so that read&del or read take 1 time unit and
joining a group requires K time units, for some positive integer K.

5.1 The Basic Algorithm

The following is a simple scheme to maintain an individual write group. A fixed set B(C)
of A + 1 mdchines is chosen as the basic support for C. If m € B(C) is operational, it is
required to belong to wg(C'). At any point, let rg(C) be the subset of operational machines
in B(C) and let F(C) = B(C) — rg(C) denote the machines in B(C) that are currently
failed.

Machines other than those in B(C) may join or leave wg(C') in order to reduce the cost
of reads. In general, it is advantageous for machine M to join the write group whenever
processes local to M are actively reading object class C, and advantageous for M to leave
the write group when the time M spends updating its local copy outweighs the benefits
from local reads. To determine when a machine M ¢ B(C) should join or leave wg(C), the
memory server process m € M keeps a cost counter, ¢(C). We abbreviate this by ¢ when
the object class C' is understood. Server m behaves by the following rules.

o If M € wg(C), when m serves a mem-read generated by a process in M, it does the
lookup in its local copy and sets ¢ to max{c+ 1, K}.

o If M ¢ wg(C), when M serves a mem-read generated by a process in M, it broadcasts
the request to rg(C) and increments ¢ by A + 1 — |F(C)|. If ¢ > K, M performs
g-join(wg(C),.) and sets ¢ = K. (A process gcasting to rg(C') can learn the value of
| F(C)| by having it piggyback on the response to the gcast.)




e When m serves an insert or readgdel request for C (hence M € wg(C)), c is set to
min{c — 1,0}. If c = 0 and M ¢ B(C), M leaves wg(C).

The Basic algorithm is quite closely related to algorithms for snoopy caching [21] and
file allocation on a uniform network [6]. The analysis and extensions below differ, however.
We analyze the algorithm using the method of competitive analysis. Definitions and basic
proof techniques of competitive analysis are given in Appendix B.

Theorem 2 The Basic algorithm is (3 + A/ K)-competitive.

Proof Let o be a sequence of memory requests from processes in M to object class
C. We compare our performance against that of an optimal algorithm for this sequence.
Let m, denote a server m € M controlled by the optimal algorithm, and m; denote the
server as controlled by our on-line Basic algorithm. If M € B(C) then the optimum off-line
algorithm and the on-line algorithm must control M in exactly the same way, since M must
always belong to wg(C). If M ¢ B(C), we analyze the competitive ratio using the following
potential function:

2c my, my & wg(C)
3K —2¢ Mo, mp € Wg(C)
&, =1 ¢ m, & wg(C), my € wg(C)
3K +A-c¢ otherwise

where m, € wg(C) (resp. my € wg(C)) is used to abbreviate “the optimal (resp. Basic)
algorithm causes M to be in wg(C). The potential ® is the sum of ®,, over all servers m.

A case analysis shows that for each possible case and request, the amortized cost charged
to the on-line algorithm is at most 3 + A/K times the optimal cost for that request. By
standard arguments of amortized analysis, this shows that the total cost to the on-line
algorithm is no more than 3 + A\/K times the total optimum cost. This is essentially the
best possible [21]. ' 4

The Basic algorithm can be extended to other data structures for the internal memory.
In typical data structures (e.g. trees and linked lists), I(.) and D(.) are the of the same
order, while Q(.) is more expensive. Normalize insertion and deletion to cost 1 time unit,
and let the query cost ¢ time units. (We are still assuming that the size of the object
class is fixed at £.) Modify the counter algorithm so that after a read, the counter is
increased by g(A + 1 — |F|). The remainder of the algorithm is the same. Letting ®,, =
3K + X — cif m, € wg(C), my € wg(C), and the same as above in all other cases, we can
show that the competitive ratio is 3 + QKA

The Basic algorithm also be extended to handle the general situation in which £, the
number of live object in C, changes over time. Each memory server then maintains, in
addition to ¢, a counter k,, which has the current value of K, the current number of time
units to g-join class C. Obviously, ¢ < k,,. Roughly speaking, the algorithm resets itself
every time the ratio between join cost and update cost changes by a factor of 2. In resetting,
it either doubles or halves K, and then adjusts the ratio g as appropriate. If P belongs to
E, then K is kept updated to the current value. If M ¢ wg(C), then k., is updated by
piggybacking the current value of X' whenever a read to C is performed.
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Doubling K may drive up the value of the potential function for those processors where
mp € wg(C) but M, ¢ wg(C). This can be amortized against the cost incurred by the
optimum algorithm in having m, service the read or delete requests that led to the doubling.

The algorithm remains the same in all other aspects. We can show

Theorem 3 The doubling/halving algorithm is 6 + -2—}\—’\- competitive.

5.2 The Support Selection Problem

The result of the previous section gives a provably good on-line algorithm when we have a
fixed basic supporting for each object class. It is natural to ask what happens if we relax
this requirement. We define the general Support Selection Problem: choose on-line a
set of machine for wg(C) so as to minimize total work (respectively, message cost) subject
to the constraint |wg(C)| = min{A\+1,n— f}, where f < A is the number of failed machines.
In other words, if wg(C') < A + 1 and a machine supporting C fails, it must be immediately
replaced, unless there is no other operational machine. This implies that the initialization
period for a machine may vary substantially depending on how many classes it is required
to support.

Choosing the right machine can make a big difference to the total work. When a machine
supporting class C fails, a cost of g(£) is incurred to copy the memory state for C to a non-
failed machine, where £ is the current number of live objects in class C and g(¢) is the size of
the data structure storing those objects. If a frequently failing machine is often chosen, the
system will spend a lot of time copying memory states. As in the basic support problem,
allowing many processors to join the write group may reduce overall work by localizing
reads.

We observe that support selection is at least as hard as a classical on-line problem:
virtual memory management. The virtual paging problem is defined as follows. A machine
has a virtual memory of n pages, but a physical cache can only hold k¥ < n pages at a time.
A page of memory cannot be read or written unless it is contained in the physical cache. If
a program generates an access to a page ¢ not in cache, a page fault occurs. Some page j
currently in cache must be ejected, and replaced by page i. The goal of a virtual memory
management algorithm is to choose the pages to eject so that the total number of page
faults is minimized.

Theorem 4 No deterministic algorithm for support selection can be better than n — A — 1
competitive. No randomized algorithm can be better than log(n — A — 1) competitive.

Proof (Sketch.) Assume that n > 2A 4+ 1. Hence C can always be supported by A + 1
machines that are either in wg(C) already or else have servers that are about to g-join wg(C).
Also, assume £ is fixed. An instance of the virtual paging problem is easily converted to an
instance of support selection. Map each page i of memory to a machine M;. Let A+1 = n—k.
Page ¢ will be in the cache if and only if processor M; ¢ wg(C). Each reference to page :
is mapped to a failure of M;. If M; is in wg(C), then the support selection algorithm must
replace it by some other unfailed machine M; ¢ wg(C). This corresponds to an ejection
of page j from the cache. Then M; is brought back to life, outside the write group. This
corresponds to a loading of page ¢ into cache. The total cost incurred by the support

11




selection algorithm in copying state, divided by the copy cost g(£), gives the total number
of faults in the corresponding instance of paging. The proof is completed by applying lower
bounds for paging [26, 12]. No deterministic paging algorithm is better than k¥ competitive
and no randomized algorithm is better than log k& competitive. a4

Although Theorem 4 gives quite high lower bounds for the competitiveness of support
selection algorithms, we can take some comfort from the fact that there are many determin-
istic and randomized heuristics for paging whose observed behavior on real-life instances is
much better than k competitive. One of the best known rules for paging is “LRU”: on a page
fault, eject the least recently used page from memory. In the support selection problem,
this rule translates to “LRF”: if a machine in the write group fails, replace it by the least
recently failed machine. This heuristic uses the relatively plausible assumption that the
longer a machine stays up, the more reliable it is. LRF does not completely solve support
selection, however, as it does not permit expanding the write group. At this time finding
a competitive support selection algorithm whose implementation does not impose excessive
communication and coordination cost remains an interesting open problem. On a more
general level, extension of any of our results to wide-area networks is an very interesting
open problem.
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A Macro Expansions

% Macro expansion for read(sc)
begin
C' := sc-list(sc).
for each C € ('
begin
if local server M isin C
then begin
r := mem-readys(sc, C)
if r # fail then return(r)
end
else begin
geast(wg(C),“mem-read(sc,C),”,r)
if 7 # fail then return(r)
end
end
return(fail)
end

% Macro expansion for read&del(sc)
begin
C' := sc-list(sc).
foreach C € ¢’
begin
gcast(wg(C), “remove(sc,C)", )
if r # fail then return(r)
end
end
return (fail)
end

% Macro expansion for insert(o)
begin

geast(wg(obj-cls(0)), “store(0)”,)
end




B Competitive Analysis

A standard tool for studying on-line algorithms is competitive analysis [23, 21]. For a given
sequence of operations o, the cost incurred by the on-line algorithm is compared against
the minimum possible cost had the algorithm made all the right decisions at the right time.
The cost incurred by algorithm A on o is denoted A(o) and the minimum possible cost is
denoted OPT(c). An on-line algorithm A is said to be c-competitive for a constant c if for
all sequences o,

A(oc)<c-OPT(o)+ B

The value B is a constant independent of ¢ that accounts for initialization cost.

Let A denote the algorithm for PASO that consists of the individual algorithms for the
insert, read, read&del, g-join, and g-leave operations. Competitive analysis proceeds by
comparing simultaneous runs of A and the optimum algorithm for o, OPT, on the request
sequence o. The actions of A and OPT are partitioned into events, which together account
for all costs to both algorithms. The first kind of event is the servicing of an insert,
read, or readgdel request by both A and OPT. The second kind of event involves A or
OPT making processors join or leave groups. The second kind of event is OPT making a
processor join or leave a group. The third kind of event is a processor failing or recovering.
We define a potential function ® that is a non-negative real-valued functions of the states
of the systems as maintained simultaneously by A and OPT.

Each event has an actual cost to OPT, and an amortized cost to A, defined to be the
actual cost of the event to A plus the change in the potential function at the t** step,
A® = ®, — ®;_;. The potential & is always non-negative, and ®o = 0. This properties
imply that if we sum the amortized costs for each event, the total amortized cost is an upper
bound on the total actual cost incurred by A. To prove a competitive bound, therefore, it
suffices to show that for any single event the amortized cost to A is bounded by ¢ times the
actual cost to OPT.
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