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Design Principles of Policy Languages for Path-Vector Protocols
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Abstract

BGP is unique among IP-routing protocols in that rout-
ing is determined using semantically rich routing poli-
cies. However, this expressiveness has come with hidden
risks. The interaction of locally defined routing policies
can lead to unexpected global routing anomalies, which
can be very difficult to identify and correct in the de-
centralized and competitive Internet environment. These
risks increase as the complexity of local policiesincrease,
which is precisely the current trend. BGP policy lan-
guages have evolved in a rather organic fashion with lit-
tle effort to avoid policy-interaction problems. We be-
lieve that researchers should start to consider how to de-
sign policy languages for path-vector protocols in order
to avoid routing anomalies while obtaining desirable pro-
tocol properties. We take a few steps in this direction by
identifying the important dimensions of this design space
and characterizing some of the inherent design trade-offs.
We do thisin agenera way that is not constrained by the
details of BGP.
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1 Introduction

The Border Gateway Protocol (BGP) isthe dynamic rout-
ing protocol used to connect autonomously administered
networks on the Internet [12, 21, 25]. BGP's main task
is to establish and maintain best-effort connectivity, even
in the face of large-scale network outages. This con-
trasts with other, more familiar 1P-routing protocols such
as OSPF and 1SS, whose main task is to establish and
maintain connectivity within a single administrative do-
main [14].

BGP is unique among I P-routing protocolsin that rout-
ing is determined using semantically rich routing policies.
It is important to note that the languages and techniques
for specifying BGP routing policies are not actually a part
of the protocol. The BGP specification (RFC 1771 [21])
merely describes the low-level binary formats of BGP
update messages, the intended meaning of the fields in-
cluded in update messages, and the correct operation of a
BGP-speaking router. On the other hand, routing-policy
languages have been developed by router vendors and
have evolved through interactions with network engineers
in an environment lacking vendor-independent standards.
Vendorstypically provide hundreds of special commands
for use in the configuration of BGP policies. In addition,
BGP communities (RFC 1997 [3]) alow policy writers
to selectively attach tags to routes and use these to signal
policy information to other BGP-speaking routers. Rout-
ing policies can then condition their behavior on the pres-
ence or absence of specific community values. These de-
velopments have more and more given the task of writing
BGP configurations aspects associated with open-ended
programming. This alows network operators to encode
complex policiesin order to address unforeseen situations
and has opened the door for a great deal of creativity and
experimentation in routing policies.

However, this rich expressiveness has come with hid-



den risks. The interaction between locally defined rout-
ing policies can lead to unexpected global routing anoma-
lies such as nondeterministic routing and protocol diver-
gence [9, 26]. If the interacting policies causing such
anomalies are defined in separate, autonomously admin-
istered networks, then these problems can be very diffi-
cult to debug and correct. For example, the setting of an
attribute in one autonomous system to implement “cold-
potato routing” can cause protocol divergencein a neigh-
boring autonomous system [4, 18]. We suspect that such
problems will only become more common as BGP con-
tinuesto evolve with richer policy expressiveness. For ex-
ample, extended communities[20] provide an even more
flexible means of signaling information within and be-
tween autonomous systems than the original definition [3]
did. At the same time, applications of communities by
network operators are evolving to address complex issues
of interdomain traffic engineering [2].

We believe that the root cause of “BGP-configuration
problems’ is a lack of design for the policy languages
that are used to configure this protocol. BGP policy lan-
guages have evolved in arather organic fashion with little
or no effort made to avoid policy-interaction problems.
We believe that researchers should start to consider how
to design policy languages and path-vector protocols that
together avoid such risks and yet retain other desirable
features. We take a few steps in this direction by identi-
fying the important dimensions of this design space and
characterizing some of the inherent design trade-offs. We
do thisin ageneral way that is not constrained by the de-
tails of BGP. As aresult, our framework may offer guid-
ance not only in the analysis of proposalsto correct or ex-
tend BGP but also in the analysis of other BGP-like proto-
cols such as a version of BGP supporting Virtua Private
Networks [22], Telephony Routing over IP (TRIP) [23],
and of various proposals for interdomain routing of opti-
cal paths[19, 27].

1.1 Overview of the Design Space

We fedl that our main contribution is in the identifica-
tion of the design goals of policy languages and path-
vector protocols. In addition, we formalize these goals
and path-vector implementationsin away that allowsin-
herent trade-offs to be rigorously characterized.

We identify six important design goals for any path-
vector protocol and policy language:

Expressiveness. From the perspective of a network oper-
ator, we desire policy languages that are as expressive as
possible. For example, shortest-path routing is not expres-
sive enough for the requirements of current interdomain
routing because it is unable to capture the “natural” rout-
ing conditions arising from the pervasive economic roles
of customer, provider, and peer [15, 16]. The challenge
then is to design policy languages that are as expressive
as possible, and yet not so expressive that other design
goals are sacrificed.

Robustness. We require predictability, i.e., that any non-
determinism in routing policies is not the result of un-
wanted policy interactions, and the existence of arouting
solution which is always found by the protocol (this pre-
vents protocol divergence). Furthermore, we insist that
the same istrue of any configuration that results from any
combination of link and node failuresin the network. The
goal of robustnessisthe primary constraint on the expres-
sive power of apolicy language; we are generally uninter-
ested in non-robust policies.

Autonomy. Network operators often require a high de-
gree of autonomy when defining routing policies. We
may have a good intuition about what this means—that
policy writers are given wide latitude in defining poli-
cies that reflect their own interests and not the interests of
their neighbors. Here, generalized autonomy will mean
the ability to define a partition on routes and then rank
the partition classes arbitrarily. Operationally, autonomy
is important because it isolates an autonomous system
from policy changes occurring in other (neighboring or
distant) autonomous systems. Without a high degree of
autonomy, network operators would have to continually
“tweak” their policies to compensate for unseen changes
made to policies elsewhere.

In addition to a generalized definition, we present one
notion of autonomy important for BGP—autonomy of
neighbor ranking—that allows policy writers to classify
neighbors and set route preferences in accordance with
this classification. Thistype of autonomy is required for a
BGP policy language to support policies compatible with
present-day commercial realities of the Internet.

Protocol Transparency. Many “obvious’ approaches to



achieving very expressive and robust systems involve a
high cost; they add machinery that is invisible to policy
writersto the underlying path-vector system. What islost
is protocol transparency—the ability of network opera
tors to understand the semantics of policies they write. If
the protocol itself is alowed to dynamically modify the
input policies (in order to ensure robustness, for exam-
ple), then it may become very difficult, if not impossible,
to maintain and debug routing policies.

Global Consistency. Oneway to achieverobustnessis to
implement a mechanism enforcing a global-consistency
congtraint that guarantees robustness. This constraint
could be enforced in any number of ways, including an
additional protocol or set of protocols, by convention, by
regulation, by economic incentives, or by some combina
tion of methods. Of course, the easier such aconstraint is
to check, the better. We note that in the current Internet,
thereis no global-consistency checking of BGP policies.

Policy Opaqueness. This design goal measures the de-
greeto which details of routing policies are to be kept pri-
vate or hidden from those outside of arouting domain (the
term is from Geoff Huston [17]). Full policy opaqueness
is, of course, in direct conflict with any sort of global-
consistency enforcement. Therefore, the design challenge
isto find a happy medium that alows for the exposure of
just enough information to ensure robustness while at the
same time allowing for a sufficient amount of information
hiding to satisfy policy writers.

Our formalization starts with defining three distinct
components of any path-vector protocol: the underlying
path-vector system, the policy language, and any global
consistency assumptions about the network. The path-
vector system should be thought of asthelow-level means
of carrying messages between systems, much like RFC
1771. Section 2 presents a definition for path-vector sys-
tems that formalizesthe information that nodes exchange,
various restrictions on nodes' behavior, and the way that
protocols mediate interactions between nodes. As we de-
fine various components, we illustrate them with a run-
ning example that models BGP. Additional examples are
givenin Section 3.

We separate the definition of a path-vector system from
the definition of a policy language: a policy language is
ahigh-level declaration of how the attributes describing a

route change when the route is exchanged between neigh-
bors. Section 2.3 defines the intended role of policy lan-
guages in path-vector-system configuration.

The notions of expressiveness and robustness are for-
malized in Sections 4 and 5. For both we employ the
Stable Paths Problem (SPP) [9] as a semantic model of
path-vector systems. We identify one class of robust sys-
tems as our target for expressiveness (Definition 5.4 and
Theorem 5.10). Autonomy and transparency are formal-
ized in Sections 6.1 and 6.2. Policy opaguenessis briefly
discussed in Section 6.4, while global constraints are con-
sidered in Section 7.

Besides the more obvious trade-offs aready men-
tioned, we identify several more subtle ones:

1. Any systemwith apolicy languagethat is maximally
expressive but has no global constraint must give up
either autonomy of neighbor ranking or transparency
(or both) (Theorem 6.9).

2. Any autonomous, transparent, and robust system
with a policy language at least as expressive as
shortest-path routing must have a non-trivial global
constraint (Theorem 7.4).

These results tell us that, if we seek to design expres-
sive policy languages that are transparent, autonomous,
and robust, then we must consider the global constraint
as an integral part of the design. Indeed, current path-
vector protocols may succeed in part because of assump-
tions about the global network; our framework highlights
the importance of this component of design.

Figure 1 illustrates the design space for robust and
transparent path-vector policy systems. (This figure is
meant to aid in developing intuitions, and should not be
taken too literally.) The z-axis represents the expressive
power of systems, and the y-axis represents the relative
difficulty of checking the global constraint. Combinations
of path-vector systems and policy languages which fall
close to the bottom right of Figure 1 are generally desir-
able.

Some points in the space deserve attention. On the
bottom horizontal line lie systems that require no global
constraint to be robust. In this paper, we assume “min-
imal” expressiveness is “Shortest-Paths’ routing; a sim-
ple extension to this is “ Shortest-Available Paths,” which
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Figure 1. Design space for robust and transpar ent path-vector systems.

allows routes to be filtered (even if they are the short-
est) and chooses the shortest path from the remaining
routes. (Both examples are given in Section 3.) We take
“maximal” expressiveness to be the expressive power of
a natural class of robust systems that we define in Sec-
tion 5.3. Two possible systems which possess the prop-
erty “Globally Increasing Path Ranking” are discussed in
Section 6.3; while these achieve maximal expressiveness
with no global constraint, they sacrifice other design goals
in the process. The final extreme point, “Robust BGP” is
asysteminwhich al BGP policies are collected and veri-
fied not to contain conflicting policies. One might use the
Routing Policy Specification Language (RPSL) [1] in the
manner suggested in [7] to accomplish this. Many practi-
cal issues makethis scenario unlikely; furthermore, it was
shown in [10] that, in the worst case, checking various
global-consistency constraintsis NP-hard.

Hierarchical BGP systems (inspired by [5, 6]) provide
examples from today’s commercial Internet. Figure 1 in-
cludes the system CP, a BGP-like system in which the
policy language alows nodes to classify neighbors as
customers and providers and to rank routes consistent
with those relationships; CP is robust if there are no cy-

cles in the customer/provider graph and if classifications
of neighbors are consistent. We might increase the ex-
pressiveness of this system in two ways. (1) alow an
additional classification of neighbors as peers, in which
case we must modify the global constraint to addition-
ally check the consistency of peer classifications (the sys-
tem HBGP); or (2) modify the policy language to per-
mit marking routes for backup use (the system CP+BU).
Combining both approaches achieves the expressiveness
of the system HBGP+BU. These types of systemsaredis-
cussed in Section 8. Note that in the real world, there are
no existing methods to enforce either the local or global
constraints, although Internet economics seems to ensure
that networks behave in close approximation to the rules
described by the above-mentioned robustness conditions.

2 Path-Vector Policy Systems

In this section, we define the “ protocol part” of our frame-
work: the underlying exchange system for route informa-
tion. We sketch the components independent of any par-
ticular system or instance of a system. Using the defini-



tions presented here, we can rigorously explore the proto-
col design spacein later sections.

2.1 Dynamics of Path-Vector Routing

We first briefly discuss the intended dynamics of routing
using a path-vector system, as this motivates the system
components we define in our framework.

Informally, let each node in the network be a protocol-
speaking router responsible for its autonomous domain.
A node advertises destinations in its network to its neigh-
bors, and they further transmit this information to their
neighbors, etc. Whenever a router gets new information
about a destination, it determines the best route to that
destination given al the up-to-date information it has col-
lected. We expect that routers will influence these deci-
sions by modifying route attributes. This can be done on
export, when routes are advertised to neighbors (or pos-
sibly filtered out altogether), or on import, when data are
collected and stored for decision-making.

Therefore, we assume that there is some data structure
to store and exchange route information, and that trans-
formations to these data structures are made on import
and export as dictated by routers' policy configurations.
The exchange of these data structures between neighbors
as described above will eventually permeate the network
with knowledge about the various destinations originated
by routers. Comparing these data structures gives a*“ best”
route to a destination.

2.2 Formal Definition of
Path-Vector Systems

As we develop our framework, we will use a simplified
model of BGP as arunning example. Thisexample model
assumes that each node (router) represents an entire au-
tonomous system and thus treats only External BGP (not
Internal BGP). It also ignores most BGP attributes and
simplifies others. We will adorn the elements of this ex-
ample system with the subscript 11bgp.

2.2.1 Routelnformation

A path descriptor is a data record about a path that con-
tains enough information (e.g., the routing destination, the
sequence of AS numbers along the entire path, routers

preference values for the path, transmission cost, etc.) for
a router to compare it to other paths and to inform its
neighbors about the path so that they can do the same. A
router learns of paths by receiving descriptorsfrom neigh-
bors and preserves knowledge of potential best routes by
storing descriptors for pathsto al known destinations.

The path-vector-system specification includes a de-
scription of the components in a path descriptor and a
map that ranks them using values from a totally ordered
set. This ranking permits routers to determine best routes
based on just the information contained in the available
descriptors to a destination; in particular, the rank of a
descriptor depends only on that descriptor. Determining
rank normally involves some components of path descrip-
tors that can be transformed by both locally configured
policies and the underlying message-exchange protocol
itself.

Definition 2.1. Let the quadruple
I=(D, R, U, w)

be the route-information portion of the path-vector-
system specification. The components are defined as fol-
lows:

D isthe set of possible routing destinations;

R isthe set of path descriptors, such that to every r € R
there must be associated a unique dest(r) € D;

U isaset totally ordered by <; and

w is afunction (the ranking function) from R to ¢/ that
determines how path descriptorsare ranked (thus, the
role of path-descriptor attributes in choosing routes).

Remark 2.2. Although the mechanics of determining
“best” routeswill be discussed in Section 2.6, we observe
the convention that the ranking function will map more
preferred paths to smaller elements of U/.

Running Example, Part 1. In our example system, let
D bethe set of al 1Pv4 CIDR blocks. Let the set of path
descriptors be

Ru,bgp = Du,bgp x N x Seq(N) x N x QC,

where N is the set of natural numbers, Seq(N) is the set
of finite sequences of natural numbers, and C is the set



{red, blue, green}. If r = (d, I, P, n, S) € R ubgp.
then d is the destination of r, [ isthe local preference, P
is the AS path, n is the next hop, and the elements of S
are the colors of r. Colors are meant to be a very simple
model of BGP communities[3].

Let Uyprgp = Nx Nx Nandw((d, I, P, n, S)) =
({, |P|, n), with the ordering <44, ON U,.54p Qiven by
(1, m, n) <upgp (', m/, n')if and only if:

I>1;or
=1, m<m;or
I=Um=m', n<n

The combination of <44, and w4, prefers higher lo-
cal preference, with ties broken by preferring smaller AS-
path length and then smaller value of the next hop.

2.2.2 Import and Export Policies

Path-vector systems explicitly include operations for im-
porting routes from neighbors and exporting routes to
neighbors. Router operators provide separate import and
export configuration policies to describe router behavior
when exchanging route information, e.g., to change path-
descriptor attributes for a route affecting its rank or to fil-
ter out routes altogether. The set of node policies across
the network would therefore be a component of a spe-
cific instance of the path-vector system. On alow level,
the import and export policies are per-neighbor functions
on path descriptors that transform their components to
make preference changes in accordance with local pol-
icy. We expect that policies will usually be written in a
higher-level policy language, which motivates the policy-
language component of design.

A path-vector system includes local-policy constraints
on what import and export policies are allowed. These
limits on the expressiveness of local policies can help
guarantee robustness and can help ensure that a protocol
achievesits gods; e.q., if palicies can only add a positive
value to a path-cost attribute that alone determines path
rank, the path-vector system implements | owest-cost-path
routing.

Formally, let elements of the function space 2® — 27
be called policy functions (these are functions on sets
of path descriptors, thus describing transformations on
them). We then define local-policy constraints in the fol-
lowing way.

Definition 2.3. Let thetriple
C _ (Lin7 Lout’ O)

be the local -constraints portion of the path-vector-system
specification. L™ and L°* are predicates on import and
export policy functions, respectively. If L (f) or Lo (f)
holds, then f is a legal local-policy function. Further-
more, we assume that if either L™ (f) or L°“(f) holds,
then f satisfies:

(1) foreach X C R, if | X| =1then|f(X)| < 1;
(2) foreach X C R, f(X) = U,cx f({r}); and

(3) for each 1, 2 € R, if f({r1}) = {r2}, then
dest(r1) = dest(r2).

0 is a predicate defined on subsets of R used to define
what sets of path descriptors can be originated at a node.
A node can only advertise newly originated destinations
described by X C R if o(X) holds.

Running Example, Part 2. In our ssimplified-BGP exam-
ple, we want policies to affect only the local-preference
and colors (communities) attributes of path descriptors.
Welet L,Tz;.gp(f) and LW (f) holdif and only if f satis-
fies conditions (1)—(3) above aswell as

@ f((d, I, P,n,S))={(d, U, P',n', S")}implies
d =d,P' =P,andn’ =n.

Additionally, the only path descriptors which may be
originated by nodes are those with an AS path contain-
ing the AS alone (because the destination should be in
the originating AS's domain) and a default local pref-
erence of 0, so we let 0, (X) be true if and only if
(d, I, P,n, S)e Ximpliesl =0and P = v wherev is
the originating AS.

2.2.3 Application of Policies

Although import and export policies allow router oper-
ators to configure their routers, we must recognize that
it is the router (or the protocol itself) actually applies
those policies to path descriptors encountered while run-
ning the protocol. Therefore, path-vector-system spec-
ifications include a policy-application function for both



the import and export operations. These functions de-
scribe the transformations used by the protocol to apply
operator-provided policies to path descriptors. This al-
lows the application of policies to be consistent with the
goals of the protocol, e.g., routers may only apply poli-
cies when they satisfy alocal condition guaranteeing ro-
bustness. These functions are often used to make changes
to path descriptors uniformly throughout all information
exchanges in addition to applying the operator-provided
configuration policy (e.g., appending a hode name to the
described path or hiding certain attributes when they con-
tain private information). Formally, we have

Definition 2.4. Let the pair
T = (tin tout)

be the protocol -transformation portion of the path-vector-
system specification. Both ¢™ and ¢t°% are functions of
type (N x N x (2R — 2R) x 2%) — 2R, thefirst two
arguments are node names, the third is the policy function
to apply, the fourth is the target set of path descriptors.

Running Example, Part 3. We now give the protocol
transformations for our model of BGP. If v and v are
nodes, f is a policy function (expected to be u’s export
policy function for v), and X is a set of path descriptors
(expected to be known to u), then

out
tubgp

(u, v, f, X) ={(d, 0, vP, u, S)
| (d, m, P, w, S) € f(X)}.

The protocol applies the (export) policy function (which
may changeloca preference and colors) and then updates
the AS-path and next-hop valuesto reflect the edge {u, v}
in the extended path. 1t also setsthelocal preferencevalue
to 0, hiding thisvalue from the node receiving information
about this path. If Y isaset of path descriptors (expected
tobeto¥ (u, v, f, X)) andgisv'simport policy func-

. pbgp
tion for u, then we let

'ubgp(va u, ga Y) = {g(’r) |T € Ya

r describes a simple path}.

The protocol thus takes care of filtering any paths which
contain loops.

2.24 Path-Vector System

Definition 2.5. A path-vector system is a triple of the
form

PV =(Z,C, T)

where the components are as defined in Definitions 2.1—
2.4,

2.3 Policy Languages

Of course, policy writers don’t actually write mathemat-
ical functions, but rather write specifications in a path-
vector policy language. We expect that such languages
can be given arigorous semantics so that policies written
in the language can be treated as specifications for func-
tions on path descriptors. A policy language essentially
is aloca constraint on the policy functions that can be
written for a path-vector system. Policy-language design-
ers must ensure that legal policy specifications are guar-
anteed to have semantics that conform to the constraints
of the target path-vector system(s). In practice, this may
involve some type of compilation to low-level, vendor-
specific configuration commands—a transformation that
may be rather complex. However, separating the defini-
tion of a policy language from the definition of a path-
vector system alows us to consider multiple policy lan-
guages for the same path-vector system. We can aso dis-
cuss using different path-vector systemsto implement the
same policy language.

Definition 2.6. A policy language PL for a path-vector
system isalanguage and a semantic function M that maps
each policy configuration p written in this language to a
triple

/\/l(p) — (mm’ Tnout7 mom’g)
of partia functions of types

m’m’ mout

orig

VxV— (QR — QR)
m VvV — 2R

If « and v are node identifiers, then m** (v, u) and
m™ (v, u) are caled the import and export policy func-
tions at v for u, respectively, and L**(m* (v, u)) and
L% (m°“ (v, u)) hold whenever these policy functions



are defined. These functions transform sets of path de-
scriptors. Finally, the function m °™9 maps node identi-
fiers v to finite subsets of R such that o(m " (v)) holds
whenever m "9 (v) is defined.

We take policy configurations to be the language-
specific definitions of policies for one or more nodes; the
set of valid policy configurations is part of the language
PL.

Running Example, Part 4. We define a simple policy
language PL,,14p. A policy configuration in this language
isalist of declarations, each having one of the forms:

export fromwv to W : rule
import at v fromW : rule
originatefromv : (d, 0, €, v, S)

The first and second type declare export and import poli-
cies, respectively, and the third type declares routes to be
originated from a node. The sets W represent all of the
neighboring nodesto which agiven declarationis applied.
Each ruleis atransformation of objectsin R 54, defined
by alist of clauses:

C1
Cs

— A1
— AQ

c, = A,
where each C; is a boolean predicate over path descrip-
torsand each A, isan action to be taken on the input path
descriptor. The actions are either of the form reject, or
they are statements that modify the local preference or
colors of a path descriptor. For each path descriptor r
input to such a rule, the action associated with the first
predicate that evaluates to true is performed on r. If no
clause matches, the empty set is returned. M pz,,, (p)
is easy to determine given the form of policy configura-

tionsin PL,,p,; see part 5 of the running example in the
following subsection.

24

Definition 2.7. An instance of a path-vector system PV
with respect to a policy language PL (or an instance of
(PV, PL))isapar

Instances of Path-Vector Systems

I=(G, P),

where G = (V, E) is an undirected graph, called
the signaling graph, and the configuration function P
maps nodes v € V to policy configurations P(v) =
py in the policy language PL so that M(p,) =
(Fim, Fout. Fom9). We requirethat F2 (v) is defined
and that, for every {v, u} € E, both F/*(v, u) and
Fout(v, u) are defined. We will assume that the vertex
set V isasubset of N.

Let F(I) = (Fin, Fout, Forig) where

F™ (v, u) F" (v, u)
Fo" (v, u) Fi“t(v, u)
P ) = | Fgew)

weV

F is a summary configuration function for the instance
that representsthe collection of policy configurations pro-
vided by nodes in the instance. However, F' technically
describes transformations on path descriptors, and thusis
a somewhat “compiled” or “lower-level” version of the
policies for the instance, independent of the policy lan-
guage used to specify them.

Remark 2.8. In most cases, nodes will not originate de-
scriptors on behalf of other nodes, i.e., .27 (v) = () for
w # v, and nodes will not have policies for non-incident
edges, i.e, Fi"(v, u), F2* (v, u) are not defined for
w # v. In addition, we suggest and often assume that
the origination constraint includes a clause to check that
nodes only originate path descriptorsfor destinations they
represent or contain, i.e.,

O(X) = [r € X = (dest(r) =v=r € " (v))]

Definition 2.9. Given two instances I = (G, P) and
I' = (G, P')of (PV, PL), theinstance I’ is said to
be a sub-instance of I if G’ is a subgraph of G and the
configuration function P’ isequal to P when restricted to
G'. For example, given any instance I = (G, P) and

G’, asubgraph of G, theinstance I’ = (G’, P) isasub-
instance of 1.
Running Example, Part 5. One instance of

(PV ubgp, PLubgp) consists of the five-vertex graph
shown in Figure 2 and policy configurationsin Figure 3.
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Figure 2: A simple 5 node graph.

2.5 Realizable Path Descriptors

We are particularly interested in the path descriptors that
arise as the result of first originating a path descriptor
at some node and then forwarding it along some path in
the network, applying the appropriate export, import, and
protocol transform functions along the way. We call these
realizable path descriptors. Because we do not usually
make use of the path descriptors that arise after applying
an export transform but before applying the correspond-
ing input transform, we combine these functionsinto arc
policy functions for convenience.

Definition 2.10. Let I be aninstance of (PL, PV') with
signaling graph G = (V, E); let {v, u} € E be any
edge. Then the arc policy function F',, ., is the function
which takes the path descriptors at « and produces the
path descriptorsthat v has after import from . Thus, for
X CR,

F('U,u)(X) = tm(va U, Fm(vau)7
o (u, v, FO(u,v), X)).

originate from 1 : (d, 0, (1), 1, 0)
export from 1 to {2} :
true = r.colors := {red}
export from 1 to {3, 4} :
true = r.colors := {blue}
export from 1 to 5 :
true = r.colors := {green}

import at 2 from {1, 3, 5} :
blue € r.colors = r.local-preference := 100
red € r.colors = r.local-preference := 50
green € r.colors = r.local-preference := 10
export from 2 to {3, 5} :
true = r

import at 3 from {1} :
true = r.local-preference := 100
import at 3 from {2, 4} :
green € r.colors = r.local-preference := 1000
blue € r.colors = r.local-preference := 500
export from 3 to {2, 4} :
true — r

import at 4 from {1} :
true = r.local-preference := 10
import at 4 from {3, 5} :
green € r.colors = r.local-preference := 50
blue € r.colors = r.local-preference := 25
export from 4 to {3, 5} :
true = r

import at 5 from {1, 2, 4} :
green € r.colors = r.local-preference := 2
red € r.colors = r.local-preference := 1
export from 5 to {2, 4} :
true —r

Figure 3: Example policy configurationsin PL ;4.

Suppose that the path P is a smple path in G from

Note that it may be the case that F(,, ,)(X) = 0 forsome a node v to node w; we write this as a sequence

X # 0. Inthis case we say that the path descriptors of X
have been filtered out by F,, ).

Conditions (1)—(3) given in Definition 2.3 only need
to hold for the functions { F,,, ) | {v, u} € E}; how-
ever, because t°** and t™ are specified separately from
the policies F°“* and F*, it may be easier for those de-
signing the protocol transformations ¢ and ¢°“* to as-
sume that all policies satisfying L°%“ or L** also satisfy
these conditions (and for the compilers of policies into
functions to know that it suffices to satisfy these condi-
tions).

P = wx...xpw of distinct nodes starting with v
and ending with w. If r,, € F°™(w), then we let
r(P, r,) C R be the result of passing r,, adong P
and applying the corresponding arc policies. Formally,
if P = w, set r(w,ry) = {rw}. If v # w then
write P = vy ...2pw = vP and let r(vP’,ry) =
F(v,zl)(T(Plar'w))-

Definition 2.11. The set of path descriptorsrealizable at
uwinlistheset RY of descriptorswhich may beoriginated
at u or which may be obtained by (legally) originating a
descriptor elsewhere and passing it along a network path,



successively transforming it with the appropriate arc poli-
cies. Formally:

RY = Fo9(u) U
{r'er(P, ry)|weV,r, € FrY9(w),
and P isapath from v to w}.

2.6 Path-Vector Solutions

A solution for an instance of a path-vector system is an
assignment of path descriptors to nodes which is both re-
alizable and which satisfies each node’s preferencesto as
great an extent as possible given the assignments to the
surrounding nodes.

Definition 2.12. A path assignment p is a mapping from
V to 2R. Given a path assignment p, define the set
C(p, v) of candidates at node v to be

Forowyu{reR|{v,u} e EArE Fo, wy(p(u))},

i.e., those path descriptorswhich are either originated at v
or which are the result of importing descriptors assigned
by p to v’s neighbors.

Definition 2.13. For X C R, let the set min(X) be the
set of descriptors in X (for all destinations) which are
minimally ranked among the descriptors with the same
destination, i.e., define min(X) =

{re X |Vr' dest(r') = dest(r) = w(r) <w(r)}.

The assignment p isasolution for [ if foreachv € V we
have (1) p(v) € R} and (2) p(v) = min(C(p, v)).

For the instance I, let sol(I) be set of solutions for I.
Note that it may be the case that sol(I) = 0.

Running Example, Part 6. Theuniquesolution p ¢, t0
the instance from part 5 of our running exampleis shown
in Table 1. Note that the sub-instance obtained by deleting
theedge {1, 5} from the graph has two solutions; so, this
instance is not robust.

3 Examples

We first discuss two points in the design space that were
mentioned in the overview and then present an additional,
more complex example.

Prbp (V)
{(d, 0,(1), 1, 0)}

{(d, 50, (2,1), 1, {red})}
{(d, 1000, (3,4,5,1), 4, {green})}
{(d, 50, (4,5,1), 5, {green})}
{(d, 2, (5.1), 1, {green)))

Table 1: Unique solution for our running example.

Uk W N |

3.1 Shortest-Paths Routing

Example 3.1. (Shortest Paths) Let R, = D, x N x
Seq(N). The second component of » € R, is a non-
negative length associated with the path in the third com-
ponent of r; thislength is the sole factor in path ranking,
with shorter paths preferred. We permit nodes to incre-
ment the length of a path on import or export, so that
L™ = Lot = |, where L, (f) holds iff there exists a
positiveinteger n such that forall d € D,,, m € N, P €
Seq(N), wehave f({(d, m, P)}) = {(d, m+n, P)}.

We define the export policy-application function
3t (u, v, f, X) to produce the set

{(d, m,uP) | (d, m, P) e f(X)}.

That is, t2;* merely extends the path P with the node
u. We define the import policy-application function
t(u, v, f, X) to produce the set

f{r|r=(d, I,P) € X where P isasimple path}).

That is tgg eliminates path descriptors with a loop, and
then applies the import policy.

Remark 3.2. Note that by replacing Seq(N) with N
we could model “distance vector” protocols similar to
RIP [13]. However, we will restrict our attention to those
systems that do not alow signaling paths of arbitrary
length.

Example 3.3. (Shortest-AvailablePaths) Thissystemis
adlight extension of Shortest Pathsin which path descrip-
tors can be filtered out, both on import and export. We
simply modify the local constraints L * and L °“* to allow
filtering, leaving al other definitions unchanged. The new
constraint L 54, (f) holdsiff there exists a positive integer
n such that for all d € Dy, m € N, P € Seq(N),
either f({(da m, P)}) = 0 or f({(d’ m, P)}) =
{(d, m+n, P)}.
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3.2 A Catalan Example

We now give an examplewhich is rather unlike traditional
routing problems and which suggests the broad applica
bility of the framework we have presented. The policy-
application functions of this path-vector system ensure
that the path descriptors which are passed between nodes
are those whose paths are subpaths of lattice pathsrelated
to the famous Catalan numbers. We thus denote this path
vector system by PV ... The set U,,; includes oo, and
the ranking function w,; is constructed so that exactly
the desired lattice paths are given finite rank; subpaths of
the desired paths are not filtered but instead given infinite
rank.

The policies written by nodes in an instance of this
system do not affect which paths are imported and ex-
ported; they only determine the rank of the path descrip-
tors which are constrained by PV ,; to have finite rank.
Given the myriad of combinatoria interpretations of the
Catalan numbers, there are many waysthat nodesinanin-
stance of PV ., can interpret and then “naturally” order
the path descriptorsthat they receivefromtheir neighbors.
We suggest afew such policies below.

3.21 ThePath Vector System PV ,;

We assume that each node in an instance of PV .,; has
a neighbor one step to the north and one step to the east
(as though points with integer coordinatesin R ?) and that
the protocol knowsthe spatial relationship between neigh-
bors.

Let Seq(0, 1) bethe set of dl finite 0—1 sequences, and
let Reat = Deat X N x N x N x Seq(0, 1). We then make
the following definitions.

L{mt NU {OO}
desteat(d, x, y, z, P) = d
z, xT=1y
d7 ) ) ) P = .
Weat(d, , 9, 2, P) {oo, otherwise

Inr = {d, z, y, z, P}, we will use P to encode the
corresponding path (using O for east stepsand 1 for north
steps) and = and y to store the number of east and north
stepsin the path.

We let 0., (X) hold if and only if r € X =
r = (d, 0, 0, m, €), where ¢ is the empty se-
quence. Let L.q:(f) hold if and only if for every r =
(d7 T, Y, 2, P) € Reat, f({r}) = {(d7 z, y, 2, P)}’
so that f may only change the fourth element of the path
descriptor. We take L .,; to be the constraint on both im-
port and export functions.

LZ;t(f) Lcat(f)
L(O:gtt(f) = Lcat(f)

Remark 3.4. Note that L .,; ensures that policies do not
filter paths asin Shortest Paths (Example 3.1). Thiscould
be changed to alow filtering as in Shortest-Available
Paths (Example 3.3).

We define the export policy-application function
o (u, v, f, X)tobetheset

{(d, z+ 1,9y, 2, 0P) | (d, =, y, 2, P) € f(X)}
if vis1 step east of u, the set
{(d, z, y+1, 2, 1P) | (d, =, y, 2, P) € f(X)}

if vis1 step north of u, and () otherwise. Thus %% re-
stricts the export of descriptors to those neighbors which
are one step east or north from the exporting node. It also
updates the path P, prepending a 0 or 1, depending on
whether this export is to the east or north, and the total
number of east (x) and north (y) stepsin P. Note that
we do not make assumptions about the labels of the nodes
(although we could express these restrictions using node
labelsfrom N x N). We definet™, (u, v, f, X)tobethe
set

f{d, z, y, z, P) € X |y > a}).

The combination of ¢9% and ¢, ensures that the path
descriptors which have not been filtered correspond to
paths with north and east steps and that, starting at the
destination, have never made more east steps than north
stepsasthey areforwarded. It iswell known that the num-
ber of such paths with exactly n steps north and n steps
east is the n'" Catalan number —; (*"). The definition
of w.,+ means that the path descriptors which have finite
rank are exactly those which have passed along equally
many north and east steps. While PV ,; determines the

set of descriptors which are assigned finite rank at each
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node, it has noimpact on the ordering of the descriptorsin
thisset. Theserankingswill be determined by the policies
of nodesin an instance of PV .,; and may correspond to
natural orderings on some of the many families of objects
counted by the Catalan numbers (66 examples of which
are given in Exercise 6.19 of [24]).

3.2.2 Policiesfor PV, ,;

Assume that we have some policy language PL .. for
PV.4 in which a node can describe; a family of objects
counted by the Catalan numbers; a ranking of these ob-
jects; and an appropriate bijection between the objectsand
Catalan sequences. (A Catalan sequence of size n is an
element of Seq(0, 1) withn 0sand n 1s, such that no ini-
tial subsequence has more 0s than 1s.) We now consider
different policy functions, compiled from policies writ-
tenin PL.,; and which satisfy L ..¢, which may arise in
PV..;. These functions must be of the form

f{d, z, y, 2, P}) ={(d, =, y, #', P)},

so we will define the functions below by defining z’ in
each instance.

The first two examples use as objects | attice paths (i.e.,
composed of the steps (1,0) and (0,1)) from (0,0) to
(n,n) which never fal below the diagonal y = x. They
also use the bijection described in the definition of PV .4
in which a 1 appearing in an element of Seq(0, 1) corre-
sponds to a step of (0, 1) in alattice path. For the first
example, let the ranking of a path be its area, i.e., the
number of whole squares below the path and above the
diagonal y = . Theimport function then sets 2’ to be the
area of the path corresponding to P. For our second ex-
ample, we prefer shorter paths to longer ones, and given
two paths of the same length, we prefer the one which
has the (1, 0) step at the first step where they differ. For
a sequence P of length 2n, the import function then sets
2 tobe 7" (*)/(i + 1) plus the number of paths of
length 2n that have a (1, 0) step in the first place where
they differ from P.

Among all paths of length 2n, the path along the di-
agonal (alternating north and east steps) will be the most
preferred using both of these policies, while the path con-
sisting of n steps north followed by n steps east will be
the least preferred. However, the first policy will prefer
any path along the diagonal to any other path, regardless

of the lengths of the two paths, in contrast to the second
policy. They will also disagree on the relative rankings
of the two paths encoded by P, = 1011111 ...00000. ..
and P, = 110010101010. . ..

Policies might also be written which view the object
encoded by a sequence P of length 2n as an ordering «
of {1,...,n} which does not have three (possibly non-
adjacent) elements in decreasing order (a 321-avoiding
permutation). (See [24] for abijection to the lattice paths
we have been considering.) Theimport function could as-
signto 2’ any number of values, including various permu-
tation statistics (e.g., descents, inversions) evaluated on 7.
Once the path P is viewed as a permutation, there are a
wide variety of waysto define z.

4 Expressiveness

To rigorously capture the expressive power of path-vector
systems, we use a variant of the Stable Paths Problem
(SPP) [9] as a sematic domain. After reviewing the SPP
framework, we show how to map path-vector instancesto
equivalence classes of SPP instances and use thisto com-
pare the expressiveness of path-vector policy systems.

4.1 The Stable Paths Problem (SPP)
Definition 4.1. The quadruple

S = (Ga Vo, Pa A)

is an instance of the Stable Paths Problem (SPP) if G =
(V, E) is afinite undirected graph, vo € V (called the
origin), P isaset of simple pathsin G terminating at v,
and the mapping A takes nodes v € V' to a path ranking
function \¥ = A(v). Each AY is a function that takes a
path in P? = {P € P | Pisapathstartingat v} toits
rankin N. If W C Pv, then the subset of “best paths’ in
W, min(\", W) C W, is defined as the set

{P e W |forevery P' € W, \"(P) < \"(P")}.

Definition 4.2. A path assignment for an SPP-instance S
isany mapping 7 from V' to subsets of P suchthat = (v) C
PY. The set candidates(u, ) consists of all permitted
paths at « that can be formed by extending the paths as-
signed to neighbors of . For v = v, candidates(u, ) =
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{(u)}, and for u # v, candidates(u, 7) equals
{uQ e P*|{v, u} e Eand Q = w(v)}.

A path assignment 7 is a solution for an SPP if for ev-
ery node u we have 7w(u) = min(A*, candidates(u, r)).
That is, if F'is afunctional that takes path assignments
7 to path assignments F(r), defined as F(w)(u) =
min(A\*, candidates(u, 7)), then the solutions of the SPP
are exactly the fixed points of F' (for any solution = we
have F'(7) = m, and F'(7) = w implies 7 isasolution).

A convenient abbreviationfor the best path at « under
is defined to be best(u, 7) = min(\*, candidates(u, r)).
Then 7 isasolution if 7(u) = best(u, ) at each node w.

Remark 4.3. The definition for SPP given here is a bit
more genera than that of [9] in that we do not require
“strictness;” which guarantees that |7 (v)| < 1 for every
solution 7. In addition, we have changed the order of the
ranking to prefer paths with smaller (not larger) rank. Fi-
nally, we have allowed any node vy € V to bethe origin.

4.2 Mapping Path-Vector Systems
to SPP Instances

Supposethat I = (G(V, E), F) is an instance of some
(PV, PL). We may represent I as a set of instances of
the Stable Paths Problem (SPP). For each w € V' and each
rw € F°T (w) we construct an SPP instance S(1w,r0)-

Definition 4.4. Define I(w, r,,) to be a restriction of
instance I where the only descriptor originated is r., at
node w. Given I(w, r,,), define the corresponding SPP
instance S(z,.,r,) @ described below, and let S(I) =
{I(w, ) | w € V, 1y € F™(w)} be the set of all
SPP instances which correspond to arestriction of 1.

Let the set of permitted paths in S ..., be
Pwry) = {P | (P, rv) # 0}. Foreachv € V,
set the values of the ranking function )\“(’mew) such that
the following holds: A7, , . (P1) < Alp,, .. (F2) if
andonly if {ri} = r(P1, 1w), {re} = r(Pe, v), and
w(r) < w(rs).

Itmay bethat A{; , . \(P1) = A{p ., (P2) for paths
P, # P,. This can happen in one of two ways. First, it

may be the case that r(Py, 7)) = r(Ps, ry). Thatis,

two distinct signaling paths may result in the same path
descriptor. Or, it may bethe casethat r1 = r(P1, 7w) #
(P2, 1) = r2, bUt w(ry) = w(rsa).

There is an exact correspondence between the set of
solutions for I and the set of solutionsfor S(I) as shown
by the following theorems. (The proofs are mostly a-
gebraic manipulation using the definitions above and we
defer them to Appendix A.)

Theorem 4.5. If risasolutionfor S(; , ..,), then

U (P, 1)

Pen(v)

pW(U) =

isasolution for I(w, r.,).

Theorem 4.6. If p isasolution for I(w, r,), then
mp(v) = {P € P" | (P, 1) C p(v)}

isasolutionfor Sz . r,)-

Theorem 4.7. 7, =mandp,, = p.

Running Example, Part 7. An SPP correspondingto our
running example is presented in Figure 4. Node 1 is the
origin. Next to each node are the permitted paths of that
node listed in order of preference, starting with the most
preferred at the top. Note that the actual values of the
ranking function are not important, only the relative pref-
erence of each permitted path at each node; thisfigure can
be taken to represent an entire equivalence class of SPPs
with different values for each \* but the same orderings
on each set P*.

231 3251
2341 3451
21 2 3341
251 31
23451

1

451

1 43251

51 431
I —

521 | O 4|41

Figure 4. SPP for running example.
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4.3 Definition of Expressive Power

Two distinct SPPs can represent the same set of solutions
because the specific values in N that a ranking function
Y takes on are not really important—what isimportant is
the relationship between the rankings of permitted paths
at agiven nodev.

For any SPP instance .S, define two relations, &5 and
@s, on permitted paths P. First, P; ©g P if and only if
P, P, € P and P; isasubpath of P, i.e, there exists
a path @ (possibly ¢, the empty path) such that QP; =
P,. Note that ©¢ is a partial order on permitted paths.
Second, P, ©g P, if andonly if thereisav € V such that
Py, P, e PPand \(Py) < AV(P%). Definerelation ©g
to be the transitive closure of therelationo s U ©g.

Definition 4.8. We say that two SPPs S; and S, are
equivalent if they are defined on the same graph, have the
same set of permitted paths, and © 5, = ®g,. Define the
set £(.5) to be the set of all SPPs equivalentto S.

Definition 4.9. We define the expressive power of
a path-vector policy system (PV, PL) as the set
M(PV, PL) =

{€(S) | S € S(I) for some (PV, PL) instanceI}.

M(PV) means the maximal expressive power of PV
when it is not constrained by a policy language, i.e., the
maximal expressive power of PV with respect to a pol-
icy language allowing al legal policy functions to be ex-
pressed.

Remark 4.10. We note that
M(vap) - M(vaap) - M(Pvurbgp)-

Shortest-Available Paths (PV 4,,) alows nodes to filter
routes while Shortest Paths (PV ,,) does not. Any rout-
ing configuration in PV 4, is captured by PV .,,. But,
given any configuration permitted in PV ,,, we can filter
one of the routes and obtain a new configuration where
the policies are permitted by PV 4, but not PV ,,; thus,
M(PVg) © M(PVap). Likewise, because PV ,p4p
essentially allows nodesto rank routesin any order, it per-
mits arouting configuration where anode prefersalonger
path to a shorter one. Therefore its expressive power is
more than that of PV 4.

5 Robustness

We first define robustness using SPP semantics and then
present a natural class of expressive, robust SPPs, charac-
terizing this class in the path-vector framework.

5.1 Definition of Robustness

Definition 5.1. Aninstance I over (PV, PL)issaidtobe
robust if it has aunique solution and every sub-instance of
I hasaunique solution. If every instance of a path-vector
policy system (PV, PL) isrobust, then (PV, PL) issaid
to be robust.

Definition 5.2. In asimilar manner, we can define robust-
ness of SPP instances. Definethe set RSPP as

RSPP ={&(S) | S isarobust SPPinstance}.

Given the results of the previous section, we then see
that a path-vector policy system (PV, PL) is robust if
and only if

M(PV, PL) C RSPP.

We areinterested in the design space of robust path-vector
policy systems.

Conjecture5.3. Forevery (PV, PL),if M(PV, PL) C
RSPP, then there exists an £(S) € RSPP such that
E(S) ¢ M(PV, PL). In other words, no path-vector
policy system can capture exactly all robust systems.

5.2 A Natural Set of Robust Systems

Definition 5.4. The SPP S is almost-partially ordered if
Og isreflexive, transitive, and obeysthe following rule:

Rule5.5. P, ogs Py andPQ Os Py ImpllesthaIP1 =P
or 3v suchthat Py, P, € P".

(Traditional notions of antisymmetry and partial order-
ing for ®¢ do not alow permitted paths of equal rank at
any node; thus, we use the dlightly modified notion given
above)) Then let

APOSPP = {£(S) | S isamost-partially ordered}

be the set of al amost-partially ordered equivalence
classes of SPPs.
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If the SPP S is almost-partially ordered, then we will
write P, < P, for P; ©g P>, and wewill write Py < Py
if Py ©g P> but P, @Spl-

Theorem 5.6. If an SPP instance S is almost-partially
ordered, then it isrobust.

In order to prove Theorem 5.6, we must introduce an-
other definition from the SPP framework [9].

Definition 5.7. A dispute wheel is a cycle of nodes

v1,V2, ..., Uk, Vg1 = v1 iN an SPP instance such
that there exist paths Ri,Ro,.. .,Rk,Rk+1 = Ry and
Ql,QQ,...,Qk,Qk+1 = (; such that Q; € Pvi,

RiQit1 € P, and AV (R;Qi+1) < A" (Q;). The nodes
and paths R; are on the rim of the dispute wheel, while
the paths ); are called the spokes of the wheel.

The following lemma connecting dispute wheels and
Definition 5.4 will be useful in proving Theorem 5.6.

Lemmab5.8. The SPP S isalmost-partially ordered if and
only if it has no dispute wheel.

Proof. First, suppose that S is amost-partially ordered.
Furthermore, suppose that S has a dispute wheel with
R;,Q; as in Definition 5.7 Because \“i(Q;—1) <
A4 (R;Q;), we know that R;Q; < Q;—1 because < sub-
sumesrelation © g. And because Q; isasubpath of R;Q);,
we know that Q; < R;Q;. Therefore, Q; < Q;_1. Fol-
lowing this chain of inequalities around the dispute wheel
yields the contradiction QQ; < @Q;. Therefore, S has no
dispute whes!.

For the other direction, suppose that S has no dispute
wheel and also assume that S is not almost-partialy or-
dered. If S isnot almost-partially ordered, then there must
exist paths P, and P, that violate Rule 5.5 because the re-
lation ®g isinherently reflexive and transitive; i.e.,

3P, # P, suchthat
() P ogPs,
(i) P,og Py, and
(i) Voev:{P, P} ¢ P’

Conditions (i) and (ii) imply that there exist sets of paths
{Y;} and {Z;}, not necessarily distinct, such that

P=Y16sY205---05Y,_10sY, =F»

and
Py =7105220g5 - Os Lpn_-10s ZLp = P,

respectively. From (iii) we know that it is not the case that
P, ©g Py orthat P, ©9g Py if PL©g P, and P, ©g Py
then P, = P, which is not possible if P, and P; vi-
olate Rule 5.5. Therefore, there must be intervening
distinct paths in the cycle of relationships above, i.e,
(Yt u{Z;H\{P1, P.} # 0. Using the“cycleof paths’
in{Y;}u{Z,}, wecanbuild adisputewheel: if X; ¢ X>
for X1, Xo € {Y;} U {Z;}, then X is asubpath of X,
and X can be a spoke path while X can be the spoke
path X; exported to arim neighbor; then X, ©¢ X3 and
X5 istherim path preferred to the spoke path X s, etc.
Theexistence of adisputewheel in S isacontradiction;
thus S is almost-partially ordered. O

With Lemma 5.8 in hand and a result from [9], we can
proceed with the proof of Theorem 5.6.

Proof. If S is amost-partially ordered, then by
Lemma 5.8 it has no dispute wheel. Then by Theo-
rem V.10in[9], S isrobust. (In particular, Theorem V.3
in [9] states that a dispute-wheel-free S has a solution,
Theorem V.4 states that it has a unique solution, The-
orem V.9 guarantees that the SPVP agorithm from [9]
will converge to a solution for S, and Theorem V.10
guarantees that a unique solution can be found in the
presence of link and node failures.) O

Remark 5.9. An aternative proof may be possible us-
ing fixed point theory. As remarked in Definition 4.2, the
solutions of the SPP are exactly the fixed points of F', be-
cause F'(m) = w implies 7 isasolution, and for any solu-
tion = we have F(r) = w. Perhapsthereis some relation
that we can impose on the function space of path assign-
ments so that if S is amost partially ordered, then: (1)
this relation is partially ordered; (2) F' is monotonically
increasing; and (3) F' is continuous with respect to this
order. Then the above proof could dispense with dispute
wheels and instead use standard fixed point theorems.

Theorem 5.10. If M(PV,PL) C APOSPP, then the
path-vector policy system (PV, PL) isrobust.

Proof. Thisfollowsfrom Theorem 5.6. O
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Remark 5.11. The above theorems give the broadest-
known sufficient condition for robustness and are consis-
tent with theresultsin [9].

5.3
Definition 5.12. The SPPinstance S isincreasing if

AURQ) < A (vQ)

for al edges {u, v} with path @ permitted at « and path
v@ permitted at v. (We are comparing the rankings as-
signed by different nodes; these values have no a priori
relationship.) Let

ISPP ={E(S) | Sisincreasing}
be the set of all increasing equivalence classes of SPPs.
Theorem 5.13. APOSPP =ZSPP.

Proof. Clearly ZSPP C APOSPP because if the SPP
S isincreasing, its preferencesare already consistent with
the subpath relation so that © ¢ is an almost-partial or-
der; so, we only need to show that APOSPP C ZSPP.
If S isan SPP such that £(S) € APOSPP, then we
can topologically sort the permitted paths of S. (See Ap-
pendix B for details of this process.) We can then cre-
ate anew SPP S’ by creating a new ranking function X\’
which both respectsthistopological order (so that the sys-
tem isincreasing) and which has the samerelative prefer-
encesas A. Clearly £(S) = £(5’); as S’ isincreasing,
E(S) e ISPP. O

Ideally, we would like to construct a (PV, PL) pair
suchthat M(PV, PL) = ZSPP, thus obtaining expres-
siveness and robustness. We now examine two ways to
modify the running-example system PV 34, SO that the
result is an increasing path-vector system. As we seein
the next section, each of these systems lacks some de-
sirable property, a conflict which is in fact unavoidable
(Theorem 6.9).

Example 5.14. System PV, shares local preferences
between nodes (therefore, it is not policy-opague) and has
local policy constraints that enforce increasing rank be-
tween neighbors. Modify the definition of ¢ °“* so that the
local-preference value is passed between neighbors:

top (u, v, f, X)={(d, m, uP, u)
| (d, m, P, ) € f(X

Increasing Path-Vector Systems

)}

L et the export constraint be

Ly (f) & ¥r, w({r}) <w(f{r})

and let the import constraint be

Lup(f) & Vr, w({r}) <w(f({r})).

That is, we constrain the legal policies to be those that
increase path rank; in theory, such policies can be written
because nodes have access to neighbors' local-preference
values.

Example 5.15. System PV ... modifies both protocol
transformations so that they filter out descriptors whose
rank does not increase under the application of the policy
function in question. If » = (d, I, P, n) € X, define
h(r) = (d, 0, P, n). Thehlett}ffme(u7 v, f, X) bethe
set

{f({h(r)}) | r € X describesasimple path
andw({r}) <w(f({h(r)}))}

andlet 94 (u, v, f, X) betheset

force

{(d, I, uP, w) | r=1(d, I, P, x) € f(X)
andw({r}) <w(f({r})}

Remark 5.16. M(PV ,p,) = M(PV jorce) = ZSPP.

6 Autonomy, Transparency, and
Policy Opagqueness

6.1 Autonomy

Network operators often require a high degree of auton-
omy when defining routing policies, i.e., they want wide
latitude to write policies that reflect their own interests.

We first define a general notion of autonomy. A col-
lection of predicates on path descriptors, such that exactly
one predicate holds for each descriptor in R, induces a
partition IT of R. A partial order on these predicates in-
ducesapartia order on R. A path-vector policy systemis
autonomouswith respect to (IT, <py) if there existsalegal
policy that ranks routes consistent with the partial order
on IT induced by <ij.

For example, a policy writer may wish to rank routes
solely as afunction of the value of one particular attribute
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of descriptorsin the system. If he or sheisto do so with
full freedom, the system must be autonomouswith respect
to every partial ordering of the collection of predicates
which test the value of that attribute. A system without
this autonomy may have local-policy constraints prevent-
ing the desired policy configuration.) We can say that
the space of ordered partitions given which a path-vector
policy system is autonomous represents the autonomy of
the system, and that full autonomy is reached when pol-
icy writers can write policies consistent with all possible
partitions.
Formally, we have the following.

Definition 6.1. A path-vector system PV is autonomous
with respect to partition IT of X C R iff for any partial or-
der <11 on the partition, there exists alegal import policy
f (i.e, L (f) holds) such that for al r; € I;,r; € II;
with II; <y I1;, there exist 7;, #; € R such that

(f(ri) =7 and f(ry) = 75) = w(f) < w(Fy).

Useful partition types, as described above, include par-
titions based on attributes, e.g., “Let » € II; C R iff
A(r) = 4" (theindex set of the partition is the set of pos-
sible attribute values A(r)). If PV is autonomous with
respect to such a partition, we will say that PV is au-
tonomous with respect to A.

Remark 6.2. If PV isautonomouswith respect to A and
B together (i.e, “Letr € Ily;;, C Riff A(r) = i and
B(r) = j"), then PV is both autonomous with respect
to A and autonomous with respect to B. The converse of
thisis not true.

Definition 6.3. The autonomy of a path-vector system
PVis

A(PV) ={Il| PV isautonomouswith respect to IT}

One intuitive definition for the concept of full auton-
omy might be that PV is autonomous with respect to al
possible predicatesI1. However, thisis not reachable. To
give a more useful definition, we first introduce the fol-
lowing concept.

Definition 6.4. Q(r, v) is an importability predicate iff
Q(r, v) holdsif t™* applies some F"*(v,u) tor € X C
R.

Definition 6.5. PV has full autonomy iff there exists a
PL such that for @l instances I over (PV, PL) and all
vertices v in the instance graph there exists an importa-
bility predicate Imp(r, v) such that for all partitions IT of
{r € R | Imp(r,v)}, PV isautonomous with respect to
II.

This definition of full autonomy is more reasonable be-
cause it includes node independence and limits the scope
of path descriptors considered to those that are actually
imported at a given node. Informally then, a path-vector
system has full autonomy when imported path descriptors
can be ranked freely at every node.

We now define amore specific notion of autonomy suit-
able for BGP-like systems. It describesthe ability to clas-
sify neighbors, e.g., so that an ISP can prefer routes from
customers over routes from peers.

Definition 6.6. The path-vector policy system (PV, PL)
supports autonomy of neighbor ranking if, for every in-
stance I, node v, and a partition C'y, Cs,...,C} of the
set of neighbors of v, there exists alegal import policy at
v that does not filter routes such that, for 1 < 7 < k —1,
v always prefers routes sent from partition C'; over those
sent from partition C; 1.

Note that autonomy of neighbor ranking is simply au-
tonomy with respect to a partition on the value of the
next hop (or path vector) attribute of “importable” path
descriptors.

The system PV ,, in Example 5.14 does not sup-
port autonomy of neighbor ranking. However the sys-
tem PV forcc in Example 5.15 does, but in what might
be called a draconian manner, i.e., the policy-application
functions enforce increasing rank even if the policy
writer’s policies do not—routes that are not increasing in
rank are simply filtered out by the protocol (not the poli-
cies).

6.2 Protocol Transparency

This brings us to another important property for policy
writers: they should be able to easily understand the se-
mantics of policies that they write. For example, the
import-policy application Y = t™ (v, u, f, X) is de-
fined with the user-supplied policy f asinput, but thereis
no guarantee that the policy writer can easily understand
why the output Y is obtained.
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Definition 6.7. Suppose there exists a function ¢
whose definition does not depend on f, such that
t"(v, u, f, X) = f(t"™(v, u, X)). Then PV is
said to apply import policies transparently. Similarly, if
there exists a function £°** such that t°% (v, u, f, X) =
tovt (v, u, f(X)), then PV issaid to apply export poli-
cies trangparently. If both of these conditions hold, then
PV istrangparent. In this case, we can define the func-
tion t(v, u, X) = t"(v, u, t°(u, v, X)) and note
that

F(v, u)(X) - Fm(vv u)(t(va u, Fout(u7 U)(X)))

That is, the transformation between two neighboring
nodes participatingin PV can be easily understood as the
composition of three functions. the export policy at one
node; afixed, uniformtransformation ¢ givenby PV'; and
theimport policy at another node.

Remark 6.8. The system PV f,,.. IS not transparent, but
the systems PV, and PV 4,4, are.

6.3 A Design Trade-off

We saw that the systems PV ,,,, and PV o, are both ro-
bust, yet one supports autonomy of neighbor ranking but
is not transparent while the other is transparent but does
not support autonomy of neighbor ranking. This is just
one example of amore general design trade-off:

Theorem 6.9. If (PV, PL) is any path-vector policy
system with M(PV, PL) = APOSPP, then either
(PV, PL) does not support autonomy of neighbor rank-
ing or PV isnot transparent, or both.

Proof. The SPP instance GOOD GADGET in Figure 5(a)
isin APOSPP, so it must be expressible by some
(PV, PL) ingtance. If (PV, PL) supports autonomy
of neighbor ranking, then node 2 can change its policies
to prefer paths through node 3, producing the SPP in-
stance BAD GADGET in Figure 5(b) which has no solu-
tion. Therefore, because M(PV, PL) = APOSPP,
the policy-application functions of PV must not allow
this policy to take effect, i.e., the system is not transpar-
ent. O

(b)

Figure 5: (@) The SPP GOOD GADGET and its unigue so-
[ution. (b) The SPP BAD GADGET.

6.4 Policy Opaqueness

Policy writers might often think of autonomy and trans-
parency in terms of path-descriptor attributes. In partic-
ular, a policy writer might be concerned with what free-
dom he or she has to change a path-descriptor attribute
and what effect such a change might have. A related con-
cern, the property of policy opaquenessthat we discussin
this section, is whether attribute settings are shared with
neighbors or kept private. On one hand, the exchange
of information might be important to allow policy writ-
ers to make important conditional assignments that affect
ranking or the overal robustness of the system; on the
other hand, policy writers may not want to disclose their
changesto path-descriptor settings (especially when these
changes should not influence others).

Informally, an opague system is one where policy-
related attributes are kept hidden when path descriptors
are exchanged between nodes. It is expected that this“in-
formation hiding” occurs in the protocol transform func-
tions (specifically ¢°%“, because we expect ¢** to be ex-
ecuted by a router that is different than the one that last
set attribute values) as a built-in transformation to the
path descriptor. So that we may conveniently discuss the
opaqueness of a system in terms of which attributes are
shared and which are kept private, we make the following
definition. Let 7~ be the path descriptor » with attribute
A removed.

Definition 6.10. Attribute A is opaque iff, for any two
1,79 € R, =y impliesthat

gout (v,u, Fo(v,u), {ri}) = gout (v,u, F(v,u), {r21})
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for al v, u (i.e, either r, and ro are both filtered or they
produce the same descriptor).

An opaque attribute, then, is one that is essentialy
cleared on export (after application of ¢ °4?),

Remark 6.11. Thelocal-preferenceattributeis opaquein
the systems PV f,,c.c and PV 45, but not in the system
PV . Inthis case, the opagueness of local-preference
and autonomy of neighbor ranking are closely intertwined
because adjusting rank for next-hop involves adjusting the
local-preference value accordingly; this is not arbitrarily
permitted in PV ,,,. It is the implementation of ranking
restrictionsin PV ,,,, that removes the opagueness of |o-
cal preference. It is not generaly true that loss of auton-
omy of neighbor ranking goes hand-in-hand with aloss of
opagueness.

7 Global Constraints

Theorem 6.9 shows that the expressive power of
APOSPP can be reached only if a path-vector policy
system gives up either transparency or some autonomy.
However, both of these may be very important in many
applications. In this section, we discuss an approach that
will allow us to move beyond this dilemma: relying on
global assumptionsin the network.

The expressive power of a path-vector policy system is
largely dictated by the local constraints included in the
specification and those enforced by the policy language.
We introduce the complementary notion of a global con-
straint as any function K that maps any (PV, PL) in-
stance I to { TRUE, FALSE}.

Definition 7.1. A globally constrained path-vector pol-
icy system is a triple (PV, PL, K), where K is a
global constraint for (PV, PL). I is alegal instance
of (PV, PL, K) if I is an instance of (PV, PL) and
K(I) = TRUE.

Definition 7.2. Let M(PV, PL, K) bethe set
{€(S) | S € S(I)foralega (PV, PL)instance}.
Definition 7.3. Define the constraint K ,,, as

Kapo(I) < V.S € S(I), £(S) € APOSPP.

We say that the global constraint K is robust for
(PV, PL)if, for every instance I, K(I) impliesK g0 (1).

The following theorem implies that global constraints
are indeed an integral part of path-vector-system design.

Theorem 7.4. Suppose the global constraint K is robust
for atransparent (PV, PL) allowing autonomy of neigh-
bor ranking suchthat M(PV ,) C M(PV, PL,K) (i.e,
at least as expressive as shortest paths). Then K must be
non-trivial.

Proof. If we are not restricted to shortest-paths routing,
then autonomy of neighbor ranking and transparency al-
low usto expressBAD GADGET. Only anon-trivial global
constraint could prevent this. O

8 An Application: Class-Based
Path-Vector Policy Systems

The Hierarchical-BGP pointsin the design space (HBGP,
etc.), motivated by [5, 6], are examples of a general class
of transparent systems where some type of autonomy of
neighbor ranking is relevant: route transformations de-
pend on the partition of neighbors into classes. We will
refer to systems that use a generalized version of such a
policy language as class-based systems. Theorem 7.4 tells
usthat such systemsrequireanontrivial global constraint;
in this section we sketch design guidelines for these sys-
tems.

8.1 The Class-Based Path-Vector System

We fix a BGP-like path-vector system that can implement
scoping and relative preference rules dictated by class re-
lationships (such as those in [5, 6]). By scope, we mean
the conditions under which routes are shared with neigh-
bors, and by relative preference, we mean the difference
in rank assigned to routes learned from neighbors in dif-
ferent classes.

In our running-example system PV ,,;,,,,, path descrip-
tors r contain a local preference attribute () that can
be set to assign rank based on the class of the exporting
neighbor. Thisattributeis not shared between nodes, intu-
itively allowing some autonomy and opagueness. Limited

19



scoping can be implemented by filtering routes. How-
ever, this notion of scope is restrictive, e.g., it does not
allow easy flagging of a backup route, especialy when
the next hop might be through a neighbor of an ordinarily
preferred class. Therefore, we extend the path descriptor
r, following [5], to include a level attribute g(r). This
attribute is nondecreasing and shared and will have prece-
dencein ranking; thus, it can be used to communicate no-
tions of scope that override relative-preference rules en-
coded in the local-preference attribute.

Remark 8.1. If all nodes agreed on an encoding within
local preference for indicating backup routes or some
information were shared between nodes, backup-route
scoping would be possible in BGP (PV ,4,4p) Without ad-
ditional attributes. However, the additional attribute can
separate the awkward encoding and information sharing
from attributes meant for local use. The original descrip-
tion of HBGP+BU in [5] discussed these same issues.

The components of the path-vector system PV ., that
we use for class-based applications are as follows.

Rev = Doy X N x N x Seq(N)
U, = N x Z (lexicaly ordered)
dester(d,g,l,P) = d
wa(dvgvlvp) = (gvfl)
0(X) = (reX)=(3d € De,m N
such that r = (d,0,0,m))
ch?;(f) = (((dlvg/vl/vpl) = f(d,g,l,P))
=(g<gAP=P))
ngt(f) = (((d/vglvl,vp/) = f(d,g,l,P))

= (9<g NP=P))

{(d, 9,1, P) € f(X)

| Pisasimple path}

{(d, 9,0,uP) | (d,g,1, P) € f(X)}

tvCZ(’“””’ f7 X) =

t({zgt(u7v7f7x) =

Note that L™ and L% guarantee that the level at-
tribute is nondecreasing and that ¢ %; guarantees that lo-
cal preference is not shared. When ranking, a smaller
level attribute is first preferred, then higher local pref-
erence. Also, note that PV ., is transparent: let
t((U’ U? X) = {(d 7g) 07 U‘P) | (d7 g) l7 P) 6
X whereuP isasimple path} in Definition 6.7.

8.2 Class-Based Policy L anguages

The second component of design is a policy language ca-
pabl e of expressing scope and relative-preferencerulesfor
class-based systems. We first make formal the notion of
classrelationships. Let C = {C4,Cy,...,C.} beaset of
classes. Every node v € V will have a class-assignment
function C¥ : V' — (' that assigns each neighbor of v a
classin C. Asan example, consider node v in Figure 6.
Here, anode v with neighborsu, w, « has assigned classes
C, C;, C; to these neighbors, respectively.

CY(w)=C,
CY(u=G, /,”'\\ "
Y N .. P
~e Q
C'®=¢G

B Direction of path descriptor export

-

Figure 6: Class assignments to neighbors of node v and
paths to a destination node d.

Class assignments might require some consistency,
e.g., that “customer” and “provider” assignments occur
in consistent pairs; such requirementsin a system are ex-
pressed by the cross-classmatrix X = {0, 1} ... For any
pair of nodes u,v € V, if C¥(u) = C;, then X;; = 1if
C"(v) is permitted to be C;; otherwise, X;; = 0.

Remark 8.2. By defintion, X must be symmetric.

Let (o) bethe set of order operators, eg., =, <, <, etc.,
and T, which means “any relationship,” so that z1 T 29
is true for any z1, 2o in the same ordered set. Relative
preference between classes will be described by the pref-
erence matrix W = (®).x. SO that if W;; = e, then
nodes should treat path descriptors r;, r; imported from
neighbors in classes C;, C;, respectively, in a way that
ensures w(r;) o w(r;); €g. in Figure 6, if W,; is <,
then node v should prefer the path P over the path Q.
The policy-language compiler can enforce this as a con-
straint on local-preference-attribute values set by import
policies.
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Scope will be described by the level matrix M
((e) U {L})exe. Forany node v and neighbors w, u with
C¥(w) = C; and C¥(u) = Cy, if My = L thenfor any
path descriptor r imported from w, F °“* (v, u)({r}) must
equal (). This setting is used to prevent the exchange of
routes between classes altogether (filtering); e.g., in Fig-
ure 6, if M;, = L, then v would not export to u any
routes it learned from w. Other scoping conditions can
be described by alowing or enforcing a change in the
level attribute. One example is backup routing: Because
lower levels take precedence, a backup route can be as-
signed a higher level value to avoid being chosen even if
it passes through a preferred class. This situation can be
sketched using our example Figure 6: Formaly, for any
node v and two neighbors w, u with C*(w) = C; and
C"(u) = Cy, assume thereis a path P from w to some
destination d. Let r,, be the path descriptor at v for the
path v P, and let r,, be the path descriptor for the path v P
exported to u, i.e, {r,} = F°“'(v,u)({rs,}). The pol-
icy complier should enforce through constraints on level-
attribute values set in export policies that, if e My,
then g(r.,) ® g(ra).

Because the level attribute has precedence in ranking
over the local-preference attribute, the preference matrix
W only applies to descriptors of the same level-attribute
value; automatically, lower level values are preferred and
this allows descriptors of different levelsto be exchanged
by neighbors of any class.

Example 8.3. For the system HBGP+BU, let C
{C4, Ca, Cs}, where Cy can be interpreted “customer,”
Cs as “peer,” and C as “upstream provider.” X should
enforce consistent customer-provider and peer-peer rela-
tionships, W should enforce that customer routes are pre-
ferred over peer routes, and both are preferred over up-
stream routes; M should enforce that customer routes are
shared with al neighbors, and that peer and upstream
routes are only shared with customers. In addition, M
should permit nodes to flag routes as backup routes so
that they areless preferred eveniif relative preferencerules
would dictate otherwise. The resulting matrices X, W,
and M areasfollows.

X:

_ o O
O = O
S O =
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M =

ANNIN V HA

INININ V V A
EAIN AANA

A class description is the quadruple

CD = (C, X, W, M).

CD contains al the information necessary to generate a
policy language for PV ., whose “compiler,” the seman-
tic function M, can generate tuples (F ™, Fout Fori)
fromnode policiesthat (1) list classassignments(i.e., C'?)
for neighborsand (2) give local preferencesand level set-
tings for routes. The tuples will honor the scope and rel-
ative preference rules described by CD if the compiler
does the following at each node v given its policy config-
urationp in PL:

1. For all neighborsu, let Fi" (v, u) set thelocal prefer-
ence (and possibly level) attributes of imported path
descriptors as specified in the policy configuration
p. Check that for all pairs of neighbors u,w, if
C¥(u) = C;, C¥(w) = Cj, and e = W;;, then for
al ry € I, (RY) andry, € Fiy ) (RY), we have
that w(r,) e w(ry) if g(ry) = glrw).

For all neighbors u, let F°“!(v,u) set the level of
outgoing path descriptors as specified in the pol-
icy configuration p. Then check that for al pairs
of neighbors u, w, if C¥(w) = C;, C¥(u) = C;
and e = M;;, then for all r € F,.)(RY),
g(r)eg(F°u(v,u)(r)), unlesse = 1, inwhich case
Fout(v,u)(r) = 0.

The policy language can enforce the local constraints de-
scribed by X, W, and M. Class consistency, along with
any further conditions necessary for robustness, must be
built into the accompanying global constraint.

Remark 8.4. Class-based systems are autonomous with
respect to next-hop class if the descriptors have the same
level-attribute value; because a neighbor can be assigned
any class, as long as the assignments are consistent, this
essentially means that class-based systems have a re-
stricted form of autonomy of neighbor ranking.



8.3 Class-Based Global Constraints

L et the class-consistency constraint C be defined as

Yu,veV,
(C(u) =C;) = (CU(v) e {C; e C| X35 =1}).

Let K., = C A J, where Jis some constraint such that K .,
is robust for PV ., with respect to some PL of the form
described above. We now examine how to suitably define
the robustness check J.

Giventheresultsfrom Section 5.2, we know that agood
starting point for guaranteeing robustness is precluding
dispute wheels. Because of the preference and scoping
rules associated with class-based systems, we can more
easily find potential dispute wheels given the class assign-
ments made by nodes. We first introduce the following
helpful result.

Lemma 8.5. The path descriptors corresponding to all
paths R;Q;+1 and @; on a dispute-wheel rimin an SPP
mapped from a class-based instance have equal level-
attribute values.

Proof. In this proof, SPPs are those mapped from in-
stances of a path-vector system; so, if P € P in the
SPP S € S(I), define d(P) € R,y astherealizable path
descriptor for path P at node v in the path-vector instance
I. Recall that ¢(r) isthe level attribute of r.

Assume we have a dispute wheel in some SPP
S e S(I), then for all 1, Aq)i(RiQi_;,_l) < /\1)"’(621‘),
0 w(d(RiQi+1)) < w(d(Qi)); this means that
g(d(R;Qi+1)) < ¢g(d(Q;)). Level is nondecreasing, so
9(d(Qit1)) < g(d(R;Qi41)). These two inequalities
imply that g(d(Qi+1)) < g(d(Q;)) for al i; iterating
around the wheel yidlds ¢(d(Q;)) < ¢g(d(Qi+1)), thus
9(d(Qi)) = 9(d(Qi+1)) = g(d(RiQi1))- O

Lete = {v, u} € EFandlet C”(u) = C;. If eison
adispute wheel rim, then by Lemma 8.5, there must be a
class assignment of another node w by v such that v can
export to v a path descriptor from w without increasing
the level attribute. But when an edge lies on a dispute
wheel rim, it imports a descriptor from two nodes, one
along a spoke edge and one also on the rim; so, this con-
dition is true for both the node adjacent to the spoke edge
leading to v and for the node adjacent to the rim edge

leading to v. This condition, in turn, applies to the rim
edge {w, v} aswell (adispute wheel must contain at |east
two distinct directed edges), but we cannot iterate further
around the wheel because w could import from rim edge
e. However, we have just proved that the following state-
ment must hold for any rim edgee:

Lemma86. If e = {v, u} € Ewith C?(u) = C; ison
a dispute-wheel rim, then there exists some

C; € {C; | Xj» =1 and M,; permits equality}

such that
3k : My; = 1.

We can then use Lemma 8.6 to form a constraint that
prevents dispute wheels just based on class assignments:

Theorem 8.7. Given an instance signaling graph G and
class assignments, consider the subgraph H containing
only edges {v, u}, C(u) = C;, with C; satisfying the
condition in Lemma 8.6. If H is acyclic then there is no
dispute wheel.

Proof. Dispute wheen rims must contain edges satisfying
the condition in Lemma 8.6. Thus if the signaling sub-
graph containing only these edges is acyclic, no cycle of
these edges, including a dispute wheel in the general sig-
naling graph, is possible. O

Remark 8.8. The sufficient condition in Theorem 8.7 is
unnecessarily strong in most cases. However, if W =
Texe then thisis the only global constraint we know of
that can guarantee no dispute wheel. Furthermore, M of-
ten permits the construction of a “homogeneous dispute
wheel,” one where all class assignments in the direction
of export are the same around the rim. The constraint in
Theorem 8.7 can be weakened to allow such cyclesin the
testing subgraph and these cycles can then be checked for
separately. This observation is especialy important for
HBGP+BU, where the only potential dispute wheels are
homogeneous, and these cycles are prevented by standard
Internet economics (see the following example).

Example 8.9. For the system HBGP+BU, J need only
check that no customer-provider cycles exist: A sim-
ple case-by-case analysis of possible class assignments,
given the constraintsin matrices C' and M, shows that the
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only dispute wheels possible are cycles in the customer-
provider relationship graph. This follows directly from
Lemma 8.5. Consider the other possibilities of edges on
the dispute wheel:

1. Suppose we have arim edge e = {v, u} where
C"(u) = C3. Then node v must import from a
node w without increasing the level attribute; how-
ever, only Ms; permits equality so C¥(w) = C.
Because only X153 = 1, we havethat C%*(v) = 3. If
w ison aspoke, then because W prefersroutes from
C1 neighbors such as w, the adjacent rim node must
also be of class C;. Thus the only situation is one
where the adjacent rim edge to v must have the same
assignment as this one; this gives the homogeneous
customer-provider cycle.

2. Suppose we have a rim edge e = {v, u} where
C¥(u) = Cs. Just as with the case above, only
Moy permitsequality, and by asimilar argument, the
adjacent rim edge to v must be a customer-provider
edge. But this results in case (1) above where the
dispute wheel must have these edges al the way
around the rim, which contradicts the assumption
that C¥(u) = Cs. Thus this edge e cannot be on
adispute whesl.

3. Suppose we have a rim edge e = {v, u} where
C"¥(u) = Cy. All values My; permit equality, so v
can import the dispute path descriptors from neigh-
bors of any class. Consider the assigment along the
rim edge ¢/ = {w, v} adjacent to v. By case (2)
above, C*(v) # Co. If C*(v) = C5 then dl dis-
putewheel edges must havethisdirected assignment,
asin case (1) above, so this contradicts the assumed
class assignment along edge e. The only other pos-
sibility is that C*(v) = C4, which would give a
customer-provider cycle.

Checking for these customer-provider cyclesis tractable;
even without an explicit check, the basic economics of the
current commercia Internet naturally prevent nodes from
being customers or providers of themselves.

9 Open Problems

We have defined the Path-Vector Policy System frame-
work: weidentified and formalized dimensionsof the pro-
tocol design spacein away that highlightsthe role of pol-
icy languages.

Severa issues that we discussed require additional
work. First, either Conjecture 5.3 must be proven or
a broader sufficient condition for robustness should be
found. Second, the power of class-based systems must
be investigated further; in particular, the robustness check
presented in Theorem 8.7 is too strong. It is likely that
a closer examination of the preference and scoping rules
will give a more reasonable set of constraints that do not
“over-protect” against dispute wheels and do not preclude
too many robust instances. Third, while we justify the in-
clusion of global constraintsin protocol design, we do not
discuss how they are enforced. Distributed algorithms,
supplementary protocols, or economic incentives could
check global consistency. We can aso ask what level of
expressiveness can be achieved by an autonomous, trans-
parent, and robust system with an imposed global con-
straint that can be checked by one of the above methods
in polynomial time. Finally, additional useful degrees of
autonomy should be identified and analyzed (perhapsin
the context of specific routing applications).

We have focused on the static semantics of path-vector
systems rather than their dynamic behavior. However, in
non-deterministic systems, the static and dynamic seman-
tics may become intertwined, e.g., anode might use some
temporal condition to break ties between equally ranked
routes from different neighborsin a BGP-like system—a
system that prefers more recent routes will have very dif-
ferent semantics than one that prefers older routes. Both
non-deterministic systems and their dynamic semantics
should be investigated. Furthermore, the static semantics
of a path-vector system are independent of the algorithm
used to find solutions, we are particularly interested in
distributed approachesto this problem.

We have focused on the signaling of routes without
discussion of how this corresponds to forwarding in the
data plane. For example, in BGP, the signaling graph of
Internal BGP (IBGP) need not have any relationship to
the forwarding graph (IGP forwarding). Several routing
anomalies that are related to this independence in BGP
have been described elsewhere in [11]. In general, there
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will be some interaction between the signaling graph, the
physical network supporting this signaling, and the paths
in the data plane which are controlled by the pathsin the
signaling plane. We need a genera theory that describes
this interaction for path-vector protocols.
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A Proofs of SPP and Path-Vector
Solution Equivalence

Theorem A.1(4.5). If risasolutionfor Sz ., ), then

U @ rw)

Pemn(v)

pﬂ(v) =

isasolution for I(w, 7).

Proof. It is clear that for each v, al path descriptors in
p=(v) are redizable. We must show that for each v,
pr(v) = min(C(pr, v)). If v = w, then pr(w) =
{(w)} = min(C(p,, w)) by definition. Suppose that
v # w. Wefirst notethat forany Y C P,

A = U (P
Pemin(Av, Y)
= min < U r(P, rw)>
PcYy
= 37
because
reA

iff {r}=r(P, ry,)forsomeP € min(\’, Y)

iff {r}=r(P, r,)forsomeP €Y suchthat for
every P/ € Y, Al; o, o (P) S Al 4y (P)

iff for some P € Y suchthat for every P’ €Y,
{r} = r(P, ru), ('} = 7(P, 1),
andw(r) < w(r')

iff foralr € (Upey (P, mw)), w(r) <w(r')

iff reB.

LetY = {(vQ € P* | {v, u} € Eand @ = w(u)}.
Because 7 is a solution we have 7r(v) = min(A?, V') and
we have

pr(v)
UPew(U) (P, ry)
Pemin(x, v) T(Pr Tw)
= min(UPeY T(P, Tw))
min({r e R |r € r(P, r,) forsomeP € Y})
= min({r e R |r € r(P, r,) for some
Pe{(vQ eP’|{v,u} e FandQ =7 (u)}})
= min({r e R | {v, u} € F and
7€ Ugen(u) 7(vQ@; Tw)})
= min({re R|{v, u} € Fand
re UQEﬂ'(u) F(v, u)(T(Q7 TU}))})
= min({r e R|{v, u} € Eand
e F(U, u)(UQeﬂ—(u) T(Qv Tw))})
= min({re R|{v, u} € Fand
re F('U, u)(pﬂ'(u))})
= min(C(px, v)),

which compl etes the proof. O

Theorem A.2 (4.6). If pisasolutionfor I(w, r,), then
mp(v) = {P € P [ (P, 1) € p(v)}
isasolutionfor Sz . r,)-

Proof. We need to show that for each v we have,(v) =
min(\Y, candidates(v,w,)). Because p is a solution
for I(w, ry,), we know that p(v) = C(p, v) =
min(F°" (v) UY'), where

Y = {7’ €R | {U, u} €Fandre F(U, u)(p(u))}
Itis easy to show that for any X we have

{PeP’|r(P, rp) Cmin(X)} =
min(A’, {P € P | r(P, ry) C X}).
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When v # w, then

mp(v)
= AP eP[r(P, rw) Cp(v)}
= {PeP’|r(P r,) Cmin(Y)}
= min(A",{P € P? | r(P, ry) C
{reR|{v, u} € Eandr € Fy, ) (p(u))}})
= min(\’, {(vQ € PV | {v, u} € Fand
Q=A{P" eP|r(F, rv) S p(u)}})
= min(A\Y, {(vQ € P? | {v, u} € Fand
Q = mp(u)})
= min(\Y, candidates(v, ,))

When v = w, note that p(v) =
mp(v) = {P € P" [ r(P, rv) €
min(\Y, candidates(v, 7,)).

{rw}, so we have

{rw}} = {(w)} =
O

Theorem A.3(4.7). 7, = mand p., = p.

Proof.
m(v)
{P e pv | @ 7é T(P, Tw) - UQEﬂ—(v) T(Q7 Tu))}
- (P (e )P 10# (P, 1) C pal(v)}
p(v)

Upepepriozr(p, ro)Cp)y) T Tw)
UPETI’p(U) T(Pa rw)
pr, (V).

B Topologically Sorting SPPs

Theorem B.1. If S € APOSPP then there exists an
instance S’ € ZSPP suchthat S’ € £(S).

Proof. We give an iterative process converging to a path-
ranking function A that isincreasing.

Define the path-rank function for node v at step £ to be
Ay Foralv e VandP € PY, let \[(P) = oo for all
k < 0. For k > 0, define A}, as follows: At every node
v # vy, consder exactly the paths permitted at v, P?,
which havetheformvuP’, whereeither u = vy and P’ =
eoru # vo anduP’ € P¥. List thesein decreasing order
of preferenceas P; = vu  P{, Py = vugPy, ..., P, =

vu,; P!. (Ties can be broken arbitrarily.) If u; = v, then
let
/\erl (Pl) =1,

and if uy # v let
A1 (Pr) = A (P) + 1.
For the less preferred paths P;, 2 < j <4, if u; = vy, let
k1 (P5) = AR(Pj-1) + 1,
and for u; # vo let
Ap1(Py) = max { A} (P)), Abg1(Pj—1)} + 1.

Assume that all undefined values of \ are oo in the above.

Assuming that the set of permitted paths is closed un-
der the taking of subpaths, if the longest permitted path
in the SPP has & edges, then for al v € V and for all
P e PY, \},(P) # oo for every k" > k. The path-
rank functionswill stabilize over iterationsif the SPP S is
almost-partially ordered, soin S’, let

Alv) = k}in;o AL
Note that in using the above iterative process, ranks
are always set higher than neighboring ranks because of
the increment used in defining A}. Indeed, AV (vuP) >
A¥(uP) after convergence, thus A and S’ areincreasing.
Finaly, it is clear that S’ € £(S), because the rank-
ing given by the convergingimport functionsis consistent
with the SPP preference list at every node. O

Remark B.2. Any almost-partially ordered SPP can be
convered to an increasing SPP using the method described
above. It can aso be shown that an SPP which cannot
converge with respect to the above process (i.e., for some
P € Pv, there does not exist any integer k' such that
AL (P) # oo for k > k') must have a dispute wheel and
thus is not almost-partially ordered.
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