
Technical Report YALEU/DCS/TR1544 December 18, 2018

Write-Once Registers:
A Modular Foundation for Simple, Verifiable Distributed Systems

Ji-Yong Shin† Jieung Kim† Wolf Honore† Hernán Vanzetto†

Srihari Radhakrishnan§ Mahesh Balakrishnan †‡ Zhong Shao†

†Yale University §Duke University ‡Facebook

Abstract
We propose the Write-Once Register (WOR) as an abstrac-
tion for building and verifying distributed systems. A WOR
exposes a simple, data-centric API: clients can capture,
write, and read it. Applications can use a sequence or a
set of WORs to obtain properties such as durability, concur-
rency control, and failure atomicity. By hiding the logic for
distributed coordination underneath a data-centric API, the
WOR abstraction enables easy, incremental, and extensible
implementation and verification of applications built above
it. We present the design, implementation, and verification
of a system called WormSpace that provides developers with
an address space of WORs, implementing each WOR via
a Paxos instance. We describe three applications built over
WormSpace: a flexible, efficient Multi-Paxos implementa-
tion; a shared log implementation with lower append latency
than the state-of-the-art; and a fault-tolerant transaction co-
ordinator that uses an optimal number of round-trips. We
show that these applications are simple, easy to verify, and
match or surpass the performance of unverified monolithic
implementations. We use a modular layered verification ap-
proach to link the verification proofs for the applications,
WormSpace, and a verified OS to produce an end-to-end ver-
ified distributed system stack from the application to the OS.

1 Introduction
Cloud-scale platforms offer developers a number of storage
and coordination services that expose simple, data-centric in-
terfaces. At first glance, these services are diverse: they pro-
vide different APIs such as key-value stores, block stores,
shared logs, object stores, and filesystems. However, the
protocols used by these systems to provide properties such
as durability, failure atomicity, consistency, and concurrency
control are quite similar. Thus, codebases are often highly re-
dundant, re-implementing protocols such as Paxos [33] and
Two-Phase Commit (2PC) [23] with slight variations. Each
variation leads to different APIs and performance character-
istics, but can introduce subtle code and protocol bugs.

In this paper, we explore a data-centric abstraction for dis-
tributed systems called the write-once register (WOR). The
WOR has a simple API: a client can capture a WOR; write to
a captured WOR; and read the WOR. The WOR offers lin-
earizable consistency and is safe for concurrent accesses: if
multiple clients attempt to capture and write the same WOR,

only one will succeed.
WORs can be naturally implemented via the Paxos pro-

tocol (with modifications to support quorum reads), offer-
ing durability and availability against a minority of storage
servers failing. In fact, the WOR capture/write API mirrors
the phases of single-shot Paxos. WORs can also be imple-
mented via other protocols such as Primary-Backup or Chain
Replication [53], obtaining different durability and availabil-
ity guarantees.

Most distributed services embed WORs, but hide them un-
derneath a higher-level API:

• A sequence of WORs is often used to impose a total order,
but hidden behind restrictive interfaces such as replicated
state machines [45, 51], shared logs [4], groups [7, 52],
namespaces [10, 31], filesystems, databases [6], or ob-
jects [5]. Often, the implementation of the WOR is fused
with the machinery that implements the high-level API.

• A set of WORs represents decisions taken by participants
in distributed transaction protocols such as 2PC; the final
commit decision for a transaction is a function of these
WORs. In fault-tolerant protocols, each decision WOR is
either layered inefficiently over a replicated state machine,
or entwined with a transaction coordination logic [22].

We argue that the WOR should be a first-class system-
building abstraction. By providing single-shot consensus via
a simple yet versatile data-centric API, the WOR acts as the
bottom layer in a modular stack for building strongly consis-
tent distributed systems. The resulting modularity has two
benefits. First, it enables simple systems: the code and logic
for consensus can be provided by a small number of high-
quality implementations (e.g., Paxos and Chain Replication)
and reused across different systems. Second, it enables ver-
ified end-to-end systems. With a portable layered verifica-
tion approach [24, 26], the WOR implementation can be ver-
ified once and reused for the verification of applications that
use the WOR. The application can be verified easily without
dealing with the complexity of distributed asynchrony and
failures. Also, the WOR can be layered over a verified OS to
enable full-stack verification from the application to the OS.

Accordingly, we present the design, implementation, and
verification of WormSpace (contracted from Write-Once-
Read-Many Address Space), which provides applications
with a shared address space of durable, highly available, and
strongly consistent WORs (see Figure 1). WormSpace di-

1

Technical Report YALEU/DCS/TR1544 December 18, 2018

WormSpace API:
alloc/trim
WOS API:
capture/write/listen
WOR API:
capture/write/read

written

unwritten

unallocated

trimmed

(wormservers) (wormservers)

WOS

WOR

Figure 1: WormSpace architecture: clients can access a
shared address space of write-once registers.

vides the address space into contiguous write-once segments
(WOSes), which act as coarse-grained units for allocation,
notification, reconfiguration, and garbage collection. Inter-
nally, each WOR is implemented via a conventional single-
shot Paxos instance; WormSpace can be viewed as a system
to organize, access, and manipulate these Paxos instances via
data-centric APIs. We implement WormSpace via a com-
bination of a client-side library and storage servers. We
formally verify the client-side library and the server code
written in C using the Coq [15] proof assistant. We verify
the functional correctness of the code, as well as distributed
properties (e.g., write-once semantics) achieved collabora-
tively by the client library and the server code.

Applications built over WormSpace consist entirely of
capture/write/read commands on the write-once address
space, rather than message-passing protocols. As a result,
they are easy to develop and verify. We implement three
applications over WormSpace: WormPaxos, a Multi-Paxos
implementation; WormLog, a distributed shared log; and
WormTX, a distributed, fault tolerant transaction coordina-
tor. All these applications are built entirely over the WOR
API, yet provide efficiency comparable to or better than
handcrafted implementations. Specifically, we do not ‘open
the Paxos box’ while implementing these applications; the
logic for consensus and durability remains strictly contained
within the WOR abstraction. In contrast, state-of-the-art im-
plementations for all three applications require the complex
melding of Paxos logic with other protocols to obtain effi-
ciency. Further, separating out the WOR enables novel de-
sign points: for example, a shared log that uses Paxos (rather
than Chain Replication) to replicate each command, support-
ing appends in just two round-trips in the failure-free case.

WormSpace and its modular WOR design facilitate veri-
fication of distributed systems. Contextual refinement, the
key technique in a layered verification approach (detailed in
Section 2.2) [24], allows for the code above the WormSpace
API to be verified easily and incrementally. Applications
can be verified without having to deal with the complexity
of distributed coordination, which is encapsulated within the
WOR layer. To verify an application’s correctness against
WormSpace, we simply link its proof to the top-most layer
proof of WormSpace. Similarly, we can easily link the
bottom-most layer proof of WormSpace to CertiKOS [25],

a fully verified OS, enabling a verified system stack from the
distributed application to the OS, excluding only the hard-
ware and the network. The linking ensures that verified soft-
ware components interact with each other correctly as ver-
ified without leaving any anomalous corner cases [18]. As
a result, we can verify each layer once and reuse the proof
multiple times to easily expand the verified code base.

In this paper, we make three contributions. First, we iden-
tify the WOR abstraction inherent in many distributed sys-
tems and present a simple, data-centric WOR API as a first-
class programming abstraction. Second, we implement three
distributed applications over this API; for each one, our mod-
ular design easily allows new configurations with different
performance and availability properties, while matching or
surpassing the performance of an existing monolithic imple-
mentation in a similar configuration. Finally, we show that
the modular design of the resulting systems, when combined
with the layered verification approach, facilitates the reuse
of software correctness proofs, and enables verification that
crosses distributed system/application boundaries.

2 Background

2.1 A Least Common Denominator API
We stated that various systems hide WOR functionality be-
hind high-level APIs. We examine different classes of sys-
tems to make two points: most systems are similar in their
use of a WOR kernel; but they hide it behind APIs that hin-
der flexibility, reusability, and performance. While some of
these APIs can be implemented over each other, none of
them acts naturally as a lowest common denominator for all
others. The WOR fills this gap.

State Machine Replication (SMR) / Multi-Paxos sys-
tems allow arbitrary (but deterministic) application code to
be replicated, via an interface that allows servers to propose
new commands and learn them via an upcall. The SMR API
is general and easy to use; however, it limits applications by
not exposing the underlying address space of WORs. In a
sense, SMR imposes a sequential write / sequential read in-
terface on an address space of WORs. The SMR interface
can be implemented via multiple protocols; in the other di-
rection, however, Multi-Paxos protocols are exclusively used
to support an SMR interface.

Shared logs provide an append/read API to applications.
Unlike in SMR, applications can directly read from WOR
instances, examining the history of commands. However, as
with SMR, applications cannot directly write to WOR in-
stances; all writes must be funneled through the shared log
API, which imposes a total order on commands. In effect, a
shared log imposes a sequential write / random read interface
on an address space of WORs.

Group communication (GC) systems allow sending
messages to groups of servers; each message is atomically
delivered with ordering guarantees. Each slot in the total or

2

Technical Report YALEU/DCS/TR1544 December 18, 2018

partial order of messages to the group is effectively a write-
once register; the message send primitive acts as a write
operation. As with SMR, the GC send/receive API can be
viewed as imposing a sequential write / sequential read in-
terface on an address space of WORs.

Coordination services (e.g., Chubby and ZooKeeper)
typically expose a filesystem-like API to applications. Such
an API is ideal for use cases such as membership manage-
ment and leadership election, but is awkward at best for the
replication of arbitrary data or general-purpose ordering of
commands. These systems are usually implemented over
SMR, GC, or shared log APIs.

Transaction coordinators are responsible for coordinat-
ing transactions across distributed state. In effect, they are
manipulating a set of WORs, each one representing the pre-
pare/abort decision for a participant so that an atomic commit
happens across the system. Concurrency control is usually
implemented via an orthogonal mechanism such as locking.

We argue that WORs represent a least common denomi-
nator interface: all the systems described above can be im-
plemented easily and efficiently over a WOR.

2.2 Verification Approach
Modularity of WOR enables verification based on the certi-
fied concurrent abstraction layer (CCAL) approach [24, 26],
where we divide the system into modular layers, verify the
correctness of each layer independently, and verify the end-
to-end behavior of the system via contextual refinement be-
tween layers. Each layer L is a state machine which has
its corresponding implementation i and an execution envi-
ronment context t. The context t includes programs and
configurations that can run on the state machine; and such
context is not limited to a sequential program but it can
be a concurrent operating system or even an entire dis-
tributed system. Informally, a layer Llow contextually re-
fines the higher layer Lhigh if each state transition made by
Lhigh based on any context t corresponds to a sequence of
state transitions by Llow which has the context t and Lhigh’s
implementation ihigh. We can formally represent contex-
tual refinement Llow vcr Lhigh as verifying the following:

∀t,Llow(ihigh⊕ t)v Lhigh(t),
wherev is the refinement relation and⊕ computes the union
of implementation modules and contexts.

Contextual refinement is powerful since layers can be
verified only once independently; and layers can be linked
by verifying that each layer contextually refines the layer
above it for an arbitrary context. When the stack is ex-
tended with a new verified layer on top, the inter-layer con-
textual refinement proofs can be reused with an updated
context to include the new layer. For example, if we add
a new layer Ltop on top of verified layers Lmid and Lbtm,
we need one new proof that shows Lmid contextually re-
fines Ltop, but we can reuse the proof for Lbtm vcr Lmid
without requiring any modification to the proof because

the proof holds “for all” context t. After the proof of
Lmid vcr Ltop, we are automatically guaranteed that Lbtm
contextually refines all the way up to Ltop as follows:
∀t,Lbtm(imid⊕ (itop⊕ t)) v Lmid(itop⊕ t)v Ltop(t).

Internally, each layer is composed of the C implemen-
tation, specifications, and proofs. To develop a layer Lk,
the developer writes source code in C; the high-level and
the low-level specifications in Coq, which specify how the
code changes abstract state and memory, respectively; auto-
generates the Coq representation of C source code using
CompCertX [24]; and writes three proofs: 1) pk, a proof
that the generated code refines the low-level specification; 2)
rk, a proof that the low-level specification refines the high-
level specification; and 3) Rk−1,k, a proof using pk and rk to
verify that Lk−1 contextually refines Lk. The proofs pk and
rk guarantee that the C code (i.e., its verified Coq represen-
tation) is correct as defined by the specifications. With the
contextual refinement proof Rk−1,k, we are assured that the C
code in Lk never uses the code in Lk−1 in an undefined way;
calls to C functions in Lk−1 always return defined results to
Lk; and variables used and allocated in each layer have their
own memory locations and are safely accessed.

Consequently, proving the contextual refinement relation
for each pair of layers in the stack guarantees the functional
correctness of the entire system: all layers from Lbtm to Ltop
function correctly independently and together. With the help
of the verified CompCertX compiler, the correctness of sys-
tem continues to hold even after the C code is compiled into
assembly. To build an application on top of a verified system,
we simply add layers corresponding to the application on top
of Ltop. The application uses Ltop as its bottom layer for ver-
ification and is oblivious to the layers underneath. The con-
textual refinement relation between Ltop and the application
guarantees that the application uses the underlying system
(from Lbtm to Ltop) correctly.

Such co-verification of the application and the system is
critical, but often overlooked and considered difficult. With-
out co-verification, the application and the system can be ver-
ified independently but still be incorrect as a whole, since
the application can abuse the system interface or take actions
based on wrong assumptions [18]. For example, for the same
write interface, the system and the application may have
different address bounds and the application can write be-
yond the system’s address limit. Another example involves
slightly different definitions for correctness conditions: a
storage system may interpret durability as “flushing to local
disk”, while the application may expect durability from the
storage system to mean “stored on a backup machine”; both
can be verified correct, yet the combination will be incorrect.
Such mismatches can neutralize the verification effort. Con-
textual refinement not only guarantees that the application
uses the system interface correctly but also guarantees that
the application’s assumptions about the interface are valid.

In addition to the functional correctness proof, we verify

3

Technical Report YALEU/DCS/TR1544 December 18, 2018

// allocates a WOS
int WS alloc(char ∗metadata, int size , segno t ∗newsegno);

// trims a segment
int WS trim(segno t seg);

// batch captures a sub−range within the WOS
int WOS capture(segno t seg, int ∗retcodes , off t start ,

off t end);

// batch writes a sub−range within the WOS
int WOS write(segno t seg, char ∗buf, int size ,

int ∗retcodes , off t start , off t stop) ;

// registers a listener for write notifications
int WOS listen(segno t seg , callback t listener) ;

// captures a WOR
int WOR capture(segno t seg, off t addr , int ∗captureID) ;

// writes a single WOR
int WOR write(segno t seg, off t addr , char ∗buf, int size ,

int captureID) ;

// reads a single WOR
int WOR read(segno t seg, off t addr , char ∗buf, int size) ;

Figure 2: The WormSpace API.

the distributed protocols and global properties of the entire
system that are not immediately visible from the code by
adding a ghost layer. The ghost layer includes a network
model and ties together independent nodes in distributed sys-
tems to enable the verification of their collective behavior
such as distributed nodes maintaining consensus. Although
the ghost layer is a logical layer without a C implementa-
tion, it is part of our contextual refinement chain where the
verified properties are guaranteed to hold in any layer above.

We later show that the verification of WormSpace leads to
easy verification of applications on top and can extend the
verification of a fully verified OS stack.

3 The WormSpace System
The WormSpace API (Figure 2) provides applications run-
ning on client machines with a shared, random-access ad-
dress space of WORs. All calls in the WormSpace API are
safe for concurrent access, providing linearizable semantics
for the address space. The address space is divided into
write-once segments (WOSes) of fixed size. Segments are
explicitly allocated via an alloc call that takes in a segment
ID and succeeds if it is as yet unallocated. The alloc takes an
optional metadata payload to be associated with the new seg-
ment. Clients can check a segment to see if it is allocated by
some other client, obtaining the metadata if this is the case.

Once a client has allocated a WOS, any client in the sys-
tem can operate on WORs within the segment. Specifically,
it can capture a WOR; write to it; and read from it. Any
call to a WOR in an unallocated segment fails with an error
code. Clients must capture an address before writing to it to
coordinate replicated servers to make the write atomic and
immutable. Capturing a WOR is similar to locking with a
preemptable lock: the lock must be acquired to write, but it
can be stolen (hence the name ‘capture’) by others.

A successful capture call returns a unique, non-zero cap-

tureID; a subsequent write by the same thread is automati-
cally parameterized with this ID, and succeeds if the WOR
has not been captured by some other client in the meantime.
Alternatively, threads, processes, and even clients can cap-
ture a WOR and then hand over the captureID to some other
thread/process/client that passes it in explicitly as a parame-
ter to a write, allowing the capture and write to be decoupled
in space. Finally, a write parameterized with a captureID of 0
does not require a prior capture; we call this an unsafe write.
Unsafe writes are fast because capturing is unnecessary, but
not safe for concurrent access; applications must ensure that
at most one client issues an unsafe write to a particular WOR.

The WOS provides a capture and write API, which act
as batched or vectorized operations, capturing all the WORs
in the segment or writing a single value to all of them. A
client can also receive notifications when WORs in a partic-
ular WOS are written to, via the listen call. Garbage col-
lection can be triggered by the application via the trim call,
which trims individual WOSes. WormSpace returns an error
code when a trimmed address is subsequently accessed.

3.1 Design and Implementation
WormSpace is implemented via a combination of a client-
side library exposing the API shown in Figure 2 and a col-
lection of servers (which we call wormservers). In a sense,
the WormSpace design is similar to a distributed key-value
store: WORs are associated with 64-bit IDs (consisting of
segment IDs concatenated with offsets within the segment)
and mapped to partitions, which in turn consist of replica sets
of wormservers. Partitioning occurs at WOS granularity; to
perform an operation on a WOR within a WOS, the client
determines the partition storing the segment (via a modulo
function) and issues the operation to the replica set.

Each WOR is implemented via a single-shot Paxos con-
sensus protocol, with the wormservers within a partition act-
ing as a set of acceptors. In the context of a single WOR, the
wormservers act identically to Paxos acceptors [34]; a cap-
ture call translates to a phase 1a prepare message, whereas a
write call is a phase 2a accept message. The read protocol
mirrors a phase 1a message, but if it encounters a half-written
quorum, it completes the write. Each wormserver maintains
a map from WOR IDs to the acceptor state for that single-
shot Paxos instance. If a map entry is not found, the WOR is
treated as unwritten.

Above this basic WOR interface, the client-side library
layers the logic for enforcing write-once segments. Each
WOS segment is implemented via a set of data WORs (one
per each address in that segment), a single metadata WOR,
and a single trim WOR. Allocating the WOS requires writing
to the metadata WOR. If two clients race to allocate a WOS,
the first one to capture and write the WOR wins.

The trim call for garbage collection is implemented via
a special message where the client instructs the wormserver
to return errors on requests for affected WORs, and delete

4

Technical Report YALEU/DCS/TR1544 December 18, 2018

all states of the WORs. The trim WOR in each WOS en-
ables consensus on a trim command. On subsequent reads or
writes to a trimmed WOR, if a subset of the accessed quorum
replies that the ID is trimmed, the client-side library com-
pletes the trim by issuing it to the remainder of the quorum,
and then returns an E TRIMMED error to the application.

Reconfiguration Replacing a minority of wormservers
from a partition requires a reconfiguration protocol along
the lines of Vertical Paxos [35]. In essence, a reconfigur-
ing client ‘seals’ the existing configuration by contacting
a majority of the servers. The servers promise to respond
with errors to messages sent by clients with the existing con-
figuration to prevent progress using this configuration. A
new configuration is installed at an auxiliary location; this
could be an external membership service, a different parti-
tion of the WormSpace deployment, or a different instance of
WormSpace altogether. Clients that receive error messages
from servers due to a sealed configuration must go check this
location for the new configuration, and reissue the command
to the new set of servers in the partition.

Alternative WOR implementations Within each
WormSpace partition, wormservers can be organized in
different ways to realize other consensus protocols. For
example, instead of Paxos, we access the wormservers
via a client-driven variant of Chain Replication used in
CORFU [4]. The client captures and writes to each server
in the chain in sequence, and issues reads to the tail. Such
a protocol has the benefit of efficient reads which contact a
single server rather than a majority quorum, and provides
durability against f failures with f + 1 nodes rather than
2 f + 1. The downside is the increased write latency, which
is linear in the number of servers, and unavailability for
writes if a single server goes down until a reconfiguration. In
our implementation, we did not implement the CRAQ [50]
optimization, which allows for reads to go to any replica
instead of the tail. We call our two implementations chain-
WOR and paxos-WOR. WORs could be implemented via
Byzantine consensus [11, 13]; we leave this for future work.

In a sense, the WOR is analogous to the logical block de-
vice abstraction found at the bottom of a single-machine stor-
age stack. The WOR simplifies the construction of systems
such as shared logs and MultiPaxos by hiding the complex-
ity of asynchrony and failures; a block device simplifies the
construction of filesystems by hiding the complexity of stor-
age hardware. Following this analogy, it is possible to im-
plement the WOR itself over a shared log or MultiPaxos (in
the same way that a block device can be implemented over a
filesystem). However, the more conventional layering places
the WOR at the bottom of the stack to simplify higher-level
systems, as we now describe.

4 WormSpace Applications
To illustrate how WormSpace simplifies applications, we
present WormPaxos, WormLog, and WormTX.

who captures
and writes?

written

unwritten
unallocated

trimmed

when do we trim?

where do we
read until?

learner

learner

Command [e.g. map.put(“foo”, “bar”)]

replicated state
sticky leader

Figure 3: WormPaxos: servers replicate state by ordering
proposals on the WormSpace address space.

4.1 WormPaxos over WormSpace
In principle, implementing Multi-Paxos over WormSpace
is simple: the sequence of commands is stored on the
WormSpace address space. WormPaxos is an implemen-
tation of Multi-Paxos over WormSpace, exposing a con-
ventional state machine replication API to applications.
In WormPaxos, servers that wish to replicate state act as
WormSpace clients; we call these WP-servers. They can pro-
pose new commands by preparing and writing to the next
free address in the WormSpace; and learn commands by
reading the address space in sequential order. If a propos-
ing client finds that the current tail is at the end of a WOS, it
allocates a new one and then writes to the next address.

The chief benefit of this layered design is extreme sim-
plicity; the Multi-Paxos consists of a few hundreds of
lines of code, which calls data-centric commands over the
WormSpace address space. This design also enables flexi-
bility along a number of dimensions (Figure 3):

Flexible Consensus (i.e., how is the WOR implemented?):
Consensus in WormPaxos is hidden under the WOR abstrac-
tion and can be implemented via many different protocols,
ranging from variants of Paxos, atomic broadcast protocols
such as ZAB, and protocols such as Primary-Backup and
Chain Replication. In contrast, existing Multi-Paxos designs
weld together the single-decision consensus engine – typ-
ically Paxos – with the state machine replication machin-
ery responsible for consistency and availability. For exam-
ple, the WormPaxos codebase can run with zero modifica-
tion over a WOR implementation based on Chain Replica-
tion rather than Paxos; in contrast, existing Multi-Paxos im-
plementations require extensive modification to run over a
different single-shot consensus protocol.

Flexible Leadership (i.e., who calls capture?): Sticky
leadership – i.e., retaining a single leader across multiple
commands – is a key performance imperative for Multi-
Paxos implementations, since it A) allows commands to be
decided within a single round-trip rather than two in the ab-
sence of failures, and B) eliminates contention between lead-
ers. In many Multi-Paxos implementations, leadership strat-
egy is baked into the system design; for example, Raft [43]
is explicitly designed to support sticky leadership as a first-
class consideration. In WormPaxos, a WP-server becomes a
sticky leader simply by using a batch capture on a WOS; ac-

5

Technical Report YALEU/DCS/TR1544 December 18, 2018

wri$en	

unwri$en	

unallocated	

trimmed	

allocate/	
capture	

write	 clients	

sequencer	
token	

Figure 4: WormLog: clients can append by obtaining a to-
ken from the sequencer and writing to WormSpace.

cordingly, leadership strategies such as sticky leader, rotating
leader, etc. can be implemented simply as policies on who
should call the batch capture and when. Further, the leader’s
identity can be stored within the metadata for each segment,
obviating the need for WormSpace to know about the notion
of a leader or the leadership strategies involved.

Flexible Durability (i.e., when is trim called?): By vary-
ing when it calls trim, WormPaxos can employ different
strategies for durability. For instance, a WP-server can trim a
prefix of the WormSpace as soon as a certain number of WP-
servers have seen it, or some WP-server has stored a snap-
shot in an external data store; this information can be piggy-
backed on new commands appended to the address space. In
contrast, existing Multi-Paxos designs are tied to a particu-
lar strategy for durability (e.g., when all replicas have seen a
command [51]).

Flexible Consistency (i.e., what addresses do we write
and read?): WormPaxos derives consistency properties such
as linearizability, sequential consistency, or eventual consis-
tency via strategies for writing/reading to the address space.
The state at each WP-server reflects some subset of updates
in the WormSpace. For linearizable writes and reads, each
command has to locate a slot after any completed writes in
the address space, but before any empty slots that could be
filled by later commands. For a weaker guarantee such as se-
quential consistency, WP-servers can allocate separate seg-
ments and write to them in parallel. Similarly, causal con-
sistency can be obtained by ensuring that new writes from a
WP-server go to a later address than any it has already seen.
For these weaker consistency guarantees, the random write /
random read nature of the WormSpace API allows us to par-
allelize proposing in a way that we could not do over a con-
ventional SMR (sequential write / sequential read) or shared
log (sequential write / random read) interface.

4.2 WormLog over WormSpace
A shared log is a shared address space that provides an ap-
pend / read API to clients. CORFU [4] is a system that im-
plements a shared log API over a set of write-once addresses.
To append a new entry to the shared log, a client first contacts
a centralized sequencer machine to reserve and increment a
tail position on the address space. It then issues a write to
a write-once address. In CORFU, each write-once address
is implemented via a client-driven variant of Chain Replica-
tion, where the client writes to each replica in sequence. The

write-once semantics are derived by using the head replica of
the chain to arbitrate between competing writes to the same
address. A key aspect of this design is that the sequencer is
merely a soft-state hint about the tail of the log, and does not
have to be durable or available.

Achieving a CORFU-like design over WormSpace is
straightforward: we simply have each client contact a se-
quencer node when it wants to append an entry, obtain a slot
in the WormSpace address space, and then write to that posi-
tion (Figure 4). With this design (which we call WormLog),
we obtain the two properties that differentiate a shared log
from a Multi-Paxos system [39]: the decoupling of sequenc-
ing from I/O, since the sequencer does not see the append
payload; and the time-slicing of individual commands over
different replica sets, assuming that the WOS size is small
compared to the volume of in-flight appends in the system.

WormLog addresses a problem with the CORFU system’s
use of Chain Replication: appends no longer take latency
linear in the number of replicas, since they simply issue a
WormSpace capture/write, which in turn invokes the Paxos
two-phase protocol. However, the WormLog design de-
scribed thus far takes three round-trips: one to the sequencer,
one to capture the WOR, and one to write to it. By decou-
pling I/O from sequencing, we lose ‘sticky leadership’; we
can no longer perform a batch capture on the WOS and write
to the WOR in a single round-trip, since multiple clients are
writing to a single WOS.

Eliminating this extra round-trip is simple. The sequencer
allocates WOSes before handing out sequence numbers to
clients. The sequencer also pre-captures the WOS and pro-
vides the client with the captureID; the client can then pred-
icate its write with this captureID. Accordingly, WormLog
realizes a CORFU-like design that uses Paxos (reducing la-
tency to 2 round-trips from the N + 1 required by client-
driven Chain Replication).

4.3 WormTX over WormSpace
Two-Phase Commit (2PC) [48] solves the transaction com-
mit problem via a transaction manager (TM). Any participant
(RMs, or resource managers) that wishes to initiate a com-
mit contacts the TM (message delay #1). The TM contacts
all participants to elicit a yes/no vote (#2). Each RM votes,
records its vote in local stable storage and responds to the
TM (#3). The TM makes a decision based on the votes it
receives, and sends back a commit or abort command to the
RMs (#4). The TM’s decision can be a deterministic func-
tion of the RM votes – i.e., the decision is yes if all the votes
are yes. Alternatively, the TM can decide no even if all the
votes are yes, in which case it stores its decision in stable
storage before sending the decision.

The failure model for 2PC is that nodes – TMs or RMs
– can crash, but will subsequently come back online. 2PC
is known to be a blocking protocol in the presence of such
failures. In the case where the decision is deterministic, if

6

Technical Report YALEU/DCS/TR1544 December 18, 2018

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

W
O
R

1

23
4
5
6 7

8

1

23

5

A8

C5

4

RM TM RM

RM TM RM

1
2

3
E3

RM RM

1

23

4 5

6

1

23

4

B6

D4

RM TM RM

RM TM RM

1

2

F2
RM RM

Figure 5: WormTX: WOR-based non-blocking atomic com-
mit protocols. Dashed arrows are notifications.

a single RM fails – after it has locally stored its vote in sta-
ble storage, but before it has responded to the TM – then the
protocol has to block until the RM comes back online. In the
case where the TM fails – after storing its final decision in
stable storage but before sending commit messages – the pro-
tocol has to block until the TM comes back online. In both
cases, the remaining RMs cannot determine the decision.

We consider making the deterministic (i.e., the TM does
not have a separate vote) version of 2PC non-blocking. We
come up with a number of variants that use WORs. We de-
scribe them below and in Figure 5.

[Variant A8: 8 message delays] An obvious solution is to
simply store the votes in a set of per-RM WORs. If the TM
decision is non-deterministic, a WOR is used to store the
decision as well. In the WOR-based 2PC protocol, an RM
initiates the protocol by contacting the TM (message delay
#1); the TM contacts the RMs (#2); they capture the WOR
(#3 and #4), and then write to it (#5 and #6); send back their
decision to the TM (#7), which sends back a commit mes-
sage to all the RMs (#8). This corresponds exactly to using
Paxos as a black-box.

[Variant B6: 6 message delays] A simple optimization
involves eliminating the capture messages from the critical
path. Each RM can allocate a dedicated WOS for its deci-
sions and batch capture the WOS in advance. This eliminates
delays #3 and #4 from variant A8.

[Variant C5: 5 message delays] Further, rather than have
the RM wait for an ACK on the write (message delay #6 in
variant A8) and relay it to the TM (#7 in A8), the TM can
directly observe the decision by listening for write notifica-
tions on the WOS. This compresses #6 and #7 of variant A8
into a single step.

[Variant D4: 4 message delays] Finally, rather than have
the TM wait to be notified of all the WOR writes and then
send out a commit message to all the participants (#8 of vari-
ant A8), individual RMs can directly listen to each other’s
WOSes; this brings us down to 4 message delays.

This progression of increasingly fast protocols exactly
matches the description by Gray and Lamport [22]; they

too proceed from an unoptimized 8-step protocol to an op-
timized 4-step one in identical fashion, via 6-step and 5-
step protocols. In their case, this is achieved by opening
up the Paxos protocol and rewiring the flow of requests and
ACKs between the various Paxos roles of acceptors, lead-
ers, proposers, and learners. In our case, the optimizations
are achieved via the WormSpace API, without requiring any
knowledge of the Paxos protocol.

[Variant E3: 3 message delays] We now observe that we
do not need a TM, since the final decision is a deterministic
function of the WORs, and any RM can time-out on the com-
mit protocol and write a no vote to a blocking RM’s WOR to
abort the transaction. The initiating RM can simply contact
the other RMs on its own to start the protocol (combining #1
and #2 of variant A8), bringing down the number of delays
to 3. Interestingly, this variant is not described by Gray and
Lamport.

[Variant F2: 2 message delays] Finally, if RMs can
‘spontaneously’ start the protocol and vote, we eliminate de-
lays #1 and #2 of variant A8, bringing the protocol down
to two delays, the theoretical minimum for atomic commit.
Since this is not a realistic assumption for many systems, we
choose variant E3 as our final solution.

Our protocol is in contrast to other non-blocking com-
mit protocols, which require complex message passing
logic [48]. Instead, we assemble a non-blocking protocol
via simple, intuitive, and data-centric commands on WORs.

Concurrency Control: The proposed atomic commit
schemes can be integrated with concurrency control schemes
based on timestamps, deadlock detection, etc. We imple-
mented a simple concurrency control protocol based on lock-
ing that uses Immediate-Restart [2] for deadlock prevention.

Consider variant E3. The server that performs a transac-
tion notifies all servers involved. Each server tries to acquire
a lock on its local data for the transaction. If it succeeds,
the server writes a write-ahead log and then a yes vote to its
WOR. Upon failure to lock, the server immediately aborts
the transaction by writing a no vote to its WOR.

If each server receives yes ACKs for its own yes write
from all servers involved, it updates the data and releases the
lock. Otherwise, it releases the lock without the update. This
protocol provides strict serializability and failure atomicity.

5 Formal Verification
WormSpace acts as a foundation for verifying distributed
systems. We verify WormSpace once and reuse its proof
for verifying systems built on top while hiding the com-
plexity of distributed protocol verification. To do so, we
extend the Certified Concurrent Abstraction Layer (CCAL)
approach [24, 26] introduced in Section 2.2, modeling an
asynchronous network of distributed nodes in order to verify
WormSpace. We apply CCAL beyond a single system veri-
fication for the first time and link the proof of WormSpace,
WormSpace applications and a verified OS.

7

Technical Report YALEU/DCS/TR1544 December 18, 2018

TCB
Data
PaxosProposer
Wormclient

TCB
Data
PaxosProposer
Wormclient

WOR
WOS

WormSpace

Ghost layer (global transition system)

C
li

en
t l

ib
ra

ry
 la

ye
rs

W
or

m
se

rv
er

la

ye
rs

Applications

TCB
Data

Wormclient

TCB
Data
PaxosProposer
Wormclient

PaxosAcceptor
Wormserver

TCB
Data

PaxosAcceptor
Wormserver

TCB
Data

Wormserver

TCB
Data

PaxosAcceptor
Wormserver

TCB
Data

O
bl

iv
io

us
 o

f
di

st
ri

ub
ut

ed
 n

at
ur

e

WormPaxos WormLoWormPaxos WormLoWormPaxos WormLoWormPaxos WormLog
WormLoWormLoWormLoWormTX

Figure 6: Layer diagram: client and server stacks are com-
bined as a distributed system in the ghost layer and the dis-
tributed nature is invisible from the WOR layer.

5.1 Layer Structure for Verification
WormSpace consists of two separate stacks of verification
layers, the client library (17 layers) and the wormserver (2
layers), over a common set of base functionalities (5 layers).
While the number of layers may seem excessive, it matches
a conventional software stack designed for modularity: each
layer is a C component implementing some interface. A sim-
plified layer diagram is shown in Figure 6.

Both stacks share a common set of base layers: the bot-
tom layer provides an interface to the trusted computing base
(TCB), including network communication functions and a
small number of system calls. Above this bottom layer, we
introduce a data layer which implements various data struc-
tures over the trusted primitives. Above the data layer, the
client and server stacks diverge. The server stack includes
Paxos acceptor layers and the wormserver code above it. The
client stack includes layers for Paxos proposer logic and a
wormclient layer that issues individual Paxos proposals.

The ghost layer horizontally composes the two stacks and
proves properties across multiple wormservers and clients.
The ghost layer includes a global state transition system that
can reason all concurrent client and server interactions based
on a network model. Safety properties of Paxos are proved
in this layer. The contextual refinement proof between the
ghost layer and the composition of wormserver and worm-
client provides a powerful guarantee for the layers built on
top of the ghost layer. Any layer that the ghost layer contex-
tually refines is guaranteed to be correct with respect to both
client and server layers. It is guaranteed that any concurrent
behaviors of distributed nodes using the client and server lay-
ers are correct. Verified distributed protocol properties hold
in higher layers while complex proofs are encapsulated in
the ghost layer.

Verification above the ghost layer is as easy as verifying a
sequential program. For example, the top-level specification
for a write in WormSpace is simply translating the global
address to a segment address and offset and passing the cap-
tureID (cid) to call the lower-level write which is already
proved safe under concurrent distributed accesses:

Function WormSpace write (addr: Z) (val : Payload)
(cid : Z) (adt : EnvVars) : option (EnvVars ∗ Z) :=

let segment:= addr / WOS SIZE in
let offset := addr mod WOS SIZE in
WOR write segment offset val cid adt .

We verify the WOR abstraction, the WOS abstraction, and
the WormSpace API. The client stack can be extended to ap-
plications such as WormPaxos, WormLog, and WormTX.

5.2 Network Model
To model a real-world network and to prove distributed prop-
erties about the system, we employ techniques from concur-
rency verification [26]. Our network model includes two ba-
sic primitives, send msg and recv msg, which manipulate the
modeled network state. The model includes a logically lin-
earized sequence of network operations, which we call the
global network log. Each distributed node can extract its lo-
cal interaction with the network from the log, and the log is
used to reason about the interaction between nodes.

However, we depart from single-node concurrency ver-
ification by modeling the network as unreliable (but non-
Byzantine). In our model, send msg simply creates a SEND
event in the log, while recv msg creates either TIMEOUT (this
models dropped packet) or RECV events in an arbitrary future
location (this models packet delays) than the SEND event in
the log. In between a pair of SEND and TIMEOUT/RECV, any
other nodes can freely record their operations (this models
packet reordering). A RECV after a SEND does not necessar-
ily mean that the RECV event received the value sent by this
SEND. The actual value can be a duplicate message from a
previous send (this models duplicate packets).

Network communication patterns can be complex when a
client interacts with multiple wormservers in a one-to-many
request pattern. Abstraction and contextual refinement can
help us manage this complexity without reducing the fidelity
of verification. Accordingly, we create a network log layer
with simpler semantics, and prove that the original log re-
fines the simplified log. The simplified log coalesces broad-
casts and receptions into singleton events and eliminates du-
plicates simplifying global property proofs.

5.3 Proving Global Properties
The global state transition system in the ghost layer models
a distributed system with multiple concurrent Paxos clients
and acceptors from the viewpoint of the global network to
enable the distributed protocol verification. It includes (net-
work) log construction functions, a (network) log replay
function, and a global state. The log construction function
models how each client/server operation affects the network;
it governs the communication pattern of each node in the net-
work log to define the Paxos protocol. The log replay func-
tion constructs the global state, which is a snapshot of the
entire distributed system state or a combination of Paxos-
related states in all nodes, by interpreting network events in

8

Technical Report YALEU/DCS/TR1544 December 18, 2018

Function WOR ghost write (addr: Z) (val : Payload) (cid : Z)
(adt : EnvVars) : option (EnvVars ∗ Z) :=

let net l := adt . net l (∗ get net log from Env context ∗)
let nid := get node id adt in (∗ get current node id ∗)
(∗ replay the net log ; get the local node state ; and

check if the node is in a writable status ∗)
if (can write ((replay log (net l)) [nid]) addr val cid)
then

(∗ log write intent with a ghost msg to the net log ∗)
let net l 1 := (ghost write nid addr val cid) :: net l in
(∗ broadcast msgs and collect acks: reflect behaviors

of other nodes to add send/ recv events by this and
other nodes to the net log ∗)

let net l 2 := bcast n recv nid addr val cid net l 1 adt in
(∗ replay the net log to compute global state ; get

node’s local state ; and check the quorum status ∗)
let result := is qrm ((replay log (net l 2))[nid]) addr in
(∗ log the result using a ghost msg to the net log ∗)
let net l 3 := (ghost result nid result) :: net l 2 in
(∗ return the updated net log and the result ∗)
(adt{ net l := net 13}, result)

else None.

Figure 7: A simplified log construction function example. It
logs local and network events of a node to the network log
and calls the log replay function to check state changes.

the network log. Log construction and replay functions are
derived from wormclient and wormserver specifications and
their refinement relations for the derivation are verified.

Log construction functions interact with the network log
and the global state to introduce new network events in the
network log. To record local state changes of a node which
do not involve network operations, ghost messages are writ-
ten to the network log. Log construction functions use the
log replay function to learn and use state changes incurred
by other concurrent nodes and itself (Figure 7).

The log replay function by itself can replay all behaviors
and state changes of a distributed system step by step from
the global network log. Based on this capability we prove the
Paxos-based safety/immutability property of WormSpace:
Theorem 1. Once a value is written to a WOR, the value in
the WOR never changes.

To prove Theorem 1, we prove the following key lemma:
Lemma 1. Given a valid network log `, if there exists a Paxos
round n where a value v is successfully written to a WOR r,
any following write to r in Paxos rounds n′ > n in the log `
can only attempt to write v′ = v.
The valid network log is the log that preserves verified in-
variants such as communication patterns derived from log
construction functions. Lemma 1 is proved by induction
on writes in the log using other supporting lemmas: e.g.,
n′ is unique and is monotonically increasing, the Paxos-
phase-1a/capture at round n′ on r returns the written value v,
etc. Based on Theorem 1, the immutability and uniqueness
of WOS allocation (including leader/sequencer election for

WormPaxos/WormLog) and WOS trim are easily verified.

5.4 Top-Level Theorem of WormSpace
The top-level theorem that we prove for WormSpace is,
Theorem 2. ∀t,LTCB(iAllWormSpace⊕ t)v LWormSpace(t),
where t is the context and iAllWormSpace is the implementation
of all WormSpace layers combined. The contextual refine-
ment proof between all adjacent layers are used as lemmas
to guarantee the correctness of the entire code. Theorem 2
also guarantees that the verified Paxos properties in the ghost
layer hold for the WormSpace implementation.

5.5 Reusability and Linking
Because the ghost layer encapsulates the distributed nature
of WormSpace, the verification of WormPaxos, WormLog,
and WormTX does not have to reason about complex Paxos
proofs. The verification of any additional distributed proto-
cols above WormSpace reuses the same network model, but
requires a new ghost layer. Protocols at different levels of the
stack are independently verified within separate ghost layers;
invariants of interfaces to the protocol and contextual refine-
ment proofs guarantee non-interference among protocols.

The top-level theorems that we prove for WormPaxos,
WormLog, and WormTX are in the same format:
Theorem 3. ∀t,LWormSpace(iWormApp⊕ t)v LWormApp(t),
where WormApp can be one of WormPaxos, WormLog, and
WormTX. By reusing Theorem 2 and transitively combining
it with Theorems 3, applications are guaranteed to be cor-
rect with respect to all layers of WormSpace and to encapsu-
late verified Paxos properties. Similarly, Theorem 2 can be
reused to verify any system in Section 2.1 to guarantee WOR
semantics, if we use WormSpace as a building block.

To enable end-to-end verification of WormSpace, Worm-
Paxos, WormLog, and WormTX, we link WormSpace to
CertiKOS. The linking requires contextual refinement proof
between two interfacing layers. When linking indepen-
dently developed and verified software pieces together, it
is important to check that the specification exposed by
the lower layer matches the expectations of the higher
layer. Since WormSpace and its applications were co-
designed, such a consistency check was unnecessary, but
linking WormSpace to CertiKOS required careful consis-
tency checks. Once we link WormSpace with CertiKOS the
correctness of WormSpace and the applications is guaran-
teed from the bottom-level (Lx86asm) of the OS without any
side-effects [18]; this verifies and guarantees,
Theorem 4. ∀t,Lx86asm(iCertiKOS⊕ iWormSpace⊕ iWormApp⊕ t)

v LWormApp(t).
The extensibility of WormSpace verification to applica-

tions and the OS is difficult for other verified systems [28,
42] to achieve. Especially, it is unnatural and difficult to
support contextual refinement, which is based on high-order
logic, when the verification tool is based on a SMT solver or
first-order logic (e.g., Dafny [36] and Z3 [14]).

9

Technical Report YALEU/DCS/TR1544 December 18, 2018

WormSpace WormPaxos WormLog WormTX (C5)
4551 359 362 547

Table 1: C lines of code (CLoC) for WormSpace and appli-
cations. C5 has the largest CLoC among WormTX variants.

5.6 Discussion
The verification of WormSpace relies on a trusted comput-
ing base (TCB) consisting of the operating system (OS), the
hardware, and the network. However, when we link our veri-
fication to CertiKOS, the TCB consists of only the hardware
and the network. Our verification tool chain is fully ver-
ified (either machine checked or hand proven), in contrast
to other work that often includes some untrusted component
(e.g., to generate executable code). A small part of our end-
to-end system remains unverified: the listen function of the
WOS; the reconfiguration protocol in WormSpace; and the
Chain Replication WOR. We did not verify application-level
concurrency within a single process, while concurrent pro-
cesses are verified correct against WormSpace. CCAL sup-
ports liveness proofs [32], but we left them as future work.

6 Experience
The main benefit of WormSpace is that compared to Paxos,
developers do not need to reason about or understand Paxos
protocols to build applications on top, and compared to other
fault-tolerant replicated systems, the developer has the flexi-
bility to choose low-level implementation details.

WormSpace applications are easy to build, relying largely
on simple invocations on the data-centric WormSpace API
to store data durably and to coordinate across machines.
The effort taken to implement WormTX was similar to im-
plementing a non-fault-tolerant version. In other cases,
WormSpace simplified application-level coordination. The
leader election scheme of WormPaxos and the failure recov-
ery scheme for WormLog sequencer are implemented with
the WOS alloc call: it ensures that among multiple concur-
rent nodes that try to become the new leader or the sequencer,
only one succeeds. The C lines of code to build WormSpace
and the applications are summarized in Table 1.

Our experience with verification was similar to application
development, where the verification of WormSpace facili-
tates that of applications. Our Coq-based verification can-
not be fully automated, but the CCAL framework provides
templates and libraries that dramatically reduce the proof ef-
fort. The entire Coq verification code size is 108K lines.
Overall, it took 6 person months to verify WormSpace: 4.5
person months to prove functional correctness and 1.5 per-
son months to prove properties in the ghost layer. Yet, ver-
ifying WormPaxos, WormLog, and WormTX, linking these
applications to WormSpace, and linking WormSpace to Cer-
tiKOS took in a total of 5 person weeks. The proof effort
for WormSpace was not small, but reusing the proof for the
application was easy. We believe the end-to-end verification

can be extended easily (e.g., a key-value store layer above
WormPaxos), the same way that WormPaxos, WormLog,
and WormTX were verified over WormSpace and CertiKOS.

7 Evaluation
We evaluate the performance of WormSpace and show
that verified systems can be fast. We run in two modes:
the verified WormSpace stack over a commodity unveri-
fied OS (on Amazon EC2, on m4.xlarge instances running
Ubuntu 14.04), unless mentioned otherwise; and an end-to-
end verified stack running over CertiKOS on a local cluster.
We run three wormservers and up to sixteen client nodes.
WormSpace has in-memory and persistent modes, which de-
termine whether the data is stored in memory or in persistent
storage; in-memory mode is used by default. The data size
we use for all experiments is 8 bytes. We focus on the write-
related workloads as reads can be massively parallelized in
all applications that we use.

7.1 Micro-benchmarks
We use a micro-benchmark to test the base performance of
WormSpace (Figure 8). We evaluate the performance of
reads and writes. We first pre-fill the address space with
data and have clients read different parts of it sequentially.
We increase the number of concurrent clients to get different
throughput/latency points. A read to a WOR entails 1 RTT
between the client and wormservers. The read latency stays
low at around 250 microseconds when the load is low and
the throughput saturates at about 70K/s operations, which is
the peak capacity of a single wormserver.

Similar to the read experiment, we have clients write to a
disjoint set of WORs so that clients do not contend to write
on the same WOR. We measure two different cases where
each client issues a capture to individual WORs before a
write, and another case where clients are writing to WORs
that are already captured in a batch. The latter is equivalent
to writing to a WOS that is captured or doing an unsafe write.
The former takes 2 RTT whereas the latter takes 1 RTT to
complete the write. The overhead of incorporating a capture
call on every write doubles the latency and halves throughput
compared to issuing writes on batch-captured WORs.

7.2 WormPaxos
To evaluate the verified WormSpace application perfor-
mance, we compare WormPaxos against the unverified open
source code of the Egalitarian Paxos (EPaxos) paper [40].
Under the same configuration, Figure 9 compares the write
performance of WormPaxos against EPaxos and the classi-
cal Paxos (CPaxos) that is used in the EPaxos evaluation.
CPaxos shows slightly lower latency than WormPaxos but
the maximum throughput of WormPaxos is much higher than
the others. The performance difference comes from different
implementations, WormPaxos in C versus the others in Go,
and an extra commit phase that exists in E/CPaxos. E/C-

10

Technical Report YALEU/DCS/TR1544 December 18, 2018

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 10 20 30 40 50 60 70 80

La
te

nc
y

(µ
s)

Throughput (Kops/s)

read
write

capture & write

Figure 8: Microbenchmarks: read/write
saturates a single wormserver.

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30

La
te

nc
y

(m
s)

Throughput (Kops/s)

WormPaxos
CPaxos
EPaxos

Figure 9: A verified C-based Worm-
Paxos outperforms unverified Go-based
E/CPaxos.

 0

 0.5

 1

 1.5

 2

 2.5

 3

WormPaxos EPaxos CPaxos

T
hr

ou
gh

pu
t (

K
op

s/
s)

Figure 10: Fewer writes per opera-
tion makes WormPaxos outperform E/C-
Paxos in persistent mode.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 10 20 30 40 50 60 70 80

La
te

nc
y

(µ
s)

Throughput (Kops/s)

Paxos-WOR
Chain-WOR

CorfuDB

Figure 11: WormLog: Paxos-WOR can
optimize the latency of a shared log de-
sign.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
D

F

Latency (µs)

Paxos-WOR-1
Pax-WOR-2
Pax-WOR-3

Chain-WOR-1
Chain-WOR-2
Chain-WOR-3

CorfuDB-1
CorfuDB-2
CorfuDB-3

Figure 12: WormLog latency distribution:
Paxos-WOR has constant 2 RTT latency re-
gardless of the number of wormservers.

 0

 200

 400

 600

 800

 1000

 1200

A8 B6 C5 D4 E3

La
te

nc
y

(µ
s)

Figure 13: WormTX: optimiza-
tions above WormSpace enable
lower latency.

Paxos asynchronously notifies all acceptors about the writ-
ten value after the two Paxos rounds, whereas WormPaxos
omits this step because WormSpace clients use a quorum
read. Our point here is not to claim WormPaxos simply runs
much faster than EPaxos, which internally does dependency
checks and ordering, but to show that verified code is not
necessarily slow and can be even faster than unverified code.

We also measure the throughput with data persistence on
an Amazon EBS GP2 SSD (Figure 10). Having to write less
data to persistent storage, due to the absence of a commit
phase, makes WormPaxos achieve higher throughput.

7.3 WormLog
We evaluate the performance of WormLog with Paxos-based
WORs (paxos-WOR) and Chain Replication WORs (chain-
WOR), and compare it with CorfuDB [1], an unverified open
source Java implementation of CORFU. Note that the Worm-
Log code does not change for Chain Replication WORs (in
fact, neither does the WormSpace stack above the WOR ab-
straction). However, performance differs: the Chain Repli-
cation design propagates the data from the head server to the
tail server in a sequence before returning a write; this incurs
1 RTT per wormserver in the chain. In addition to contacting
wormservers, clients contact the sequencer before issuing a
write. Thus, having N wormservers results in N +1 RTT for
the Chain Replication design and 2 RTT for the Paxos-based
design (wormservers are accessed in parallel). CorfuDB em-
ploys the same Chain Replication design as chain-WOR.

Figure 11 shows that with three wormservers, the write la-
tency of a WormLog over paxos-WOR is the half of that for
WormLog over chain-WOR for almost identical throughput.

Under the same configuration, CorfuDB performs with 2 to
4X higher latency and 14% of the throughput of WormLog.
We further vary the number of wormservers (replicas) and
measure the access latency. While the Paxos-based Worm-
Log has the same latency distribution regardless of the num-
ber of wormservers, Chain-Replication-based designs show
linearly increasing latency with wider distributions depend-
ing on the number of wormservers (Figure 12). The ex-
periment demonstrates that a Paxos-based WormSpace can
enable a CORFU sequencer-based design while eliminating
the latency of Chain Replication. Also, we show that dif-
ferent WOR implementations can be used without applica-
tion code changes and both WormLogs outperform CorfuDB
partly due to different languages for the implementation.

7.4 WormTX

Next, we present the performance of WormTX that imple-
ments fault-tolerant atomic commit. We compare the com-
mit latency of WormTX variants A8, B6, C5, D4, and E3.
The numeric suffix represents the message delays of each
WormTX variant. Figure 13 illustrates linearly decreasing
latency as more optimizations are applied. This shows that
a low-latency distributed transaction protocol can be easily
implemented above WormSpace.

7.5 End-to-end Verification

Finally, we show the evaluation of WormSpace on CertiKOS
which forms an end-to-end verified distributed system from
the OS layer. The experiment was run on a local cloud
where the virtual machine configuration mimics the set up

11

Technical Report YALEU/DCS/TR1544 December 18, 2018

 0

 1000

 2000

 3000

 4000

 5000

 0 1 2 3 4 5 6 7

La
te

nc
y

(µ
s)

Throughput (Kops/s)

read
write

capture & write
WormPaxos

WormLog

Figure 14: Wormspace on CertiKOS: an end-to-end verified
system is bottlenecked by the lwIP network stack.

in Amazon EC2: CertiKOS and WormSpace were placed
inside QEMU instances with the same amount of resources
as the m4.xlarge instance and the instances are placed such
that all network communication crosses the physical ma-
chine boundaries.

We evaluate microbenchmark, WormPaxos, and Worm-
Log and the throughput is approximately 10x lower and the
latency is approximately 2x higher than running the experi-
ments on Linux in Amazon EC2 (Figure 14). The main cause
of this performance degradation has little to do with verifi-
cation and is mainly attributed to the network stack used in
CertiKOS. CertiKOS uses rather slow lwIP [16], which is in-
tended for embedded systems, as its network stack and a sin-
gle dedicated thread multiplexes packets to and from applica-
tions. The performance number showed similar results even
when we ran all WormSpace servers and clients in a single
VM due to this inefficiency. Once we replaced the network
stack with a custom IPC call, we achieved over 100 Kops/s
for all experiments when the same number of WormSpace
clients and servers were placed in a single VM. We plan to
replace lwIP with a higher-performance network stack for a
better end-to-end performance in the future.

8 Related Work
Distributed systems: A number of abstractions similar to
the WOR exist in theoretical distributed systems, including
sticky registers [44], consensus objects [30], and the Paxos
register [37]; these are abstractions for theoretical reasoning.
However, we propose the WOR as a programming abstrac-
tion and build a system exposing the WOR APIs. Other theo-
retical work points out the link between fault-tolerant atomic
commit and consensus [19, 27]. Single writer many reader
registers, which can be written multiple times, can be used
to implement a WOR using a protocol like Disk Paxos [20].

Distributed applications often use services that embed
consensus or replication protocols, such as Chubby [10] and
Zookeeper [31]. WormSpace supports a more primitive ab-
straction compared to these services. Distributed transaction
systems [41, 55] often combine transaction and consensus
protocols, ‘opening the Paxos box’ to implement optimiza-
tions. These could conceivably be implemented over the
WOR in similar fashion to the optimizations in Section 4.3.

Verification: Applying machine-checkable formal verifi-

cation to real-world systems has been actively explored in re-
cent years. IronFleet [28] and Verdi [54] propose distributed
system verification approaches and use Multi-Paxos/Raft as
a verification target. IronFleet separates the verification into
implementation, specification, and protocol layers; the first
two layers are similar to a single WormSpace layer, and the
protocol layer is similar to the WormSpace ghost layer. Verdi
focuses on writing and verifying system code under an ide-
alized network model first, and then adapting the proofs to
a more realistic network model, whereas we assume an un-
reliable network to begin with. While both papers propose
a systematic way to verify standalone distributed systems,
WormSpace enables extensible verification via a modular
layer-based verification approach, where the proofs can be
reused and connected with new verified application layers.

It is well known that modularity leads to ease of verifi-
cation. DISEL [46] verifies independent distributed proto-
cols in isolation and horizontally combines them. Taube et
al. [49] explores modularity for automated distributed sys-
tem verification. Prior work has examined a layered storage
system verification for crash safety [3, 12, 47] and a modular
Paxos verification [8, 21]. WormSpace shares the same in-
sight about modularity, but leverages contextual refinement
to provide incremental and extensible verification; enables
both vertical and horizontal composition of layers; and veri-
fies correctness of practical C based programs in a concurrent
and distributed environment.

Formal verification plays a key role for guaranteeing the
correctness of security features [9, 17, 29, 38]. While
WormSpace’s proof does not focus on security, adding se-
curity features to the system and guaranteeing the security
properties across WormSpace and application layers is a di-
rection for future work.

WormSpace uses the same CCAL approach [24, 26] as
CertiKOS [25]. While CertiKOS demonstrated the power of
CCAL by verifying an entire OS, WormSpace showed that
CCAL can be extended to connect verified systems and ap-
plications and to model and verify distributed systems on an
asynchronous network.

9 Conclusion
Distributed systems are difficult to design, implement, and
verify due to asynchrony and failures. Often, they re-
implement the logic for consensus, durability, and availabil-
ity in slightly different ways. The WOR abstraction pro-
posed in this paper is the least common denominator for
strongly consistent, fault-tolerant distributed systems. When
exposed as a first-class programming primitive, it enables ap-
plication stacks that are simple, realizing complex function-
ality in 100s of lines of code; flexible, allowing for different
combinations of high-level application APIs and low-level
consensus protocols; and verifiable, enabling layered verifi-
cation techniques that allow easy, extensible verification of
distributed application code.

12

Technical Report YALEU/DCS/TR1544 December 18, 2018

References
[1] CorfuDB. https://www.github.com/CorfuDB/

CorfuDB, 2018.

[2] AGRAWAL, R., CAREY, M. J., AND MCVOY, L. W. The
performance of alternative strategies for dealing with dead-
locks in database management systems. IEEE Transactions
on Software Engineering, 12 (1987), 1348–1363.

[3] ALAGAPPAN, R., CHIDAMBARAM, V., PILLAI, T. S., AL-
BARGHOUTHI, A., ARPAC-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Beyond storage APIs: Provable semantics
for storage stacks. In USENIX Conference on Hot Topics in
Operating Systems (2015), USENIX Association, pp. 20–20.

[4] BALAKRISHNAN, M., MALKHI, D., PRABHAKARAN, V.,
WOBBER, T., WEI, M., AND DAVIS, J. D. CORFU: A
shared log design for flash clusters. In USENIX Symposium
on Networked Systems Design and Implementation (2012),
pp. 1–14.

[5] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU, M.,
PRABHAKARAN, V., WEI, M., DAVIS, J. D., RAO, S., ZOU,
T., AND ZUCK, A. Tango: Distributed data structures over a
shared log. In ACM Symposium on Operating Systems Prin-
ciples (2013), pp. 325–340.

[6] BERNSTEIN, P. A., REID, C. W., AND DAS, S. Hyder-
a transactional record manager for shared flash. In Bien-
nial Conference on Innovative Data Systems Research (2011),
pp. 9–12.

[7] BIRMAN, K. P. The process group approach to reliable dis-
tributed computing. Communications of the ACM 36, 12
(1993), 37–53.

[8] BOICHAT, R., DUTTA, P., FRØLUND, S., AND GUERRAOUI,
R. Deconstructing Paxos. SIGACT News 34, 1 (2003), 47–67.

[9] BOND, B., HAWBLITZEL, C., KAPRITSOS, M., LEINO,
K. R. M., LORCH, J. R., PARNO, B., RANE, A., SETTY,
S. T. V., AND THOMPSON, L. Vale: Verifying high-
performance cryptographic assembly code. In USENIX Se-
curity Symposium (2017), pp. 917–934.

[10] BURROWS, M. The Chubby lock service for loosely-coupled
distributed systems. In USENIX Symposium on Operating
Systems Design and Implementation (2006), pp. 335–350.

[11] CASTRO, M., AND LISKOV, B. Practical Byzantine fault tol-
erance. In USENIX Symposium on Operating Systems Design
and Implementation (1999), pp. 173–186.

[12] CHEN, H., ZIEGLER, D., CHAJED, T., CHLIPALA, A.,
KAASHOEK, M. F., AND ZELDOVICH, N. Using crash Hoare
logic for certifying the FSCQ file system. In ACM Symposium
on Operating Systems Principles (2015), pp. 18–37.

[13] COWLING, J., MYERS, D., LISKOV, B., RODRIGUES, R.,
AND SHRIRA, L. HQ replication: A hybrid quorum protocol
for Byzantine fault tolerance. In USENIX Symposium on Op-
erating Systems Design and Implementation (2006), pp. 177–
190.

[14] DE MOURA, L., AND BJØRNER, N. Z3: An efficient SMT
solver. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (2008), pp. 337–
340.

[15] DEVELOPMENT TEAM, T. C. The Coq proof assistant.
http://coq.inria.fr, 2018.

[16] DUNKELS, A. Design and implementation of the lwIP
TCP/IP stack. Tech. rep., Swedish Institute of Computer Sci-
ence, 03 2001.

[17] FERRAIUOLO, A., BAUMANN, A., HAWBLITZEL, C., AND

PARNO, B. Komodo: Using verification to disentangle
secure-enclave hardware from software. In ACM Symposium
on Operating Systems Principles (2017), pp. 287–305.

[18] FONSECA, P., ZHANG, K., WANG, X., AND KRISHNA-
MURTHY, A. An empirical study on the correctness of for-
mally verified distributed systems. In European Conference
on Computer Systems (2017), pp. 328–343.

[19] FROLUND, S., AND GUERRAOUI, R. Implementing e-
transactions with asynchronous replication. IEEE Transac-
tions on Parallel and Distributed Systems 12, 2 (2001), 133–
146.

[20] GAFNI, E., AND LAMPORT, L. Disk Paxos. Distributed
Computing 16, 1 (2003), 1–20.

[21] GARCA-PREZ, ., GOTSMAN, A., MESHMAN, Y., AND

SERGEY, I. Paxos consensus, deconstructed and abstracted.
In European Symposium on Programming (04 2018), pp. 912–
939.

[22] GRAY, J., AND LAMPORT, L. Consensus on transaction com-
mit. ACM Transactions on Database Systems 31, 1 (2006),
133–160.

[23] GRAY, J. N. Notes on data base operating systems. In Operat-
ing Systems: An Advanced Course. Springer, 1978, pp. 393–
481.

[24] GU, R., KOENIG, J., RAMANANANDRO, T., SHAO, Z.,
WU, X. N., WENG, S.-C., ZHANG, H., AND GUO, Y.
Deep specifications and certified abstraction layers. In ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (2015), pp. 595–608.

[25] GU, R., SHAO, Z., CHEN, H., WU, X., KIM, J., SJÖBERG,
V., AND COSTANZO, D. CertiKOS: An extensible architec-
ture for building certified concurrent OS kernels. In USENIX
Conference on Operating Systems Design and Implementa-
tion (2016), pp. 653–669.

[26] GU, R., SHAO, Z., KIM, J., WU, X., KOENIG, J., SJBERG,
V., CHEN, H., COSTANZO, D., AND RAMANANANDRO, T.
Certified concurrent abstraction layers. In ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (2018), pp. 646–661.

[27] HADZILACOS, V. On the relationship between the atomic
commitment and consensus problems. In Fault-Tolerant Dis-
tributed Computing. Springer, 1990, pp. 201–208.

[28] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M., LORCH,
J. R., PARNO, B., ROBERTS, M. L., SETTY, S., AND ZILL,
B. IronFleet: Proving practical distributed systems correct.
In ACM Symposium on Operating Systems Principles (2015),
pp. 1–17.

[29] HAWBLITZEL, C., HOWELL, J., LORCH, J. R., NARAYAN,
A., PARNO, B., ZHANG, D., AND ZILL, B. Ironclad apps:

13

https://www.github.com/CorfuDB/CorfuDB
https://www.github.com/CorfuDB/CorfuDB
http://coq.inria.fr

Technical Report YALEU/DCS/TR1544 December 18, 2018

End-to-end security via automated full-system verification. In
USENIX Conference on Operating Systems Design and Imple-
mentation (2014), pp. 165–181.

[30] HERLIHY, M. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems 13, 1 (1991), 124–
149.

[31] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. ZooKeeper: Wait-free coordination for internet-scale sys-
tems. In USENIX Annual Technical Conference (2010), vol. 8,
p. 9.

[32] KIM, J., SJBERG, V., GU, R., AND SHAO, Z. Safety and
liveness of MCS locklayer by layer. In Asian Symposium on
Programming Languages and Systems (11 2017), pp. 273–
297.

[33] LAMPORT, L. The part-time parliament. ACM Transactions
on Computer Systems 16, 2 (1998), 133–169.

[34] LAMPORT, L. Paxos made simple. SIGACT News 32, 4 (Dec.
2001), 51–58.

[35] LAMPORT, L., MALKHI, D., AND ZHOU, L. Vertical Paxos
and primary-backup replication. In ACM Symposium on Prin-
ciples of Distributed Computing (2009), pp. 312–313.

[36] LEINO, K. R. M. Dafny: An automatic program verifier
for functional correctness. In International Conference on
Logic for Programming, Artificial Intelligence, and Reason-
ing (2010), pp. 348–370.

[37] LI, H. C., CLEMENT, A., AIYER, A. S., AND ALVISI, L.
The Paxos register. In IEEE International Symposium on Re-
liable Distributed Systems (2007), IEEE, pp. 114–126.

[38] MAI, H., PEK, E., XUE, H., KING, S. T., AND MADHUSU-
DAN, P. Verifying security invariants in ExpressOS. In Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (2013), pp. 293–304.

[39] MALKHI, D., BALAKRISHNAN, M., DAVIS, J. D., PRAB-
HAKARAN, V., AND WOBBER, T. From Paxos to CORFU:
a flash-speed shared log. ACM SIGOPS Operating Systems
Review 46, 1 (2012), 47–51.

[40] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M.
There is more consensus in Egalitarian parliaments. In ACM
Symposium on Operating Systems Principles (2013), pp. 358–
372.

[41] MU, S., NELSON, L., LLOYD, W., AND LI, J. Consoli-
dating concurrency control and consensus for commits under
conflicts. In USENIX Conference on Operating Systems De-
sign and Implementation (2016), pp. 517–532.

[42] NELSON, L., SIGURBJARNARSON, H., ZHANG, K., JOHN-
SON, D., BORNHOLT, J., TORLAK, E., AND WANG, X. Hy-
perkernel: Push-button verification of an OS kernel. In ACM
Symposium on Operating Systems Principles (2017), pp. 252–
269.

[43] ONGARO, D., AND OUSTERHOUT, J. K. In search of an un-
derstandable consensus algorithm. In USENIX Annual Tech-
nical Conference (2014), pp. 305–319.

[44] PLOTKIN, S. A. Sticky bits and universality of consensus. In
Proceedings of the eighth annual ACM Symposium on Princi-
ples of distributed computing (1989), ACM, pp. 159–175.

[45] SCHNEIDER, F. B. Implementing fault-tolerant services us-
ing the state machine approach: A tutorial. ACM Computing
Surveys 22, 4 (1990), 299–319.

[46] SERGEY, I., WILCOX, J. R., AND TATLOCK, Z. Pro-
gramming and proving with distributed protocols. In ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (2018), pp. 28:1–28:30.

[47] SIGURBJARNARSON, H., BORNHOLT, J., TORLAK, E., AND

WANG, X. Push-button verification of file systems via crash
refinement. In USENIX Conference on Operating Systems De-
sign and Implementation (2016), pp. 1–16.

[48] TANENBAUM, A. S., AND STEEN, M. V. Distributed Sys-
tems: Principles and Paradigms (2Nd Edition). Prentice-Hall,
Inc., 2006.

[49] TAUBE, M., LOSA, G., MCMILLAN, K. L., PADON, O.,
SAGIV, M., SHOHAM, S., WILCOX, J. R., AND WOOS,
D. Modularity for decidability: Implementing and semi-
automatically verifying distributed systems. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (2018), pp. 662–677.

[50] TERRACE, J., AND FREEDMAN, M. J. Object storage on
CRAQ: High-throughput chain replication for read-mostly
workloads. In USENIX Annual Technical Conference (2009),
pp. 11–11.

[51] VAN RENESSE, R., AND ALTINBUKEN, D. Paxos made
moderately complex. ACM Computing Surveys 47, 3 (2015),
42.

[52] VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS, S. Ho-
rus: A flexible group communication system. Communica-
tions of the ACM 39, 4 (1996), 76–83.

[53] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain repli-
cation for supporting high throughput and availability. In
USENIX Conference on Operating Systems Design and Im-
plementation (2004), pp. 91–104.

[54] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK,
Z., WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi:
A framework for implementing and formally verifying dis-
tributed systems. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (2015), pp. 357–
368.

[55] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNA-
MURTHY, A., AND PORTS, D. R. K. Building consistent
transactions with inconsistent replication. In ACM Symposium
on Operating Systems Principles (2015), pp. 263–278.

14

	Introduction
	Background
	A Least Common Denominator API
	Verification Approach

	The WormSpace System
	Design and Implementation

	WormSpace Applications
	WormPaxos over WormSpace
	WormLog over WormSpace
	WormTX over WormSpace

	Formal Verification
	Layer Structure for Verification
	Network Model
	Proving Global Properties
	Top-Level Theorem of WormSpace
	Reusability and Linking
	Discussion

	Experience
	Evaluation
	Micro-benchmarks
	WormPaxos
	WormLog
	WormTX
	End-to-end Verification

	Related Work
	Conclusion

