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An Optimization of the Buddy Model for Securing Mobile Agents†

Yueh-Hua Lee and Hyunyoung Lee

Department of Computer Science, University of Denver

Denver, CO 80208, U.S.A.

{ylee7, hlee}@cs.du.edu

1 Introduction

This paper proposes a scheme to improve a security model, namely the “buddy model”, for an agent com-
munity. Mobile Agents are autonomous programs that can migrate from hosts to hosts. A mobile agent
can decide when and where to move. When migrating, a mobile agent brings the implementation, data,
and execution state with it. The concept of agent community results from the maturity of mobile agent
technology. The agent community is a Multi Agent System (MAS) with a specific community goal [1]. A
community integrates different mobile agents that perform different functions in order to achieve one common
goal. An agent community is a dynamic entity: Mobile agents join and leave their community frequently.
Furthermore, an agent community may consist of several sub-communities with different secondary com-
munity goals; several communities may form a super-community that has a primary community goal. It is
natural that an agent community is designed in a hierarchical way; however, hierarchical implementation
brings vulnerabilities. Attackers can easily target the mobile agents in the top level of the hierarchy or create
malicious mobile agents that assume the identities of administrative mobile agents in order to ruin the whole
community.

The “buddy” model is proposed by Page et al. [1, 2]. The term “buddies” refers to the neighbors of a
mobile agent in a pre-assigned group. In the model, the mobile agents within a group generate tokens and
send the tokens to their buddies periodically. By using the tokens, they protect buddies and monitor the
health condition of buddies. Page et al. argue that the model avoids the vulnerabilities of a hierarchical
scheme for mobile agent security: Because each mobile agent performs an identical role in the security
function, it is hard for an attacker to find and attack a central coordinator.

This paper explores an improvement of the “buddy” model. The optimization issue should be taken
into account when the model is applied to a large-scale scenario. If the mobile agents move far away from
one another, the network suffers from their frequent token delivery. We try to reduce the network traffic
by grouping nearby agents together dynamically. When a mobile agent migrates to a far away host, the
agent leaves the old group and joins a new nearby group. We also note that the size of a group dynamically
changes in time. Our improvement scheme provides means to merge two small groups into a larger group
and to split a large group into two or several smaller groups. The scheme can also be applied to other MAS
if the system can be divided into groups and requires frequent communication between group members. A
system gains better performance because the group members that need to communicate are geographically
near to one another.

There are five algorithms in our optimization approach. The “Join”, “Leave”, and “Accept” algorithms
collect nearby mobile agents into a group. Our “Merge” and “Split” algorithms maintain reasonable size
and diameter of a group by using a temporary central coordinator.

2 The Algorithms

We assume an asynchronous network with arbitrary topology. A security group is represented by an undi-
rected graph S(V, E). Each vertex represents a mobile agent and each edge represents buddy relationship.
In other words, if two mobile agents are buddies, there is an edge that connects them. We assume that the
mobile agents have ability to compute the distance between any two mobile agents. The distance is measured
by the number of hops between them. We define D as the maximum diameter of a group. The size of a

†Full version is available from www.cs.du.edu/~hlee/Research/pub.html
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group is between L and U where L is the lower bound and U is the upper bound. We choose L < U/2 to
avoid iterative merge and split.

When a mobile agent broadcasts a request, it waits for a threshold T of time. T < 2δ where δ is the
maximum message delay for a communication channel whose length is D. If a reply message cannot arrive
within T time period, we assume that the source of the reply message is unable to respond or is far away
from the mobile agent that sends the broadcast message. However, we have to synchronize mobile agents
that dock at different machines. The threshold T is measured by clock ticks. When a mobile agent moves to
a new host, it sends a synchronization request to its home platform (the home platform is the origin of the
agent). The home platform will send two replies, which are “start” and “end”, and the time between the two
replies is T . The mobile agent counts the number of local clock ticks, which is T ′, between receiving “start”
and “end”. Using this approach, T is evaluated by T ′ and mobile agents on different hosts are synchronized.
The system parameters T , D, L, and U are known to every agent.

In the “Merge” and “Split” algorithms, we use a temporary coordinator to lead the merge and split
processes. We assume that a randomized leader election algorithm can choose a unique leader at random.
Therefore, there is still no way for an attacker to find and attack the temporary coordinator. Ramanathan
et al. propose a randomized leader election algorithm that works in arbitrary network topology and requires
only O(n) messages where n is the number of processes [3].

Each mobile agent knows the addresses and identities of its direct buddies and buddies of buddies. The
information is stored in an array, Neigh[]. Each entry in Neigh[] has three fields. The first field records the
identity; the second field records the address; the third field indicates the agent is a direct buddy or buddy
of a buddy. If a mobile agent senses that the size of the group or Neigh[] changes, it appends the information
to its token. Upon receiving the token, the buddies modify their local information according to the token.
If two variables have the same name, the term “this” refers to the local variable of a mobile agent.

Join, Accept, and Leave. When a mobile agent p moves far away from its buddies and decides to join
a new group, p broadcasts a “join request” and waits for T time to receive “accept messages” form q. The
“accept message” contains the size of q’s group and the distance between p and q. When the timeout occurs,
p chooses the nearest agent q. If there are two or more agents that have the same distance and the distance
is the smallest, p chooses the agent that resides in a smaller group. If the sizes of the groups are also the
same, p chooses one of them arbitrarily. Then, p sends a confirmation, to the nearest agent q and receives
Neigh[] of q. After all, p joins the group, which q resides in, and leaves the old group. If no accept message
is received, p ceases its work and returns to the home platform.

In the Accept algorithm, an agent p computes the distance from p to q when it receives a join request
from q. If the distance is smaller than D, p sends an accept message to q. When p receives a confirmation, q
becomes a buddy of p. At the same time, p appends size group and Neigh[] in the token. When p’s buddies
receive the token, they update their size group and Neigh[] accordingly.

Merge. When a group becomes smaller than L, it should merge with a nearby group. In order to have
efficient communication among the buddies, we want to minimize the total path lengths of the new group.
There are three phases in the Merge algorithm. In phase one, the mobile agents elect a temporary coordinator
C at random. In phase two, each mobile agent p in the group H finds an agent u that belongs to another
group Gi and is nearest to p. We use the same approach in the Join algorithm to find such agent u: p
broadcasts a message and waits for T time. Other agents who receive the message report the distance and
size group. If there are two or more mobile agents that report the same distance and the distance is the
smallest, the one with smaller size group is chosen. If size group are also the same, p chooses arbitrarily.
Then, p finds the agent w, which is the farthest agent of p in Gi. Agent p queries all agents in Gi to find
such w. Then, p computes the distance d between p and w. We call d the “longest distance”, which indicates
the diameter of the new group after merging. Next, p reports d, Gi and the size of Gi to the coordinator C.

In phase three, C chooses the group G among Gi according to d and leads the merge process. Again, if
there are more than two groups that have the same d and such d is the smallest, C compare the sizes of the
groups and chooses the one with smaller size. If the tie situation happens again, C chooses arbitrarily. The
merge process is to gather addresses of all agents in H and G, assign buddies for all agent, and update local
variables of all agents. Application developers decide how to assign buddies. The subroutine Gather Address
uses a depth-first search to gather addresses of all mobile agents. When gathering addresses, the subroutine
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uses an array, All Address[]. Each entry in All Address[] contains two fields: The first field is the identity of
mobile agents and the second field is the address.

Split. The Split algorithm consists of three phases. In phase one, we randomly elect a temporary coor-
dinator C and build a spanning tree over the mobile agents where C is the root. Each node represents a
mobile agent and has one parent variable and several child variables. Parent/child stores the identity of
parent/child node respectively. The subroutine Build Tree is a breadth-first algorithm. Every mobile agent
sends message 〈your parent, identity〉 to its direct buddies. The buddies reply message 〈your son, identity〉
or 〈not your son〉 to indicate whether the buddy is a child of the mobile agent that sends 〈your parent,
identity〉.

In phase two, we compute size subtree, split factor, flag split candidate, and num split candidate. Com-
puting split factor and flag split candidate requires no external messages. On the contrary, computing
size subtree and num split candidate at an agent p requires the num split candidate and size subtree of all
children of p. The approach is straightforward. If the node is a leaf node, the size subtree is one; other-
wise, the size subtree is the sum of size subtree of all children plus one. If the node is not a candidate,
the num split candidate is zero; otherwise, the num split candidate is the sum of num split candidate of all
children. Of course, each node other than the root should report size subtree and num split candidate to the
parents.

A split candidate (or candidate) is a node whose size of subtree is greater than or equal to L. Obviously,
the coordinator C must be a candidate. The algorithm splits the group by cutting edges of the tree. If there
is only one candidate, which is the coordinator C, we preserve the edge to the child whose size subtree is
the smallest. If a tie situation occurs, C chooses arbitrarily. All other edges between C and its children are
cut. If the new groups are too small, they run the Merge algorithm. If there are two candidates, we cut the
edge between them. If there are three or more candidates, the algorithm chooses according to split factor,
where split factor = |size subtree − (size group/2)|. It makes the sizes of two new groups roughly half of the
original group. In phase three, C gathers addresses, assigns buddies for all mobile agents and update their
local variables.

Failure and Malicious Agents Handling. In our scheme, an agent waits for T time after sending a
request. The agent ignores all replies after the timeout occurs. In the Merge and Split algorithm, we need
to gather all addresses using subroutine, Gather Address. Because we maintain the information of direct
buddies and buddies of buddies in Neigh[], Gather Address fails only when all direct buddies and buddies of
buddies fail. The redundant information makes the algorithm robust.

The buddy model avoids hierarchical vulnerabilities because all mobile agents act an identical role with
respect to security function. It is undeniable that the temporary coordinator in the Merge and Split algo-
rithms is more important than other mobile agents. We exploit randomized leader election algorithms to
hide the coordinator from the outsiders. However, a malicious mobile agent inside a group can blindly claims
itself as the winner of the election and become the coordinator. We employ a variation of Ramanathan’s
algorithm [3] to solve the problem: in the competition, each contender must act for another randomly-chosen
contender. When a contender wins the election, the leader is the mobile agent that the winner represents.
Under this condition, a malicious mobile agent becomes the coordinator only if the mobile agent that acts
for it wins the election and the malicious mobile agent has no control of its representer. Thus, the algorithm
can resist the malicious mobile agent.

References

[1] J. Page, A. Zaslavsky, and M. Indrawan. “A buddy model of security for mobile agent communities operating in pervasive
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Abstract. Epidemic algorithms are easy to deploy, robust, and resilient to failure, in contrast to traditional 
deterministic approaches. Mainly due to their simplicity of implementation and deployment, robustness and 
scalability, epidemic algorithms have become popular in distributed systems. However, there exist problems 
such as membership, network awareness, buffer management, and message filtering that should be taken into 
account during the development of an epidemic information dissemination protocol. In this study, we examine 
the network awareness and buffer management issues. In a large scale system, any epidemic algorithm that does 
not address actual network topology may lead to a dramatic increase in the underlying network load. Moreover, 
to ensure reliability, a loss recovery mechanism exploiting an efficient buffer management technique must be 
considered. We describe the existing solutions to network awareness and buffer management as well as our 
approaches, and give our mathematical evaluation and comparative simulation results. 
 
Network Awareness: In a simple epidemic algorithm, all processes are assumed to be equally reachable. It is 
therefore possible for a process to forward a message to a randomly selected remote one. In a flat membership 
protocol, partial views are constructed without considering actual network topology. It is easy to implement, but 
it can not be applied to Internet-wide settings. Hence, network overhead may increase unnecessarily which is a 
major problem especially in large scale applications. Most of the solutions addressing this problem rely on 
hierarchical organization of processes that attempts to reflect actual network topology. Information is 
disseminated to other processes via the hierarchy. Hence, load on the network is limited. The hierarchical model 
proposed in [3] assumes that in each cluster there are a few nodes having nodes from other clusters in their 
views. There are only a small number of links among clusters. Parameters of the model, namely the intracluster 
fan-out denotes the number of links each node has with other nodes in the same cluster, and the intercluster fan-
out denotes the number of remote links each cluster must maintain with nodes outside the cluster. 

Our approach to network awareness problem is based on clustering processes. There is a server process in each 
cluster which is responsible for communication with the other clusters. Therefore, message traffic among 
clusters is limited to connections constructed by these servers. Our simulation results show that organization of 
processes in this manner leads to a decrease in the network overhead during epidemic information dissemination.  
An illustration of our proposed clustered epidemic is given in Fig. 1. Our approach differs from the idea in [3] in 
fan-out process of information dissemination. In [3], a process chooses targets among the nodes in its own 
cluster and forwards it to these targets. Information dissemination starts in other clusters only when one of the 
nodes in that cluster gets the message. This constraint not only leads to latency in information dissemination to 

whole system, but also more message traffic in the 
network is generated to achieve reliable 
information dissemination. In our approach, it is 
assumed that all the processes in a cluster know the 
identification of their server. To start information 
dissemination, a process sends the message to the 
server firstly. Then classical epidemic information 
dissemination continues within the cluster. When a 
server gets a message from its cluster, it forwards it 
to the other servers. Any reliable epidemic or 
multicast algorithm may be used for information 
exchange among clusters. If incoming message is 
from another server, a server starts epidemic 
information dissemination in its cluster. Also 
epidemic algorithm parameters such as fan-out and 
buffer capacity may differ from one cluster to the 
other. The parameters can be adjusted with respect 

to cluster size to achieve a different level of reliability in each cluster independently.     

                                                 
1 Contact person. oozkasap@ku.edu.tr, Phone: +90 212 338 1584, Fax: +90 212 338 1548 
Department of Computer Engineering, Koc University, 34450 Istanbul, Turkey. 

Server node

Conn to nodes

Conn to server 

Figure 1. Clustered Epidemic: Clusters are connected

by links among servers 
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Buffer Management: One approach for buffer management [1] assumes that there is a repair server per cluster 
that handles message retransmissions.  However, if the number of transmitted messages increases, capacity of 
the server may be exceeded and this leads to a situation in which messages are lost. Another protocol proposed 
in [2] reduces the amount of buffering by choosing a suitable subset of the group to buffer a given message. In 
this approach, each member knows the approximation of the entire membership. The approximation needs not be 
accurate, but it should be of good enough quality that the probability of the group being logically partitioned into 
disconnected subgroups is negligible. The determination of whether a member should buffer a message is done 
by using a hash function. The hash function takes the message source and the sequence number of the message 
as input to determine bufferers. If a node detects a message loss, it determines the bufferers for the lost message 
via the hash function, chooses one of them randomly and requests the message from it. But this algorithm is not 
applicable to dynamic groups since dynamic redefinition of hash function in case a new process joins the system 
is not considered. Moreover, this approach does not consider network awareness.  

In this study, we propose an efficient buffering algorithm that ensures reliability in epidemic information 
dissemination, adaptable to dynamical groups and considers network awareness. The algorithm is similar to the 
one in [2], but it has no use of a hash function and it targets epidemic information dissemination. For buffer 
management, when a message is generated, a set of bufferers for the message is determined by the source and ids 
of these bufferers are piggybacked to the message. Messages are directly forwarded to bufferer processes.  These 
bufferer nodes are determined randomly among the ones message source knows. In addition, the bufferer number 
can be chosen large enough to handle failures in some bufferers. The bufferer processes hold the corresponding 
messages in their long term buffers. The long term buffer is used for retransmissions. If a process detects that it 
has missed a message, it requests the message from one of the bufferers of that message. Determination of lost 
messages again relies on gossiping. A process periodically chooses n processes from its view in a random 
manner. Then it gets ids and bufferers of messages received by these n processes. If it realizes that it has missed 
some messages, it requests missed ones from one of the bufferers. If that bufferer is crashed or can not retransmit 
that message, request can be forwarded to another bufferer.   

We apply our buffering technique to clustered epidemic where for each cluster there exist a fixed number of 
bufferers that can be determined by the server of the cluster. When a server gets a message from other clusters, it 
determines bufferers for that message in its cluster. Then, it directly sends the message to these bufferers. Our 
algorithms for a server and a message source are given below. 

    

             

  

  

     

 

 

 

Algorithm for a server                                          Algorithm for a message source  

Simulation Results: We developed a simulation model for our approach for network awareness and efficient 
buffering as well as two other approaches, flat epidemic and clustered epidemic proposed in [3]. Within the 
simulation study, we first compare flat epidemic, clustered epidemic [3], and our clustered epidemic in terms of 
network loads. Secondly, we apply our buffer management technique to flat epidemic and our clustered epidemic 
model and show how it efficiently handles reliability of dissemination. 

In our simulations, nodes in a cluster are fully connected, and partial view of a node includes all the nodes in its 
cluster. In the flat epidemic model, group size is 90.  Nodes are constructed such that links between nodes have 
weights uniformly distributed between 1 to 15 units.  In the clustered model defined in [3], there are three 
clusters each of with size 30. In each cluster, 3 nodes are responsible for connection to other clusters. We assume 
that when pivot node gets the message, it sends directly to other two clusters. In our clustered model, again there 
are three clusters each of size 30. In each cluster there is a server node to connect the cluster to other clusters. 
Weights of links in a cluster are uniformly distributed between 1 to 5 units, and the links between servers are set 
to 10 units.  We measure the number of transmitted messages and total load on the network. In all three models, 
a node generates 100 messages periodically, and we calculate number of message losses at the end of the 
dissemination.  

Waits for messages  
If incoming message is from its cluster 
         Disseminate  message to other servers 
         If one of servers is crashed 
             Buffers message until a new server is  
             selected for isolated cluster 
                  Sends message to failed cluster 
If incoming message is from another cluster 
         Assigns bufferers for that message in      
        the cluster and send messages to  bufferers 
        Starts epidemic dissemination in its cluster          

 
Generates a message  
Determines bufferers for the message 
If server is failed 
       Starts an election algorithm for server 
Sends message to server 
Sends message to bufferers 
Starts epidemic dissemination in the cluster   
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As illustrated in Fig. 2 and Fig. 3, we observe that to achieve reliability in our clustered epidemic, number of 
transmitted messages is close to the number for the flat epidemic. However, network load in flat epidemic is 
approximately 2.5 times of network load in our clustered epidemic. When we compare network loads in 
clustered model [3] and in our clustered epidemic, network load in our model is equal to approximately 85% of 
network load of the other. Latency in information dissemination to whole group is also reduced. Therefore, our 
clustered epidemic improves the network performance of information dissemination significantly.  

Then, we test our approach addressing buffering problem using flat epidemic model. We consider a group of size 
100 and where source generates 100 messages. We investigate required long term buffer capacity for each 
process in the group. For each generated message, 2 bufferer processes are chosen from the group. Results are 
given in Fig. 4 that show the balance of buffering load among processes. For different group sizes (from 10 to 
60), we see that mean buffer requirement decreases as group size scales up (Fig. 5). Applying buffering 
technique to flat epidemic model leads to a 45% decrease in the load of underlying network. We also applied 
buffering technique to clustered epidemic. It yields approximately 30% decrease in network load of the system 
with respect to our clustered epidemic model. 

Conclusions: Network awareness and buffer management are two major design constraints in developing 
epidemic algorithms. Approaches presented in this paper, as part of our ongoing work, are easy to implement 
and suitable to dynamic structures. Our results show that they are scalable and decrease network load 
dramatically compared with flat epidemic and the other clustered epidemic approaches. 

1. S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya, Reliable multicast transport protocol (RMTP),  IEEE Journ. on Selected 
Areas in Communication, special issue on Network Support for Multipoint Communication, 1997. 
2. O. Ozkasap, R. van Renesse, K. P. Birman, and Z. Xiao, Efficient buffering in reliable multicast protocols, International 
Workshop on Networked Group Communication, Nov. 1999. 
3. A-M. Kermarrec, L. Massoulié, and A.J. Ganesh, Probabilistic Reliable Dissemination in Large-Scale Systems, IEEE 
Trans. Parallel and Distributed Systems, 14(3), pp. 248-258, 2003. 

Figure 2. Number of messages transmitted   Figure 3. Network load  

Figure 4. Buffer space    Figure 5. Mean buffer requirement 
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Abstract
While compare-and-swap (CAS) and load-linked /
store-conditional (LL/SC) are equally powerful in
principle, there are circumstances in which one or the
other is significantly easier to use. We highlight one
example in this paper. Specifically, we use LL/SC
to significantly simplify the “stealing” and “merg-
ing” mechanism used to ensure correct nonblocking
behavior in Harris and Fraser’s word-based software
transactional memory system (WSTM). Our simpli-
fication exploits the observation that LL/SC, as con-
ventionally implemented, provides a natural atomic
implementation of a restricted form of k-compare-
single-swap.

1 Introduction
An atomic k-compare-single-swap (KCSS) [3, 5]
atomically verifies k memory locations and updates
one of them (call it t). KCSS is useful for nonblock-
ing implementations of concurrent data structures
whose atomic updates require consistent snapshots.
If the locations involved in the snapshot are always
updated in an appropriate order, then ideal LL/SC
provides a natural implementation of a restricted
form of KCSS: t is load-linked, the remaining loca-
tions are read and, if the values satisfy some appro-
priate predicate, t is updated using store-conditional
(SC). The restriction is that whenever the k loca-
tions satisfy the predicate, the application must re-
frain from modifying locations other than t until t

itself has been updated.

∗This work was supported in part by NSF grants numbers
EIA-0080124, CCR-0204344, and CNS-0411127, and by finan-
cial and equipment grants from Sun Microsystems Laboratories.

Real implementations of LL/SC impose addi-
tional restrictions: most specify that SC can fail spu-
riously under certain circumstances (e.g. hardware
interrupts), in which case software must retry the
atomic sequence. More significantly, some allow SC
to fail deterministically if the instructions between
the LL and the SC attempt to access a location that
maps to the same cache set as t.

While deterministic failure limits the generality
of the technique, LL/SC-based restricted KCSS can
still be highly useful if we can guarantee that t lies
in a different cache set from the k− 1 other loca-
tions. In particular, LL/SC-based 2CSS can be used
to good effect in the word-based software transaction
memory system (WSTM) of Harris and Fraser [1, 2].
We describe the original WSTM in Section 2, draw-
ing attention to a potentially significant scalabil-
ity problem that can arise when contention is high.
In Section 3 we present a modification to WSTM
that significantly simplifies the design and eliminates
the scalability issue, at the expense of one addi-
tional atomic instruction on the low-contention criti-
cal path. Empirical evaluation of our modification is
in progress.

2 Word-based STM
Software Transactional Memory refers to a family
of general purpose constructions that can be used to
mechanically transform correct sequential code into
nonblocking concurrent code. STM systems gener-
ally attempt to maximize concurrency by allowing
threads to access disjoint sets of blocks concurrently.
The WSTM of Harris and Fraser [1, 2] makes each
memory word a separate block. The API for WSTM
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a2: (100,7) −> (300,8)
status: ACTIVE

a1: (7,15) −> (7,15)

Figure 1: WSTM Heap Structure

has six main entry points: STMStart( ) begins a new
transaction. STMRead(addr a) and STMWrite(addr
a, stm word w) are used to read and write shared
memory words. STMCommit( ) and STMAbort( ) are
used to finalize an ACTIVE transaction. STMVali-
date( ) verifies that the transaction is still able to com-
mit, which implies that all read locations are mutu-
ally consistent.

Figure 2 illustrates the design of WSTM. The
Application Heap is the shared memory region that
holds the actual data. The structure in the middle
of the figure is a hash table of Ownership Records
(orecs). Each orec stores ownership (permission-to-
modify) information for all memory words that hash
to its index in the table. Each unacquired orec stores
a version number. A transaction has to acquire an
orec before modifying any corresponding memory
words. Acquiring consists of atomically replacing
the orec version number with a pointer to the acquir-
ing transaction’s descriptor.

A transaction descriptor contains a list of transac-
tion entries, one for each shared word in the applica-
tion heap accessed by the transaction. Each transac-
tion entry in turn has five fields: the address of the
shared word, the original contents of that word, the
version number of the corresponding orec, the new
contents of the memory word (to be written back at
commit time), and the new version number (to be
stored in the orec).

A transaction may be ACTIVE, ABORTED, or
COMMITTED. An STMRead or STMWrite creates
a transaction entry (corresponding to the accessed
memory location) if one does not already exist in
the transaction descriptor. To maintain consistency,
a transaction descriptor must either contain at most
one entry corresponding to an orec, or all the entries

corresponding to an orec must have the same old and
new version numbers. The STMCommit operation at-
tempts to acquire all orecs named in the transaction
descriptor. If successful it uses an atomic primitive
(the linearization point of the transaction) to switch
to COMMITTED state. It then updates the shared
heap and releases all acquired orecs by swapping in
their new version numbers.

An STMRead or STMWrite to a previously unac-
cessed location inspects the corresponding orec. It
the orec points to an ACTIVE transaction, the con-
tender is immediately aborted (this uniform aggres-
siveness raises the possibility of livelock, making
WSTM obstruction-free [4]). The current transac-
tion creates a transaction entry using the appropri-
ate orec version number (old if ABORTED, new if
COMMITTED) found in the contender’s descriptor.

An STMCommit that discovers a conflict also
aborts the contender if it is still ACTIVE. It then
merges transaction entries (corresponding to the orec
under conflict) from the contender’s descriptor into
its own. Merging allows the current transaction, once
it finalizes, to appropriately update any locations for
which the contender was responsible, even if the
contender is preempted or otherwise inactive. After
merging, the current transaction steals the orec from
its contender by using an atomic primitive to flip the
pointer over to its own transaction descriptor.

Use of stealing leads to the problem of stale up-
dates, where a transaction that is a victim of steal-
ing may update words in the heap after the stealer
has already done so. A victim realizes this potential
problem when it tries to release the stolen orec and
its CAS or SC fails. The victim then chases the orec
pointer to its stealer’s descriptor and redoes all up-
dates made by the stealer for the stolen orec. No orec
is released until it is guaranteed that the orec is not
referenced by any other transaction. This is enforced
by the use of a reference count for each orec. An orec
is released by a transaction only when the orec refer-
ence count goes down to zero. Atomic update to the
orec and its reference count requires a double-wide
CAS or LL/SC.

Bounded Memory Blow-up
WSTM uses stealing to ensure nonblocking seman-
tics. Stealing entails merging, which in turn leads to
potentially long merge chains of transaction entries

8



due to false sharing. Let the ratio of the application
heap size to the orec hash table size be M : 1. If
hashing is uniform, each orec covers approximately
M different shared memory words. In the worst-case
scenario, for each memory location that a transaction
may access, it may end up possessing M −1 extra
transaction entries. If a transaction needs to acquire
N orecs, it may end up possessing N×M transaction
entries in the process. Memory blow-up may be sig-
nificant if M is large. Responsibility for extra mem-
ory words also increases the worst-case overhead of
write back by a factor of M, and introduces the over-
head of redos, which may cause severe interconnect
contention as cache lines bounce among processors.
Although the worst case scenario may rarely occur,
its likelihood increases with increasing contention.

3 An Alternative Stealing Approach
WSTM’s stealing mechanism leads to the bounded
memory blow-up problem and potentially slower
transactions. It also introduces significant complex-
ity, and requires a double-wide atomic primitive (not
currently available on 64-bit processors) to update
version number / pointer pairs. We propose an al-
ternative mechanism that uses helping during steal-
ing instead of merge-redo. On detecting a conflict,
a potential stealer transaction first scans through its
victim’s descriptor looking for the transaction en-
tries corresponding to the orec under conflict. For
each such entry, the stealer updates the correspond-
ing shared memory location using LL/SC to imple-
ment a restricted 2-compare-single-swap: the stealer
LLs the heap location, verifies that the orec is the
same as the one in the transaction entry, and then
stores the right value with SC. After the stealer has
scanned through its victim’s descriptor, it steals the
orec under conflict as before. The victim will con-
tinue with its release phase normally (without updat-
ing memory words corresponding to the stolen orec)
even when it sees that some of its orecs have been
stolen.

The intuition behind our approach is as follows:
If the orec changes after an LL, it is guaranteed that
some other stealer has successfully stolen the orec af-
ter making correct updates to the heap. The transac-
tion will have to chase the new stealer to resolve the
new conflict with its new contender. If the orec is still

valid, but the SC fails non-spuriously, it is guaranteed
that some other potential stealer has made a correct
update to the target memory location. Spurious fail-
ures are handled by a retry loop. Stale updates are
avoided by verifying the orec contents in between the
LL and SC. With our approach the bounded memory
blow-up problem is eliminated since no merging of
transaction entries happens. The commit operation
for a transaction is also simplified considerably. Fi-
nally, no reference counts or double-wide atomic op-
erations are required. To avoid deterministic SC fail-
ures, we need only ensure that a heap location and
its orec never map to the same set in the cache. This
is easily achieved, for all reasonable cache line and
page sizes, and for both virtually and physically in-
dexed caches, by selecting an appropriate hash func-
tion.

Our modification has a downside: a transaction
updating N memory words requires N + 2M + 1

LL/SC operations (where M is the number of orecs
acquired by the transaction), versus 2M+1 CASes in
the original WSTM. Experimental evaluation of this
tradeoff is currently in progress.
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Abstract
The obstruction-free Dynamic Software Transac-
tional Memory (DSTM) system of Herlihy et al. al-
lows only one writing transaction at a time to access
an object. Should a second require an object cur-
rently in use, acontention managermust determine
which may proceed and which must wait or abort.

In this case study, we consider the impact of ran-
domization when applied to our “Karma” contention
manager. Previous work has shown that Karma tends
to be a good choice of managers for many applica-
tions. We analyze randomized Karma variants, us-
ing experimental results from a 16-processor Sun-
Fire machine and a variety of benchmarks. We con-
clude that randomizing either abortion decisions or
gain can be highly effective in breaking up patterns
of livelock, but that randomized backoff yields no in-
herent positive benefit.

1 Introduction
Although early software transactional memory sys-
tems (STMs) were primarily academic curiosities,
more modern STMs [1, 2, 3] have reduced runtime
overheads sufficiently to outperform coarse-grained
locks (with at least moderate contention). Dynamic
software transactional memory (DSTM) [3] is a prac-
tical STM system novel in its support for dynami-
cally allocated objects and transactions, and for its
use of modular contention managers to separate is-
sues of progress and correctness in data structures.

At its heart, contention management in DSTM is
the question: how do we mediate transactions’ con-
flicting needs to access a block of memory? In pre-
vious work [4], we have shown that the choice of

∗This work was supported in part by NSF grants numbers
EIA-0080124, CCR-0204344, and CNS-0411127, and by finan-
cial and equipment grants from Sun Microsystems Laboratories.

contention management policies dramatically affects
overall system throughput and that the Karma man-
ager frequently gives top performance.

In the present work, we explore the impact of ran-
domization in contention manager design. We study
Karma as a top contention manager with many facets
that can be randomized.

2 Contention Management
The contention management interface for the
DSTM [4] includes notification methods for vari-
ous events that transpire during the processing of
transactions, plus two request methods that ask the
manager to make a decision. Notifications include
events such as beginning a transaction, success-
fully/unsuccessfully committing a transaction, at-
tempting to open a block, and successfully opening
a block. The request methods ask a contention man-
ager to decide whether a transaction should (re)start
and whether enemy transactions should be aborted.

Many researchers have found randomization to be
a powerful technique for breaking up repetitive pat-
terns of pathological behaviors that hinder perfor-
mance. We evaluate this potential by randomizing
facets of the Karma manager.

2.1 The basic Karma scheme
The Karma contention manager [4] tracks the cu-
mulative number of blocks opened by a transaction
as itspriority. It increments this priority with each
block opened, and resets it to zero when a transaction
commits. It does not reset priorities if the transac-
tion was aborted; this gives a boost to a transaction’s
next attempt to complete. Karma manages conflict
by aborting an enemy transaction when the number
of times a transaction has attempted to open a block
exceeds the difference in priorities between the en-
emy and itself. Between attempts, it backs off for a
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fixed period of time. Intuitively, Karma prefers not
to abort a transaction that will take a large amount of
effort to redo, but tries to maintain some ability for
short transactions to eventually gain enough priority
to finish even when competing with longer ones.

2.2 Randomized Backoff
The original Karma scheme backs off for a fixed pe-
riod of timeT between attempts to acquire an object.
Randomized, we instead sleep for a uniform random
amount of time between 0 and2T .

2.3 Randomized Abortion
In response to ashouldAbort query, the basic
Karma manager returnstrue when the difference∆
between the current and enemy transactions’ accu-
mulated priorities is less than the number of times
it has attempted to open a block. We randomize
this abortion decision with a sigmoid function that
returnstrue with probability biased to the higher-
priority transaction:(1 + e−

1
2
∆)−1.

2.4 Randomized Gain
The basic Karma manager gains one point of priority
with each object that it successfully opens. Random-
ized, we instead gain as priority an integer randomly
selected from the uniform interval0..200.

3 Methodology
All results were obtained on a SunFire 6800, a
cache-coherent multiprocessor with 16 1.2Ghz Ul-
traSPARC III processors. We tested in Sun’s Java
1.5 HotSpot JVM.

We present experimental results for six bench-
marks. IntSet, IntSetUpgrade, and RBTree are im-
plementations of a set of integers; LFUCache simu-
lates web caching [4]. Stack supports push and pop
transactions. ArrayCounter transactions either incre-
ment each shared counter 0..255 in an array or decre-
ment them in the opposite order; it is a “torture test”
that exacerbates any tendency towards livelock.

We implemented all eight combinations of ran-
domizing three facets of the Karma manager. We
crossed each variant and benchmark, running for a
total of 10 seconds. We display throughput results
for eight threads: previous experiments suggest that
eight threads is enough for inter-thread contention to
affect scalability in the benchmarks, yet few enough
that limited scalability of the benchmarks themselves

does not skew the results. Figure 1 displays through-
put results for the various benchmarks.

4 Analysis
In every benchmark, some combination of random-
ization improves throughput. In the ArrayCounter,
IntSetUpgrade, and IntSet benchmarks, randomiz-
ing just abortion decisions yields the best perfor-
mance. Randomizing both abortion and backoff
gives very poor performance in ArrayCounter and
RBTree; yet, it improves performance for LFUCache
and Stack. Randomizing gain improves performance
both alone, and in every combination with other
types of randomization, for LFUCache and RBTree.

4.1 Interpretation of results
Randomizing abortion is particularly helpful for
the ArrayCounter, IntSet, and IntSetUpgrade bench-
marks. Why is this the case? One possible expla-
nation is that randomizing abortion decisions is very
powerful for breaking up semi-deterministic livelock
patterns. Such livelocking patterns are particularly
visible in ArrayCounter: an increment and a decre-
ment that start at roughly the same time are very
likely to have similar or identical priorities when they
meet; they are thus prone to mutual abortion.

The combination of randomizing backoff and
abortion produces great variance in how long a
thread waits to abort an enemy transaction. In times
when this wait period is shortened, a longer enemy
transaction will have less of a chance to complete;
transactions in RBTree and ArrayCounter are par-
ticularly long. In times when this wait period is
lengthened, multiple shorter enemy transactions can
complete, competing with one fewer enemy. Indeed,
LFUCache and Stack transactions are very short; and
with higher thread counts (not shown due to space
limitations), this combination is less effective.

There is no obvious analogous deterministic
pathology associated with tranaction priority levels.
While backoff randomization helps in locking al-
gorithms that have multiple contenders (which can
get into simultaneous retry pathology), this problem
does not arise in the 2-transaction case. Instead,
one continues oblivious to the conflict and the other
backs off. This is why randomizing backoff yields
comparatively little direct benefit.
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IntSetUpgrade (8 threads, invisible reads)
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IntSet (8 threads, invisible reads)
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LFUCache (8 threads, invisible reads)
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Stack (8 threads, invisible reads)
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Figure 1: Throughput results for 8 threads and each combination of randomizing backoff (B), abortion (A)
decisions, and/or gain (G) upon opening a block (ordered alphabetically)

4.2 Future work
As future work, we plan to analyse other random-
ized contention managers, more benchmarks, and
systems with greater variability in transaction type.
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