The Finite Element Method on a
Data Parallel Computing System

Kapil K. Mathur and S. Lennart Johnsson*
Thinking Machines Corporation
245 First Street,
Cambridge, MA 02142, USA.

mathur@think.com, johnsson@think.com

Abstract

A data parallel implementation of the finite element method on the
Connection Machine system CM-2® is presented. This implementa-
tion assumes that the elementary unit of data is an unassembled nodal
point. In the context of the CM-2, each virtual processor represents
an unassembled nodal point and nodal points shared between elements
are replicated on different virtual processors. An algorithm for com-
puting each elemental stiffness matrix concurrently, as well as differ-
ent elemental stiffness matrices concurrently, without inter—processor
communication is presented. The performance of the elemental stiff-
ness matrix computation is in the range 1.6 — 1.9 GFlops s~!. The
sparse system of linear equations that results from the finite element
discretization has been solved by a conjugate gradient method with
a diagonal preconditioner. The rate of convergence of the conjugate
gradient iterations for boundary conditions which correspond to uni-
axial deformations depends nonlinearly on the order of interpolation
of the elements and linearly on the mesh discretization. Sample code
segments are provided to illustrate the programming environment on
a data parallel architecture.

*Also, Departments of Computer Science and Electrical Engineering, Yale University,
New Haven, CT 06520, USA.




1 Introduction

This article outlines a methodology for implementing the finite element method
in a data parallel programming environment. It also discusses the choice of
algorithms for the concurrent computation of elemental stiffness matrices,
and the solution of the equilibrium equations. The Connection Machine
System CM-2® is used as the model architecture for the data parallel im-
plementation.

Many applications in science and engineering for which the finite element
method is used require the creation of, and subsequent computation on,
very large data sets. Stress analysis of structures and solids, thermal and
electric field problems, and fluid dynamics problems are examples of such
applications. The finite element method consists of discretizing a domain
into a set of finite elements. First, local computations are performed on these
elements to generate local data structures. The solution over an element is
approximated by polynomials computed to approximate the true solution
at certain nodal points on an element. The order of the approximation
depends on the number of nodal points per element. The size of the local
data structures depends on the order of approximation, and the number of
degrees of freedom per node (~ un X un for stress analysis, where n is the
number of nodes per element, and u the number of degrees of freedom per
node).

These local data structures are then assembled (either explicitly or implic-
itly) to form interaction equations between the global state variables being
modeled. A linear system of sparse equations results from this assembly pro-
cedure, which can then be solved either by direct methods or by iterative
methods. If a direct method is used to solve the system of linear equations,
then an explicit assembly of the local data structure is required. This as-
sembly is often part of the solver, as for instance is the case in the Harwell
sparse matrix packages [3, 4, 5|. For an iterative solver the matrix assembly
may be avoided, as described later.

The Connection Machine system model CM-2 [2] has a primary storage
of 512 Mbytes distributed uniformly among 65536 1-bit processors operating
synchronously on a single instruction stream (SIMD). There are 16 processors
to a processor chip, and 4096 such chips are connected as a 12 dimensional
hypercube. Two processor chips share a floating—point unit. Lattices of up
to 12 dimensions are subgraphs of the hypercube, and can be emulated with-




out any delay. The programming systems on the CM-2 include primitives
for configuring the processors as a lattice of the desired dimension, and for
relative and absolute addressing in the chosen lattice.

The Connection Machine system CM-2 needs a host computer. Currently,
three families of host architectures are supported — the SUN-4 series, the
VAX family with the BI-bus, and the Symbolics 3600-series. The Connection
Machine system is mapped into the address space of the host computer, which
stores the program and scalar data. Instructions that work on data stored
on the Connection Machine system are sent to a control unit that broadcasts
the instructions to all the processors.

Parallel extensions of the programming languages Fortran-77, C, and
Common Lisp are available on the CM-2. The extensions are CM-Fortran
[12], C* [11], and *Lisp [13] respectively. An application program written in
any of these languages is translated by the appropriate compilers into code
that makes direct calls to PARIS, the parallel instruction set of the Con-
nection Machine system [14], and into code that is executed sequentially on
the host computer. Direct calls to PARIS can also be made by the applica-
tion program from any of the three high level programming languages. The
data parallel implementation of the finite element method described here has
been developed in the high level programming language *Lisp, the language
of choice at the time this implementation was made. Sample code segments
in CM-Fortran are provided to illustrate programming in a data parallel
environment.

2 The finite element method

A brief outline of the finite element method [10, 15] is presented. Classi-
cally, in stress analysis, the finite element discretization of the application is
formulated from a variational principle representing the statement of virtual
work of the form

- _ T
0= /V §Tr(eo)dV + /S su"Tds, (1)

where du is the virtual displacement field compatible with the virtual strain
§e and o is the Cauchy stress in equilibrium with the applied traction field T.
After discretizing the domain into finite elements, and introducing piecewise




interpolation functions, which are non-zero only in the domain of one finite
element, approximations for the displacement field and the corresponding
strain field are obtained as

{u} = [N{U}, (2)

and

{e} = [N'{U}. (3)
In the above equations, the matrix [N] comprises of a set of interpolation
functions and [N’] is a matrix containing the spatial derivatives of these

interpolation functions. The final system of equations that results from the
above approximations is of the form

[K{U} ={F}, (4)

where the global stiffness matrix [ K] is really a collection of elemental stiffness
matrices .
K=Y [k®)]. (5)
i

The evaluation of the elemental stiffness matrices involves computation of
interpolation functions which are local over the domain of a single finite ele-
ment. The inherent parallelism in the concurrent generation of the elemental
matrices is clear. However, the analysis in the next section shows that there
is significant parallelism in the generation of individual elemental stiffness
matrices too [9]. This allows for the exploitation of the various levels of par-
allelism in the finite element method that can be easily exploited on a data
parallel architecture, such as the Connection Machine system. For higher
order elements, this concurrency within a finite element significantly reduces
the time taken to generate the elemental stiffness matrices.

3 Data parallel implementation of the finite
element method
In a data parallel environment, the implementation of a computation inten-

sive algorithm, such as the finite element method, involves a judicious choice
for the logical unit for the data. All processors of the computing system can




operate on such logical units concurrently. For example, if the computing
system is configured as a three dimensional lattice of processors, and the
logical unit is selected to be a variable x, then on encountering a statement
of the form

x = 1.0, (6)

the computing system sets the value of x to 1.0 in all processors forming the
lattice.

For the finite element method, the logical unit on which the lattice of
processors operate may be either

¢ a finite element from the finite element mesh, or
e an unassembled nodal point of the finite element mesh.

For a mesh composed of identical finite elements, the latter choice has several
advantages [9]. Briefly, the two main advantages are:

1. for three dimensional brick elements, the degree of concurrency is a
factor of n greater than the degree of concurrency obtained when finite
elements are chosen as logic units of data, and

2. the local storage requirements for the elemental stiffness matrices is
a factor of (3n + 1) less than the storage requirements for the first
choice.

The influence of the amount of local storage and total storage available on
the number of three dimensional Lagrangian elements that can be accommo-
dated on a Connection Machine System with 512 Mbytes of total storage is
shown in Table (1). The choice of the logical unit is clearly dependent on the
available local and total storage. Table (2) summarizes the communication
and arithmetic requirements for the two choices of the logical unit of data
described above. The ratio of the number of data element transfers to arith-
metic operations per logical unit of data is approximately the same for the
two choices.

Based on the storage requirements, the finite element implementation
described in this article assumes that the logical unit for the data parallel
environment is an unassembled nodal point. All data associated with a logical




Table 1: The maximum number of degrees of freedom for three dimensional
Lagrange elements that can be accommodated in 512 Mbytes of storage par-
titioned into 8 Kbytes per physical processor.

order nodes | virtual | maximum | maximum
per | processor | deg. of | number of
elem. ratio freedom | elements
(approx.) | (approx.)
1x1x1 8 8 780,000 260, 000
Processor 2X2X%X2 27 4 295,000 32,000
per unassembled [ 3 x 3 x 3 64 1 148,000 9,000
node 4x4x4| 125 1 62,000 4,000
Processor
per element, I1x1x1 8 2 390,000 130,000
unsym.
Processor
per element, 1x1x1 8 4 780,000 260, 000
sym.

Table 2: Data element transfers and arithmetic operations per logical unit
for Lagrange elements in three dimensions.

Virtual processor | Type of communication | Element transfers | Arithmetic
Processor per | Intra—element (all to all) 2(n - 1)u (2nu —1)u
unassem. node | Inter-element (assembly) 6u 3u
Processor Intra—element - (2nu — 1)nu
per element | Inter—element (assembly) 6n3u 3n5u




unit is represented by a virtual processor. Each virtual processor is assigned
a part of the memory, and the number of virtual processors is limited by
the size of the total memory. The operations required on the data of a
virtual processor is executed by a physical processor. The number of virtual
processors per physical processor is called the virtual processor ratio. Each
physical processor is shared by this many virtual processors. With a virtual
processor representing an unassembled nodal point, any nodal point that is
shared between finite elements is replicated on different virtual processors
of the CM-2 as many times as the number of elements between which it is
shared. This replication of the nodal points ensures that the virtual processor
utilization and the load balance is 100% for all finite elements of the same
shape and order of interpolation. It should be noted that even though the
nodal points are replicated the data is not. The matrices are represented
in unassembled form. The total storage requirements of the unassembled
matrices exceeds the storage required by an assembled matrix. However, the
excess storage is not to the extent of node replication [9].

For regular two or three dimensional finite element meshes the lattice
emulation feature of the programming systems on the CM-2 is used advan-
tageously. It simplifies the programming, and allows for efficient communi-
cation. Choosing virtual processors to represent a nodal point per element
is compatible with configuring the processors of the Connection Machine
system, CM-2, as a lattice of the appropriate dimension.

3.1 Generation of the elemental stiffness matrices

When one virtual processor of the Connection Machine system, CM-2, rep-
resents an unassembled nodal point, the generation of the elemental stiffness
matrix for each element is shared by n processors. The implementation de-
scribed in this article generates the rows of the elemental stiffness matrix
corresponding to the nodal point represented by each processor concurrently.
However the concurrent generation of the rows of the elemental stiffness
matrices requires the use of Gauss quadrature to perform the numerical in-
tegration. The implementation described here performs this quadrature se-
quentially on each virtual processor. Briefly, the data parallel algorithm for
the generation of the elemental stiffness matrices in parallel takes the form

for all quadrature points, k




evaluate jacobian and shape function derivatives
at the quadrature point, k.

add contribution of the quadrature point, k,
to the rows of the elemental matrix stored
on the virtual processor.

The implementation of the above pseudo—code in a high-level programming
language available on the Connection Machine system is quite similar to the
corresponding code for a sequential computing system. The major difference
is in the fact that atleast two loop levels are not visible in the pseudo-
code, namely, the loop corresponding to the number of finite elements in the
mesh and the loop corresponding to the the number of rows in the elemental
stiffness matrix. To emphasize this point, the corresponding pseudo—code for
a sequential computing system is also presented:

for all finite elements in the mesh
for all quadrature points, k
evaluate jacobian and shape function derivatives
at the quadrature point, k.
for all rows, i, in elemental stiffness matrix
add contribution of the quadrature point, k,
to the rows, i, of the elemental stiffness matrix.

By comparing the two pseudo—codes, it is clear that the cumbersome book-
keeping seen in most sequential codes to keep track of the various loop levels,
is not present in a data parallel programming environment.

3.2 Solution of the linear system of equations

The data structure used in the generation of the elemental stiffness matrices
may also be used in the solution phase, if an iterative method is used. The im-
plementation of the finite element method described here uses the conjugate
gradient method to solve the system of equations. For the results reported
in this article a diagonal preconditioner was used for simplicity of implemen-
tation. Other preconditioners are currently being investigated in the context
of solving large sparse systems that arise from discretization techniques such




as the finite element method. For the conjugate gradient solver, the major
computational effort is spent in the evaluation of the residual vector and
the acceleration parameters [6]. The implementation described in this arti-
cle does not assemble the elemental stiffness matrices into a global stiffness
matrix. Instead, the residual vector corresponding to the linear system

Az = b, where, A=) A; (7)

is evaluated by using the following data parallel algorithm. Some critical
segments of the algorithm have been expressed in CM-Fortran. For this
algorithm, each virtual processor stores the following data values locally:

1. The three rows of the unassembled elemental stiffness matrix, K, cor-
responding to the nodal point represented by the virtual processor.
The corresponding CM-Fortran DIMENSION statement for three dimen-
sional linear brick elements is of the form

CMF$LAYOUT KU(:SERIAL, , , ), KV(:SERIAL, , , ), KW(:SERIAL, , , )
REAL KU(24, 32, 32, 32), KV(24, 32, 32, 32), KW(24, 32, 32, 32)

The above statement directs the CM—Fortran compiler to create three
local (in—processor) arrays of size 24 each. In addition, at run time the
Connection Machine virtual processors will be configured as a three
dimensional lattice of size 32 x 32 x 32.

2. The three components of the displacement vector, z = {u v w}7.

3. The three components of the load vector, f = {f, f, fu}’.

With the above storage scheme the following steps are necessary to compute
the global residual vector during the conjugate gradient iteration process.

1. Broadcast the value of the displacement vector z to all other virtual
processors forming the finite element. This operation is a segmented
“all-to—all” broadcast [8] and is easily implemented by the use of near-
est neighbour communications only. The implementation described
here divides each finite element amongst n virtual processors, there-
fore, the total number of data elements that need to be communicated
are atmost O(n). After this broadcast, every virtual processor stores
an elemental displacement vector, X.




2. Perform a local (in—processor) matrix-vector multiplication of the form
r=KX (8)

where K is of size 3 X 3n, X is 3n long and r is 3 long. The local
vector r contains the three unassembled components of the residual
corresponding to the nodal point represented by the processor. The
corresponding code segment in CM-Fortran is

RU = 0.0

RV = 0.0

RW = 0.0

DO I=1,24
RU =RU + KU(I, 33 2) * XA,z 2)
RV =RV 4+ KV(I,:, s :) * XL,z 3 2)
RW = RW + KW(,:, 3, :) * XA, ¢, 2, 2)

END DO

3. Assemble the local residual vector, 7. As before, this operation requires
nearest neighbour communications. Only eighteen nearest neighbour
communications are required in three dimensions to assemble the entire
residual vector. The following code segment in CM-Fortran illustrates
the assembly process for the u component of the local residual.

(WHERE EAST) RU = RU + EOSHIFT(RU, 1, 1)
(WHERE WEST) RU = EOSHIFT(RU, 1, -1)
(WHERE SOUTH) RU = RU + EOSHIFT(RU, 2, 1)
(WHERE NORTH) RU = EOSHIFT(RU, 2, -1)
(WHERE FRONT) RU = RU + EOSHIFT(RU, 3, 1)
(WHERE BACK) RU = EOSHIFT(RU, 3, -1)

In the above code segment EAST, WEST, etc. are boolean arrays which
define the right-hand and left-hand boundaries of each finite element
in the three dimensions, respectively. Each call to EOSHIFT generates
PARIS code that results in only nearest neighbour communications on
the lattice of virtual processors.




4. Now compute the real residual
r=r—f, (9)

or in terms of CM-Fortran

RU = RU - FU
RV = RV - FV
RW = RW - FW

4 Applications

This section first investigates the influence of the interpolation order and
quadrature rule on the time taken for the generation of the elemental stiff-
ness matrices for all the elements in the mesh. Next, the performance of
the conjugate gradient solver is investigated by analyzing the time required
for the different functions in an iteration. Finally, some results from some
simulations on a rod clamped at one end and pulled by a distributed force
on the other are presented.

Table (3) summarizes the performance of the single-precision data paral-
lel implementation of the generation of the elemental stiffness matrices. The
timings reported are based on a Connection Machine system CM-2 with
16,384 physical processors equipped with floating-point hardware. The clock
rate was 7 MHz. The finite element meshes used were such that all the physi-
cal processors of the computing system were fully utilized. The floating point
operations per second extrapolated to a full Connection Machine system CM-
2 with 65,536 physical processors is in the range of 1.5 — 1.9 GFlops s~* for
a Sun—4 host computer and is approximately 1.5 — 1.7 GFlops s~ for the
Symbolics host computer. The floating point rate improves significantly as
the virtual processor ratio increases. Note that in the algorithm for elemen-
tal stiffness matrix computation outlined in Section 3.1 no inter—processor
communication is required.

To evaluate the performance of the conjugate gradient solver, the individ-
ual steps outlined in the previous section for the computation of the matrix
vector product were timed. This product comprises almost all the work for
the evaluation of the global residual. Table (4) shows the time taken by



Table 3: Time taken to generate single—precision elemental stiffness matrices
of finite element meshes which fully utilize a Connection Machine system
CM-2 with 16,384 physical processors at a virtual processor ratio of one.

Interpolation | Number of nodes | Quadrature | CM time | CM time

Order per element Order Sun—4 | Symbolics
1x1x1 8 2X2x2 0.233 0.231
2X2x2 27 2Xx2x2 0.634 0.726
2X2x2 27 3x3x3 2.641 2.441
3x3Ix3 64 3x3Ix3 5.297 5.627
3x3Ix3 64 4x4x14 12.144 13.445

each step of one iteration of the conjugate gradient process carried out in
single-precision. The finite elements were all three dimensional Lagrange
elements of first order, and the timings were measured at a virtual processor
ratio of one. At this virtual processor ratio, the default configuration of the
physical processors on a Connection Machine processor chip for the emula-
tion of a three-dimensional lattice is a 2 X 2 X 4 sublattice. Therefore, at a
virtual processor ratio of one, two unassembled finite elements are placed on
a processor chip. All intra—element communications (corresponding to the
all-to-all operation) are on—chip. In contrast, inter-element communications
corresponding to the assembly operation are mostly off-chip. The on—chip
communications rate is about one order of magnitude greater than the off-
chip communications rate. As the virtual processor ratio increases a larger
fraction of the total communication becomes on—chip communication. The
off—chip communication is minimized if the aspect ratio of the domain that
is placed on a chip is as close to one as possible, since the communication is
equally frequent in all three lattice dimensions.

In the numerical study of the influence of the order of interpolation, the
discretization parameter (or the number of elements), the Poisson ratio, and
the aspect ratio of the elements on the convergence behavior of the conjugate
gradient method with a diagonal preconditioner, all computations were per-
formed using double-precision floating point arithmetic. The finite element
mesh was constructed with elements with interpolation order p; X p, X ps.
The number of finite elements in this mesh were N; X Ny X N3. The boundary
conditions on the mesh corresponded to fixing the face of the mesh defined
by the y-z plane at x=0 and applying a distributed force on the face defined




Table 4: Time per iteration of the conjugate gradient method for first order
Lagrange elements in three dimensions. The Connection Machine system
CM-2 had 16384 physical processors, and the virtual processor ratio was
one.

Time (milli-second) | %
“all-to—all” broadcasting 9.3 40.8
Local matrix vector product 3.8 16.7
Assembly 5.2 22.8
Acceleration parameters 1.9 8.3
Update displacement vector 2.6 11.4
Time per iteration 22.8 100.0

Table 5: Influence of the mesh discretization parameter, h on the convergence
behavior of the conjugate gradient method for a mesh with straight edges at
various orders of interpolation, p. Mesh discretization = N x 1 x 1; order
of interpolation for a finite element = p x 1 x 1; total number of degrees
of freedom = 12 X (p X N + 1). The convergence tolerance for the iterative
solver was a normalized global residual of 5.0 x 108,

N, number Conjugate gradient iterations

of elements | p=1|p=2|p=3|p=4|p=5
100 100 215 | 436 652 | 1083
200 200 | 442 | 869 | 1331 | 2166
300 300 670 | 1301 | 2003 | 3251
400 400 899 | 1773 | 2673 | 4319
500 500 | 1129 | 2167 | 3345 | 5400

by the y-z plane at x=L, the other end of the bar.

In the first three sets of simulations the Poisson ratio of the material was
set to be zero, thus forcing the deformation field to be one dimensional. The
first set of simulations investigated the influence of the mesh discretization
parameter, h, in one dimension at constant order of interpolation, p. Table
(5) and Figure (1) show the results of this set of simulation for different
values of p. Clearly, the number of iterations required for the conjugate
gradient iterations to converge is O(N) or O(3), as expected for a second-
order elliptic differential operator for which the condition number is O(75),
and therefore the convergence rate for the conjugate gradient method O(3)




cg-iteratsons

5000.94
4000 .4
3000.4
2000.¢

1000..//".
1

-+ -+ N

200. . 300. 400. 500.

Figure 1: Influence of the mesh discretization parameter, h, on the con-
vergence behavior of the conjugate gradient method with diagonal scaling
for several interpolation orders. The iterative solver was assumed to have
converged when the normalized global residual reached a value of 5 x 1072,

1, 7).

The second set of simulations investigates the influence of the order of in-
terpolation p on the convergence behavior of the conjugate gradient method.
The mesh discretization was kept fixed at 120 x 1 x 1 for this set of sim-
ulations. The results of these simulations have been summarized in Table
(6) and Figure (2). The dependence of the conjugate gradient iterations
on the order of interpolation is significantly non-linear. Based on the results
summarized in Table (6) and on other numerical experiments, the non-linear
dependence of the conjugate gradient iterations on p has a functional form

Ncg ~ N x p1'4 (10)

where Ncg is the number of conjugate gradient iterations required for con-
vergence.

The third set of simulations varied the interpolation order and the num-
ber of elements in the x—dimension such that the number of nodal points,
and consequently the number of degrees of freedom, were kept fixed. The
simulation results are summarized in Table (7) and Figure (3) for the case




Table 6: The convergence behavior of the conjugate gradient iterations with
diagonal scaling as a function of the order of interpolation, p. Mesh discretiza-
tion = 120 x 1 X 1; order of interpolation for a finite element = p x 1 x 1; total
number of degrees of freedom = 12 x (120 X p+1). The convergence tolerance
for the iterative solver was a normalized global residual of < 5.0 x 108,

D, order of | Total degrees | Conjugate gradient
interpolation | of freedom iterations
1 1452 120
2 2892 260
3 4332 522
4 5772 787
5 7212 1309

Log(cg-itersticns)

+ + + + -+ + +— Log (p)
0.1 0.2 0.3 0.4 0.5 0.¢ 0.7

Figure 2: Number of conjugate gradient iterations required for the normal-
ized global residual to reach a cut-off value as a function of the order of
interpolation, p. The mesh discretization parameter, h was kept fixed. Dif-
ferent points for a fixed order of interpolation represent different values of
the normalized global residual (corresponding to 1 x 1073, 1 x 10~4, 1 x 10~%,
and 5 x 10~® respectively).




PR R

-

2.254

*

2. 49

2,39

-iterations!

L]
.35

+ + v + + + +— Log (p)
0. .2 ces .4 c.% G.€ c.=
05T

Figure 3: The convergence behavior of the conjugate gradient method for
different order of interpolation. The total number of degrees of freedom were
kept fixed so that the nodal discretization for the meshes was 121 x 2 x 2.

Different points for a fixed value of the interpolation order represent different
values of the convergence tolerance.




- Table 7: Influence of the interpolation order on the convergence behavior of
the conjugate gradient method at a fixed number of degrees of freedom. N
is the number of elements and p is the order of interpolation.

N |»p Number of conjugate gradient iterations
1.0 x 107 [ 1.0x 10~* | 1.0 x 10~° | 5.0 x 10—®
120 | 1 120 120 120 120
60 |2 122 122 123 125
40 |3 155 158 161 175
30 | 4 167 169 171 176
24 |5 227 235 239 258

when the interpolation order for the finite elements composing the mesh was
px1x1 and the number of elements in the three dimensions were N x 1 x 1.

The number of iterations required for the normalized global residual error
to reach a value of 1.0 x 1073, 1.0 x 10~*, 1.0 x 10~%, and 5.0 x 10~8 for the
five meshes are shown in Table (7) and Figure (3). Comparing Figures (2)
and (3), the convergence behavior depends on the interpolation order of the
elements less strongly in this set of simulations, than in the second set. These
results and results from other numerical experiments not reported here, fit
the equation

Neg ~ (N x p)p™* = N x p** (11)

The above sets of simulations were repeated for a non-zero Poisson ratio
(v = 0.3). These simulations correspond to fully three dimensional deforma-
tions. The convergence behavior of the conjugate gradient iterations with
diagonal scaling for this set of simulations yield a similar functional form to
within a constant factor:

Ncg ~ 1.5N x p'*

Finally, a set of simulations were performed in which the aspect ratio of
the finite elements was varied. For the geometry and boundary conditions
that were used in the simulations, the number of iterations did not depend on
the aspect ratio of the elements when the global stiffness matrix was scaled
such that the diagonal entries were all one.




Some interesting conclusions can be drawn from the last set of simu-
lations. The meshes used in this set of simulations had 121 nodes in the
x-direction. As expected, the number of iterations required by the conjugate
gradient solver is 120 for linear elements, which is the same as the number
of elements in that direction. Without a better preconditioner, the conver-
gence rate for this discretization cannot be improved because the propagation
length of the iteration process is equal to the interpolation order of the el-
ement. Although the propagation length of the iteration process increases
with the order of the element, the number of iterations required for con-
vergence to achieve the same tolerance for the normalized global residual
increases. This investigation concludes that at least for meshes with straight
edges the influence of the interpolation order of the elements on improving
the convergence of the conjugate gradient method is minimal.

References

[1] Owe Axelsson and V.A. Barker. Finite Element Solutions of Boundary
Value Problems. Academic Press, 1984.

[2] Thinking Machines Corp. Connection machine model cm-2 technical
summary. Technical Report HA87-4, Thinking Machines Corp., 1987.

[3] Iain S. Duff. Ma28 - a set of fortran subroutines for sparse unsymmet-
ric linear equations. Technical Report AERE R8730, HMSO, London,
AERE Harwell, 1977.

[4] Iain S. Duff. Ma32 - a package for solving sparse unsymmetric systems
using the frontal method. Technical Report AERE R10079, HMSO,
London, AERE Harwell, 1981.

[5] Tain S. Duff and John K. Reid. A set of fortran subroutines for solv-
ing sparse symmetric sets of linear equations. Technical Report AERE
R10533, HMSO, London, AERE Harwell, 1982.

[6] Gene Golub and Charles vanLoan. Matriz Computations. The Johns
Hopkins University Press, 1985.




[7] Anne Greenbaum, Congming Li, and Han Zheng Chao. Parallelizing pre-
conditioned conjugate gradient algorithms. Technical report, Courant

Institute of Mathematical Sciences, New York University, November
1988.

[8] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum
broadcasting and personalized communication in hypercubes. IEEE
Trans. Computers, 38(9):1249-1268, September 1989.

[9] S. Lennart Johnsson and Kapil K. Mathur. Data structures and al-
gorithms for the finite element method on a data parallel supercom-
puter. International Journal of Numerical Methods in Engineering,
1989. Department of Computer Science, Yale University, Technical Re-
port YALEU/DCS/RR-743, Technical Report CS89-1, Thinking Ma-
chines Corp., December, 1988.

[10] J. Tinsley Oden and Graham F. Carey. Finite Elements: Mathematical
Aspects, volume IV. Prentice-Hall, 1983.

[11] John Rose and Guy L. Steele. C*: an extended C language for data
parallel programming. Technical report, Thinking Machines Corp., 1987.

[12] Rosenbloom. Using Fortran-8X style of programming. Technical report,
Thiniking Machines Corp., 1987.

[13] Thinking Machines Corp. *Lisp Release Notes, 1987.
[14] Thinking Machines Corp. Paris Release Notes, 1987.
[15] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, 1967.






