This is a summary of the advances made, during the period of June 1994 to
September 1995, in the investigation of the inverse scattering problem for the
Helmholtz equation in two dimensions. The principal results presented here are
two stable methods for the solution of the fully nonlinear problem. The underlying
physics employed is the so-called uncertainty principle: it is increasingly difficult
to determine features in the scatterer as their sizes become decreasingly smaller
than a half of a wavelength.

This new approach belongs to a more general principle: some of the equations
in an ill-posed nonlinear system are essentially linear. These equations may be
first solved to produce a least-squares solution, and the approximate solution may
further be used to linearize other remaining equations with stronger nonlinearity.
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1 Introduction

The solution of an inverse scattering problem requires, in essence, an inversion
of a nonlinear mapping. There are two major difficulties associated with this
nonlinear problem: ill-posedness and local minima, neither of which has been
addressed satisfactorily. It turns out that the ill-posedness of the inverse problem
can be beneficially used to solve it. It means that, due to ill-posedness of the
problem, not all equations in the nonlinear system are strongly nonlinear, and
that when solved in a proper order, they can be recursively reduced to a collection
of linear problems.

The purpose of this report is to summarize the advances made, during the
period of June 1994 to September 1995, in the investigation of the inverse scatter-
ing problem for the Helmholtz equation in two dimensions. The principal results
presented here are two stable methods that solve the fully nonlinear acoustic
inverse scattering problem.

The plan of the paper is as follows: in Section 2 we summerize several fun-
damental principles for forward and inverse scattering. In Section 3, we describe
the inversion algorithms. Finally in Section 4, we extend the result to other
inverse problems and more general ill-posed nonlinear problems. The numerical
implementations and results of the algorithms will be presented in subsequent
papers.

2 The Analytical Apparatus

In this section, we summarize several fundamental principles for the forward and
inverse scattering problems for the Helmholtz equation in two dimensions

Ad(z) + k(1 + q(2))é(z) = 0. (1)

2.1 The Scattering Problem

In (1), we assume that k is a positive number, and ¢ is a smooth function with
compact support  C R?%; we will be referring to the function ¢ as the scatterer,
or the forward model. We will be considering solutions of (1) of the form

¢(z) = do(z) + ¥(2), (2)

with ¢ the incident, or the incoming, field satisfying in 2 the homogeneous
Helmholtz equation

Ado(z) + k*po(z) = 0, (3)
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and with 1 the scattered field subject to the outgoing (Sommerfeld) radiation
condition

Jlim /7 (%—If - ik¢> = 0. (4)

We will be referring to the determination of the scattered field from a given
incoming field as the forward scattering problem. It is well-known (see, for ex-
ample, [4]) that the forward scattering problem is well-posed. Moreover, the

problem can be reformulated as the so-called Lippmann-Schwinger equation for
the scattered field

w(e) = =k [ Gule,€)g()(@ol€) + P(O)de, (5)

or, to explicitly express the dependence of the fields on k,

wle,k) = =k [ Gule, )g(€)(¢olE, k) + p(E, k))de. (6)

Losely speaking, the inverse scattering problem is to determine the scatterer ¢
inside the domain § from measurements of the scattered field outside Q. The
inverse problem is nonlinear since both the scatterer and the scattered field is
unknown inside {2, and there is a product of them in the integral equation (5).

2.2 Three Special Cases

There are three special cases where the nonlinear relationship between the scat-
terer and the scattered field is essentially linear. In other words, the nonlinear
inverse problem can be linearized when

1. g is small, or
2. Q) is small, or
3. k is small.

In each case, the maximum norm of the linear mapping G0, : C(€) — C(R?),
defined by the formula

(Crag ¥)@) =K [ Gle.Oe@se)de, (1)

is small. Consequently, the scattered field is weak (see (5)), and the Born ap-
proximation

v(z) = =k | Gl )a(€)ole)de ®)

linearizes the relationship between ¢ and . It turns out that a simple under-
standing and a proper use of the three special cases are all that is required to
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construct a stable algorithm for the solution of the fully nonlinear problem. Fur-
ther analyses of the linear operator G(x ), or equivalently, of the behavior of
forward scattering, will be made in Section 2.7 which enable us to design yet
another algorithm for both inverse scattering and impedance tomography (see

(1], 121, [3])-

Remark 2.1 The mazimu norm of G (i q,q) is bounded, for example, by the num-
ber

-+iln(

|1 llglloo - 15 (9)

see Lemmas 2.9 and 2.18 in [5]. However, it is technically advantageous here to
state three separate conditions on which the norm is small.

2.3 The First Special Case

In this section, we restate some well-known results regarding to the special case
of small ¢ where the relationship between ¢ and v is linear.

At a fixed frequency k > 0, the most complete set of acoustic measurements
can be obviously obtained by the acquisition of ¥ on a circle (or a closed curve)
containing §, for every linearly independent incoming field. An example of such
a set of incoming fields is the plane waves of the form

ol y; ) = ez Bhvsin) (10)

for every 8 € [0,2r]. Denoting by (r,8; 8) the scattered field corresponding to
the incoming field (10), we are led to the following definitions.

Definition 2.2 An aperture (of acoustic measurement) is an area in the square
[0,27] x [0,27]; the full aperture is the entire square. A Fourier aperture is an
area in the (two-dimensional) Fourier space; a function g € L*() is said to be
specified on a Fourier aperture E if its Fourier transform g(m,n) ts known for
all modes (m,n) € E.

Assuming that the scatterer ¢ is small, and denoting by ¥, (6, ) the standard
far-field of the scattered field +(r, 8; #) obtained via the Born approximation (8),
we can easily show that

(ﬁ, 2 / q z' ,y )ezk{z (cos B—cos 8)+y' (sin B— Smo)}d:r'dy (11)

In other words, for a small ¢, the far-field measurement ¥, (8, 8) is the Fourier
transform ¢(m,n) with

m = k(cosf — cosb), (12)
n = k(sin 3 —sin#). (13)
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Therefore, the full-aperture far-field measurements

{ ¥(B,0), for all (3,0) € [0,2n] x [0,2x] } (14)

are the Fourier transform ¢(m,n) for those modes (m,n) filling Dy, the disk of
radius 2k centered at the origin — a Fourier aperture of radius 2k.

Remark 2.3 Due to (12) and (18), the far-field }o(8,0) can be regarded as a
function of (m,n). We therefore define the L* norm of the far-field 1o.(m,n) in
a domain E C D,y by the formula

el = [ holrm,m) i -dn] (15

2.4 The Uncertainty Principle

In this section, we extend results for the special case of small q to the general
case where ¢ is not small, and the relationship between ¢ and 1 is nonlinear.
We know from the preceding section that, for small ¢, the full-aperture far-
field measurements are the Fourier modes of ¢ in the aperture Dy. Therefore,
in the inverse scattering, the scatterer ¢ can be determined from the far-field
measurements, for example, by a backward Fourier transform, with a resolution

2w _ 2w 1

7 = Tadius of Fourier aperture 2k —2—)" (16)
where ,
™
A= (17)

is the wavelength.

Lemma 2.4 (Uncertainty Principle: small q, far-field) Suppose that q is small.
Then from the far-field measurements, we can not determine features of the scat-
terer that are smaller than a half of a wavelength.

Obviously, the features smaller than a half of a wavelength correspond to Fourier
modes ¢(m,n) with v/m? +n? > 2k. These higher-frequency components of
g, in turn, correspond to evanescent modes, or non-propagating modes, in the
scattered field, all of which decay exponentially while traveling to infinity. The
following lemma is a reformulation of the preceding one.

Lemma 2.5 Suppose that the scatterer q is small. Suppose further that §v is
the perturbation in the far-field due to a perturbation &q to the scatterer. Finally,
suppose that the perturbed scatterer

§=q+6q (18)
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s still small. Then

16¢ll2 = [|6qll2 (19)
if the support of 5q is inside Dok, and

6]z =0 (20)

if the support of 5Aq is outside Doy

It is not difficult to prove that full-aperture near-field measurements fill a Fourier
aperture, which we denote by D}, slightly greater than the disk Dy (the far-field
Fourier aperture). In fact, the near-field aperture D3, is entirely embedded in a
disk of radius 2k 4+ O(k3).

More precisely, when the scatterer is perturbed outside the Fourier aperture
D3, the perturbation in the near-field measurements is virtually zero (compare
this with (20)); namely, these small features of the scatterer are non-observable.
When the scatterer is perturbed in the transition zone - inside DJ; but outside
Dy, the resulting perturbation in the measurements is weak compared to per-
turbation of the scatterer. Finally, when the scatter is perturbed inside Dqy, 6%
is comparable to é¢, as in the case of (19).

Figure 1. The Fourier apertures Dy and D3

Remark 2.6 In a physically meaningful inversion, it therefore makes no sense
to recover from measurements the Fourier modes of the scatterer that are outside
DF,.. It is variably difficult to recover the modes in the transition zone: it is easier
to recover modes which are closer to the boundary of D,y..
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We can prove, for example, using the Riccati equation for the scattering matrix
developed in [5], that the above statements remain true for the general case where
¢ is not small, and the relationship between ¢ and 1 is nonlinear.

Lemma 2.7 (Uncertainty Principle: near field, general case) It is increasingly
difficult to determine features in the scatterer as their sizes become decreasingly
smaller than a half of a wavelength.

Remark 2.8 Obviously, the Uncertainty Principle can be regarded as an equiv-
alent formulation of the ill-posedness of the inverse scattering problem: the non-
observable, small features of the scatterer belong to the null space of the nonlinear
mapping which defines the inverse problem. In view of the uniqueness results —
the scatterer can be uniquely determined by full-aperture measurements at es-
sentially a single frequency k (see, for ezample, [{]), it would be reasonable to
conclude that the scatterer can be stably determined in the Fourier aperture D3, .

2.5 Reformulating Scattering Problem

Denote by g the low-frequency part of ¢, corresponding to Fourier aperture D,

so that ( ( ) N
A _ ‘j m,n), m,n) € D2k?
dr(m,n) = { 0,  (myn)¢ D} (21)

The goal of inversion, in the lights of Remarks 2.6 and 2.8, is to stably obtain
gr within a reasonable precision. Since g is the part of ¢ that is observable in
the full-aperture near-field measurements, the original forward scattering model
g can be replaced by g; without essentially changing the measurements. In fact,
we can show that at a given frequency k and for a given precision, the original
scatterer ¢ can be substituted by a smooth version of it, which produces the
same scattered field as the original, to the prescribed precision. We therefore
reformulate the original scattering problem (6) by an approximate one:

V(e k) = =k | Gule. )ae(€)(60(€. k) + (€, k))de. (22)

Definition 2.9 To a scattering experiment at frequency k, a scatterer § is said
to look (essentially) the same as a scatterer § if they produce essentially the same
scattering measurements in the experiment.

Definition 2.10 A forward model § is said to be observable, or an observable
part of q, to a scattering experiment at frequency k if its L? norm is the smallest
among the forward scattering models that look the same as the original q to the
scaltering experiment.




Remark 2.11 At frequency k, qi looks the same as the original q to a full-
aperture experiment, it is also observable to the full-aperture experiment. On the
other hand, in an experiment of limited aperture, ¢y may not be the observable
forward model, but it looks the same as the observable.

2.6 Continuity of ¢, on k

Since ¢; is the observable part of ¢ at frequency k, it would be intuitive to
think that, as the frequency is slightly changed, the change in the observable
part of ¢ should be small. In other words, ¢; depends on k continuously. This
is certainly the case when ¢ is small. There the observable part of ¢, through
far-field measurements, corresponds to the Fourier modes of ¢ in aperture Dy.
Therefore, new Fourier modes added to gj4sk are those §(m,n) in the annulus

Ak, 6k) = { (m,n), k < Vm?+n? < k+ 6k }. (23)

Consequently, the perturbation in g, due to that in k, is small:

laussr = aelle = llaion = della = [ alm.n)dmdn = O(8K).  (24)

We can show that ¢, depends on k continuously, for full-aperture near-field

measurements.

Lemma 2.12 7o a full-aperture, near-field experiment, the observable scattering
model g depends continuously on k in the L* norm.

We wish to carry this point further to the case of limited aperture. Denoting
by qx; the observable part of ¢ corresponding to an experiment of a limited

aperture, we remark that generally g, is not the same as ¢x, and therefore, due
to Definition 2.10,

llgkallz < ligxll2- (25)

Based on our experience with several special cases of limited aperture, we now
make an assumption on the dependence of gx; on k: we assume that Lemma
2.12 is also valid for scattering experiments with limited aperture, which we have
observed in numerical experiments, and which can be proved in the special case
of small q.

Observation 2.13 ¢, depends continuously on k in the L* norm.




2.7 Partial Linearization

The apparatus introduced in the preceding subsections will enable us to design
a stable algorithm for the inverse problem. All these tools are actually built on
the three special cases (see Section 2.2) where the nonlinear problem of inverse
scattering can be linearized. There are other special cases where the scattered
field can be made weak and therefore the relationship between the scatterer and
the scattered field is essentially linear. There are yet more special linearities
when the scattered field is not weak.

These additional special cases will allow us to speed up the stable inversion
method, and to build other stable algorithms for other inverse problems, as well
as for this inverse scattering problem for the Helmholtz equation. In this section,
we analyze some of these special cases.

Let us consider the general case where g is not small. The following trivial
result is formulated as a lemma for future reference.

Lemma 2.14 A small perturbation 8q in the scatterer results in a small per-
turbation 61 in the scattered field. Furthermore, up to the second order of the
perturbations, 61 depends linearly on éq.

2.7.1 Small Perturbation in Scattered Field

In general, if 8¢ is not small, then 6y will not be small, and will depend on oq
nonlinearly. But there are cases where §3 is small, and depends on 0q, which is
not assumed small, essentially linearly.

Lemma 2.15 Suppose that q is the forward model in the Lippmann-Schwinger
equation (5). Suppose further that q is perturbed by the amount §q which is not
small.  Finally, suppose that the perturbation in the scattered field v is small.
Then,

% /Q Gi(x,€)(€)69(€)dE = O(5¢). (26)

Remark 2.16 The lemma, whose proof is straightforward, implies that the per-
turbation in q lies essentially in the null space of the linear operator Gy : C(Q) —

C(R?), defined by the formula

(Go-60)(x) = ¥ [ Gulz.)8(e)6a(€)de; (27)

or, in the terms of linear algebra, 8q is essentially orthogonal to the “rows” of
Gy, when 8q is hardly observable. In the limiting case of 8q being not at all
observable, namely, when § = 0, the orthogonality will be exact.
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We have observed in numerical experiments that under the conditions of
Lemma 2.15 and up to second order of 61, the perturbation of the scattered
field is related to é¢ by a linear mapping; this can be proved for some special
cases.

Observation 2.17 Suppose that q is the forward model in Lippmann-Schwinger
equation (5). Suppose further that q is perturbed by the amount 8q which is not
small. Finally, suppose that the perturbation 6 is small. Then, up to second
order of the smallness, 61 depends on 8q linearly:

(@) = =k [ Gu(z,€) - (6(6)5(6) + a6v(€)) - d6 + O(ll6w[).  (28)

Remark 2.18 The Fourier modes of q outside the aperture D3; is not observable,
and therefore belong to the null space of the linear operator G4. The Fourier
modes of q in the transition zone - inside D3, but outside Dy — are variably
observable: 8 is weak compared to 6q, and is weaker if the Fourier modes of q
is perturbed near the boundary of D}, than near the boundary of Dyx. According
to Observation 2.17, perturbations of q in the transition zone induce variable
linearity between 61 and éq, with the latter not being assumed small.

2.7.2 The Skin Effect

There are things we can do to the incoming field ¢o in order to linearize the rela-
tionship between ¢ and 1. One of them is due to the fact that if the solution of the
homogeneous Helmholtz equation (3) varies in a direction at a frequency higher
than k, it decays or grows exponentially in perpendicular directions. Jaques
Hadamard is probably the first to realize the potential hazards associated with
such a phenomenon.

Let us consider a scatterer located in the unit disk for simplicity. If we have an
incoming field, produced by sources outside the scatterer, which oscillates along
the boundary at a frequency m > k, it will decay exponentially in the radial
direction as it travels into the scatterer. In fact, such an incoming field has the
form

¢o(r,0) = Jp(kr) - €™, (29)
For m substantially greater than k, the Bessel function J,,(kr) decays fast as the

radius r goes to zero
1 e-kr\"
m (k) ~ .
Fm(kr) \/2?11-( 2m ) (30)

Therefore, the incoming field can only penetrate the skin of the scatterer which
interacts with the incoming field, and produces a weak scattered field compared
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to the incoming. Thus, the Born approximation can be used to linearize the
relationship between ¢ and .

As m > k is closer to k, the skin gets thicker, and a greater part of the
scatterer becomes observable, and the relationship between ¢ and 1 turns more
nonlinear.

2.7.3 The Gaussian Beam

Another type of the incoming field ¢y we choose to linearize the relationship
between ¢ and ¢ is the so-called Gaussian beam. We are not interested in de-
scribing what a Gaussian beam is, except that it is a solution of the homogeneous
Helmholtz equation (3), which is essentially zero (dark) outside a sector of the
form

{ (r,0)[r =m0, w-eols% h (31)

with 7o, 8o, b some constants, and with the origin of the beam a point in RZ?.
Therefore, the support of such an incoming field ¢y looks like a beam from a
search light over whose position and direction we have control.

Now suppose that the scatterer ¢ is smooth, and that & is large. When the
beam ¢ is turn to the rim of the scatterer, only a controlled small portion of the
scatterer will be illuminated. Consequently, the scattered field 1 will be weak,
and again the Born approximation can be applied to linearize the relationship
between the scatterer and the scattered field.

Obviously, other types of incoming fields, than the exact Gaussian beam, can
also be used to illuminate a controlled portion of the scatterer.

3 Recursive Linearization for Inverse Scattering

We present here two inversion methods, one using multi-frequency, the other a
single frequency, for the inverse scattering problem of the Helmholtz equation.

3.1 Recursive Linearization via Uncertainty Principle

The first breakthrough in solving the fully nonlinear inverse scattering problem
occurred when we applied the Uncertainty Principle (see Section 2.4) to recur-
sively linearize the nonlinear system (see Section 2.5)

V(e k) =~k [ Gue.a(€)(0o( k) + (6 ) (32)

In this section, we briefly describe the linearization procedures.
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Suppose that the full-aperture near-field measurements are available at all
frequencies k£ > 0 (full-spectrum). We discretize the k-space into nodes

ki, ko, ks, ... (33)

with the first frequency k; so low that the relationship between ¢ and v is essen-
tially linear (see Section 2.2). Therefore, the linearized equation

P(ak) = =K [ Giy@.E)60(6, kg (€)de. (34)

can be solved for g, the observable part of the scatterer. Since the measure-
ments 1 (z, k) are full-aperture, we feel that gz, should be stably determined (see
Remark 2.8). This has been numerically confirmed.

Remark 3.1 In numerical experiments, it is found that the lowest frequency k,
can be chosen consistently so large that its corresponding wavelength is size of the
scatterer.

Now, by induction, suppose that we have recovered g, the observable part of
the scatterer at frequency k, we wish to recover g; at a slightly greater k, or
equivalently, the perturbation

5(] = (],‘c — qk. (35)

Remark 3.2 By definition of qi (see Section 2.5), 8q consists of Fourier modes
of ¢ in DI \ D3;.

This can certainly be achieved by employing standard perturbation analysis of
the equation (32) on the parameter k. To this end, let us solve at the frequency
k the forward scattering problem

Do k)= <k [ Gile,€)- @) (66 B) + D6, F) - d6,  (36)

with the forward model ;. Since k is close to k, the perturbation 0q is small;
according to Lemma 2.14, the perturbation in scattered field

8¢(a) = P(a, k) — ¥(z, k) (37)

is also small (for z inside and outside ), and depends on éq linearly up to
second order of the smallness. In other words, subtracting equation (36) from
the equation

v(e. k)= =k [ Gile,6)- ge()- (dole, B) + w(e. 1) -de,  (39)
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we have, up to the second order of the smallness, Lippmann-Schwinger type of
integral equation

bi(e) = =k [ Gi(a.) - [(60(6. F) + (& R)Eg(€) + audb(€)lde.  (39)

For given g, v, which are indeed known, the integral equation can be solved to
obtain a linear expression of é1)(z), at measurement points z, via §q. Denoting
this linear procedure by L, we have

L(8q) = 6¢(x). (40)

The linear problem can be solved, for the given right hand side §1(z), to yield
d¢, and ¢; can be obtained via (35).

Remark 3.3 Note that the linear operator L, as well as &, depends on the
incoming field. In order to use full-aperture scattering data 61, linear equations
(40) corresponding to all incoming fields should be solved simultaneously for éq.

Remark 3.4 Since all forward models that look the same (see Definition 2.9) as
qr satisfies the equation (32), the solution to the linear system (40) is obviously
non-unique, and we need to solve a linear least-squares problem, which we know
so well how to. In practice, the least-squares problem is solved with relative low
precision, making an error in bq, whose Fourier components lie largely in the
transition zone of the aperture D;;. The error will be dealt with in subsequent
steps of this recursive procedure. FEventually, the error, which corresponds to
Fourier modes difficult to be observable at the present k, will be well within an
aperture of a greater k, in which it will be well observable.

Remark 3.5 In our numerical implementation, equations (34), (40) were solved
only once at each frequency, making an second order error there. The recovered gy
therefore should be close to, but will not be the original q; which is the observable
part of q at frequency k. Consequently, in going up to the next higher frequency
k, added to 6q will be not only Fourier modes in D : \ D3, (see Remark 3.2), but

also those inside D, due to inezact calculation of k-

Remark 3.6 For inversion using near-field measurements, the step size in fre-
quency k can be quite large, because the perturbation 8q, though no longer small
now, is small in the aperture D3, and is large only in the transition zone of DJr
(see the preceding remark). Consequently, owing to Remark 2.18, 6 depends
essentially linearly on this large component in 8q, provided that the step size in k
is not too large: the aperture D, should cover part of the transition zone of the
next aperture D;}'
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Numerical experiments further show that frequently k; in (33) can be chosen
such that the size of the scatterer is about j wavelengths. For instance, we may
set k; = j for a scatterer inside a disk of diameter 2x.

The method of recursive linearization has been implemented, and the numer-
ical results will be presented on a later date.

3.2 Layer Stripping via Skin Effect

The skin effect described in Section 2.7.2 can also be used to recursively linearize
the nonlinear inverse problem. The advantages of such a procedure are largely
that it uses a single frequency, and the computational effort may be reduced;
although the procedure to be described here costs essentially the same as that
of the multifrequency (see the preceding subsection) — they both require O(N?)
operations for an N x N wavelengths problem in two dimensions.

The layer-stripping procedure is simple: in stead of having recursion in as-
cending direction of frequency k as in the method presented in the preceding
subsection, the recursive linearization will be executed in the descending direc-
tion of the so-called propagation number m (see (29)).

Let us again consider a scatterer located in the unit disk for simplicity, and
use the incoming fields of the form

bo(r,0) = Jp(kr) - €™, (41)

We first choose mo > k large enough to attain the skin effect (see Section 2.7.2),
so that the Born approximation is valid to linearize the relationship between g
and . The resulting linear system is solved to obtain the visible, or observable,
part of ¢, denoted here by ¢,,,, around the rim of the disk scatterer.

Remark 3.7 The solution of the linear system is of least-squares type, and in-
deed, is not in general a very good approzimation to q,. But the error made
there will be dealt with later on. Therefore, for simplicity, we still denote the
least-squares solution by gm, -

Now, suppose we have found a forward model ¢, which produces the pre-
scribed measurements for incoming fields (41) with m = mqg, me — 1, ..., n.
Suppose further that the incoming fields penetrate to a depth at r = r, with
0 < rn, <1, and thus cover the annulus A(r,,1 —r,) (see (23)) bounded by the
two circles r = r, and r = 1. We remark that ¢, is the observable part of ¢ in
A(ry,1 —ry,) which in general is not ¢ restricted in A(r,,1 — r,). Now, we wish
to obtain a forward model g¢,_; that produces the prescribed measurements for
incoming fields not only with m = mg, mg —1, ...,n, but also with m = n — 1.
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Remark 3.8 In general, g, and g,y are not the same in A(rn,1 — r,), but
both look the same to the scattering experiment with incident waves (41) for
m = mg, mo—1, ...,n. The “domain of influence”, A(r,,1 —r,), is actually
not exactly an annulus, due to, for ezample, the bending of the ray tubes. Finally,
there is a transition zone associated with each domain of influence, for near the
inner boundary of A(r,,1—r,), the influence is weak, the scattering is also weak,
and the relationship between q and v is essentially linear within the zone, as well
as without the zone, in the area nearer the center of the disk scatterer.

The recursive linearization procedure is as follows. The forward model ¢, is used
to solve the forward scattering problem (5) corresponding to the incoming fields
(41) with m = mq, mg—1, ...,n, n—1. The resulting scattered fields t,, satisfy
the mg — n + 2 equations

In(e) = =k [ Gu(@.6) 0al6) - Unlkp) - €™+ dn(€)) e, (42)
with the vector £ = p - (cos a, sin a).

Remark 3.9 According to Remark 3.7, the forward model q, may have non-
negligible error in it; consequently, Vm(z), for m > n and at the measurement
points x outside the scatterer, are not the same as the prescribed scattering data.

By definition, g,_; is the forward scattering model observable to the scattering
experiment using incoming fields (41) with m = mg, me—1, ...,n, n — 1, and
therefore

Un(2) = =K [ Gul@,6) - qua(€) - Unlke) - €™ + 6 (€)] - dE,  (43)

with ¥, (), for m > n —1 and = outside the scatterer, the prescribed scattering
data. Now, subtracting (42) from (43) for all m = mg, mg =1, ...,n — 1, we
obtain a system of essentially linear relationships between the perturbation

8¢ = Gn-1— qn (44)

and the perturbations
6¢m = "/)m - lbm, (45)

governed by mg —n 4+ 2 Lippmann-Schwinger equations (with second order terms
dropped):

6¢m(x) = _kZ /Q G},(‘T,g) ’ [(Jm(kp) ' eima + LLm(é))(SQ(f) + Qn&/’m({)]dé (46)
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Given q,, ¥m, for m = mg, mg—1, ...,n — 1, which are indeed known, the
integral equation can be solved to obtain a linear expression of 61, at the mea-
surement points outside the disk scatterer, via 8q. Denoting this linear procedure
by L., we have

&pm = ﬁm(aq) (47)
The linear system can be solved to yield é¢, and ¢,—1 can be obtained via (44).

The remarks made at the end of the preceding subsection apply to this layer-
stripping scheme. Not all mg — n + 2 equations (46) need to be solved, namely,
those with higher m may be dropped from the simultaneous linear system (47).
The numerical implementations and results will be presented on a later date.

4 Generalizations

In this last section, we first make several general remarks on the extensions of
the recursive linearization procedures to three dimensions, to case of limited
aperture, and to similar inverse problems. We then extend the results to other
inverse problems and more general ill-posed nonlinear problems.

1. The extension of the inversion methods to three dimensions is straightfor-
ward, but not practical if full-aperture data are used. The recursive linearization
procedures will, in this case, cost O(/N®) operations to reconstruct an N x N x N
wavelengths problem in three dimensions, which is utterly prohibitive. Although
careful implementations of the methods will lead to an O(N®) procedure, no
numerical experiments have been done.

2. This brings us to the question of reconstruction from a limited aperture.
That turns out to be completely simple in the lights of discussion in Section
2.6, and of Observation 2.13 made there. For a limited aperture, one can, of
course, only recover the observable part of the scatterer (see (25)). The nonlinear
problem of inverse scattering with limited aperture is formulated and approached
in exactly the same way as for the case of full aperture. Then, due to Observation
2.13, the perturbation analyses of Section 3 are still valid, and the nonlinear
system breaks into a collection of linear systems where the non-observable part
of the scatterer, or the corresponding perturbation which is not observable to the
limited aperture, falls into the null space of the linear systems, and therefore can
be dealt with the same way as the non-observable part of the scatterer to a full
aperture is. The whole issue of inversion from a limited aperture is, in this sense,
not a jot or tittle different from that of the full aperture. In many interesting
applications where the sources and receivers are essentially co-located, the use of
Gaussian beams (see Section 2.7.3) to recursively linearize the nonlinear problem
seems attractive.
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3. The application of the recursive linearization procedures can, obviously,
be made to other types of inverse scattering problems associated with wave phe-
nomena, whether acoustic, electromagnetic, or else. The forward model can be
more realistic, and therefore, more complicated, than that governed by the simple
Helmholtz equation (1), so far as the fundamental principles used in this paper
are still valid in these environments.

4.1 Layer Stripping for Electrical Impedance Imaging

In this section, we discuss very briefly the advantages and applications of a single
frequency inversion method to solving an inverse problem not associated with
wave phenomena. Here we will take the problem of electrical impedance imaging
as an example to examine the method presented in Section 3.2.

For inverse problems not related to wave phenomena, the frequency k, as a
parameter on which perturbation analyses can be performed, is absent. Usually,
the problem can be classified as of zero frequency or extremely low frequency, one
frequency, imaginary frequency, or simply, no frequency. Electrical impedance
imaging and induction tool prospecting are two examples of such a character,
where the equations are strongly elliptical. Therefore, there are the so-called
skin effects, both in the classical sense and in that defined in Section 2.7.2.

In the case of electrical impedance imaging, the incident (electrical potential)
fields are of the form

do(r,0) =™ - ™, (48)
inside a disk. As a result, the incoming field undergoes rapid decay for m in
the order of 10. It is not hard to observe that the two functions r'° and r!!

look similar, and that to a reasonable precision, both behave like a (half of a)
delta function in any interval [0, A]. This means that the highest m we choose
to start the recursive linearization (see Section 2.7.2) is on the order of 10. It
also means that the number of parameters to be recovered, independent of the
size of the scatterer, independent of the method used, is on the order of 10 x 10.
In many applications, even such a limited resolution is difficult to achieve, and if
attainable, would be extremely useful.

4.2 Nonlinear Ill-posed Problems

Inverse problems, such as those discussed above, generally belong to a somewhat
wider class of problems — the nonlinear ill-posed problems. First, ill-posed linear
problems we know very well how to solve, and are, in this sense, not interesting.
[ll-posed nonlinear problems we know little about, and are often very interesting.

There is, however, one direction in which we may see more clearly. And
that is, to a class of nonlinear ill-posed problems such as several types of inverse
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problems, ill-posedness is often not a curse, but a blessing. It helps linearize the
nonlinear problem, and once linearized, the collection of linear problems can be
treated the best to the limitations of the underlying physics to in turn deal with
the ill-posedness — these are ill-posed linear problems after all.

Let us consider a general nonlinear ill-posed problem of the form
F(z) =y, (49)

with 2, y “vectors” living in their functional spaces. By definition of ill-posedness,
we can choose “a system of coordinates,” or a proper representation, in which a
perturbation to some components of @ will cause no change in the observation
y. These components are what we called the non-observable part of z, which
it makes no sense to recover. Then there are components in = observable to
variable degree. We say these modes live in the transition zone in that system of
coordinates.

Often, the nonlinear system is a reformulation of some differential equation
(or integral equation) where y is a collection of the solutions of the differential
equation, and z represents other parameters in the equation, such as coefficients,
initial values, or boundary conditions. Sometimes, the differential equation de-
scribes a simple mechanical process such as wave propagation, where the resulting
nonlinearity in (49) has a simple structure. For example, we could say that the
nonlinear relationship between ¢ and v in (5) is quadratic, in the sense that the
nonlinearity is a result of the product of the two functions. Qur experience indi-
cates that frequently where the nonlinear system is the most ill-posed, there the
problem is most linear. '

The recursive methods discussed in this paper can be viewed as procedures
solving “initial value problems” associated with the nonlinear mapping F. It is
even possible to derive a system of ODE in k for the method presented in Section
2.4. In contrast, the nonlinear optimization and related methods, and the Newton
iterations and related methods deal with and apply the entire nonlinear operator,
or its derivatives, to successfully generated vectors.

17




References

[1]

[5]

J. Sylvester and G. Uhlmann (1986), A uniqueness theorem for an inverse

boundary value problem in electrical prospection, Comm. Pure Appl. Math.
17, pp. 91-112.

J. Somersalo, M. Cheney, D. Isaacson and E. L. Isaacson (1991), Layer strip-

ping: A Direct numerical method for impedance imaging, Inverse Problems
7 899-926.

J. Sylvester (1992), A Convergent Layer Stripping Algorithm for the Ra-
dially Symmetric Impedance Tomography Problem, Communications in

PDE17No.12, pp.1955-1994.

D. Colton and R. Kress (1983), Inverse Acoustic and Electromagnetic Scat-
tering Theory, Wiley-Interscience Publication, New York.

Y. Chen and V. Rokhlin (1995), On the Riccati Fquations for the Scattering
Matrices in two dimensions, Technical Report 1081, Department of Com-
puter Science, Yale University.

18






