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Abstract.  In this paper we present algorithms optimal within a small constant factor for sta-
ble dimension permutations on Boolean cubes. A stable dimension permutation is a permutation
such that element (wy,—1wym—2...wp) is relocated to the location of element (Ws(m—1)Ws(m—2) - - -
wg(0)) after the permutation, or i — 6(4), where 6(+) is a permutation function on {0,1,...,
m — 1}. Depending on communication capability, message size, cube size, data transfer rate,
and communication start-up time, different algorithms must be chosen for a communication time
optimal within a small constant factor. The bandwidth of the Boolean cube is fully explored by
dividing the data set to be communicated between a pair of processors into subsets, one for each
path between the pair of processors. The k-shuffle permutation, the bit-reversal permutation,
and matrix transposition, are special cases of stable dimension permutations. Experimental
results on the Intel iPSC are also provided.

1 Introduction

Dimension permutations are a class of permutations where data elements are moved according
to the value of individual bits in their address. We assume that the address space is implemented
on a Boolean n-cube, where each node has substantial local storage. The access time to local
storage is assumed negligible compared to the access time to storage in another processor.

In this paper, we give lower bounds and algorithms optimal within a small constant factor
for stable dimension permutations, i.e., dimension permutations within (sub)cubes such that
every node holds data both before and after the permutation. A more extensive treatment of
stable dimension permutations is given in [4], and unstable dimension permutations are treated
in [12]. A dimension permutation is a permutation defined on the bits of the address field, while
an arbitrary permutation is a permutation on the address field. There are (logy M)! possible
dimension permutations compared to M! arbitrary permutations for an address space of size
M. Examples of stable dimension permutations are k-shuffle/unshuffle permutations, matrix
transposition [6], [9], bit-reversal [11], and conversion between various data structures, such as
between consecutive and cyclic storage [6], [9]. Shuffle operations can be used to reconfigure a
two dimensional partitioning to a three dimensional partitioning of a matrix for multiplication
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with maximum concurrency [8], and for data (re)alignment for certain Fast Fourier Transform
algorithms [7], [11].

Stable dimension permutations have also been studied by Flanders [1] on mesh-connected
array processors, and by Swarztrauber [16] on Boolean cubes. The notation and definitions used
throughout the paper are introduced in Section 2, and lower bounds are given in Section 3.
Stable dimension permutation algorithms are described in Section 4. Section 5 discusses some
implementation issues on the Intel iPSC. Conclusion are found in Section 6.

2 Preliminaries

The nodes in a Boolean n-cube can be given addresses such that adjacent nodes differ in precisely
one bit. The number of nodes is N = 2.

Definition 1 The Hamming distance between two numbers w and w’ with binary encodings
W = (Wn1Wm—2...wo) and w' = (w),_ywl,_,...wh) is Hamming(w,w') = St (wi @ wh).

The distance between two nodes z and y in a Boolean n-cube is Hamming(z,y). The number
of nodes at distance 7 from any node is (’;) The number of disjoint paths between any pair of
nodes @ and y is n. Hamming(z,y) paths are of length Hamming(z,y) and n — Hamming(z,y)
paths are of length Hamming(,y) + 2 [13]. N is used to denote the set {0,1,...,2" — 1}. ||w]|
denotes the number of 1-bits in the binary representation of w, i.e., [lw|| = Hamming(w, 0).

For the algorithm design and the complexity analysis we distinguish between the machine ad-
dress space A and the logic address space £. The machine address space A = {(ag—1a4-2 .. .ap)|
a;i = 0,1; 0 < ¢ < ¢} is the Cartesian product of the processor address space and local memory
address space. The processor address space requires n bits, or dimensions, for a unique encoding
in an n-cube. The machine address space covers 29 addressable ob jects, which we refer to as
elements. The storage per node is 2¢=" elements. The machine address space is divided such
that the n low-order dimensions are used for processor addresses, and the ¢ — n high-order
dimensions are used for local storage addresses: \

AQg—-109g—2 +...0p Ap—-1Qp—92...09).
(quZ n\énln? 0)
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The set of machine dimensions is Q = {0,1,...,¢ — 1}, the set of processor dimensions is
Qp ={0,1,...,n— 1}, and the set of local storage dimensions is Qs={n,n+1,...,9—1}.

The logic address space £ = {(wm—_1Wpm—_2 ...wo)|w; = 0,1; 0 £ 7 < m} encodes a set of
|£] = 2™ elements. The address of an element is w = (Wm—1Wm—2...wg). The set of logic
dimensionsis M = {0,1,...,m — 1}. Clearly, m < gq.

Definition 2 A dimension allocation function, 7, is a one-to-one mapping from the set of logic
dimensions, M, to the set of machine dimensions, Q; 7 : M — Q.




Let R = {rm,—1,"m,-2,...,70} be the set of logic dimensions mapped to processor di-
mensions, i.e., 7(i) € Qp, ¥i € R and V = {vn,—1,Vm,_2,...,v} be the set of logic di-
mensions mapped to local storage dimensions, i.e., m(i) € Q,, Vi € V. Then, |R| = m, < m,
V| =ms < g—n, RUV = M, RNV = ¢, m,+m, = m. We also define I'p = {7(3)|Vi € R}, the
set of processor dimensions used for the allocation of the set of elements, T’y = {r(3)|Vi € V}, the
set of local storage dimensions used for the allocation of the set of elements, and T' = I',UT. The
inverse of the dimension allocation function 7~ is a mapping: I' - M, such that 7= or =1,
where [ is the identity function. We will refer to the dimensions in R as real dimensions and
the dimensions in V as virtual dimensions.

Definition 3 The real distance between two elements with addresses w and w', w,w' € L,
is Hamming,(w,w’) = Z?;O—l(wrj @ w;;) and the virtual distance between w and w' is

Hamming, (w,w') = Z?;O_I(wvj @ wy,, ).
Lemma 1 Hamming(w,w') = Hamming,(w,w") + Hamming,(w,w').

If the dimension allocation function is such that the m,, lowest-order logic dimensions are
mapped to processor dimensions, then the allocation is cyclic; if the my, highest-order logic
dimensions are mapped to processor dimensions, then the allocation is consecutive [6].

A dimension permutation implies a change in allocation from m®(M), before the permutation,
to w*(M), after it. Let R be the set of logic dimensions mapped to processor dimensions before
the permutation and R* the set of logic dimensions mapped to processor dimensions after it.
Vb and V° are defined similarly. The sets of machine dimensions used before and after the
permutation are denoted I'® = I‘;’, UT? and I'* = I UTg, where I‘;’,, I'e C @, and I'Y, T2 C Q,.
Clearly |T*| = |I'%|, since the number of elements is conserved. If I® = T'@ (ie, T = I’ and
I'® = I'?) then the dimension permutation is stable; otherwise, it is unstable. In the following we
only consider stable dimension permutations, and due to the space limitation we omit several
proofs [4]. Unstable permutations are treated in [5].

Definition 4 A stable dimension permutation (SDP), 6, on a logic address space M is a one-
to-one mapping M — M with § = 7% o 7% ( 7~ denotes (x%)~1.) The indez set J of
the dimension permutation is the set of logic dimensions {i|6(i) # i} = J. The order of the
dimension permutation is o = |J|. Alternatively, one can define a dimension permutation, §',
on the set of machine dimensions, i.e., §' : I' — I with §’ = 7t o 7—2.

Definition 5 The identity permutation I is defined by do(3) = i,Vi € M.

The order of the identity permutation is 0. A subscript o on 0, by, is used to denote the
order of the SDP being o, whenever necessary. The permutation function § applies to the set
of processor dimensions. The notation for the permutation on data elements is dp(w).

Throughout the paper we define the SDP on the logic address space (6), but an SDP can
also be defined on the machine dimensions (6’). An SDP can be viewed as relocating logic
dimension i to the machine dimension that was assigned to logic dimension 6(7). Let 5 and ¢ be
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Figure 1: The definition of § and ¢’ and cycles formed by traversing § and .

logic dimensions and % a machine dimension such that 7%(j) = k = 79(4), i.e., logic dimension
J is assigned to the machine dimension k before the SDP, and logic dimension ¢ is assigned to
the machine dimension k after the SDP. Clearly, ¢ — 6(i) = 77% 0 7%(3) = j. The address for
element (wWp—1Wp,—2...wp) becomes the address for element (W5=1(m—1)Ws=1(m—2) - - - Ws~1(g))-
Figure 1 shows a shuffle permutation. Note that 6§ = (§')~1, if 7%(3) = i,Vi € M, i.e.,if 70 = I
is the identity function.

Definition 6 A full-cube permutation (FCP) is an SDP for which the data set is allocated to all
real processors (but not necessarily the entire memory): ', = Q,. An extended-cube permutation
(ECP) is an SDP for which the data set only occupies a fraction of the cube: I, C Q,.

Definition 7 A shuffle permutation sh! is an SDP such that 6m(J) = (7 4+ 1) mod m,Vj € M,
and an unshuffle permutation sh™! is an SDP such that 0m(j) = (j — 1) mod m,Vj € M. A
k-shuffle is the permutation sh* = sh! o sh¥-1,

A shuffle permutation is a left cyclic shift on the logic dimensions, and an unshuffle per-
mutation is a right cyclic shift. The index set of the shuffle permutation is the entire set of
dimensions. The order of a shuffle permutation is m. Clearly, sh! o sh=! = sh=1 o sh! = I.
Furthermore, sh* = I, Vk mod m = 0.

Definition 8 A generalized shuffle permutation (GSH) of order o is a shuffle permutation such
that 6,(ao) = ay1,6,(ay) = Qg,. .y 60 (1) = g, 05 # ), i # 7, a;,0; € J,0< 14,7 <o,and
6.(1))=14,YVie M - 7. ‘

For a GSH the index set is a subset of the logic dimensions, and the mapping of dimensions
under the permutation function is not necessarily strictly increasing, or decreasing. However, we
require that the GSH forms a single cycle over the dimensions in the index set. An SDP consists
of a number of independent GSH (or cycles). The number of independent GSH’s (cycles) for a
given SDP is denoted f3, and the order of the ith GSH by 0, 0<5i< B;0= Zf;ol 0.

Definition 9 A real GSH on a logic address space is a GSH such that J C R. A virtual GSH
on a logic address space is a GSH such that 7 C V. A GSH that is neither real nor virtual is a
mized GSH.




Definition 10 An SDP on a logic address space is separable, if it can be decomposed into a
sequence of GSH’s (cycles) that are either real or virtual; it is non-separable, otherwise.

A real GSH preserves the local address map. Data is moved between processors in the
subcube defined by the set of dimensions I',. All processors in this set have identical address
maps. A virtual GSH only involves local data movement, or a change of local address map in
the set of processors defined by the set I',. The same change is made for every processor in
this set. A mized GSH involves both processor and local storage dimensions in the index set
J. We only consider SDP’s consisting of real or mixed GSH’s in the lower bound analysis. For
algorithms, we only consider SDP’s consisting of real GSH’s. See [4] for discussion of algorithms
for SDP’s consisting of mixed GSH’s.

The reason for distinguishing between the real and virtual permutations, is that different
models apply for local storage references and communication between processors. Local refer-
ences are often considerably faster, and can with good approximation be ignored. In standard
random access memories (RAM) the access time is independent of the address, but the inter-
processor access time is often a function of the distance.

Definition 11 The real order o, of an SDP on a logic address space is |{j|j # 8(7),j € R} =
|7 N R|, and its virtual order o, is |{j|5 # §(5),5 € V}| = |T n V).

For an SDP such that R® N R* = ¢, the permutation is an all-to-all personalized commu-
nication [10,9]. Moreover, some such permutations are their own inverse. For instance, for a
bit-reversal permutation, or the transposition of a matrix partitioned into VN x VN blocks,
62(¢) = 4, Vi € M [9].

In summary we view SDP’s as composed of a set of GSH’s. In devising algorithms and
analyzing their complexity we distinguish between full-cube and eztended-cube permutations,
and for each we further distinguish between separable, and non-separable SDP’s. Separable
SDP’s are decomposed into sets of real and virtual GSH’s. Non-separable SDP’s are decomposed
into real, virtual and mixed GSH’s.

With each internode communication is associated a transmission time t, for each element,
and a start-up time, or overhead, 7 for each communication of a packet of B elements. The
packet size that minimizes the communication complexity is Bopi. We consider both one-port
communication and n-port communication. In the first case communication is restricted to one
port at a time for each processor. In the second case communication can take place on all ports
concurrently. The links are assumed to be bidirectional.

The time complexity for the different SDP’s are denoted Tyype(ports, op, my, ), where type
is the type of SDP, such as gsh for a generalized shuffle permutation, or dp for a dimension
permutation. The superscript * is either /b for a lower bound, or an algorithm identifier for an
upper bound. The first argument for T4y is the number of ports per processor used concurrently,
the second argument the real order of the SDP, the third argument the number of processor
dimensions being used, and the last argument the data volume per processor, i.e., K = 2™s,




3 The complexity of dimension permutations

3.1 Some properties of dimension permutations

If a permutation only involves a subset of the processor dimensions to which data have been
allocated, and if a lower bound algorithm is used for each subcube permutation, then perfor-
mance cannot be gained by using the processor dimensions used for data allocation, but not
participating in the permutation.

Lemma 2 An SDP of real order o, < m, cannot be improved by communication in the mp— 0y
processor dimensions that are not included in the SDP, if the original algorithm fully utilizes the
bandwidth.

Proof: Let P and P’ be two problems such that ¥V = )’ and subject to the same SDP, bops
on a o,-cube and an my-cube, respectlvely Let T' be the communication complexity of a lower
bound algorithm A for P, ie., T = L’ where B is the total bandwidth required and L the
available bandwidth per unit tlme Suppose there exists an algorithm A’ for problem P’ with
communication complexity 7’ < T'. Consider a new problem P”: an SDP 65, 0N a 0p-cube with
the bandwidth of each cube link, and the data set per node expanded by a factor of 2mp—% of
the ones in P. Now, map the nodes in P’ to nodes in P” such that the corresponding bits of
the o, dimensions for problem P’ are used to identify processors in P”. Every algorithm for
problem P’ can be converted to an algonthm for problem P” with a communication complexity
that is at most the same. So, T = — >T'>T", where T" is the communication complexity of
the corresponding algorithm for P” . However, T" > 3—2’;—;‘%?— = L>

and we have a contradiction. lI

which in turn is equal to T,

Note that Lemma 2 only addresses the communication within the subcube used for the logic
address space. It does not address the extended-cube permutation case.

3.2 Lower bounds

We now give lower bounds for different instances of SDP’s. The index sets for each GSH out
of which the SDP is composed are disjoint. Each GSH defines a cycle on its index set. For
convenience, we assume that a separable SDP consists of only real GSH’s, and a non-separable
SDP consists of only real and mized GSH’s in the following, since the complexity of virtual GSH’s
often can be ignored. Let the SDP consist of 8 real or mized GSH’s, and let the corresponding
index sets be Jo,J1,...,Jp-1, where ;N J; = ¢, i # 5, T = Ui={01,.3-137i, and J; =
{a0, a1, .. »ai(a;—l)} and 6,(045) = Qi((j+1)modoy) s Y(i,5) € {0,1,...,8—-1}x{0,1,...,0;—1}.
Let oJ be the number of sets such that o; is odd and J; C R. Also, let crp‘ be the real order of
the GSH defined by J;. Clearly, 6,(i) =i, Vi € M — 7, and o), < Z __0 o, = 0.

A full-cube, real GSH of order o, on an n-cube consists of 2"~ independent GSH’s, each
of order 277, If the communication channels in each such subcube are fully utilized, then no
additional reduction in the data transfer time is possible by using the remaining n — op ports in
case of n-port communication by Lemma 2.




Lemma 3 The lower bound for a full-cube, real GSH of order Op, 0p > 0, on an n-cube is

K :
max(2~t., 0,7), o, is even,

T (1,0p,m,K) =
gsh( ,0p 1, K) {max Z%If—tc,(ap—l)T), op s odd,

for one-port communication, and

max(£t,,0,7), op is even,

Ib _
Tygp(n,0p,n,K) = {max(—ftc, (op— 1)7), o0, is odd,

for n-port communication.

Proof: Consider the minimum number of start-ups first. Let w be such that Wy, = 0, if
imod 2 = 0, and w,; = 1 otherwise, 0 < i < 0. It follows that Hamming, (w, gsh(w)) = op, if
op is even; and o, — 1, if 0, is odd. To show that o, — 1 is the maximum Hamming distance
if oy is odd, we show that a Hamming distance of o, is impossible. This is easily seen since
We,; F# Wari41)modop V0 < i < 0y, is impossible if o, is odd.

The minimum data transfer time is bounded from below by the required bandwidth divided
by the available bandwidth. By Lemma 2, we can consider the bandwidths for each op-cube.
For each ¢ € J with 6(i) = j, 1 # 7, and 4,5 € R, only half of the nodes need to send elements
across cube dimension 7%(i). Therefore, the bandwidth requirement for each permutation in
subcubes of dimension o, is 0,2°7~1 K. The available bandwidth per routing cycle of a o,-cube
is 2°7 for one-port and 0,277 for n-port communication. Il

Corollary 1 The data transfer time of any fized packet size algorithm of ¢ routing cycles for
a full-cube, real GSH is at least Q(f:%l)tc with n-port communication, and at least -,f(qc%tc with
one-port communication and all processors using the same dimension during the same routing
cycle.

Proof: In order to realize the minimum data transfer time described in Lemma 3, all links
should be used “effectively” and evenly during every routing cycles. However, during the first
and last routing cycles, half of the cube links can not support effective communication for the
GSH, assuming cube links are used effectively during all other cycles. The same argument
applies to the first and last routing cycles for any cube dimension used by all processors. I

Lemma 4 The lower bound for a full-cube, mized GSH of real order op, 0 < 0p < 0, 0N an
n-cube is

. o, K
Téfh(17 Op, Ty I&) = max <"‘%‘_tc, 0'p7’>

for one-port communication, and
K
Tégh(n, op, 1, K) = max <~2—tc, crpr>

for n-port communication.




Proof: The minimum number of start-ups required is max{Hamming,(w, gsh(w))}, Yw € M.
Choose any a; such that a; € R® and Q(j-1)mods € V8. Define w such that Wo; = 0, if ¢ is
even, 0 < ¢ < o; and w,,; = 1, otherwise. Moreover, change Woy;_1ymea, 10 be different from wy,
(when o is odd). Clearly, Hamming,(w, gsh(w)) = o, for the w so defined. It is easily seen that
max,, { Hamming(w, gsh(w))} < oy, since w; = ws(;), Vi € M — TJ.

The minimum data transfer time can be proved as in Lemma 3. Il

Theorem 1 The lower bound for the communication complexity for a full-cube SDP of real
order o, on an n-cube is

s

op KK
Tcllzé(L Tp, T, I() = max ("%“‘tc, (Gp — OJ)T)
for one-port communication, and

K
Tclzg(n, op, 1, K) = max (Etc’ (0p — 0]),—)

for n-port communication.

Proof: The data transfer time is bounded from below by the total bandwidth requirement
divided by the maximum number of links available per routing cycle. By Lemmas 3 and 4, the
total bandwidth required for each permutation in subcubes of dimension op (identified by J) is
027?71 K. The number of available links per routing step for each subcube is 2°7 for one-port
and 0,277 for n-port communication.

The minimum number of start-ups is bounded from below by the longest real processor
distance between the initial allocation and final allocation for any data item. The maximum
real distance between w and dp(w), Yw € L is obtained by maximizing the distance for each
index set J;. By Lemmas 3 and 4, the maximum distance is op—oJ. 1

Corollary 2 The minimum number of start-ups for a full-cube, separable SDP of real order o,
is at least 2%2 for any 65, and at most o, for some bop-

Corollary 3 With one-port commaunication, an SDP can be performed as a sequence of GSH’s
with disjoint index sets without loss of efficiency, assuming the algorithm chosen for the GSH is
optimum.

Proof: The minimum data transfer time (start-up time) of an SDP is the sum of the minimum
data transfer time (start-up time) for each of the GSH’s of which the SDP consists. I

The lower bound in Theorem 1 can be improved for some combinations of X, T, t. and o3,
by considering the sum of the lower bounds of each GSH of which the SDP consists. For the
algorithm analysis, we use Theorem 1, which is simpler to evaluate, and for most cases the same
as the tighter bound.




Corollary 4 The lower bound for the communication complexity for an extended-cube SDP
(myp < 1) of real order o, on an n-cube is

K
Té;(l,ap, myp, K) = max ((K + 0p — oJ — 1)t,, 2%7@:-_11507 (0p — oJ)r)

for one-port communication, and

i K K
Té;j(n,op, myp, K') = max ((;L_———mp-l-—crp +0p —oJ = 1), Sn—mptT bes (op OJ)T>

for n-port communication.

Proof: By Lemma 2, the lower bound for an SDP of real order op on a data set of 2mstm»
elements on an n-cube is the same as the lower bound of the same DP of real order op on
a data set of 2™ elements on an (n — m, + 0,)-cube. We now prove the lower bound
for the latter problem. The first argument of the maz function is derived by considering the
minimum time required to send out the K elements for any processor that needs to send data,
and the propagation delay for the last element sent out. From the proof of Theorem 1, the
bandwidth required is 0,2°27'K. The “effective” bandwidth available is 0,2""™Pt% for n-
port communication and 2"~™»+° for one-port communication. The former can be shown by
collapsing the (n — m, + o,)-cube into a op-cube identified by the o, dimensions in the set 7,
and the bandwidth of each link increased by a factor of 27°—™», I

4 Algorithms for separable dimension permutations

4.1 Overview

In this section we present algorithms for real generalized shuffle permutations (GSH) and sep-
arable, stable dimension permutations SDP (E?;OI Op; = E?____Ol o; = 0, = 0). For algorithms
of mized GSH and non-separable SDP, see [4]. We consider full-cube permutations (FCP) and
estended-cube permutations (ECP). Algorithms of the ECP will utilize algorithms for the FCP
as primitives. If an optimal algorithm for a GSH is known for the one-port communication case,
then an optimal algorithm for an SDP with one-port communication is obtained by simply run-
ning the algorithms for each GSH making up the SDP sequentially, Corollary 3. In the n-port
communication case the situation is somewhat more complicated. If an optimal algorithm for
a GSH is known, then an optimal algorithm for an SDP is obtained by considering each GSH
independently, if either there is no start-up time, or all the GSH’s have the same real order. The
data set is split into 8 equal parts, and data of the ith part participates in the GSH’s specified
by the sequence of index sets: Ti> T(i4+1)mods> - - «» J(i=1)modg- The partition index specifies the
index of the first GSH, and all partitions use the same sequence, cyclically. For each partition
the data is further subdivided into o; parts for maximum bandwidth utilization. Hence, in every
step 0, dimensions are used, which is optimum for full-cube permutations.

If there is a non-zero start-up time, and the GSH’s are of different order, then one can still
try to find o, dimension permutations that can be performed concurrently on different data




sets by considering the total index set properly modified according to the algorithm used (for
instance by introducing (multiple) virtual dimensions). In one of the algorithms presented below
a generating path is defined by simply considering the concatenated index sets for the GSH’s of
the SDP, and additional edge-disjoint paths created through rotations on the dimensions. In the
other algorithm GSH’s are grouped into sets hierarchically, such that the expected execution time
for each group is approximately the same. All groups are subject to permutations concurrently,
and data elements permuted according to groups sequentially. Within groups different elements
are subject to the GSH’s in different order. These two algorithms are referred to as Algorithms
A5 and A6, and are described in this section.

Definition 12 A dimension exchange function E(w,1,7) is an SDP of order two such that
52(2) =7, 62(.7) =1,1 75.77 and 62(k) =k,Vke M- {7',.7}

A shuffle permutation on £ can be performed as a sequence of m — 1 dimension exchanges
on adjacent dimensions starting at any dimension. Similarly, a GSH can be performed as a
sequence of o — 1 dimension exchanges on adjacent dimensions in the index set J starting at
any dimension.

E(---(E(E(w,4,(¢— 1) mod m), (i — 1) mod m, (i — 2) mod m),
o+, (14 2) mod m, (i 4+ 1) mod m) = shl(w).

A dimension exchange E(w,1,j) requires Hamming, (4, j) routing cycles. If i,j € R, then
the set of processors are partitioned into four groups with respect to the values of w; and w;.
The groups are labeled as {00, 11, 01, 10} groups. The dimension exchange operation implies no
movement for the processors in the 00- and 11-groups. Processors in the 10-group exchange data
with processors in the 01-group. The exchange operation can be realized by two nearest-neighbor
communications, with processors in the 00- and 11-groups as intermediate nodes.

The new algorithms we present are based on a sequence of exchange operations between
pairs of processors through communication in the same two dimensions for all pairs. If both
dimensions are processor dimensions, then the exchange operation can be realized by two nearest-
neighbor communications. If only one of the dimensions is a processor dimension, then the
exchange operation can be realized by one nearest-neighbor communication. Algorithm AQ is
based on exchanges between processors differing in two address bits. Every dimension, except
the first and last, is traversed twice in successive exchanges. By combining the successive
communications through a look-ahead scheme the number of start-ups is reduced by a factor
of two, approximately. The modified algorithm is referred to as Algorithm Al. The modified
algorithm can be improved further by dividing the data set for each communication that takes
place into two packets that are sent during consecutive cycles. The data transfer time is reduced
approximately by a factor of two, Algorithm Ala.

By introducing a virtual dimension and using it for every exchange operation nearest-
neighbor communication suffices, Algorithm A2. Such an algorithm has been proposed by
Swarztrauber [16].
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E(---(E(E(w,3, (4 1) mod m),, (i + 2) mod m),- - -, i, (i — 1) mod m) = sht(w).

Dimension permutation algorithms can also be obtained by using a matrix transposition
algorithm recursively [9], [15], [14], or by using an all-to-all personalized communication twice
[15], [10]. The complexity estimates for the different algorithms are summarized in Table 2.

4.2 Full-cube, real shuffle algorithms
4.2.1 One-port communication

Algorithm A0-SH through successive element exchanges at real distance 2. The
algorithm performs a shuffle permutation of real order n through a sequence of n — 1 exchanges
on adjacent dimensions. The path from a node of origin z to the corresponding destination node
sh(z) is defined by a sequence of dimension pairs:

([n— 1’n—2])[n'"2)n'—3]7--'7[1’0])‘

Each pair [i,7 — 1] is interpreted as an exchange operation, if y; # Yi—1, where y is the node
currently holding the data; and a dummy operation, otherwise.

In a 4-cube, an element w initially located in node z = w will travel along the path:

(CL‘3.’E2$1.’D0) — (.’L‘Q:E3IL'1$0) d ($2$1$3£B0) — ((Cg:l:l.’l?o:vgg),

where the underlined dimensions are subject to exchange during the next step. After the first
exchange step, the shuffle permutation on an n-cube is reduced to two independent shuffle per-
mutations on two (n — 1)-dimensional subcubes that are performed recursively and concurrently.
After step k there are 2¥ independent shuffle operations of order n— k. Each exchange operation
consists of n — 2 independent operations on 2-cubes. The algorithm can be expressed as:

[* bit(i,z) = the ith bit of z. */
/* pid = the processor id. */
/* nbr([i] = the neighbor processor id along dimension 7. */
doi=n-1,1, -1
if (bet(, pid) = bit(: — 1, pid)) then
/* the intermediate node is passive */
recv (nbr(i], tmp)
send (nbr(i — 1], tmp)
else
/* the node is active, exchange needed */
send (nbr(i], buf)
recv (nbr[i — 1], buf)
endif
enddo
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Figure 2: The changes of data allocations along time for Algorithms A0 and Al.

Figure 2 illustrates the changes of data allocations as a function of time on a 4-cube. The
three intermediate steps are shown below the exchange steps. The dashed arrows between
different allocations show the sequence of communications. The solid arrows between different
allocations and the step numbers in parentheses apply to Algorithm A1l.

Algorithms A1l (Ala)-SH through successive element exchanges at real distance 2
with look-ahead. Algorithm A0 needs 2(n — 1) routing cycles for a real shuffle of order n,
but the worst case lower bound is n cycles. All dimensions, except dimensions n — 1 and 0
are subject to exchange operations twice. The number of routing cycles can be reduced to n
by combining successive communications along the same dimension and removing redundant
communications. The modified routing has n cycles (starting cycle 0), where cycle 7, except the
first and the last cycles, is the composition of routing cycles 2i — 1 and 2i of Algorithm AO.

Consider a dimension j occurring in two consecutive exchange operations [j + 1,7] and
[, —1],5 # n—1 and j # 0. After the first of the two nearest-neighbor communications
of the exchange step [j + 1,j], nodes such that z;4; = 2, contain 2K elements, while nodes
such that z;4; # 2; do not contain any elements. The first set of nodes are in the holding
state and the second set are in the empty state. Nodes with ;11 = z; # 2;_1 need to send
data across dimension j (to change from a holding state to an empty state), and nodes with
Tj+1 # T; = x;-1 need to receive data across dimension j (to change from an empty state to
a holding state). There is no communication for nodes whose states are preserved, i.e., nodes
with Tjp1 = Tj5-1.

From Figure 2, element w initially in node z = w traverses the path

(23222120) — (22292120) — (Z22371%0) — (T2212120)

- (5132931&;580) - (xlewog:_q) - (5829315009«'3)

for Algorithm AO. The combined sequence for Algorithm A1l is

(z3zaz120) — (T2227120) — (T2212120) — (222120Z0) — (22217073).
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Note that in each intermediate step at least two bits are always identical. Only —]2\1 processors are
addressable in intermediate steps. Half of the processors (i.e., those in the empty state) have no
data at any given intermediate step. The processors in the other half (i.e., those in the holding
state) have 21 elements each. The algorithm can be expressed as follows:

/* bit(i, ), pid and nbr[i] are defined as before. */
/* bu f[1] = the local data to be shuffled. */
/* buf[2] = the temporary buffer. */
if (n < 1) stop
if (bit(n — 1, pid) # bit(n — 2,pid)) then
send (nbr[n — 1], buf[1])
else
recv (nbr[n — 1], bu f[2])
endif
doj=n-2,1, -1
if (bit(j + 1, pid) = bit(4, pid)) then
/* was in a holding state. */
if (bit(j, pid) # bit(j — 1, pid)) then
/* need to change to an empty state. */
send (nbr[j,buf[1:2])
endif
else
if (bit(4, pid) = bit(j — 1, pid) then
recv (nbr[j],buf[1: 2])
endif
endif
enddo
if (bit(1, pid) = bit(0, pid)) then
if (bit(0, pid) = bit(n — 1,pid)) then
send (nbr[0], buf[2])
else !
send (nbr[0], bu f[1])
endif
else
recv (nbr[0], buf[1])
endif

The complexity of Algorithm A1l is shown in Table 2. The complexity of Algorithm A1 is
always less than, or at most equal to that of Algorithm AO. Note that Algorithm Al can be
improved further by approximately a factor of two for the data transfer time, if the commu-
nication is capable of supporting one send and one receive on different ports concurrently. In
Algorithm A1, if a node issues a send (receive) during routing cycle 7, then it does not issue a
send (receive) during cycles j —1 and j+1 (if exist). Therefore, the communication during cycle
J can be split into two communications, each communicating half of the data set that needs to
be communicated. The data volume for each intermediate step is reduced to I, instead of 2,
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Figure 3: The changes of data allocations along time.

for each active link. This algorithm is labeled Algorithm Ala and its complexity shown in Table
2. Note that the complexity of Algorithms A1l (Ala) on a cube with unidirectional links is the
same as that with bidirectional links.

Algorithm A2-SH through successive element exchanges at real distance 1. Algo-
rithm A2 (in the one-port case) is due to Swarztrauber [16]. The algorithm requires 7 + 1
exchange steps for a shuffle of real order n. During each step, all communications occur in the
same dimension of the cube. Processors in subcube 0 exchange the second half of the data with
the first half of the data of the processors in subcube 1. If each processor is viewed as consisting
of two virtual processors, then the virtual processor dimension is exchanged with some real pro-
cessor dimension. The following sequence of exchange operations realizes a shuffle permutation,
where the virtual processor dimension (denoted by v) and the processor dimension subject to
exchange are underlined.

(v|Tn_1Zp_2...2120) — (Zo|Tn-1Zn—2...22210) — (Z1]Zp-1Zn—2...22ToV) — - -+

= (Tn—2|Tp—1Zn_3...T120V) — (Zn-1|Tp-2%p-3...21200) = (V|Tn_2Tn_3.. ST1TOTp—1)-

Figure 3 shows the changes of data allocations along time. The communication complexity is
included in Table 2.

4.2.2 n-port communication

Algorithm Ala With n-port communication, the data set is divided into 2n equal parts, and
each part is sent along a unique path. Path 4,0 < i < 2n, is defined as a sequence of dimensions:

(¢,(¢ = 1) mod n,(i — 2) mod n, ..., (i + 2) mod n, (i + 1) mod n), if0<i<mn,
path i = ¢ (¢, (¢ + 1) mod n, (' + 2) mod n, ..., (i — 2) mod n, (¢ — 1) mod n),
with ' =i — n, ifn<i<2n.

Path n — 1 is identical to the path in the one-port communication case. For example, for n = 5,
the 10 paths are:
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path 0: (0, 4, 3, 2, 1). path 5: (0,1, 2, 3, 4).
path 1: (1,0, 4, 3, 2). path 6: (1,2, 3, 4, 0)
path 2: (2,1, 0, 4, 3). path 7: (2, 3,4, 0, 1).
path 3: (3,2, 1,0, 4). path 8: (3,4, 0, 1, 2).
path 4: (4, 3,2, 1, 0). path 9: (4,0, 1, 2, 3).

During the intermediate cycles, each dimension j of the first (last) n paths represents a send
(receive) from node « along dimension j, if z;11 = z; # 2;_1, a receive (send) if Tipl #F T =
z;-1, and idle otherwise. Note that at most two of the 2n paths traverse the same link during
any cycle. Furthermore, except for the first and last cycles, the two paths that traverse a link
during a cycle do so in opposite directions [4]. During the first and last cycles, it is also the case
that at most two paths traverse the same link, but they traverse the link in the same direction,
and the messages are combined. Therefore, each link carries at most % elements during any
cycle. The complexity of the algorithm is shown in Table 2. For n = 2, the complexity of an
algorithm using only the first two paths is the same as the algorithm using all four paths.

Another variation of Algorithm A0 is to pipeline the communications along one path only,
say path n — 1. The data set from each source node is divided into several packets. It can be
shown that if one packet is sent out from the source node every other cycle then the routing can
be arranged to be conflict free. The resulting complexity with optimum packet size, (v2Kt. +
v/(n — 2)7)?, is higher than Algorithm Ala, in general.

Algorithm A2 We define n exchange sequences where sequence 7, 0 < i < n, is

(lTn-1Tn—g ... TipoZit12Ti1 ... T0) — (ZilTn-1Tn_2 ... Bip2ip1VTimy ... T0)
= (Zi41|Tn1@n_2 - . . Tig2TiVTi—1 ... T0) = -+ = (Ti_g|Tp—2Tp_3...TiVTi_1Ti 3. . L Top—1)

= (Ziz1|Tn—2%n-3 ... TiVTi_3 ... TTp_1) — (V|Tn—2Zn-3...2iTic1Ti—2 .. . ToTp_1).

Data is partitioned into n equal subsets. Fach exchange sequence carries out the shuffle per-

mutation for a distinct subset of % elements. During any routing cycle, different sequences use
edges in different dimensions.

4.3 Full-cube, real, generalized shuffle algorithms

For a real GSH of oder n on an n-cube, one can modify any algorithm for a real shuffle permuta-
tion on an n-cube by considering dimensions ag, ay, ..., a,_1, instead of dimensions 0,1,...,
n — 1. Since all cube dimensions are assumed to have the same communication characteristics
the complexity is unaffected by the change. For a real GSH of order op < m, the permutation

consists of 2”777 permutations in independent subcubes. These permutations are performed
concurrently.
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4.4 Full-cube, separable dimension permutation algorithms
4.4.1 Using generalized shuffle permutation algorithms

Lemma 5 With one-port communication, a full-cube, separable SDP of real order op on an
n-cube can be performed in a time of at most
B-1
T3,(1,05,n,K) < Z Ty (1,04 n, K).

=0

The SDP is simply obtained by performing 8 GSH’s in sequence. The ith GSH consists of
2"7% independent permutations in subcubes of dimension o;, concurrently. If the algorithms
chosen for GSH’s are optimum, then the resulting algorithm for the SDP remains optimum. The
complexities by utilizing Algorithms Ala and A2 are shown in Table 2. For a maximum B = 523,
the data transfer time of Algorithm A2 is a factor of % of that of Algorithm Ala, while the
start-up time of Algorithm A2 is a factor of % of that of Algorithm Ala. In fact, when o; = 2,
0<i<f= %P-, Algorithm Ala (and A1) is essentially equivalent to the Single Path Transpose
Algorithm without pipelining described in [9] for transposing a matrix with two-dimensional

partitioning, if the dimensions are relabeled in a proper way.

With n-port communication, o; ports can be used concurrently for each GSH, and all GSH’s
can be performed concurrently.

Lemma 6 With n-port communication, a full-cube, separable SDP of real order op on an n-cube
can be performed in a time of at most

8-1
B-1 .
ij(r?_aéx{ai}, 0pyn, K) < T (03, 00,1, K)
- =0 -

by exploiting concurrency within each GSH, and in time

- K
Tip(0p 0y, K) S B X {0, 03,01, )

by exploiting the concurrency fully.

These results are independent of the algorithm chosen for the GSH. For k-shuffle permuta-
tions of order 2 for each cycle, exploiting the concurrency within the GSH as well as between
different GSH’s based on Algorithm Ala for each GSH, the algorithm degenerates to the Double
Path Transpose Algorithm (DPT) [9] without pipelining. Note that by exploiting the concur-
rency within the GSH as well as between different GSH’s, the data transfer time can be optimal,
if the algorithm chosen for each GSH is optimal with appropriate scheduling. However, the
number of start-ups is equal to the product of the number of GSH permutations (B) defining
the permutation and the number of start-ups required for the GSH of maximum real order, for
instance 8 X max;{o; 4 1} for Algorithm A2, which is not optimum, in general. For instance, if
one cycle is of real order %, and other cycles are of real order 2, then the number of start-ups can
be as large as O(n?). Algorithms A5 and A6 both reduce the complexity compared to naively
exploiting the concurrency of different GSH permutations. They both have data transfer times
and start-up times optimum within constant factors.

16




4.4.2 Algorithms not using generalized shuffle permutations

Algorithm A3-SDP through all-to-all personalized communication. If the data vol-
ume K > O(N), then an arbitrary permutation can be performed as two successive all-to-all
personalized communications [15]. In all-to-all personalized communication [10] every processor
has a unique piece of data for every other processor. Consider a pair of nodes (4,7) (source,
destination) for the permutation. During the first phase of the all-to-all personalized commu-
nication, data from node 4 to node j is distributed (scattered) to all nodes. During the second
phase, the data is collected (gathered) into node j.

With one-port communication, an optimum routing algorithm (within a factor of two) is
described in [13] and [10]. With n-port communication, the optimum algorithms (within a
factor of two) are due to [10] and [15], independently. The resulting complexity of A3 is in
Table 2. Clearly, Algorithm A3 is inferior to Algorithms Ala and A2, but may be preferable for
non-separable SDP [4].

Algorithm A4-SDP through recursive dimension exchanges. An SDP can also be
implemented by exchanging dimensions between subsets of dimensions recursively. The number
of sets doubles for each recursion step, and the cardinality of the sets is halved. The number
of steps is [logy0p] for a GSH, and max;{[log, o;]} for an SDP. Each step is of the same
complexity as that of matrix transposition with two dimensional partitioning [9]. With one-port
communication, the Single Path recursive Transpose (SPT) algorithm without pipelining [9] can
be used. The complexity of the SPT algorithm is

oKt + o [E]T or 3%Kt +&)—[£-‘T
R N 4 ¢ 2 |2B| "
The latter is based on the fact that in a 2-cube, node (01) and node (10) can exchange K
elements in a time of %Ktc + 37 by employing one virtual dimension, i.e., a special case of
Algorithm A2. With n-port communication, the best known algorithm for matrix transposition
with two-dimensional partitioning is described in [2], [9] and [15]. The resulting complexity of
A4 is in Table 2. Algorithm A4 is in general an order of log op higher than the lower bound. But
for a special case where o; = 2 for all ¢’s, then the SDP degenerates to a matrix transposition
and this algorithm should be used.

4.4.3 Combining generalized shuffle permutations

Algorithm A5-Combining GSH’s Algorithm A5 is based on distinct sequences of dimen-
sion exchange operations performed concurrently such that each processor dimension is used by
at most two such sequences. The sequences are dimension rotations of each other, or address
shuffles, except for the last dimension in the sequence. The permutation for each sequence is
performed by Algorithm A2. It requires o, + 8 routing cycles. One processor dimension per
GSH is used twice, once for initiating the GSH, and once for leaving the cycle. For n-port com-
munication the data set I can be divided into o), + 8 + min;{o;} — 1 parts such that each part
runs through a different sequence of exchange operations.

Sedg = @00, Q01; - - -, (0(gg—1)5 F00y X10 A1ls -+ - -5 XY (g —1) Q105
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|Cyc1e|0|1|2|3|4|5|6[7|8|9|10|11|
Seqo |0 1]2]3]0f4]5]6[4a]7[8 ] 7
Seqp |12 |3]0ol4]5[6|al7]8] 7 |1
Seqs |23 |0[4|5]6a([7[8]7 |1 | 2
Seqs [3|0|4|5|6|4|7(8|7]1| 2| 3
Seqq [0 ]4|5]6]4a]|7 87123 ] 0
Seqs |4 |5 |6 478712301
Seqs |56 478712301 5
Seqr |64 |7 871 ]2[3]0]1|5 |6
Seqs |4 |7 |87 |1]|2|3]0l1]5]6 ] 4
Seqo |78 |7]1]2(3]0o[1]5]6[ 45
Seqo 8|7 |1]2[3]0|1]5[6]4[5 | 8
Seqi1 | 71112301 ]|5|6|4|5]| 8] 7
Seqiz [1]2|3]0f1]5]6]4a|5]8[7 |8

Table 1: Combining different GSH’s by Algorithm A2 with n-port communication.

o HBE-1X(B-1)1 - - AF-1)(0p-1-1) 7 Y(B-1)0-
LetSeq; = do,dy,...,ds 141,

thenSeqyyy = di,dy,...,de,1p-1,6(do), VO<k<o,+0+ miin{cr,-} - 2.

Sequence 0 is constructed by including the first dimension for each GSH twice by making it also
become the last dimension subject to an exchange operation for that GSH , assuming Algorithm
A2 is used, and concatenating the dimension sequences for each GSH. Sequence k + 1 is defined
in terms of sequence k by a left cyclic shift excluding the first entry and appending the next
dimension of the previous first entry in the same index set. Table 1 shows an example of
13 sequences of processor dimensions, which are used to perform the SDP: J, = {0,1,2,3},
Jr = {4,5,6}, and J = {7,8}. Row i applies to GSH i, and column j to cycle j. The table
gives the processor dimension subject to communication.

Lemma 7 [4] The GSH’s defined by the sequences Seq;,0 < i < op + 8 + mini{o;} — 1 has the
property that any dimension is used by at most two GSH’s during any routing cycle.

Each sequence performs the SDP for m—ﬁ%g—'m elements. The complexity is given in
Table 2.

Algorithm A6-Hierarchical partitioning of the data set. This algorithm has a lower
data transfer time than Algorithm A5, but the number of start-ups are in the range [op + B,
2(op + B)]. The strategy for Algorithm A6 is to group the GSH’s out of which the SDP is
composed into sets such that all sets require approximately the same time in realizing the SDP
defined by the GSH’s in the group. Within each group, the strategy is applied recursively. For
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Time GSH 0 GSH 1 GSH 2

[ DO + D1 I D2 | | ]13 |
[ D3 | [ D2 |
________ N _____N____
| D2 + D3 | DJZ) | | D1 |
[ Dbt | [_ Do ]
________ R

Figure 4: Hierarchical partitioning of data set for Algorithm A6.

instance, if the SDP consists of three GSH’s of real order 7, 3, and 3, then the data set is
partitioned into two parts of % elements each. One part is permuted through the GSH of real
order 7. The other part is partioned further into % elements each, one for each of the GSH of
real order 3. All three GSH permutations are performed concurrently, and for each GSH the
data set is further subdivided for maximum concurrency within the GSH. By using the n-port
version of Algorithm A2 each part of 52{— elements requires the same number of start-ups. When
the permutation for all sets is complete, the data is repartitioned for a new set of permutations
by applying the permutation defined by the next set of GSH’s, modulo the number of sets, to
the data. Hence, the data permuted for the GSH of order 7 is then permuted according to the
two GSH’s or order 3 each, and conversely the data already permuted according to these two
GSH’s will be permuted according to the GSH of order 7.

Figure 4 illustrates the data movement for this example, where D0 to D3 are the four equal
partitions of the data set. One difference between Algorithms A5 and A6 is that in Algorithm
A5 the data set is partitioned into disjoint subsets of the same size, and data in the same
subset is carried through the same dimension during the same routing cycle. In Algorithm A6,
partitioning of the data depends on the group level and the order of each GSH. We choose the
number of groups at each level to be two in the following. Hence, the data set is partitioned
into two disjoint subsets at each level. A GSH at the jth level operates on a data subset of —g—
elements. There are 27 invokations of Algorithm A2.

The goal of the grouping of GSH’s is to minimize the product of the number of sets of GSH’s
and the maximum time for any set of GSH’s. Since the data transfer time is almost independent
of the real order of a GSH for n-port communication using Algorithms Ala or A2, we focus
on minimizing the total number of start-ups. The lemma below gives a bottom-up algorithm
for binary grouping of the GSH’s and the data set. The total number of start-ups is less than

2(op + B).

Lemma 8 [4] Let S = {sg,$1,...,5-1} be a multi-set of positive integers, i.e., may contain
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the same integer more than once. Define f(S) as follows:

i if §={i},
f(8)= miny, partitioning of 1k x max; f(S;), where S = Ui={o,1,..k-1}5:}, otherwise.

Then, Y070 si < f(S) < 2507 5.

At the bottom level of the partitioning, there is one GSH per partition. Any GSH algorithm
can be employed for the set of GSH’s in a partition. We only consider Algorithm A2, since it
may be preferable to Algorithm A5 depending on the values of K, t. and 7, etc. If Algorithm
Alais used, then the resulting algorithm has a higher complexity than Algorithm A5. Any SDP
algorithm can be employed at any level.

Theorem 2 Let S = {0o+1,01+1,...,05-1+1} and min(S) = min{oo+1,01+1,..., op-1+1}.
Then, there exists an algorithm which realizes the SDP with the number of start-ups < f(S) and

the data transfer time < ﬂ'nn%rr%%)%jtc-

Proof: We show the theorem by induction on the level of the tree inherited from the con-
struction of f(S) starting from the last level. Each set S specify an SDP by adding one to the
sequence of real orders in the index sets. Let T'(S, K) be the time required to realize the di-
mension permutation specified by the set S with data volume K by the hierarchical partitioning

algorithm. By employing Algorithm A2, T'({o; + 1}, K) = ﬁ‘li,}'(}_—li)ﬁtc +(oi+1) |'2ng'|7. Assume

T(S;, K)= ﬁ%ﬁ—igﬁtc + f(S;)T with optimum packet size and S;’s, 0 < i < k, are the k dis-
Joint subsets of the set S that minimize f(.S). To realize the dimension permutation specified by
the set S, first partition the data set of size K into k equal subsets, called subsets 0,1,...,k— 1.
The data of subset 7 participates in a sequence of SDP;, SDP (i11)modks - - - » SDP (;—1)modk, Where
SDP; is the SDP specified by the set S;. Furthermore, the data of different subsets of the set
K are permuted concurrently, one such subset for each partition of the set S. Since, all the k
subsets are of the same size, the time to realize the SDP with optimum packet size is at most
K
T(S,K) = kx m?x{T(Si, —k—:—)}

min(S;) K
= k
X e in () = 1)

min(S)K ;
2(min(s) = 1) ¢ T /)T

le + f(Si)T}

Note that with arbitrary packet size, the number of start-ups is
K
lif —_—
m?,x{Q (os + 1)[0i2li+1B]}T’

where /; is the level of o; in the binary tree defined in the proof of Lemma 8 [4]. I

The complexity is given in Table 2. The optimum packet size is -2{—;’;, if the SDP degenerates
to a GSH. For § > 2, the optimum packet size can be shown to be bounded from above by %.

The worst case occurs when § = 2 and g9 = 2. So, the maximum packet size is max %—, gf;—p .
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4.5 Extended-cube permutation algorithms

For an extended-cube permutation, we adopt a three phase scheme: subcube expansion, full-
cube permutation, and subcube compression. The first phase, is an expansion phase in which
each processor with data partitions it into 2"~™» pieces and performs a one-to-all personalized
communication for each of the 2™» subcubes of dimension n — m, concurrently. In the second
phase, the best algorithm for a full-cube permutation is used, and is performed concurrently in
the 2"~"™» subcubes, with the data volume reduced by a factor of 2"~™». The third phase is the
reverse of the first phase, i.e., data are gathered (compressed) into the original active subcube.
The complexities of the first phase and the third phase are the same, and for the best known
algorithm [3,10] the complexity of each is

1
K <1 - 2n—mp) te + (n —my)T

for one-port communication, and

K (1Y,
n—my L7 gy ) et ()

for n-port communication. With n-port communication, if the algorithm used in the second
phase is optimal, then the total data transferred is ~ 2n_mp1q + nﬂ; compared to I‘ for an
optimal algorithm using links of the active subcube only. The speed -up of the data transfer

time is about a factor of Lz—nﬂ but the start-ups compare as 2(n —my,) + o, to o,. For one-port

communication, the data transferred is ~ 2,,—3%—1— + 2K compared to g%{i The speed-up of the
data transfer time is about a factor of 34’1.

4.6 Algorithm comparison and summary

For a separable SDP, the data transfer time of Algorithm Alais a factor of <7 higher than that
of Algorithm A2 for one-port communication and about a factor of % higher for n-port

ming{o; }+1
communication. The factor ranges from 1.33 to 2 for both one-port and n-port communications.
The data transfer time of Algorithm A2 is a factor of 1 — 1.5 higher than the lower bound.

With optimum packet size, the number of start-ups of Algorithm A2 is a factor of 1 + = £ hlgher

than Algorithm Ala for one-port communication and a factor of 1 + m higher for n-port
commaunication. The factor ranges from 1 to 1.5. For a small packet size relative to the data
set, the number of start-ups compares as the data transfer times. Algorithm Ala is relatively
more competitive for n-port communication than for one-port commumcatwn with optimum
packet size. The break-even point between Algorithms Ala and A2 is 7 = Ixt for one-port

communication, and T = (1 — 1 5& for n-port communication and T > lﬁf‘.
? max,:{o,}:

With n-port communication, if the start-up time is not negligible and not all cycles are of
the same real order, then Algorithms A5 or A6 should be used, which are optimum within
constant factors. Algorithms A5 and A6 are competitive. The break-even point between them
is approximately 7 = g%t—fz for the worst case of both, i.e., 8 = %2 and min;{o;} = 2. Algorithm
A3 is always inferior to Algorithm A2, but may be preferable in the non-separable SDP case
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[ Comm. [ Alg. ] Bopt | Communication complexity | tcfactor/lb [ 1 factor/lb |

A0 K 2(op — B) Kt + 2(0p — B[ E]T 2, 4) 2
sep. Al 2K 2(op — B) Kt + ((0p — 28) [ ] + 28 F DT 2,4) 1
SDP Ala K opKtc+ op[ E]T 2 1
one-port | A2 K LB Kt 4 (o + B)[Z5 T (1, 1.5] (1, 1.5]
comm. | A3 S nKt.+2nf55]7T = =
Al K [logy Omaz|(0pKte + op[F]T) [2,2[logy Imaz]] | [1,[log, omaz]]
o 2
Aa | S Kte + fomas[ 52 5m1 : I
sep. | A2 s Bmaxi{ G 4 (00 + 1)[ 25517} (1, 1.5 (1, ez
SDP A3 I Kt.+ 2n[525]r 2 %—';
n-port A4 £/ EKTZ [logy Omaz](£5 + 1)(r + Bt.) (1,2[log, omaz]]
T FBK TS
comm. | A5 | Somri——sy cp(+/§+cmin = + [oorprennns| (0 + B)r (1, 2) (1, 1.5]
A6 max(g;f;, ) G+ ) Ktc+ (20, +26 - D)7 (1, 1.5] (1, 3)

Table 2: Summary of the communication complexities for various algorithms. Note that o; = Op;s
Omaz = Max;{0;} and 0min = min;{o;}. The complexity for Algorithm A6 is with B = Bopt.
The complexity with arbitrary B can be derived from the recursion in the proof of Theorem 2.

[4]. The complexity of Algorithm A4 is, in general, an order of O(log, max;{c;}) higher than
the lower bound, but has the lowest complexity of the considered algorithms for o; < 2, V0 <
@ < B, and n-port communication. Table 2 summarizes the complexities of different algorithms.
The last two columns are the ratio of data transfer time (start-up time) to that of the lower
bound. For convenience, we scale the minimum number of start-ups to op instead of o, — 0J,

Theorem 1. The complexity of Algorithm A4 (n-port) is max;{[log, 0;]}(1/Lle ++/7)? with B,y

and o, < %tf‘ [9]; the factor is by comparing to %:tc + 0p. Most algorithms listed are optimum
within constant factors for optimally chosen packet sizes, except if op < O(n) for Algorithm A3,
and max;{log, 0;} > O(1) for Algorithm A4. Also, Algorithms Ala and A2 (in'general) are not
optimum for n-port communication, and optimally chosen packet sizes. However, Algorithms
Ala and A2 are comparable with Algorithms A5 and A6 for a packet size that is very small
compared to the data volume and n-port communication.

5 Implementation issues

We have implemented Algorithms A1, A2, and A3 (one-port version) on the Intel iPSC. For
comparison we also implemented shuffle permutations using the routing logic. Figure 5 shows the
measured times as a function of message length on a 5-cube. For a message size less than a few
hundred bytes Algorithm A1 is of lowest complexity, while for a large message size Algorithm A2
is preferable. Algorithm A3 has the disadvantage that the data to be exchanged between pairs
of neighbors may not be in contiguous memory locations, and therefore either more start-ups,
or local data movement be required. Such movement requires a substantial amount of time on
the Intel iPSC [9]. Figures 6 and 7 show the measured times as a function of cube dimensions
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Shuffle times comparison, 5-cube
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Figure 5: The measured shuffle times as a function of message lengths on an iPSC 5-cube.

with message size being 8 bytes and 1 kbytes, respectively. Figure 8 shows the measured times
of matrix transposition on a 6-cube using Algorithms A1, A2, A3 and the iPSC router. For a
matrix transposition on a 6-cube, the predicted data transfer times compare as 1 to %, and the
predicted start-up times compare as 1 to -‘% for Algorithm A1 to Algorithm A2. The measured
communication times of Algorithm A2 is higher than that of Algorithm A1 by a factor of 2
= 3. The difference between the predicted and measured behavior is due to the fact that the
predictions are based on bidirectional concurrent communication; Algorithm A1 needs only one-
way communication, but Algorithm A2 requires two-way communication. On the Intel iPSC
the start-up time for a send and a receive is almost twice that of a send or a receive.

6 Summary and conclusions

We have devised a few algorithms provably optimum within small constant factors for stable
dimension permutations on Boolean cubes. Algorithm Ala is comparable with Algorithm A2
[16], if communication is restricted to one port at a time. Depending on the machine parameters
and data volume one or the other may have the lowest complexity with the ratio of communi-
cation times %% varying in the range {%,2]. When concurrent communication on all
ports of each node is possible, Algorithms A5 and A6 are comparable. Implementations on the
Intel iPSC showed that the measured communication time of Algorithm Al is the lowest of
Algorithms A1, A2, A3, and permutation by direct use of the router for shuffle permutations
with a message size of up to a few hundred bytes. For the transposition of a two-dimensionally
partitioned matrix and bit-reversal permutation of any message sizes the same result holds. For
matrix transposition Algorithm A1l degenerates to Algorithm A4 in the one-port communica-
tioncase. For bit-reversal permutations Algorithm A1 requires about half to one third the time
of Algorithm A2.
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Shuffle times comparison, 8 bytes
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Figure 6: The measured shuffle times as a function of cube dimensions on an iPSC 6-cube with
K = 8 bytes.

Shuffle times comparison, 1 kbytes
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Figure 7: The measured shuffle times as a function of cube dimensions on an iPSC 6-cube with
K =1 kbytes. ‘
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Matrix transpose, 6—cube
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Figure 8: The measured matrix transpose times as a function of message lengths on an iPSC
6-cube.
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