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In algebraic simplification of expressions, code generation and
other areas one is often given a finite set of rewriting rules which
are to be applied to an expression until no further rules apply. For

example,

Given well-formed arithmetic expressions composed of parentheses

and variables with operators of addition (+) and multiplication

(x), apply
(@ +B)xy > (a x y) + (B x y) (1)
until no further applications are possible.

We assume that the Greek letters can match any well formed subexpressi§n
or variable, and that "apply" has its usual meaning in symbolic
manipulation: when ever the left side of the rule matches a sub-
expression, the subexpression is to be replaced by the right side of

the rule with the Greek letters consistently instantiated.

The key phrase in the forgoing problem statement is "until no further

applications are possible." This raises a difficult question:

How do we prove that a particular set of rules halts (i.e. no further
applications are possible) for all expressions and all possible

sequences of rule applications?

For rule (1) the problem was first answered by Tturriaga [1] and
later a simpler proof was presented by Manna and Ness [2]. 1In this
latter paper the standard proof method was used which we call the

well ordering method. In particular, given a set of rules, one seeks a

measure M on the expressions such that




M(eoo (@ +B) Xy 222) > M(eow (@ xy) + (BX y)...).

The task of finding a measure M is not always as simple as it might
appear —-- especially when there are many rules that interact in non-
trivial way;. In the present case, if‘the "local measure'" of y has a
large value, then the measure of the entire expression after the rule has
Been applied may increase rather than decrease, since there are now two

copies of Y.

The main result of this papef is to present a new method, the

value preserving method, for proving that a set of rules halts. The

method is broadly applicable and as the name implies it takes advantage
of the fact that rules for symbolic expression manipulation are often
intended to be value preserving. Specifically, we prove a theorem

stating that two properties of rule sets, value preserving and monotonicity

are sufficient to imply that the rule set halts for all expressions and
all sequences of rule applications. The exact statement of the general
form of the theorem, as well as the proof itself require considerable
technical development. For the pufposes of this abstract weAby—pass the
tedious details and concentrate on examples, the generalization of which,

we believe, will be clear.

Before proceeding, we note that we are presenting general sufficient
conditions for a rule set to halt. The impossibility of finding necessary

-

and sufficient conditions is implied by

Theorem: The problem of determining if a finite set of rules halts is

undecidable, even if the set contains as few as 3 rules.

Thus, sufficient conditions are all that can be hoped for. -



Turning now to a proof using the value preserving method for the

distributive law (1), we assume that the expressions are given as trees
(variables at the leaves, operators at non-leaf vertices). The distri-

butive law is then written

-

where a, B and Y match any subtree. -

Let £ be any expression in this tree form. Replace each leaf in E
by the integer constant 2 and let the resulting tree be E'. Evaluate E'
in the obvious way and let the resulting number be V. We note that the

distributive law preserves this value, i.e. if Ei

+1 is the result of

applying (2) to Ei then the values of each expression are equal to V.

Assume, for the purpose of contradiction, that (2) does not halt
for E'. That is, there exists a sequence

R o ' '
t EO’ El’ Ez, . .

.

such that E£+l follows from Ei by application of (2). If we denote by
“ Ei“ the number of vertices of E;, then as i » w,I'Ei" > %, {.e. the

size of each expression increases without bound. This implies that for

some Ei there is a root-to-leaf path of length V, i.e.




where Oj is either + or x. But by the monotonic properties of + and x,
the subtree rooted at Oi+1 has value greater than the subtree rooted
at Oi (1 < i < V) and thus the value of Eﬂ‘must be greater than V.

Contradiction! The rules must halt. : . O
The rules rely on the facts

I. Both + and x are monotone in the sense that
a + b > max(a,b)
a x b > max(a,b)

for all integers a,b > 2,

II. If E£+l follows from Ei by application of the distributive

law, then
I Eer] > ELN

and their values are equal.




Our thedrem proves the substance of the forgoing argument for
generalized statements of I and II. All that would be required to prove
halting for the distributive law given the theorem would be to find an
1nterpretationbin which I and II were satisfied. Informally, the general

monotone property can be stated:

An operator is monotone if its value when applied to operends
whose values are members of a subset (not necessarily proper) of
its legal arguments yields a result which is (1) in the subset and

(2) greater than the value of any of the operands.

Thus, for the present case the subset is the subset of integers {2,3,4,...}
Notice also that the ordering ”Ei]l < }Ei+1” is opposite of the

that required by the well ordering method of proof. Thus, the value
preserving method in one sense complements the well ordering method in

that if the size increases as rules are applied, the value preserving
method can be used, but if the size decreases then a well ordering proof

is immediate.

As a second example of the value preserving method, consider the

problem of showing that for

arithmetic expressions formed from variables, the binary operators

+ and x, and the monodic differential operator D, the rules

D@+ 8) > Da+ DB ~ (3a)

D(a x 8) > (B xDa) + (a x DB) (3b)

halt.




Following our earlier strategy we express these rules in tree form

as
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For the interpretation of expression E we select the usual

and

(4b)

interpretation for +, x and D and we replace the leaves by the functional
. 2 . . -
quantity 2e X, The value of the expression E' so interpreted is ‘its

value when x=0.

For monotonicity it is easy to see that
I. (a) Df > £

b)) f+g>f and g

(c) fxg>fandg

for all f, g of the form i

a,>2 and b.22.
i i




Property II is as before. Indeed, since the interpretation just given

holds for the distributive law, it follows that rules (1), (3a) and (3b)

taken together must always halt!

In summary we present necessary conditions for a set of rewriting
rules to halt for all expressions and all possible sequences of rule
applications. The metho& depends on finding a interpretation in which
fhe value of the expression is preserved under rule application, and in

which the operators are monotonic (i.e. the value of an expression is

greater than the value of its operands).
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