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Abstract

Matching feature point sets lies at the core of many approaches to object recog-
nition. This entails estimating the pose and finding the correspondence between the
sets. A feature matching approach is presented using a match matrix to represent
correspondence, with the pose an affine transformation. The problem is formulated as
an optimization problem for determining the correspondence and pose between feature
points in R", constrained by the values of the match variables and the class of affine
mappings. A continuation method is developed for the special case of point matching,
and then extended to incorporate multiple types of feature information. An iterative
algorithm is obtained that alternates between match matrix constraint satisfaction via
a projective scaling method and closed form update of the affine mapping. The strength
of the algorithm is its ability to handle noisy data sets, unequal in size. Results for
synthetic and real world data are provided for point sets in 2D and 3D, and for 2D
data with multiple types of features.
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1 Introduction

A basic problem of object recognition is that of matching—how to associate sensory data with
the representation of a known object. In deformable template matching the features of an
unknown object in an image are given as input information and the objective is to match these
features with those of a known object model. The features chosen for a representation are
typically context-driven (Grimson, 1990; Faugeras, 1994). Spatial location of the components
of the object is important, complemented by geometric information, such as whether a point
in the space is on a curve or is a breakpoint etc., and non-geometric features like color and
texture. However, the data garnered by the feature extraction may be noisy or incomplete,
due to limitations of image processing, or because of occlusion or viewing geometry.

We present a method for feature matching, in which the primitives of a certain shape
representation are given, e.g., points, lines, curvature, corners, texture. The matching of
one object to another includes the correspondence of similar parts of the two objects, and
determination of the correct pose, the accurate mapping of the model onto the image. The
approach we will detail is robust with respect to noise and incomplete information. This
multiple feature matching scheme can be seen as a module within a general purpose object
recognition system. It may interact with other modules, such as one that classifies structure
based on attribute relationships and then be input to a higher level classification module.

We detail the elements of our approach by considering affine point matching as a special
case of the general feature matching problem. The set of point features can be an effective
representation for many problems (Grimson, 1990; Umeyama, 1993). For us, point features
serve as a base description in a multi-feature model. However, inclusion of other feature
information can improve the quality of the matching found, particularly in the case of noise
and occlusion. 7

The point matching problem is formulated as finding the correspondence between two
point sets, perhaps of unequal size, and determining the correct pose transformation. In this
paper, we examine the class of affine mappings, but we indicate how it can be extended to
more general problems. The correspondence between a point on the image and a point on
the model is made explicit via a match variable. The matrix of match variables indicates the
degree of correspondence between the two sets. We use a distance measure that is a function
of the sum of the distances between all of the points in correspondence, in turn a function of

the affine mapping. We minimize this distance measure via a continuation method (Blake




and Zisserman, 1987; Geiger and Girosi, 1991; Leclerc, 1989).

Our formulation is designed for multi-feature template matching, for which point match-
ing is a special case. Although most point matching algorithms advertise themselves as fea-
ture matching schemes, there has been very little work on the integration of different types of
feature information to establish correspondence between objects. The primary strengths of
our algorithm are its ability to incorporate high level features, and to operate in significant

noise. We use both synthetic and real-world examples to illustrate these aspects.

2 Previous Work

The point matching problem has been approached in several ways. These may be categorized
as tree-pruning methods, voting schemes, eigenvectors approaches, relaxation labelling algo-
rithms and neural network methods. A tree-pruning method is a systematic search over the
set of possible matches, with portions of the search space eliminated due to inconsistencies
or constraint violation (Baird, 1984; Grimson and Lozano-Perez, 1987; Umeyama, 1993).
The generalized Hough transform is a voting scheme which operates in the parameter space
of the transformation, dividing the space into discrete bins, each of which receives a vote
when a good match is found corresponding to that bin (Ballard, 1981; Stockman, 1987).
Geometric hashing is a voting scheme that operates in the point space (Lamdan et al., 1988;
Hummel and Wolfson, 1988; Costa et al., 1990; Ogawa, 1986). (Scott and Longuet-Higgins,
1991; Shapiro and Brady, 1992; Sclaroff and Pentland, 1993) all propose eigenvector based
approaches, which we describe below. Relaxation methods are used by (Ranade and Rosen-
feld, 1980; Ton and Jain, 1989). (Vinod and Ghose, 1993; Gee et al., 1993) have developed
neural net schemes.

(Scott and Longuet-Higgins, 1991) have a formulation for point matching that is similar
to ours, with a pairing matrix that indicates the matches and a proximity matrix whose
elements are the pairwise distances between points. The proximity matrix is a function
of a Gaussian weighted distance metric, with a parameter o which controls the degree of
interaction between the two sets of features. Their eigenvector based approach computes
the modes of the proximity matrix, and they show that for a value of o large enough, they
recover the correct global correspondence. (Shapiro and Brady, 1992) continue this work by

including modal shape information to address the weaknesses of Scott and Longuet-Higgins’s




algorithm, primarily its inability to recover large rotations in the transformations, and also
that the assumption of large o may result in algorithmic instabilities. A more recent approach
by (Manmatha, 1994) handles lines and images as well as points. However, none of these
approaches have an explicit formulation that requires the one-to-one matching of points.
Precursors of our work include (Yuille, 1990; Hinton et al., 1992; Lu and Mjolsness,
1994). However, each tells only part of the story. Specifically, none of them have provided
a formulation that integrates the key elements of establishing a one-to-one correspondence
between point sets, related by some type of non-rigid mapping, and where the sets may be
of unequal size or characterized by noise. Addressing all of these points is a crucial step
in the development of a viable object recognition system. We have succeeded in doing this
not only for point matching but also for the more general multi-feature matching problem.
Specifically, the constraints on the match matrix ensure the one-to-one mapping, and the use
of slack variables permits matching data sets of unequal size. The class of affine mappings
is a tractable set of non-rigid transformations. We then provide an efficient algorithm that
works well in this context. In (Gold et al., 1994) we first introduced several of these elements
for point matching. In particular, the iterative projective scaling algorithm used here to
satisfy the match matrix constraints was first detailed, although unequal point sets and
non-rigid transformations were not included. (Gold et al., 1995) extended this work to
account for unequal 2D point sets and affine transformations, with the individual terms of
the transformation, translation, rotation, scale and oblique and vertical shears, optimized
in coordinate-wise fashion. 3D results for rigid transformations only, on unequal point sets
were presented using dual number quaternions to compute the transformation parameters.
In this current work, the affine transformation is solved in closed form. This enables us
to extend our previous results to affine transformations on 3D point sets. We then show that
the point matching algorithm is a special case of a multi-feature matching scheme. Finally,
we sketch how the closed form solution also permits straightforward extensions to higher-
order polynomial transformations and data sets in any dimension, without modification of

the basic methodology.




3 Affine Point Matching

The algorithm has two components— i) Correspondence: determining which point in the im-
age set matches to which point (if any) in the model set, and ii) Pose estimation: computing
the affine transformation that maps the model points of the correspondence onto the image
set, minimizing a distance measure. There are several instances in which an affine mapping
is appropriate, such as in weak perspective projection. In many cases the affine mapping
may be sufficient to recover the correct correspondence even when the transformation itself

is clearly not affine. We will demonstrate several examples of this.

3.1 Problem Formulation

Given two sets of data points Xj € Rl n=234...,j=1,...,J, the image, and
Yy € R* 1, n=3,4,...,k=1,..., K, the model, the problem is to find the correspondence
between the two sets and associated affine transformation that best maps a subset of the
image points onto a subset of the model point set. The best mapping is determined by
minimizing a distance measure that is a function of the model points as matched to the
transformed image points.

The class of affine mappings is the most tractable of the non-rigid transformations. It
includes translation, rotation, scale, and both horizontal and oblique shears. In the case
of point features, the squared Euclidean norm is an appropriate distance measure between
model and images points. These point sets are expressed in homogeneous coordinates, X; =
(1,X,), & = (1,Y&). Let A € R™" be the affine transformation matrix. The use of
homogeneous coordinates permits the translation component of the transformation to be
concisely included in the matrix A, given by the first column. Additionally, the elements of
the first row of A are equal to zero because of the homogeneous coordinate representation.

The distance between the model point X; and the transformed Yj is given by
I1X; = (A+ DYi|? (1)

where [ is the identity matrix of dimension n.
The explicit association of the set of model points either with a point in the image set or
a null point, indicating that it does not match to any image point, is expressed via a matrix
of match variables, M;; where
0< My <1 (2)

5




M, = 1 indicates that X is fully assigned to Yi. M;i € (0,1) is a partial assignment of X

to Yi. For a given match matrix {M,x} and transformation A,
> Ml X; = (A+ DYilf? (3)
5k

expresses the similarity between point sets that we are attempting to match.

However, this expression (3) needs to be modified and constrained in several ways to
reflect physical constraints. First, the total assignment of each variable is at most 1, i.e., X;
may fully match to one Y;, partially match to several upto a total value of 1, or may not

match to any point. A similar constraint holds for Y;. In this way the constraint on Mk

becomes
S My <1, Vk (4)
JZMjk <1, Vy
‘ and M >0

Note that the special case in which the number of points in each data set is equal and M
is constrained by an integrality requirement, the feasible set is the space of permutation
matrices in R™*™.

Second, the distance measure itself needs to be modified in order to ensure reasonable
solutions. When (3) is minimized subject to the constraints in (4) we obtain M) = 0 for all
values.

To counter this, we append a term —a }_; x Mjx, with parameter o > 0 that encourages
matches. Additionally, we are interested in small to medium range affine transformations,
so the terms of the affine matrix are regularized. This is represented by a term Mtr(ATA) in

the objective function, with parameter A, and tr(.) denoting the trace of the matrix.




The correspondence and pose estimation problem is to minimize the objective function

(5) subject to the constraints on the correspondence matrix.

1}11}}41%‘ M| X; — (A+ DYa|* + Mtr(ATA) — a%:Mjk (5)
s.t.
> M <1, Vi
i:Mjk <1, Vy
C Mo

Note that because M appears linearly in the objective function, the simplex constraints
on M indicate that any local minimum of (5) occurs at a vertex of the hypercube of feasible
solutions. In our algorithm we will design a trajectory for M that is on the interior of this

hypercube and will avoid some local minima.

3.2 Algorithm Description

The algorithm follows by taking the given constrained optimization problem in (5) and deriv-
ing an equivalent unconstrained problem. The inequality constraints (4) can be transformed

into equality constraints, introducing slack variables M; x4 and M4y x so that

J J+1

Y My <1- Y Mj=1, Vk
j=1 j=1

K K+1
ZMij1—> ZMjk'—‘—‘l, A7
k=1 k=1

M; k+1 = 1 indicates that X; does not match to any point in Yx. The match matrix is
depicted in Figure (1).

We derive an equivalent optimization problem to (5) by relaxing these constraints via
Lagrange parameters p;, vk, and introducing an zlogz barrier function, indexed by a pa-
rameter 3. The barrier function enforces the non-negativity of the match variables. This
function was used by (Kosowsky and Yuille, 1994) to solve the well-known combinatorial
optimization problem, the assignment problem, via a continuation method. Their approach
was not applied to point matching and they did not consider the case of unequal numbers

of points.
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Figure 1: Match Matrix, including slack variables

The new optimization problem is:

J K+1
minmax 3 M| X; — (A + DYe|” + Xtr(ATA) — a3 Mi + 3 (3 My — 1) (6)
’ ™ Jrk J k=1
K J+1 1

+ZVk(Z:Mjk -1+ 3

k

J K
YD Mji(log My — 1)

j=1k=1

As with most constrained non-linear optimization problems, we are going to be minimiz-
ing with respect to the match variables and affine transformation parameters while satisfying
the constraints via Lagrange parameters.

The algorithm alternately updates the match matrix and the affine transform. Suppose
that the correspondence between the two point sets is known, i.e. M is fixed. In this case, we

can solve in closed form for the affine matrix. Let f(A, M) denote the value of the objective

function. Solving for A we get,

%ﬁ@ = S My((A+ DYy — X,)YT + A4 =0 o
ik
A= A (M) = (S MY = YV MYy + A1) )
o sk

When A is known, we are effectively solving an assignment problem. Popular discrete
methods for solving it are the Hungarian method (Papadimitriou and Steiglitz, 1982) and
the auction algorithm (Bertsekas, 1981) As previously mentioned, the continuation method
of (Kosowsky and Yuille, 1994) is based on the minimization of a related continuous non-

linear optimization problem. In our technique, the assignment constraints are satisfied by a
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continuation method, with continuation parameter 3 — oo, associated with the barrier func-
tion (Blake and Zisserman, 1987; Geiger and Girosi, 1991; Peterson and Soderberg, 1989).
We use the result of (Sinkhorn, 1964) who shows that repeated row-column normalization
of a doubly stochastic matrix converges to a permutation matrix. From this we develop
an iterative projective scaling procedure detailed in (Gold et al., 1994) to find the correct
assignment by iteratively doing row-column normalization on the match matrix to satisfy
the assignment constraints.

The value of the match variable is initialized to be a function of the continuation pa-
rameter 8 and the current affine matrix A. Specifically, we use the solution to (6) when

minimized with respect to M, and without the row and column constraints.
Ge(A) = exp(=BlIX; — (I + AVill* - a) (9)

This is followed by a repeated row-column normalization, iterative projective scaling, of the
match variables until a stopping criterion is reached:

= M M;

4 2 My L M
Finally, A is set using equation (8). These steps constitute the basic elements of the algo-
rithm, with 3 following a fixed schedule, and the updates of A and M as described.

MJ' then Mjk = (10)

Pseudocode: Point Matching
1. INITIALIZE: Fixed 8, do T times:
Parameters: Binitial, Bupdate, Ffinal I = Iteration number, A
Variables: A=0, M =0
2. ITERATE: Fixed $, do T times:
Re-initialize M*(A) (Eq. 9)
Row-column normalization until AM small
A*(M) updated (Eq. 8)
3. UPDATE: While 8 < fnal

ﬂ — ﬂ * ﬂupdate
Return to 2.




This is depicted in Figure (2). The complexity of the algorithm is O(JK). Note that the
computation of the Lagrange parameter values is unnecessary because of the explicit satis-

faction of the constraints. Starting with small Binitia permits many partial correspondences

~ A

@ < Row Normalization >

()=

M
Col. Normalization

- _J

@ exit upon
convergence

Figure 2: Flowchart of the Algorithm

in the initial solution for M. As 3 increases the correspondence becomes more refined. A

value of Bgna that is large will yield solutions for M that approach a binary matrix.

4 Multiple Feature Matching

It is clear that the recognition of an object requires many different types of information
working in concert. Additionally, the information itself may be noisy or unclear. These
factors motivate the development of a multi-feature model, and the formulation we have
developed so far is well-suited for this extension. The optimization problem formulated in
(5) for point matching can be generalized in a straightforward way to incorporate multiple
features to determine correspondence. A representation with multiple features has a spatial
component which indicates the location of a feature element, i.e., the point coordinates.
At that location, then, there may be other invariant geometric characteristics, such as the
identification of a point on a curve or at a breakpoint. Examples of non-geometric invariant

features are color, curvature and texture.
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Extending the notation to explicitly include the different features, X;, is the value of
feature r associated with point X;. The location of point X; is the null feature. In this way,
there are R features associated with each point X; and Y. The match variable remains the
same. The key notion that we are trying to capture in a multi-feature model is that many
different types of information associated with a data element may interact to determine the

correct match. The new objective function is

YoMl X; — (A+ DYi|* + Y Miw,(Xjr — Yir)?

ik ks
+Atr(ATA) — o M,
ik
(Xjr — Yir)? is a term that captures the similarity between invariant types of features, with
w, a weighting factor for feature r. In the case that the feature is not invariant, a different
term must be chosen.
The algorithm as described for the point matching problem is modified only in the re-

initialization of M(A). This term becomes
Mjy = exp(=B(I1X; — (I + A)Yil* + 3w (Xjr = Yir)* — ) (11)

The rest of the algorithm remains unchanged.

5 Experimental Results

The speed for matching point sets of 50 points each is around 20 seconds on a Silicon
Graphics workstation with a R4400 processor. This is true for points in 2D, 3D and with
extra features. This can be improved with a tradeoff in accuracy by adopting a looser
schedule for the continuation parameter 8 or by changing the stopping criterion. We have
done several types of experiments to illustrate the strengths of our algorithm. We have
generated several line drawings to demonstrate the robustness of the correspondence, even
for significant changes in scale, distortions etc. Synthetic results for point sets in 2D and 3D
show that the recovery of the correspondence and the affine transformation is good, even in
the presence of significant noise and point addition/deletions and for a large range of affine

transformations.
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5.1 Hand Drawn Examples

The data were generated using an X-windows tool which enables us to draw an image with
the mouse which appears on the screen. The contours of the images are discretized and are
expressed as a set of points in the plane. The point sets for all the following 2D examples in
this section were generated in this manner.

In the first experiment, we drew alphanumeric characters and words. In the experiments
below, we generated 70 points per character on average. The inputs to the point matching
algorithm are the x-y coordinates generated by the drawing program. No other pre-processing
is done. The output is a correspondence matrix and a pose. In Figures (3) and (4), we show
the correspondences found between several images drawn in this fashion. To make the actual
point matches easier to see, we have drawn the correspondences only for a subset of the model

points. In one experiment, we drew examples of individual digits, one as a model digit and

Figure 3: Digit Correspondences

then many different variations of it. In Figure (3) it can be seen that the correspondences are
good for a large variation from the model digit. In particular, note that the correspondence
is quite invariant to scale, as in the first and third examples in the top row. We are able
to handle large distortions, including both scale and shear as seen in several examples. The
poor correspondence found in matching two different digits is vividly depicted in the lower
right corner.

In another experiment, we were interested in identifying an individual letter correctly

12




within a word, both of which are handwritten in cursive form. An example is shown in
Figure (4), Note that the correspondence itself is good and the issue of segmentation of
a cursive word is not addressed separately, nor is there any other basis for identification
other than the point matching algorithm itself. In particular, note that the “o0” is correctly

identified in “song,” not with the similar looking “s,” and despite the slight overlap in the
letters.
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Figure 4: Correspondence: “0” in song

Figure 5: Features of the face match

Next, we drew pictures with distinct parts, shown in Figure (5). The contours of the
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boy’s face were drawn in two different positions, and a subset of the points were extracted
to make up the point sets. In each set this was approximately 250 points. Note that even
with the change in mood from one picture to another the correct correspondence is found
for the individual parts of the face. These results using only point features are promising.

For handwritten characters, these results can be improved by including feature types
specific to handwriting. Stroke analysis indicates that different types of inflection points
may be such features (Edelman et al., 1990). Similarly, the parts of the boy’s face may have
certain feature markers.

With this in mind, to illustrate our work using a multi-feature model, we use pictures
of a person taken at slightly different angles, shown in Figure (6). Although the rotation of
the head is not a true affine transformation, it may be seen as a weak perspective projection
for which an affine approximation is valid. Each photo is outlined using a graphics drawing
tool. The contours are discretized and a sample of the point set is taken, approximately 225

points in each face.

Figure 6: Original images

A point on a contour has associated with it a feature marker indicating the incident
textures. For a human face, we use a binary 4-vector, with a 1 in position r if feature r is
present. Specifically, we have used a vector with elements [skin, hair, lip, eye] For example,
the lines marking the mouth segment the lip texture from the skin texture. A point within
this line has a feature vector [1,0,1,0]. The nose has only adjacent skin and so a point

on one of these lines has a feature vector [1,0,0,0]. Perceptual organization of the face
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justifies this type of feature marking scheme. Figure (6) was marked in this manner with the

Figure 7: Correspondence with labelled features

resulting correspondence depicted in Figure (7). We have shown only a small subset of the
matches in order to see the results more clearly. Note that there are several areas in which
the correspondence could be easily thrown off, e.g., in the eye region the eye could easily

have matched to a point in the dense neighborhoods of eyebrow or nose.

5.2 Synthetic Data

Experiments on synthetic data were performed to test the strength of the algorithm in the
presence of noise and missing or extra points. These experiments are designed to show how,
when the transformation is indeed affine, that the correct mapping is recovered.

The model set was generated uniformly on a unit square. A random affine matrix is
generated, where each of the affine parameters, a;; are chosen uniformly on a certain interval,
and applied to the model set to generate the image set. Points may be deleted or spurious
points may be included, and the points may be “jittered” by some Gaussian noise. This point
set constitutes the test image from which we seek to recover the original affine transformation.
In the case that other types of feature information are available, a binary valued feature
vector is randomly chosen.

We show the results of experiments structured in this way for 2D data in Figure (8).

50 model points were generated, and the affine parameters were chosen uniformly on an
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interval of length 1.5 units. This affine mapping is then applied to the data set. A subset of
these image points py are then deleted, and then Gaussian noise, N (0,0) is added. Finally,
spurious points, ps; are added. The elements of the feature vector are randomly mislabelled
with probability, P,, to represent a distortion of the features. In our experiments, we have
chosen py € {0%,10%, 30%, 50%,70%} and o € {0.01,0.02,...,0.08}. Spurious points are
added only when there are point deletions, with p, = 10% for p; > 0. For experiments using

multiple features, the random feature noise has a probability of P, = 0.05.
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—.:ps = 0.0,p; = 0.0, 0:pg=0.50,p; =0.1
+:pg =0.10,p; = 0.1, x:pg = 0.75,ps = 0.1
x:pg = 0.30,p, = 0.0
Figure 8: 2D results for synthetic data
The error measure we use is
€a = lai; — &l (12)
J

where a;; is the correct parameter, and &;; is the computed value. The constant term ¢

normalizes the measure so that the error equals 1 in the case that the a;; and a;; are chosen

at random on this interval. Specifically, this is derived by

3 1 (13)

- # of parameters length of interval

Cc
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The factor 3 in the numerator of this formula follows because the expected value of
the absolute difference of two numbers chosen randomly on the unit interval is %, and this
value normalizes the measure to 1. Thus, % = %Tl_s This is the error measure reported in
Figure (8). Each data point represents 500 runs for a different randomly generated affine
transformation. The parameters used were: Binitial = 091, Bainal = 100, Bupdate = 1.075, and
T = 4. For the experiments with features, we used R = 4 features, and w, = 0.2, Vr.

As is expected, the inclusion of feature information reduces the error. This is particularly
evident for large amounts of jitter. Also, note from Figure (8) that for small quantities of
point additions and deletions, the error is not substantially more than that for the base case

in which there are no additions or deletions.

8025}
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o:pg=0.0,p; =0.0, + :pg = 0.10,ps = 0.1
x:pqg =0.30,ps = 0.1, *:pg = 0.50,p, = 0.1

Figure 9: 3D results for synthetic data

In Figure (9) we performed similar experiments for point sets that are 3-dimensional,
but without any feature information. As in the 2D case above, experiments were performed,
with p; € {0%,10%,30%,50%} and o € {0.01,0.02,...,0.08}. Spurious points are added
only when there are point deletions, with p; = 10% for py > 0.

The error measureis 3 3, ; |aij—ai;|, with the factor  used to normalize the 12 parameters

of the transformation over the interval of length 1.5 units, derived from the formula (13).
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6 Discussion

We have presented a method for feature matching that is effective in many contexts, partic-
ularly because of its robustness in the presence of noise. Also, the overall simplicity of the
algorithm permits its use as a skeleton module easily incorporated in a larger scheme. Here,
we indicate several extensions that are immediate. The non-binary valued match matrix
already indicates the strength of a match as opposed to an absolute assignment. In the case
that the feature information is not known with certainty, weights reflecting our confidence
in each point feature can be included in the matching.

Note that the transformation described here is not restricted to the familiar first-order
affine mapping; higher order polynomial transformations may be of use in the case of local
warpings. In the case that a second order transformation is sought, the vector X is given by
[1, X1, Xj2, Xfl , X f2, X;1Xj2], and the transformation matrix requires recovery of 30 param-
eters. Structurally, the algorithm remains the same. Alternatively, one can think of a quilt
of local affine mappings, in which the space is subdivided into many regions, each region
subject to a different mapping. Additionally, since the class of affine mappings is a tractable
set of non-rigid transformations, and serves as a first-order approximation of the pose, it
may be used as an initial estimate in a coarse-to-fine type of hierarchy. Or, a multi-feature
scheme may permit the affine to effect a good first order change, with the remainder of the
correspondence derived from the other feature information.

The algorithm itself is inherently parallel, in terms of the operations on the match vari-
ables, and this can be exploited for any application that must be done in real-time. Specif-
ically, since the operations on the match matrix give the algorithm a complexity of 0(n?),
parallelizing these operations over n-processors results in a linear time implementation. A
machine whose processors are configured for single-instruction, multiple data (SIMD) exe-
cution has the potential to permit such a fast implementation.

We have presented a continuation method that integrates multiple types of feature in-
formation to determine correspondence between data sets, related spatially by an affine
mapping. Noisy, incomplete feature information limits the applicability of many matching
schemes. However, our easily implementable algorithm is effective in these environments, es-
pecially when there is non-spatial feature information to supplement the point location data.
The class of first order affine transformations that we have considered may be generalized

in several ways as we have indicated, for a higher order transformation or to be used as a
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coarse approximation. In these ways, our model is applicable for more complex non-rigid
transformations without any modification in the methodology. The general applicability and
straightforward extensibility of our model support its use as a deformable template matching

module in an object recognition system.
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