
DRAFT

A fast randomized algorithm for the approximation of
matrices — preliminary report∗

Yale Department of Computer Science Technical Report #1380
Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert

April 30, 2007

Abstract

Given an m × n matrix A and a positive integer k, we introduce a randomized
procedure for the approximation of A with a matrix Z of rank k. The procedure relies
on applying an l×m random matrix with special structure to each column of A, where l
is an integer near to, but greater than k. The spectral norm ‖A−Z‖ of the discrepancy
between A and Z is of the same order as

√
lm times the (k + 1)st greatest singular

value σk+1 of A, with small probability of large deviations. The special structure of
the l ×m random matrix allows us to apply it to an arbitrary m × 1 vector at a cost
proportional to m log(l). Utilizing this special structure, the algorithm constructs the
rank-k approximation Z from the entries of A at a cost proportional to mn log(k) +
l2 (m + n). In contrast, the classical pivoted “QR” decomposition algorithms such
as Gram-Schmidt cost at least kmn. If l is significantly less than m and n, then
the randomized algorithm tends to cost less than the classical algorithms; moreover,
the constant of proportionality in the cost of the randomized algorithm appears to be
small enough so that the randomized algorithm is at least as efficient as the classical
algorithms even when k is quite small. Thus, given a matrix A of limited numerical
rank, the scheme provides an efficient means of computing an accurate approximation
to the singular value decomposition of A. Furthermore, the algorithm presented here
operates reliably independently of the structure of the matrix A. The results are
illustrated via several numerical examples.

1 Introduction

In many practical applications it is important to be able to construct a low-rank approx-
imation to a matrix A. Such an approximation of A often facilitates the analysis of A.
Furthermore, such a low-rank approximation facilitates rapid calculations involving A.

There exist at least two classical forms of such matrix approximations. One is an ap-
proximation to a singular value decomposition (SVD), which is known in the statistical
literature as a principal component analysis (PCA). The other is an approximation obtained

∗Partially supported by the AFOSR and the NGA.

1

via subset selection; we will refer to the matrix representation obtained via subset selection
as an interpolative decomposition. These two types of matrix approximations are defined as
follows.

An approximation to an SVD of a real m × n matrix A consists of nonnegative real
numbers σ1, σ2, . . . , σk−1, σk known as singular values, orthonormal real m × 1 column
vectors u1, u2, . . . , uk−1, uk known as left singular vectors, and orthonormal real n × 1
column vectors v1, v2, . . . , vk−1, vk known as right singular vectors, such that∥∥∥∥∥A−

k∑
j=1

uj σj (vj)T

∥∥∥∥∥ ≤ δ, (1)

where k, m, and n are positive integers with k < m and k < n, δ is a positive real number
specifying the precision of the approximation, and, for any matrix B, ‖B‖ denotes the
spectral (l2-operator) norm of B, that is, ‖B‖ is the greatest singular value of B. An
approximation to an SVD of A is often written in the equivalent form∥∥A− U Σ V T

∥∥ ≤ δ, (2)

where U is a real m × k matrix whose columns are orthonormal, V is a real n × k matrix
whose columns are orthonormal, and Σ is a real diagonal k × k matrix whose entries are all
nonnegative. See, for example, [11] for a discussion of SVDs.

An interpolative decomposition of a real m× n matrix A consists of a real m× k matrix
B whose columns constitute a subset of the columns of A, and a real k × n matrix P , such
that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2, and

3. A = B P .

See, for example, [9], [3], [10], [6], [14], or Sections 4 and 5 of [2] for a discussion of inter-
polative decompositions.

The present article introduces an algorithm for the computation of a low-rank approxi-
mation of either type to an arbitrary dense matrix that is generally at least as efficient as
pivoted Gram-Schmidt and the other classical pivoted “QR” algorithms, and often substan-
tially more efficient. In order to construct a nearly optimal rank-k approximation to a dense
real n×n matrix, pivoted Gram-Schmidt with reorthogonalization, pivoted “QR” based on
plane (Householder) reflections, pivoted “QR” based on plane (Givens) rotations, and the
algorithm of [7] all require at least

O(kn2) (3)

floating-point operations and words of memory (see, for example, Chapter 5 in [5]). In
contrast, the algorithm of Subsection 5.2 of the present paper requires

O(n2 log(k) + l2 n) (4)

2

floating-point operations and words of memory in order to construct a similarly nearly op-
timal rank-k approximation to a dense real n × n matrix, where l is an integer near to,
but greater than k. When k is significantly less than n, (4) is less than (3). Moreover,
the constant multiplying n2 log(k) in (4) that is hidden by the big-O is about as small as
the constant multiplying n log(n) in the cost of an application of a fast Fourier transform
to a real n × 1 vector (see, for example, [11] for information concerning the fast Fourier
transform). The scheme of the present paper also appears to parallelize naturally.

Unlike the classical algorithms, the algorithm of the present paper is a randomized one,
and fails with a small probability. However, we can determine rapidly whether the algorithm
has succeeded, and run the algorithm again with an independent realization of the random
variables involved, in effect boosting the probability of success at a reasonable additional
expected cost.

The algorithm described below would seem to be preferable to the classical algorithms
for the computation of low-rank approximations to a dense matrix, and (more or less equiv-
alently) for the computation of a few of the greatest singular values of a matrix and their
corresponding singular vectors.

The algorithm of [10] is very similar to the algorithm of the present paper. The core
steps of both algorithms involve the rapid computation of the product of a random matrix
and the matrix to be approximated. The algorithm of [10] assumes that the matrix to be
approximated (and its transpose) may be applied rapidly to arbitrary vectors, thus enabling
the rapid computation of the product of the matrix to be approximated (or its transpose)
and any matrix. In contrast, the algorithm of the present paper utilizes a random matrix
which may be applied rapidly to arbitrary vectors, thus enabling the rapid computation of
the product of the random matrix and any matrix.

The random matrix employed in the present paper consists of several uniformly randomly
selected rows of the product of the discrete Fourier transform matrix (or its close relative,
the discrete Walsh-Hadamard transform matrix) and a random diagonal matrix. The fast
Fourier transform and similar algorithms allow the rapid application of this random matrix
to arbitrary vectors (see, for example, [11] for a discussion of the fast Fourier transform algo-
rithm and its applications). The idea of using a random matrix with such special structure
has been introduced in [1]. The idea of using such a random matrix in numerical linear
algebra (specifically, for the purpose of computing a solution in the least squares sense to an
overdetermined system of linear algebraic equations) has been introduced in [12], utilizing
both [1] and [4].

For simplicity, we discuss only real matrices; the analysis below extends easily to the com-
plex case. The present paper has the following structure: Section 2 collects together various
known facts which later sections utilize. Section 3 introduces the trimmed Walsh-Hadamard
transform, a somewhat more efficient variant of the classical fast Fourier transform. Sec-
tion 4 provides the principal lemma which Section 5 uses to construct algorithms. Section 5
describes the algorithm of the present paper, providing details about its accuracy and com-
putational costs. Section 6 illustrates the algorithm via several numerical examples.

3

2 Preliminaries

In this section, we summarize various facts from linear algebra.
In the present section and throughout the rest of the paper, we employ the following

notation. We will denote an identity matrix by 1, and a matrix whose entries are all zero by
0. For any matrix A, we define the norm ‖A‖ of A to be the spectral (l2-operator) norm of
A, that is, ‖A‖ is the greatest singular value of A. We define δ to be the Kronecker symbol,
that is, the matrix with the entry

δnn = 1 (5)

for any positive integer n, and
δmn = 0 (6)

for any positive integers m and n with m 6= n.
The following lemma states that, for any m× n matrix A whose rank is k, where k, m,

and n are positive integers, there exist an m×k matrix B whose columns constitute a subset
of the columns of A, and a k × n matrix P , such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. P is not too large, and

3. B P = A.

Moreover, the lemma provides an analogous approximation B P to A when the exact rank
of A is not k, but the (k + 1)st singular value of A is nevertheless small. The lemma is a
reformulation of Theorem 3.2 in [9] and Theorem 3 in [3].

Lemma 2.1 Suppose that m and n are positive integers, and A is a real m× n matrix.
Then, for any positive integer k with k ≤ m and k ≤ n, there exist a real k × n matrix

P , and a real m× k matrix B whose columns constitute a subset of the columns of A, such
that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 1,

3. ‖P‖ ≤
√

k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k + 1)st

greatest singular value of A.

Remark 2.2 Properties 1, 2, 3, and 4 in Lemma 2.1 ensure that the interpolative decom-
position B P of A is numerically stable. Also, Property 3 follows directly from Properties 1
and 2, and Property 4 follows directly from Property 1.

4

Observation 2.3 There exists an algorithm which computes B and P in Lemma 2.1 from
A, provided that we require only that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2,

3. ‖P‖ ≤
√

4k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

4k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k +1)st

greatest singular value of A.

For any positive real number ε, the algorithm can identify the least k such that ‖B P−A‖ ≈ ε.
Furthermore, there exists a real number C such that the algorithm computes both B and
P using at most Ckmn log(n) floating-point operations and Ckmn floating-point words of
memory. The algorithm is based upon the Cramer rule and the ability to obtain the minimal-
norm (or at least roughly minimal-norm) solutions to linear algebraic systems of equations
(see [9], [3], and [7]).

The following lemma provides an approximation QS to an n× l matrix T via an n× k
matrix Q whose columns are orthonormal, and a k × l matrix S.

Lemma 2.4 Suppose that k, l, and n are positive integers with k < l and l ≤ n, and T is a
real n× l matrix.

Then, there exist a real n× k matrix Q whose columns are orthonormal, and a real k× l
matrix S, such that

‖QS − T‖ ≤ τk+1, (7)

where τk+1 is the (k + 1)st greatest singular value of T .

Proof. We start by forming an SVD of T ,

T = U Σ V T, (8)

where U is a real n × l matrix whose columns are orthonormal, V is a real l × l matrix
whose columns are orthonormal, and Σ is a real l × l matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, such that

Σj,j = ρj (9)

for all j = 1, 2, . . . , l − 1, l, where Σj,j is the entry in row j and column j of Σ, and τj is
the jth greatest singular value of T . We define Q to be the leftmost n × k block of U , and
P to be the rightmost n× (l − k) block of U , so that

U =
(

Q P
)
. (10)

5

We define S to be the uppermost k× l block of Σ V T, and R to be the lowermost (l− k)× l
block of Σ V T, so that

Σ V T =

(
S
R

)
. (11)

Combining (8), (9), (10), (11), and the fact that the columns of U are orthonormal, as are
the columns of V , yields (7). 2

Observation 2.5 In order to compute the matrices Q and S in (7) from the matrix T , we
can construct (8), and then form Q and S according to (10) and (11). (See, for example,
Chapter 8 in [5] for details concerning the computation of the SVD.)

The following lemma provides an efficient means of computing an SVD of a real m × n
matrix A from a real m× k matrix B and a real k × n matrix P such that A = B P and k
is much less than both m and n. If, in addition, ‖B‖ ≤ ‖A‖ and ‖P‖ is not too large, then
the scheme described by the lemma is numerically stable. Please note that if B and P arise
from an interpolative decomposition, then indeed ‖B‖ ≤ ‖A‖ and ‖P‖ is not too large, and
so the scheme described by the lemma is numerically stable.

Lemma 2.6 Suppose that k, m, and n are positive integers with k ≤ n. Suppose further
that A is a real m× n matrix, B is a real m× k matrix, and P is a real k × n matrix, such
that

A = B P. (12)

Suppose in addition that L is a real k×k matrix, and Q is a real n×k matrix whose columns
are orthonormal, such that

P = L QT. (13)

Suppose finally that C is a real m× k matrix, U is a real m× k matrix whose columns are
orthonormal, Σ is a real k × k matrix, and W is a real k × k matrix whose columns are
orthonormal, such that

C = B L (14)

and
C = U Σ WT. (15)

Then,
A = U Σ V T, (16)

where V is the real n× k matrix given by the formula

V = QW. (17)

Moreover, the columns of V are orthonormal (as are the columns of U), and

‖L‖ = ‖P‖. (18)

6

Proof. Combining (12), (13), (14), (15), and (17) yields (16). Combining (17) and the
facts that W is unitary and the columns of Q are orthonormal yields that the columns of
V are orthonormal. Combining (13) and the fact that the columns of Q are orthonormal
yields (18). 2

Remark 2.7 The matrices L and Q in (13) can be computed from P as follows. Using the
algorithms described, for example, in Chapter 5 of [5], we construct an upper triangular real
k × k matrix R, and a real n× k matrix Q whose columns are orthonormal, such that

PT = QR. (19)

We thus obtain Q. We then define L to be the transpose of R, that is,

L = RT. (20)

3 Fast transform algorithms

In this section, we describe two simple variants of the fast Fourier transform algorithm (see,
for example, [11] for a discussion of the fast Fourier transform algorithm and its applica-
tions, or the subsection on Walsh wavelet packets in [8] for a description of the fast Walsh-
Hadamard transform). In Subsection 3.1, we discuss the classical fast Walsh-Hadamard
transform. In Subsection 3.2, we describe how to compute rapidly randomly selected entries
of the output of the Walsh-Hadamard transform.

3.1 Fast Walsh-Hadamard transform

Given any integer n that is a positive integer power of 2, and a real n× 1 vector x, we define
the Walsh-Hadamard transform H(n) x of x inductively, as follows. We define y to be the
real n× 1 vector whose first n

2
entries are the sums of the successive pairs of the entries of x,

and whose last n
2

entries are the differences of the successive pairs of the entries of x, that is,

yk = x2k−1 + x2k (21)

for k = 1, 2, . . . , n
2
− 1, n

2
, and

yk+n/2 = x2k−1 − x2k (22)

for k = 1, 2, . . . , n
2
− 1, n

2
. We then define z to be the real n× 1 vector given by the formula

z =
1√
2

y. (23)

Then, the Walsh-Hadamard transform w = H(n) x of x is the real n × 1 vector whose first
n
2

entries consist of the Walsh-Hadamard transform H(n/2) of the first n
2

entries of z, and
whose last n

2
entries consist of the Walsh-Hadamard transform H(n/2) of the last n

2
entries of

z, that is,

H(n) x =

(
H(n/2) 0

0 H(n/2)

)
z. (24)

7

Clearly, the Walsh-Hadamard transform H(n) is linear and unitary, and the absolute value
of every entry of H(n) is 1√

n
.

If we compute the Walsh-Hadamard transform as we have defined it, then we must per-
form n

2
additions, n

2
subtractions, and n multiplications, in addition to two Walsh-Hadamard

transforms of size n
2
. Thus, we must perform at most proportional to n log2(n) floating-point

operations in order to compute the Walsh-Hadamard transform H(n) x of a real n× 1 vector
x.

Figure 1 provides a graphical depiction of the fast Walsh-Hadamard transform.

3.2 Trimmed fast Walsh-Hadamard transform

Suppose that we wish to compute only k randomly chosen entries of H(n) x. Each of these
k entries is formed as 1√

2
times a sum of a pair of entries from the previous level in the

transform, as well as 1√
2

times a difference of a pair of entries (see Figure 2). Hence, at

most 2k entries from the previous level in the transform contribute to the k entries of H(n) x
that interest us. Similarly, at most 22k entries from the third-to-last level contribute to
these 2k entries from the second-to-last level, and at most 23k entries contribute from the
fourth-to-last level. This potential doubling of the number of contributing entries continues
until all of the entries of a level must be filled, namely when at most n = 2log2(n/k)k entries

contribute, which happens by the log2

(
2n
k

)th
-to-last level. Thus, the number of entries within

the Walsh-Hadamard transform tree from the last level to the log2

(
2n
k

)th
-to-last level which

we need to compute is at most

2log2(n/k)k + 2log2(n/k)−1k + · · ·+ 22k + 2k + k < 2 2log2(n/k)k = 2n. (25)

The Walsh-Hadamard transform tree includes at most log2(2n) levels in total, however.

Although the number of entries within the tree from the last level to the log2

(
2n
k

)th
-to-last

level which we need to compute is at most 2n, there could be log2(2n)− log2

(
2n
k

)
= log2(k)

levels at the beginning of the tree in which we would need to compute all of the n entries per
level. Therefore, in order to compute the k entries of H(n) x which interest us, we might need
to compute n log2(k) entries in the beginning levels of the tree, in addition to the at most
2n entries in the last levels of the tree. Overall, then, we can compute k randomly chosen
entries of H(n) x using at most proportional to n log2(k) + 2n floating-point operations.

4 Mathematical apparatus

In this section, we describe the principal mathematical tool used in Section 5.
With the choice α = 8 and β = 2, the following lemma shows that, with probability at

least 1
2
, the least singular value of the real k×l matrix U D H is at least

√
l

8n
, and the greatest

singular value is at most
√

15l
8n

, where D is a real diagonal n × n matrix, whose diagonal

entries d1, d2, . . . , dn−1, dn are i.i.d., taking values in {−1, 1} uniformly at random, H is
a real n × l matrix whose jth column is the sth

j column of the Walsh-Hadamard transform

H(n) defined in Subsection 3.1, with s1, s2, . . . , sl−1, sl being i.i.d., and taking values in

8

n

(2n)

output

 boxes per level

log2 levels

input

Figure 1 (depicting the Walsh-Hadamard transform):
The value in each box is 1√

2
times the sum of the values in the boxes above it which connect

to it via solid lines, and is 1√
2

times the difference of the values in the boxes above it which

connect to it via dotted lines. There are log2(2n) levels in the whole tree (here n = 8).

(k) levels

)n/k levels(2

n

output

input
log2

log2

 boxes per level

Figure 2 (depicting the trimmed Walsh-Hadamard transform):
The value in each box is 1√

2
times the sum of the values in the boxes above it which

connect to it via solid lines, and is 1√
2

times the difference of the values in the boxes above
it which connect to it via dotted lines. Only the k = 4 values in the darkened boxes at the
last level in the diagram are desired, requiring the computation of the values in all of the
darkened boxes in all levels in the diagram, but not in any of the empty boxes. There are
log2(2n) levels in the whole tree (here n = 32), with log2(k) levels at the beginning of the

tree consisting entirely of darkened boxes.

9

{1, 2, . . . , n−1, n} uniformly at random, U is a real k×n matrix whose rows are orthonormal,
and n > l ≥ 3(k2 + k). This lemma is similar to the subspace Johnson-Lindenstrauss lemma
(Corollary 11) of [13].

Lemma 4.1 Suppose that α and β are real numbers greater than 1, and k, l, and n are
positive integers, such that n is a positive integer power of 2, and

n > l ≥ α2 β

(α− 1)2
(k2 + k). (26)

Suppose further that D is a real diagonal n × n matrix, whose diagonal entries d1, d2, . . . ,
dn−1, dn are i.i.d., taking values in {−1, 1} uniformly at random. Suppose in addition that H
is a real n× l matrix whose jth column is the sth

j column of the Walsh-Hadamard transform

H(n) defined in Subsection 3.1, with s1, s2, . . . , sl−1, sl being i.i.d., and taking values in
{1, 2, . . . , n− 1, n} uniformly at random. Suppose finally that U is a real k×n matrix whose
rows are orthonormal, and that C is the real k × k matrix defined via the formula

C = (U D H) (U D H)T. (27)

Then, the least (that is, the kth greatest) singular value σk of U D H satisfies

1

σk

=
√
‖C−1‖ ≤

√
α n

l
(28)

and (simultaneously) the greatest singular value σ1 of U D H satisfies

σ1 =
√
‖C‖ ≤

√
l

n

(
2− 1

α

)
(29)

with probability at least 1− 1
β
.

Proof. For any integers a and p with 1 ≤ a ≤ k and 1 ≤ p ≤ k,

Cpa =
l∑

r=1

n∑
q=1

Upq dq Hqsr

n∑
b=1

Uab db Hbsr . (30)

Defining
Gqbs = Hqs Hbs (31)

and

Fqb =
l∑

r=1

Gqbsr , (32)

we obtain from (30) that

Cpa =
n∑

q=1

Upq Uaq (dq)
2 Fqq +

n∑
q=1

Upq dq

∑
b6=q

Uab db Fqb. (33)

10

Combining (31) and the fact that the rows of H(n) are orthonormal yields that

n∑
s=1

Gqqs = 1, (34)

and
n∑

s=1

Gqbs = 0 (35)

when q 6= b.
Combining (31) and the fact that the absolute value of any entry of H(n) is 1√

n
yields

that

Gqqs =
1

n
. (36)

Combining (32) and (36) yields that

Fqq =
l

n
. (37)

Combining (31), (35), the fact that the absolute value of any entry of H(n) is 1√
n
, and the

fact that s1, s2, . . . , sl−1, sl are i.i.d., taking values uniformly at random in {1, 2, . . . , n−1, n},
yields that Gqbs1 , Gqbs2 , . . . , Gqbsl−1

, Gqbsl
are i.i.d., taking values uniformly at random in{

− 1
n
, 1

n

}
, when q 6= b. Combining this last fact and (32) yields that

EFqb = 0 (38)

and

E (Fqb)
2 =

l

n2
(39)

for q, b = 1, 2, . . . , n− 1, n such that q 6= b.
Combining (33), (37), the fact that (dq)

2 = 1, and the fact that the rows of U are
orthonormal, yields that

Cpp =
l

n
+

n∑
q=1

Upq dq

∑
b6=q

Upb db Fqb, (40)

and

Cpa =
n∑

q=1

Upq dq

∑
b6=q

Uab db Fqb (41)

when p 6= a.
We define ∆ to be the real diagonal k × k matrix with the diagonal entry

∆pp =
l

n
(42)

and E to be the real k × k matrix with the entry

Epa =
n∑

q=1

Upq dq

∑
b6=q

Uab db Fqb (43)

11

for p, a = 1, 2, . . . , k − 1, k. Combining (40), (41), (42), and (43) yields that

C = ∆ + E = (1 + E ∆−1) ∆. (44)

We now show that ‖E ∆−1‖ ≤ 1− 1
α

with probability at least 1− 1
β
.

Now,

E

(
n∑

q=1

Upq dq

∑
b6=q

Uab db Fqb

)2

= E

(
n∑

q=1

Upq dq

∑
b6=q

Uab db Fqb

)(
n∑

r=1

Upr dr

∑
c 6=r

Uac dc Frc

)
.

(45)
Performing the summation over q and r separately for the cases when q = r and when q 6= r,
and using the fact that (dq)

2 = 1, we obtain

E
n∑

q,r=1

(
Upq dq

∑
b6=q

Uab db Fqb

)(
Upr dr

∑
c 6=r

Uac dc Frc

)

= E
n∑

q=1

(Upq)
2

(∑
b6=q

Uab db Fqb

)2

+ E
∑
q 6=r

Upq Upr dq dr

∑
b6=q

Uab db Fqb

∑
c 6=r

Uac dc Frc. (46)

To bound the first term in the right-hand side of (46), we observe that

E
n∑

q=1

(Upq)
2

(∑
b6=q

Uab db Fqb

)2

=
n∑

q=1

(Upq)
2 E

(∑
b6=q

Uab db Fqb

)2

. (47)

But,

E

(∑
b6=q

Uab db Fqb

)2

= E
∑
b6=q

Uab db Fqb

∑
c 6=q

Uac dc Fqc. (48)

Moreover,

E
∑
b6=q

Uab db Fqb

∑
c 6=q

Uac dc Fqc =
∑
b,c6=q

Uab Uac E db dc Fqb Fqc. (49)

Performing the summation over b and c separately for the cases when b = c and when b 6= c,
and using the fact that (db)

2 = 1, we obtain∑
b,c6=q

Uab Uac E db dc Fqb Fqc =
∑
b6=q

(Uab)
2 E (Fqb)

2 +
∑

b,c6=q and b6=c

Uab Uac E db dc Fqb Fqc. (50)

It follows from (39) that ∑
b6=q

(Uab)
2 E (Fqb)

2 =
l

n2

∑
b6=q

(Uab)
2. (51)

It follows from the fact that the rows of U are normalized that∑
b6=q

(Uab)
2 ≤

n∑
b=1

(Uab)
2 = 1. (52)

12

Combining (51) and (52) yields that∑
b6=q

(Uab)
2 E (Fqb)

2 ≤ l

n2
. (53)

It follows from the independence of the random variables involved that∑
b,c6=q and b6=c

Uab Uac E db dc Fqb Fqc =
∑

b,c6=q and b6=c

Uab Uac (E db) (E dc)E (Fqb Fqc). (54)

Combining (54) and the fact that E db = 0 (or E dc = 0) yields that∑
b,c6=q and b6=c

Uab Uac E db dc Fqb Fqc = 0. (55)

Combining (47), (48), (49), (50), (53), and (55) yields that

E
n∑

q=1

(Upq)
2

(∑
b6=q

Uab db Fqb

)2

≤ l

n2

n∑
q=1

(Upq)
2 (56)

Combining (56) and the fact that the rows of U are normalized yields that

E
n∑

q=1

(Upq)
2

(∑
b6=q

Uab db Fqb

)2

≤ l

n2
. (57)

To bound the second term in the right-hand side of (46), we observe that

E
∑
q 6=r

Upq Upr dq dr

∑
b6=q

Uab db Fqb

∑
c 6=r

Uac dc Frc

= E
∑
q 6=r

Upq Upr dq dr

(
Uar dr Fqr +

∑
b6=q,r

Uab db Fqb

)(
Uaq dq Frq +

∑
c 6=q,r

Uac dc Frc

)
. (58)

Expanding the product, we obtain

E
∑
q 6=r

Upq Upr dq dr

(
Uar dr Fqr +

∑
b6=q,r

Uab db Fqb

)(
Uaq dq Frq +

∑
c 6=q,r

Uac dc Frc

)
= E

∑
q 6=r

Upq Upr dq dr Uar Uaq dr dq Fqr Frq

+ E
∑
q 6=r

Upq Upr dq dr

∑
b6=q,r

Uab db Fqb

∑
c 6=q,r

Uac dc Frc

+ E
∑
q 6=r

Upq Upr dq dr Uar dr Fqr

∑
c 6=q,r

Uac dc Frc

+ E
∑
q 6=r

Upq Upr dq dr Uaq dq Frq

∑
b6=q,r

Uab db Fqb. (59)

13

Combining (32) and (31) yields that

Frq = Fqr. (60)

Combining (60) and the fact that (dq)
2 = 1 and (dr)

2 = 1 yields that

E
∑
q 6=r

Upq Upr dq dr Uar Uaq dr dq Fqr Frq =
∑
q 6=r

Upq Upr Uar Uaq E (Fqr)
2. (61)

It follows from (39) that∑
q 6=r

Upq Upr Uar Uaq E (Fqr)
2 =

l

n2

∑
q 6=r

Upq Upr Uar Uaq. (62)

But, ∑
q 6=r

Upq Upr Uar Uaq =
n∑

q,r=1

Upq Upr Uar Uaq −
n∑

q=1

(Upq)
2 (Uaq)

2. (63)

Furthermore,
n∑

q,r=1

Upq Upr Uar Uaq =

(
n∑

q=1

Upq Uaq

)2

. (64)

It follows from the definition of matrix multiplication that(
n∑

q=1

Upq Uaq

)2

=
(
(U UT)pa

)2
. (65)

It follows from the fact that the rows of U are orthonormal that(
(U UT)pa

)2
= δpa, (66)

where δ is the Kronecker symbol. Combining (61), (62), (63), (64), (65), and (66) yields that

E
∑
q 6=r

Upq Upr dq dr Upr Upq dr dq Fqr Frq ≤
l

n2
δpa. (67)

It follows from the independence of the random variables involved that

E
∑
q 6=r

Upq Upr dq dr

∑
b6=q,r

Uab db Fqb

∑
c 6=q,r

Uac dc Frc

=
∑
q 6=r

Upq Upr (E dq) (E dr)

(
E
∑
b6=q,r

Uab db Fqb

∑
c 6=q,r

Uac dc Frc

)
. (68)

Combining (68) and the fact that E dq = 0 (or E dr = 0) yields that

E
∑
q 6=r

Upq Upr dq dr

∑
b6=q,r

Uab db Fqb

∑
c 6=q,r

Uac dc Frc = 0. (69)

14

It follows from the fact that (dr)
2 = 1 that

E
∑
q 6=r

Upq Upr dq dr Uar dr Fqr

∑
c 6=q,r

Uac dc Frc =
∑
q 6=r

Upq Upr Uar E dq Fqr

∑
c 6=q,r

Uac dc Frc. (70)

It follows from the independence of the random variables involved that

∑
q 6=r

Upq Upr V1r E dq Fqr

∑
c 6=q,r

V1c dc Frc =
∑
q 6=r

Upq Upr V1r (E dq)

(
EFqr

∑
c 6=q,r

V1c dc Frc

)
. (71)

It follows from the fact that E dq = 0 that

∑
q 6=r

Upq Upr Uar (E dq)

(
EFqr

∑
c 6=q,r

Uac dc Frc

)
= 0. (72)

Combining (70), (71), and (72) yields that

E
∑
q 6=r

Upq Upr dq dr Uar dr Fqr

∑
c 6=q,r

Uac dc Frc = 0. (73)

Similarly,

E
∑
q 6=r

Upq Upr dq dr Uaq dq Frq

∑
b6=q,r

Uab db Frb = 0. (74)

Combining (58), (59), (67), (69), (73), and (74) yields that

E
∑
q 6=r

Upq Upr dq dr

∑
b6=q

Uab db Fqb

∑
c 6=r

Uac dc Frc ≤
l

n2
δpa. (75)

Combining (45), (46), (57), and (75) yields that

E

(
n∑

q=1

Upq dq

∑
b6=q

Uab db Fqb

)2

≤ l

n2
(1 + δpa) . (76)

Combining (43) and (76) yields that

E
k∑

p,a=1

(Epa)
2 ≤ l

n2

k∑
p,a=1

(1 + δpa) . (77)

It follows from (77) that

E
k∑

p,a=1

(Epa)
2 ≤ l(k2 + k)

n2
. (78)

However,

‖E‖2 ≤
k∑

p,a=1

(Epa)
2 . (79)

15

Combining (79) and (78) yields that

E ‖E‖2 ≤ l(k2 + k)

n2
. (80)

Combining (80) and the Markov inequality yields that

‖E‖ ≤
√

β l (k2 + k)

n
(81)

with probability at least 1− 1
β
. It follows from (42) that

‖∆−1‖ =
n

l
. (82)

Combining (81), (82), and (26) yields that

‖E‖ ‖∆−1‖ ≤ 1− 1

α
(83)

with probability at least 1− 1
β
.

It follows from (44) that

‖C−1‖ ≤ ‖∆−1‖ ‖(1 + E ∆−1)−1‖. (84)

However,

‖(1 + E ∆−1)−1‖ ≤
∞∑

j=0

‖ − E ∆−1‖j. (85)

Combining (85) and (83) yields that

‖(1 + E ∆−1)−1‖ ≤ α (86)

with probability at least 1− 1
β
.

Finally, combining (84), (82), and (86) yields (28).
Combining (44), (42), (81), and (26) yields (29). 2

5 Description of the algorithm

In this section, we describe the algorithm of the present paper. In Section 5.1, we discuss
approximations to interpolative decompositions. In Section 5.2, we discuss approximations
to SVDs. In Section 5.3, we discuss an alternative method for constructing approximations to
SVDs. In Section 5.4, we tabulate the computational costs of various parts of the algorithm.

16

5.1 Interpolative decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real m×n
matrix. In this subsection, we will collect together k appropriately chosen columns of A into
a real m× k matrix B, and construct a real k × n matrix P , such that

‖P‖ ≤
√

4k (n− k) + 1 (87)

and
‖B P − A‖ .

√
klmn σk+1, (88)

where σk+1 is the (k + 1)st greatest singular value of A, and l is a user-specified integer near
to, but greater than k, such that l < m and l < n (for example, l = 4k). To do so, we make
the following three steps:

1. Using the algorithm of Subsection 3.2, compute the l × n product matrix

T = R A, (89)

where R is the real l ×m matrix defined via the formula

R = H D, (90)

with the rows of H consisting of l rows of the Walsh-Hadamard transform H(m) defined
in Section 3 chosen uniformly at random, and D being a diagonal real m×m matrix
whose diagonal entries are i.i.d. random variables distributed uniformly on {−1, 1}.

2. Using Observation 2.3, form a real l × k matrix S whose columns constitute a subset
of the columns of T , and a real k × n matrix P satisfying (87), such that

‖S P − T‖ ≤
√

4k (n− k) + 1 τk+1, (91)

where τk+1 is the (k + 1)st greatest singular value of T .

3. Using the fact that the columns of S constitute a subset of the columns of T , for any
j = 1, 2, . . . , k− 1, k, let ij denote an integer such that the jth column of S is the ij

th

column of T . Form the real m× k matrix B whose jth column is the ij
th column of A

for all j = 1, 2, . . . , k − 1, k.

An analysis similar to that in Section 4.1 of [10] (using Lemma 4.1 of the present paper in
place of Lemma 14 of [10]) yields that the matrices B and P obtained via the preceding three
steps satisfy (87) and (88) with high probability. Strictly speaking, our present analysis
requires that l be proportional to k2; however, our numerical experiments (described in
Section 6) indicate that in fact l need be only proportional to k.

17

5.2 Singular value decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real m×n
matrix. In this subsection, we will construct an approximation to an SVD of A such that

‖U Σ V T − A‖ .
√

lm σk+1, (92)

where U is a real m×k matrix whose columns are orthonormal, V is a real n×k matrix whose
columns are orthonormal, Σ is a diagonal real k×k matrix whose entries are all nonnegative,
σk+1 is the (k + 1)st greatest singular value of A, and l is a user-specified integer near to,
but greater than k, such that l < m and l < n (for example, l = 4k). To do so, we make the
following ten steps:

1. Using the algorithm of Subsection 3.2, compute the l × n product matrix

T = R A, (93)

where R is the real l ×m matrix defined via the formula

R = H D, (94)

with the rows of H consisting of l rows of the Walsh-Hadamard transform H(m) defined
in Section 3 chosen uniformly at random, and D being a diagonal real m×m matrix
whose diagonal entries are i.i.d. random variables distributed uniformly on {−1, 1}.

2. Using the algorithm of Subsection 3.2, compute the l ×m product matrix

Z = F AT, (95)

where F is the real l × n matrix defined via the formula

F = G C, (96)

with the rows of G consisting of l rows of the Walsh-Hadamard transform H(n) defined
in Section 3 chosen uniformly at random, and C being a diagonal real n × n matrix
whose diagonal entries are i.i.d. random variables distributed uniformly on {−1, 1}.

3. Using an SVD, form a real n× k matrix Q whose columns are orthonormal, such that
there exists a real k × l matrix S for which

‖QS − TT‖ ≤ τk+1, (97)

where τk+1 is the (k +1)st greatest singular value of T . (See Observation 2.5 for details
concerning the construction of such a matrix Q.)

4. Using an SVD, form a real m× k matrix P whose columns are orthonormal, such that
there exists a real k × l matrix Y for which

‖P Y − ZT‖ ≤ ζk+1, (98)

where ζk+1 is the (k +1)st greatest singular value of Z. (See Observation 2.5 for details
concerning the construction of such a matrix P .)

18

5. Using the algorithm of Subsection 3.2, compute the l × k product matrix

W = F Q (99)

where F is defined in (96), and Q is from (97).

6. Compute the l × k product matrix

B = Z P (100)

where Z is defined in (95), and P is from (98).

7. Compute the real k × k matrix X which minimizes the quantity

‖W X −B‖, (101)

where W is defined in (99), and B is defined in (100). (See, for example, Section 5.3
in [5] for details concerning the construction of such a minimizing X.)

8. Construct an SVD of X, that is,

X = UX Σ (V X)T, (102)

where UX is a real k × k matrix whose columns are orthonormal, V X is a real k × k
matrix whose columns are orthonormal, and Σ is a real k× k matrix whose entries are
all nonnegative and zero off of the main diagonal. (See, for example, Chapter 8 in [5]
for details concerning the construction of such an SVD.)

9. Compute the m× k product matrix

U = P V X , (103)

where P is from (98), and V X is from (102).

10. Compute the n× k product matrix

V = QUX , (104)

where Q is from (97), and UX is from (102).

An analysis similar to that in Section 4.2 of [10] (using Lemma 4.1 of the present paper in
place of Lemma 14 of [10]) yields that the matrices U , Σ, and V obtained via the preceding
ten steps satisfy (92) with high probability. Strictly speaking, our present analysis requires
that l be proportional to k2; however, our numerical experiments (described in Section 6)
indicate that in fact l need be only proportional to k.

Remark 5.1 Step 7 is motivated by an idea from [12], [1], [4] of using the random matrix
defined in (96) for the purpose of computing a solution in the least squares sense to an
overdetermined system of linear algebraic equations.

19

5.3 Singular value decomposition by means of the interpolative
decomposition

In this subsection, we provide an alternative to the algorithm of Subsection 5.2 for computing
an approximation to a singular value decomposition. This alternative is usually somewhat
more efficient.

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real
m× n matrix. We will compute an approximation to an SVD of A such that

‖U Σ V T − A‖ .
√

klmn σk+1, (105)

where U is a real m×k matrix whose columns are orthonormal, V is a real n×k matrix whose
columns are orthonormal, Σ is a diagonal real k×k matrix whose entries are all nonnegative,
σk+1 is the (k +1)st greatest singular value of A, and l is a user-specified integer near to, but
greater than k, such that l < m and l < n (for example, l = 4k). To do so, we first use the
algorithm of Subsection 5.1 to construct the matrices B and P in (87) and (88). Then, we
make the following four steps:

1. Construct a lower triangular real k × k matrix L, and a real n × k matrix Q whose
columns are orthonormal, such that

P = L QT. (106)

(See Remark 2.7 for details concerning the construction of such matrices L and Q.)

2. Compute the m× k product matrix

C = B L. (107)

3. Construct an SVD of C, that is,

C = U Σ WT, (108)

where U is a real m × k matrix whose columns are orthonormal, Σ is a diagonal
k × k matrix whose entries are all nonnegative, and W is a real k × k matrix whose
columns are orthonormal. (See, for example, Chapter 8 in [5] for details concerning
the construction of such an SVD.)

4. Compute the n× k product matrix

V = QW. (109)

An analysis similar to that in Section 4.1 of [10] (using Lemma 4.1 of the present paper in
place of Lemma 14 of [10]) yields that the matrices U , Σ, and V obtained via the preceding
four steps (after first using the algorithm of Subsection 5.1 to construct the matrices B and
P) satisfy (105) with high probability. Strictly speaking, our present analysis requires that l
be proportional to k2; however, our numerical experiments (described in Section 6) indicate
that in fact l need be only proportional to k.

20

Remark 5.2 Steps 2 and 4 in the procedure of the present subsection are somewhat subtle
numerically. Both Steps 2 and 4 involve constructing products of matrices, and in general
constructing the product S T of matrices S and T can be numerically unstable. Indeed, in
general some entries of S or T can have unmanageably large absolute values, while in exact
arithmetic no entry of the product S T has an unmanageably large absolute value; in such
circumstances, constructing the product S T can be unstable in finite-precision arithmetic.
However, this problem does not arise in Steps 2 and 4 above, due to (87), (18), the fact that
the columns of B constitute a subset of the columns of A (so that ‖B‖ ≤ ‖A‖), and the fact
that the columns of Q are orthonormal, as are the columns of W .

5.4 Costs

In this subsection, we tabulate the numbers of floating-point operations and words of memory
required by the algorithms described in Subsections 5.1, 5.2, and 5.3, as applied once to a
real m× n matrix A.

5.4.1 Interpolative decomposition

The algorithm of Subsection 5.1 incurs the following costs in order to compute an approxi-
mation to an interpolative decomposition of A:

1. Computing T in (89) costs O(mn log(l)).

2. Computing S and P in (91) costs O(lkn log(n)).

3. Forming B in Step 3 requires retrieving k columns of the m×n matrix A, which costs
O(km).

Summing up the costs in Steps 1–3 above, we conclude that the algorithm of Subsection 5.1
costs

CID = O(mn log(l) + lkn log(n)). (110)

Remark 5.3 When “QR” decompositions are used as in [3] to compute the matrices S and
P in (91), the cost of the algorithm of Subsection 5.1 is usually less than the cost of the
algorithm of Subsection 5.2, typically

C ′
ID = O(mn log(l) + lkn + km). (111)

5.4.2 Singular value decomposition

The algorithm of Subsection 5.2 incurs the following costs in order to compute an approxi-
mation to a singular value decomposition of A:

1. Computing T in (93) costs O(mn log(l)).

2. Computing Z in (95) costs O(mn log(l)).

3. Computing Q in (97) costs O(l2 n).

21

4. Computing P in (98) costs O(l2 m).

5. Computing W in (99) costs O(kn log(l)).

6. Computing B in (100) costs O(klm).

7. Computing X minimizing (101) costs O(k2 l).

8. Computing the SVD (102) of X costs O(k3).

9. Computing U in (103) costs O(k2 m).

10. Computing V in (104) costs O(k2 n).

Summing up the costs in Steps 1–10 above, we conclude that the algorithm of Subsection 5.2
costs

CSVD = O(mn log(l) + l2(m + n)). (112)

5.4.3 Singular value decomposition by means of the interpolative decomposition

The algorithm of Subsection 5.2 incurs the following costs in order to compute an approxi-
mation to a singular value decomposition of A, in addition to (110):

1. Constructing L and Q in (106) costs O(k2 n).

2. Computing C in (107) costs O(k2 m).

3. Computing the SVD of C in (108) costs O(k2 m).

4. Computing V in (109) costs O(k2 n).

Summing up the costs in Steps 1–4 above, plus (110), we conclude that the algorithm of
Subsection 5.3 costs

CSVD(ID) = O(mn log(l) + lkn log(n) + k2 m). (113)

Remark 5.4 As in Remark 5.3, when “QR” decompositions are used as in [3] to compute
the matrices S and P in (91), the cost of the algorithm of Subsection 5.3 is usually less than
the cost of the algorithm of Subsection 5.2, typically

C ′
SVD(ID) = O(mn log(l) + lkn + k2 m). (114)

22

6 Numerical examples

In this section, we describe the results of several numerical tests of the algorithm of the
present paper. Tables 1–7 summarize the numerical output of applying the algorithm to
the matrix A defined below for each of the examples. Please note that we did not seriously
optimize our implementation of the randomized algorithm.

In the first and second subtables of each of Tables 1–5, we set l = 4k for the user-specified
parameter l. In the third and fourth subtables of each of Tables 1–5, we set l = 10k. In
both subtables of Table 6, we set l = k + 10. In Table 7, we set l = 4k in the algorithm of
the present paper.

The first and third subtables of each of Tables 1–4 display the results of applying the
interpolative decomposition algorithm of Subsection 5.1 once to the matrix A defined below
for each example. The second and fourth subtables of each of Tables 1–4 display the results
of applying the singular value decomposition algorithm of Subsection 5.3. Both subtables
of Table 5 display the results of applying the singular value decomposition algorithm of
Subsection 5.2. The first subtable of Table 6 displays the results of applying the interpolative
decomposition algorithm of Subsection 5.1, using a fast discrete cosine transform in place of
the trimmed fast Walsh-Hadamard transform. The second subtable of Table 6 displays the
results of applying the singular value decomposition algorithm of Subsection 5.3, using a fast
discrete cosine transform in place of the trimmed fast Walsh-Hadamard transform. Table 7
displays the results of applying the interpolative decomposition algorithm of Subsection 5.1.

In all of the tables, σk+1 is the (k+1)st greatest singular value of A; σk+1 is also the spectral
norm of the difference between the original matrix A and its best rank-k approximation.

In the first and third subtables of each of Tables 1–4, as well as in the first subtable
of Table 6, δdirect is the spectral norm of the difference between the original matrix A and
the approximation B P to an interpolative decomposition obtained via the pivoted “QR”
decomposition algorithm of [3] that is based upon plane (Householder) reflections. In the
second and fourth subtables of each of Tables 1–4, as well as in both subtables of Table 5
and the second subtable of Table 6, δdirect is the spectral norm of the difference between the
original matrix A and the approximation U Σ V T to an SVD obtained via following up a
pivoted “QR” decomposition algorithm based upon plane (Householder) reflections with a
call to the LAPACK 3.1.1 divide-and-conquer SVD routine dgesdd.

In Table 7, δprev is the spectral norm of the difference between the original matrix A and
the approximation B P to an interpolative decomposition obtained via the algorithm of [10],
using k + 20 random test vectors.

In the first and third subtables of each of Tables 1–4, as well as in the first subtable
of Table 6 and in Table 7, δfast is the spectral norm of the difference between the original
matrix A and the approximation B P to an interpolative decomposition obtained via the
randomized algorithm. In the second and fourth subtables of each of Tables 1–4, as well as
in both subtables of Table 5 and the second subtable of Table 6, δfast is the spectral norm
of the difference between the original matrix A and the approximation U Σ V T to an SVD
obtained via the randomized algorithm.

In the first and third subtables of each of Tables 1–4, as well as in the first subtable of
Table 6, tdirect is the number of seconds of CPU time taken by the pivoted “QR” decompo-
sition algorithm of [3] that is based upon plane (Householder) reflections. In the second and

23

fourth subtables of each of Tables 1–4, as well as in both subtables of Table 5 and the second
subtable of Table 6, tdirect is the number of seconds of CPU time taken by the combination
of a pivoted “QR” decomposition algorithm based upon plane (Householder) reflections and
the LAPACK 3.1.1 divide-and-conquer SVD routine dgesdd.

In Table 7, tprev is the number of seconds of CPU time taken by the interpolative decom-
position algorithm of [10], using k + 20 random test vectors.

tfast is the number of seconds of CPU time taken by the randomized algorithm.
The values of δdirect, δprev, and δfast are those obtained via the power method for estimating

the norm of a matrix. We terminated the power method after its estimates stabilized to four
significant figures when the estimates stabilized in less than 100 iterations, and after 100
iterations when the estimates were near the machine precision and did not stabilize due to
roundoff.

Table 1 reports the results of applying the algorithms of Subsections 5.1 and 5.3 to the
512 × 512 matrix A defined via the formula

A =
T

‖T‖
, (115)

where T is the 512 × 512 matrix with the entry

Tj,k =
1

j2 + k2 + k3

1000

(116)

for j, k = 1, 2, . . . , 511, 512. In Table 1, δfast is the maximum error encountered in 100
randomized trials, while tfast is the average time over 50 randomized trials.

Table 2 reports the results of applying the algorithms of Subsections 5.1 and 5.3 to the
2,048 × 2,048 matrix defined via the formula

A =
65∑

k=1

uk σk (vk)
T, (117)

where
σ1 = σ2 = · · · = σ9 = σ10 = 1, (118)

σ11 = σ12 = · · · = σ19 = σ20 = 10−2, (119)

σ21 = σ22 = · · · = σ29 = σ30 = 10−4, (120)

σ31 = σ32 = · · · = σ39 = σ40 = 10−6, (121)

σ41 = σ42 = · · · = σ49 = σ50 = 10−8, (122)

σ51 = σ52 = · · · = σ59 = σ60 = 10−10, (123)

σ61 = σ62 = σ63 = σ64 = σ65 = 10−12, (124)

24

the vk for k = 1, 2, . . . , 64, 65 are the first 65 columns of the Walsh-Hadamard transform
H(2048) defined in Section 3, and

(u1)
T =

1√
n− 1

(
1 1 . . . 1 1 0

)
, (125)

(u2)
T =

(
0 0 . . . 0 0 1

)
, (126)

(u3)
T =

1√
n− 2

(
1 −1 1 −1 . . . 1 −1 1 −1 0 0

)
, (127)

(u4)
T =

1√
2

(
1 0 −1 0 0 . . . 0 0

)
, (128)

(u5)
T =

1√
2

(
0 0 0 0 1 0 −1 0 0 . . . 0 0

)
, (129)

(u6)
T =

1√
2

(
0 0 0 0 0 0 0 0 1 0 −1 0 0 . . . 0 0

)
, (130)

(131)

and so on. More precisely, for k = 4, 5, . . . , 64, 65, the (4k − 15)th and (4k − 13)th entries
of uk are 1√

2
and − 1√

2
, and all other entries of uk are zero. In Table 2, δfast is the maximum

error encountered in 10 randomized trials, while tfast is the average time over 2 randomized
trials.

Table 3 reports the results of applying the algorithms of Subsections 5.1 and 5.3 to the
512 × 512 matrix A defined via the formula

A =
5∑

k=1

uk σk (vk)
T, (132)

where σ1 = 1, σ2 = 10−9, σ3 = 10−10, σ4 = 10−11, σ5 = 10−12, and u1, u2, u3, u4, u5 and v1, v2,
v3, v4, v5 are the left and right singular vectors corresponding to the 5 greatest singular values
of a 512× 512 matrix whose entries are drawn i.i.d. with a Gaussian distribution of zero mean
and unit variance. In Table 3, δfast is the maximum error encountered in 100 randomized
trials, while tfast is the average time over 1,000 randomized trials. To be consistent, we used
the same pivoted “QR” decomposition algorithm based on plane (Householder) reflections
as the direct algorithm for k = 1 as for k > 1, even though it is wasteful to maintain the
data necessary for pivoting when k = 1.

Table 4 reports the results of applying the algorithms of Subsections 5.1 and 5.3 to the
1,024 × 1,024 matrix defined via the formula

A =
S

‖S‖
, (133)

where S is a sparse 1,024 × 1,024 matrix having k + 1 non-zero entries. The positions of
the nonzero entries were chosen at random with a uniform distribution over all 1,024 ×
1,024 possible locations. The values of k of the nonzero entries of S were chosen at random
i.i.d. with a uniform distribution on [0, 1], and the value of the remaining nonzero entry
of S was chosen at random independently from the others with a uniform distribution on

25

[0, 10−10]. In Table 4, δfast is the maximum error encountered in 10 randomized trials, while
tfast is the average time over 10 randomized trials. Please note that our implementations for
sparse matrices were the same as for dense matrices. Clearly, neither the direct nor the fast
algorithm takes full advantage of the sparsity of these matrices; the algorithm of [10] would
seem to be more appropriate for such sparse matrices.

Table 5 reports the results of applying the algorithm of Subsection 5.2 to the 2,048 ×
2,048 matrix defined in (117). In Table 5, δfast is the maximum error encountered in 10
randomized trials, while tfast is the average time over 10 randomized trials.

Table 6 reports the results of applying the algorithms of Subsections 5.1 and 5.3 to
the 2,048 × 2,048 matrix defined in (117), using the full fast discrete cosine transform
as implemented in a double-precision version of P. N. Swarztrauber’s FFTPACK routine
cost (available at http://www.netlib.org/fftpack/) in place of the trimmed fast Walsh-
Hadamard transform. In Table 6, δfast is the maximum error encountered in 10 randomized
trials, while tfast is the average time over 80 randomized trials.

Table 7 reports the results of applying the algorithm of Subsection 5.1 to the 32,768 ×
32,768 matrix A defined via the formula

A =
R

‖R‖
, (134)

where R is the 32,768 × 32,768 matrix with the entry

Rj,k =
1

(j−k)2

32768
+ k + j−1

2
− 1700

3

(135)

for j = 1, 3, . . . , 32,765, 32,767 and k = 1, 2, . . . , 32,767, 32,768, and

Rj,k =
1

(j−k)2

32768
+ k + j

2
− 1700

3

(136)

for j = 2, 4, . . . , 32,766, 32,768 and k = 1, 2, . . . , 32,767, 32,768. Since storing all of the
individual entries of A would have required far more than our 2 GB of RAM, we computed
the entries of A on the fly, as needed, via (134), (135), and (136) (after first computing that
‖R‖ ≈ .903E+03).

We performed all computations using IEEE standard double-precision variables, whose
mantissas have approximately one bit of precision less than 16 digits (so that the relative
precision of the variables is approximately .2E-15). We ran all computations on a 2.8 GHz
Pentium Xeon microprocessor with 1 MB of L2 cache and 2 GB of RAM. We compiled the
Fortran 77 code using the fort77 script (which couples f2c to gcc) with the optimization flag
-O3 enabled.

Remark 6.1 Tables 1–4 indicate that the algorithms of Subsections 5.1 and 5.3 are generally
more efficient than the classical pivoted “QR” decomposition algorithm based on plane
(Householder) reflections, followed by either the algorithm of [3] or the LAPACK 3.1.1 divide-
and-conquer SVD routine. A comparison of Tables 1–4 and Table 5 indicates that the
algorithm of Subsection 5.2 is not competitive with the algorithm of Subsection 5.3 in terms
of either accuracy or efficiency, at least on the examples considered in the present paper.

26

Remark 6.2 Numerical experiments (including those reported in Table 6) indicate that
the user-specified parameter l may be chosen to be smaller when a discrete cosine transform
is used in place of the Walsh-Hadamard transform in the algorithm of the present paper.
It may prove advantageous to replace the trimmed Walsh-Hadamard transform with the
composition of a trimmed Walsh-Hadamard transform, followed by multiplication with a
random diagonal matrix, followed by a trimmed discrete cosine or Fourier transform.

27

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

31 .406E-12 .143E-11 .365E-11 .828E-01 .220E-01 3.76
33 .557E-13 .342E-12 .427E-12 .876E-01 .230E-01 3.81
35 .745E-14 .191E-13 .588E-13 .930E-01 .247E-01 3.77
37 .969E-15 .344E-14 .797E-14 .977E-01 .263E-01 3.71
39 ≤ .2E-15 .356E-15 .118E-14 .103E-00 .279E-01 3.70

(1.1) ID of Subsection 5.1, l = 4k, 512×512 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

31 .406E-12 .143E-11 .365E-11 .778E-01 .289E-01 2.69
33 .557E-13 .342E-12 .427E-12 .828E-01 .308E-01 2.69
35 .745E-14 .191E-13 .588E-13 .889E-01 .336E-01 2.65
37 .969E-15 .344E-14 .974E-14 .951E-01 .363E-01 2.62
39 ≤ .2E-15 .181E-14 .108E-13 .993E-01 .393E-01 2.53

(1.2) SVD of Subsection 5.3, l = 4k, 512×512 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

31 .406E-12 .143E-11 .184E-11 .658E-01 .524E-01 1.26
33 .557E-13 .342E-12 .350E-12 .701E-01 .578E-01 1.21
35 .745E-14 .191E-13 .273E-13 .744E-01 .637E-01 1.17
37 .969E-15 .344E-14 .582E-14 .779E-01 .703E-01 1.11
39 ≤ .2E-15 .356E-15 .115E-14 .817E-01 .760E-01 1.08

(1.3) ID of Subsection 5.1, l = 10k, 512×512 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

31 .406E-12 .143E-11 .184E-11 .759E-01 .572E-01 1.33
33 .557E-13 .342E-12 .350E-12 .810E-01 .648E-01 1.25
35 .745E-14 .191E-13 .273E-13 .871E-01 .721E-01 1.21
37 .969E-15 .344E-14 .582E-14 .915E-01 .789E-01 1.16
39 ≤ .2E-15 .181E-14 .108E-13 .963E-01 .872E-01 1.10

(1.4) SVD of Subsection 5.3, l = 10k, 512×512 matrix

Table 1 (See Section 6.)

28

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .100E-01 .358E-01 .788E-01 .400E+00 .160E+00 2.50
20 .100E-03 .283E-03 .283E-01 .750E+00 .185E+00 4.05
30 .100E-05 .403E-05 .622E-05 .110E+01 .225E+00 4.89
40 .100E-07 .245E-07 .348E-07 .145E+01 .285E+00 5.11
50 .100E-09 .490E-09 .618E-09 .180E+01 .345E+00 5.22
60 .100E-11 .416E-11 .582E-11 .213E+01 .425E+00 5.02

(2.1) ID of Subsection 5.1, l = 4k, 2,048×2,048 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .100E-01 .358E-01 .788E-01 .420E+00 .165E+00 2.55
20 .100E-03 .283E-03 .283E-01 .780E+00 .200E+00 3.90
30 .100E-05 .403E-05 .622E-05 .116E+01 .260E+00 4.46
40 .100E-07 .245E-07 .348E-07 .155E+01 .345E+00 4.49
50 .100E-09 .490E-09 .618E-09 .193E+01 .445E+00 4.34
60 .100E-11 .416E-11 .582E-11 .233E+01 .560E+00 4.16

(2.2) SVD of Subsection 5.3, l = 4k, 2,048×2,048 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .100E-01 .358E-01 .412E-01 .485E+00 .195E+00 2.49
20 .100E-03 .283E-03 .327E-03 .905E+00 .275E+00 3.29
30 .100E-05 .403E-05 .532E-05 .132E+01 .385E+00 3.43
40 .100E-07 .245E-07 .269E-07 .175E+01 .525E+00 3.33
50 .100E-09 .490E-09 .517E-09 .217E+01 .740E+00 2.93
60 .100E-11 .416E-11 .445E-11 .255E+01 .950E+00 2.68

(2.3) ID of Subsection 5.1, l = 10k, 2,048×2,048 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .100E-01 .358E-01 .412E-01 .460E+00 .190E+00 2.42
20 .100E-03 .283E-03 .327E-03 .870E+00 .285E+00 3.05
30 .100E-05 .403E-05 .532E-05 .128E+01 .405E+00 3.17
40 .100E-07 .245E-07 .269E-07 .171E+01 .570E+00 2.99
50 .100E-09 .490E-09 .517E-09 .213E+01 .790E+00 2.70
60 .100E-11 .416E-11 .445E-11 .255E+01 .106E+01 2.41

(2.4) SVD of Subsection 5.3, l = 10k, 2,048×2,048 matrix

Table 2 (See Section 6.)

29

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

1 .100E-09 .105E-09 .283E-09 .618E-02 .597E-02 1.04
2 .100E-10 .104E-10 .416E-10 .835E-02 .748E-02 1.12
3 .100E-11 .103E-11 .223E-11 .105E-01 .844E-02 1.24
4 .100E-12 .113E-12 .180E-12 .127E-01 .864E-02 1.47
5 ≤ .2E-15 ≤ .2E-15 .344E-15 .156E-01 .930E-02 1.67

(3.1) ID of Subsection 5.1, l = 4k, 512×512 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

1 .100E-09 .105E-09 .283E-09 .684E-02 .605E-02 1.13
2 .100E-10 .104E-10 .416E-10 .944E-02 .746E-02 1.27
3 .100E-11 .103E-11 .223E-11 .119E-01 .849E-02 1.41
4 .100E-12 .113E-12 .180E-12 .145E-01 .903E-02 1.61
5 ≤ .2E-15 ≤ .2E-15 .452E-15 .178E-01 .955E-02 1.86

(3.2) SVD of Subsection 5.3, l = 4k, 512×512 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

1 .100E-09 .105E-09 .152E-09 .608E-02 .713E-02 .852
2 .100E-10 .104E-10 .125E-10 .832E-02 .880E-02 .945
3 .100E-11 .103E-11 .123E-11 .104E-01 .936E-02 1.11
4 .100E-12 .113E-12 .130E-12 .125E-01 .103E-01 1.21
5 ≤ .2E-15 ≤ .2E-15 .280E-15 .153E-01 .109E-01 1.40

(3.3) ID of Subsection 5.1, l = 10k, 512×512 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

1 .100E-09 .105E-09 .152E-09 .742E-02 .796E-02 .932
2 .100E-10 .104E-10 .125E-10 .996E-02 .971E-02 1.03
3 .100E-11 .103E-11 .123E-11 .125E-01 .104E-01 1.21
4 .100E-12 .113E-12 .130E-12 .151E-01 .116E-01 1.30
5 ≤ .2E-15 ≤ .2E-15 .467E-15 .186E-01 .122E-01 1.52

(3.4) SVD of Subsection 5.3, l = 10k, 512×512 matrix

Table 3 (See Section 6.)

30

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .339E-10 .339E-10 .396E-10 .103E+00 .400E-01 2.57
11 .350E-10 .350E-10 .449E-10 .113E+00 .400E-01 2.83
12 .121E-10 .121E-10 .152E-10 .123E+00 .390E-01 3.15
13 .478E-10 .478E-10 .568E-10 .130E+00 .410E-01 3.17
14 .263E-10 .263E-10 .321E-10 .139E+00 .410E-01 3.39
15 .175E-10 .175E-10 .214E-10 .147E+00 .430E-01 3.42

(4.1) ID of Subsection 5.1, l = 4k, 1,024×1,024 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .339E-10 .339E-10 .396E-10 .116E+00 .440E-01 2.64
11 .350E-10 .350E-10 .449E-10 .126E+00 .450E-01 2.80
12 .121E-10 .121E-10 .152E-10 .136E+00 .450E-01 3.02
13 .478E-10 .478E-10 .568E-10 .145E+00 .470E-01 3.09
14 .263E-10 .263E-10 .321E-10 .158E+00 .480E-01 3.29
15 .175E-10 .175E-10 .214E-10 .168E+00 .490E-01 3.43

(4.2) SVD of Subsection 5.3, l = 4k, 1,024×1,024 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .339E-10 .339E-10 .382E-10 .103E+00 .470E-01 2.19
11 .188E-10 .188E-10 .200E-10 .112E+00 .490E-01 2.29
12 .715E-10 .715E-10 .797E-10 .123E+00 .530E-01 2.32
13 .323E-10 .323E-10 .356E-10 .130E+00 .540E-01 2.41
14 .295E-10 .295E-10 .314E-10 .139E+00 .590E-01 2.36
15 .932E-10 .932E-10 .995E-10 .148E+00 .610E-01 2.43

(4.3) ID of Subsection 5.1, l = 10k, 1,024×1,024 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .339E-10 .339E-10 .382E-10 .105E+00 .500E-01 2.10
11 .188E-10 .188E-10 .200E-10 .115E+00 .510E-01 2.25
12 .715E-10 .715E-10 .797E-10 .123E+00 .550E-01 2.24
13 .323E-10 .323E-10 .356E-10 .132E+00 .590E-01 2.24
14 .295E-10 .295E-10 .314E-10 .142E+00 .620E-01 2.29
15 .932E-10 .932E-10 .995E-10 .149E+00 .640E-01 2.33

(4.4) SVD of Subsection 5.3, l = 10k, 1,024×1,024 matrix

Table 4 (See Section 6.)

31

k σk+1 δdirect δ“fast” tdirect t“fast” tdirect/t“fast”

10 .100E-01 .358E-01 .793E-01 .440E+00 .708E+00 .621
20 .100E-03 .283E-03 .546E-03 .765E+00 .775E+00 .987
30 .100E-05 .403E-05 .638E-05 .114E+01 .961E+00 1.19
40 .100E-07 .245E-07 .650E-07 .152E+01 .118E+01 1.29
50 .100E-09 .490E-09 .207E-07 .192E+01 .141E+01 1.36
60 .100E-11 .416E-11 .387E-09 .231E+01 .168E+01 1.38

(5.1) SVD of Subsection 5.2, l = 4k, 2,048×2,048 matrix

k σk+1 δdirect δ“fast” tdirect t“fast” tdirect/t“fast”

10 .100E-01 .358E-01 .320E-01 .440E+00 .784E+00 .561
20 .100E-03 .283E-03 .331E-03 .765E+00 .979E+00 .781
30 .100E-05 .403E-05 .495E-05 .114E+01 .136E+01 .838
40 .100E-07 .245E-07 .400E-07 .152E+01 .187E+01 .813
50 .100E-09 .490E-09 .202E-07 .192E+01 .258E+01 .744
60 .100E-11 .416E-11 .296E-09 .231E+01 .332E+01 .696

(5.2) SVD of Subsection 5.2, l = 10k, 2,048×2,048 matrix

Table 5 (See Section 6.)

32

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .100E-01 .358E-01 .954E-01 .405E+00 .714E+00 .567
20 .100E-03 .283E-03 .194E-02 .757E+00 .719E+00 1.05
30 .100E-05 .403E-05 .181E-04 .111E+01 .726E+00 1.52
40 .100E-07 .245E-07 .221E-06 .148E+01 .739E+00 2.00
50 .100E-09 .490E-09 .710E-08 .182E+01 .749E+00 2.43
60 .100E-11 .416E-11 .528E-10 .216E+01 .765E+00 2.83

(6.1) ID of Subsection 5.1 using a DCT, l = k + 10, 2,048×2,048 matrix

k σk+1 δdirect δfast tdirect tfast tdirect/tfast

10 .100E-01 .358E-01 .954E-01 .410E+00 .769E+00 .533
20 .100E-03 .283E-03 .194E-02 .774E+00 .788E+00 .982
30 .100E-05 .403E-05 .181E-04 .114E+01 .808E+00 1.41
40 .100E-07 .245E-07 .221E-06 .153E+01 .847E+00 1.80
50 .100E-09 .490E-09 .710E-08 .192E+01 .894E+00 2.15
60 .100E-11 .416E-11 .528E-10 .230E+01 .946E+00 2.44

(6.2) SVD of Subsection 5.3 using a DCT, l = k+10, 2,048×2,048 matrix

Table 6 (See Section 6.)

k δprev δfast tprev tfast tprev/tfast

500 .501E-01 .728E-02 .241E+04 .394E+03 6.12
525 .463E-01 .463E-02 .243E+04 .428E+03 5.68
550 .275E-01 .395E-02 .250E+04 .451E+03 5.54
575 .195E-06 .551E-07 .264E+04 .494E+03 5.34
600 .430E-14 .105E-14 .275E+04 .528E+03 5.21

Table 7 (See Section 6): ID of Subsection 5.1, l = 4k, 32,768×32,768 matrix

33

References

[1] N. Ailon and B. Chazelle, Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform, SIAM J. Comput., (2007). To appear.

[2] T. F. Chan and P. C. Hansen, Some applications of the rank-revealing QR factor-
ization, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 727–741.

[3] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, On the compres-
sion of low rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.

[4] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Polynomial time algo-
rithm for column-row-based relative-error low-rank matrix approximation, Tech. Rep.
2006-04, DIMACS, March 2006.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland, third ed., 1996.

[6] S. A. Goreinov and E. E. Tyrtyshnikov, The maximal-volume concept in ap-
proximation by low-rank matrices, in Structured Matrices in Mathematics, Computer
Science, and Engineering I: Proceedings of an AMS-IMS-SIAM Joint Summer Research
Conference, University of Colorado, Boulder, June 27–July 1, 1999, V. Olshevsky, ed.,
vol. 280 of Contemporary Mathematics, Providence, RI, 2001, AMS Publications.

[7] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-
revealing QR factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[8] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA,
second ed., 1999.

[9] P.-G. Martinsson, V. Rokhlin, and M. Tygert, On interpolation and integration
in finite-dimensional spaces of bounded functions, Comm. Appl. Math. Comput. Sci., 1
(2006), pp. 133–142.

[10] , A randomized algorithm for the approximation of matrices, Tech. Rep. 1361, Yale
University Department of Computer Science, June 2006.

[11] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes, Cambridge University Press, Cambridge, UK, second ed., 1992.

[12] T. Sarlós, Improved approximation algorithms for large matrices via random projec-
tions, in Proceedings of FOCS 2006, the 47th Annual IEEE Symposium on Foundations
of Computer Science, October 2006.

[13] , Improved approximation algorithms for large matrices via random projections, re-
vised, extended long form. Manuscript in preparation for publication, currently available
at http://www.ilab.sztaki.hu/∼stamas/publications/rp-long.pdf, 2006.

[14] E. E. Tyrtyshnikov, Incomplete cross approximation in the mosaic-skeleton method,
Computing, 64 (2000), pp. 367–380.

34

