YALE UNIVERSITY
Department of Computer Science

EXPRESSIBILITY AND PARALLEL COMPLEXITY

Neil Immerman

YALEU/DCS/TR-546
June 1987
Revised August 1988

Expressibility and Parallel Complexity*

Neil Immerman't

Computer Science Department
Yale University
New Haven, CT 06520

Abstract

We show that the time needed by a concurrent read, concurrent write, par-
allel random access machine (CRAM) to check if an input has a certain
property is the same as the minimal depth of a first-order inductive defini-
tion of the property. This in turn is equal to the number of ‘iterations’ of a
first-order sentence needed to express the property.

The second contribution of this paper is the introduction of a purely syn-
tactic uniformity notion for circuits. We show that an equivalent definition
for the uniform circuit classes AC',i> 1is given by first-order sentences
‘iterated’ log' n times. Similarly, we define uniform ACP to be the first-order
expressible properties (which in turn is equal to constant time on a CRAM
by our main theorem).

A corollary of our main result is a new characterization of the Polynomial-
Time Hierarchy (PH): PH is equal to the set of languages accepted by a
CRAM using exponentially many processors and constant time.

1 Introduction

Parallel time on a random access machine has a surprisingly simple mathe-
matical definition involving well studied objects of mathematical logic. We

*This paper will appear in SIAA Journal of Computing.
tResearch supported by the Mathematical Sciences Research Institute, Berkeley, CA,
and by NSF Grants DCR-8603346 and CCR-8806308.

show that the time needed by a concurrent read, concurrent write, parallel
random access machine (CRAM) to check if an input has a certain property
is the same as the minimal depth of a first-order inductive definition of the
property. This in turn is equal to the number of ‘iterations’ of a first-order
sentence needed to express the property.

We now state our main result. (See Section 2 for relevant definitions. In
particular, the iteration of a first-order sentence is defined in Subsection 2.2,
and the CRAM is defined in Subsection 2.3. The definition of the CRAM
differs from the standard definition of the CRCW PRAM in [23] only in that
a processor may shift a word of local memory by any polynomial number of
bits in unit time. It follows from our results that for parallel time greater
than or equal to logn there is no distinction between the models with and
without the Shift instruction.)

Theorem 1.1 Let S be a set of structures of some vocabulary 7, for ezample:
S s a set of boolean strings, or a set of graphs, etc. For all polynomially
bounded, parallel time constructible t(n), the following are equivalent:

1. S 13 recognizable by a CRAM in parallel time t(n), using polynomially
many processors.

2. There ezists a first-order sentence p such that the propery S for struc-
tures of size at most n is ezpressed by o iterated t(n) times.

3. S is definable as a uniform first-order induction whose depth, for struc-
tures of size n, i3 at most t(n).

For t(n) > logn, the equivalence of (1) and (2) in Theorem 1.1 may also
be obtained by combining a result of Ruzzo and Tompa relating CRAMs
to alternating Turing machines [23, Theorem 3], together with a result of
ours relating alternating Turing machines to first-order expressibility 15,
Theorem B.4]. In order to prove the theorem for t(n) < logn we were forced
to modify the models slightly, adding the Shift operation to the CRAMs
and adding BIT as a new logical relation to our first-order language (see
Section 2). We believe that the naturalness of Theorem 1.1 justifies these
modifications.

This paper is organized as follows. In Section 2 we give all relevant
definitions. In Section 3 we prove our main result, In Section 4 we give a
more detailed analysis of the bounds in Theorem 1.1. We show that the
number of distinct variables in a first-order inductive definition is closely
tied to the number of processors in the corresponding CRAM.

Until now, a principal unaesthetic feature of the theory of complexity
via boolean circuits was that one had resorted to Turing machines to define
the uniformity conditions for circuits [21]. As a corollary to Theorem 1.1,
we obtain a purely syntactic uniformity notion for circuits. In Section 5 we
describe this result as well as other relations between circuits and first-order
complexity.

As another corollary to Theorem 1.1, we present in Section 6 a new
characterization of the Polynomial-Time Hierarchy (PH): PH is equal to the
set of languages recognized by a CRAM using exponentially many processors
and constant time. In Section 7 we give some suggestions for future work in
this area.

2 Background and Definitions
2.1 First-Order Logic

We begin this section by making some precise definitions concerning first-
order logic. For more information see [6].

A vocabulary 7 = (R{'...Ri*,¢c;...c,) is a tuple of relation symbols and
constant symbols. R} is a relation symbol of arity a;. In the sequel
we will usually omit the superscripts and the underlines to improve read-
ability. A finite structure of vocabulary 7 is a tuple, 4 = ({0,1,...,n —
1}, Rf..Rf,cf...c?), consisting of a universe || =n={0,...,n—1} and
relations R{...Rf of arities a;,...,a; on |4 | corresponding to the relation
symbols R7'...R;* of 7, and constants cf...cf from |4 corresponding to the
constant symbols ¢;...c, from 7.

For example, a graph on n vertices, G = ({0...n — 1}, E), is a structure
whose vocabulary 7o = (E?) has a single binary relation symbol. Similarly, a
binary string of length n is a structure § = ({0...n=1}, M) whose vocabulary
71 = (M) consists of a single unary relation symbol. Here the $*h bit of S
is 1iff S = M(i).

Let the symbol ‘<’ denote the usual ordering on the natural numbers. We
will include < as a logical relation in our first-order languages. This seems
necessary in order to simulate machines whose inputs are structures given
in some order. It is convenient to include logical constant symbols, 0,1,...,
refering to the zeroth, first, etc. elements of the universe, respectively. (If
the universe is smaller than a given constant then interpret that constant
as 0.) We also include the logical predicate BIT, where BIT(z,y) holds iff

the zth bit in the binary expansion of y is a one.!

We now define the first-order language L(7) to be the set of formulas
built up from the relation and constant symbols of 7 and the logical relation
and constant symbols, =, <, BIT,0,1,.. ., using logical connectives, A, V, -,
variables, z,y, 2, ..., and quantifiers, V, 3.

We will think of a problem as a set of structures of some vocabulary
7. It suffices to only consider problems on binary strings, but it is more
interesting to be able to talk about other vocabularies, e.g. graph problems,
as well. For definiteness, we will fix a scheme for coding an input structure
as a binary string. If 4 = ({0,1,...,n - 1},Rf...R,f,cl‘...cf), is a structure
of type 7, then A will be encoded as a binary string bin(A) of length I(n) =
n% +-- -4+ n® + rlogn], consisting of one bit for each a;-tuple, potentially
in the relation R;, and [logn] bits to name each constant, c¢;. Thus we
reserve n to indicate the size of the universe of the input structure. I (n),
the length of bin(A), is polynomially related to n, and in the case where 7
consists of a single unary relation - i.e. inputs are binary strings — I(n) = n.

Define the complexity class FO to be the set of all first-order expressible
problems. We will see in Section 5 that FO is a uniform version of the circuit
class AC?. (See also [2] where it is shown that FO is equal to deterministic
log time uniform ACO.)

Example 2.1 An ezample of a first-order ezpressible property 1s addition.?
In order to turn addition into a yes/no question we can let our input have the
vocabulary 7, = (A, B, k) consisting of two unary relations and a constant
symbol. In a structure A of vocabulary 7,, the relations A and B are binary
strings of length n = |4|. We’ll say that 4 satisfies the addition property if
the k'M bit of the sum of A and B is one.

In order to ezpress addition we will first ezpress the carry bit,
CARRY(z) = 3y < z)[A(y)) AB(y) A (Vzy< 2 < z)A(z) v B(2)]
Then with & standing for ezclusive or, we can ezpress PLUS,
PLUS(z) = A(z) ® B(z) ® CARRY(z)

Thus the sentence ezpressing the addition property 1s PLUS(k).

'The relation BIT is crucial for the truth of Theorem 1.1, when t(n) < logn, and for
the plausibility of Definition 5.5.
2This is a standard construction, see e.g. [23].

2.2 Iterating First-Order Sentences

To describe properties that are not in AC?, we need languages that are
more expressive than FO. We now recall the definition of the complexity
classes FO[t(n)]3. Intuitively, FO[t(n)] consists of those problems that may
be described by a first-order sentence ‘iterated t(n) times.’

Let z be a variable and M a quantifier free formula. We will use the
notation (Yz.M)y - read, “for all z such that M, ¥, — to abbreviate
(Vz)(M — %). Similarly we will write (3z.M)y — read, “there exists an
z such that M, ¢,” - to abbreviate (31)(M A). We will call the expres-
sions (Vz.M) and (3z.M) restricted quantifiers. Let a quantifier block be
a finite sequence of restricted quantifers: QB = (Qiz1.M) ... (Qrzk.My).
We will use the notation [QB]' to denote the quantifier block QB repeated
t times. I mean this literally:

[QB]' = QBQBQB---QB

t times

Note that for any quantifier free formulas My, M, ..., M € L(r), and
any ¢ € N, the expression [QB]'Mp is a well formed formula in £(r).

Definition 2.2 Lett: N — N be any function, end let 7 be any vocabulary.
A set C of structures of vocabulary 7 is a member of FO [t(n)] +ff there ezists
a quantifier block QB and a quantifier free formula M, from L(7), such that
if we let pn = [QB)'™My, for n = 1,2,..., then for all structures G of
vocabulary 7 with |G| = n,

GeC & GEe¢n.

A more traditional way to iterate formulas is by making inductive defi-
nitions, [20,16]. Let IND-DEPTH(t(n)] be the set of problems expressible as
a uniform induction that requires depth of recursion at most t(n) for struc-
tures of size n. In [11], Harel and Kozen introduce a programming language
called IND which is closely tied to inductive definitions. They prove that
the execution time for their IND programs is equal to the depth of the in-
ductive definitions that describe the programs’ input output behavior. Let
IND-TIME[t(n)] be the set of languages accepted by IND programs using
O|t(n)] steps for inputs of size n. Then:

*The notation FO[t(n)] was first used in [18]; however, the same classes were defined
in [16] using the notation IQ[t(n)], standing for “iterated queries.” See [19] for a survey
of descriptive complexity.

Fact 2.3 [11] For all t(n),
IND-TIME[t(n)] = IND-DEPTH[t(n)] .

This fact together with Theorem 1.1 shows that there is a simple, high
level programming language for which time corresponds exactly to time
on a CRAM. In the remainder of this paper we write IND[t(n)] to signify
IND-TIME[t(n)] as well as IND-DEPTH]t(n)].

The following fact relates IND[¢(n)] to FO[t(n)]. This fact follows easily
from Moschovakis’ Canonical Form for Positive Formulas, [20].

Fact 2.4 [16, Corollary 5.8], cf. [20] For all t(n),
IND[t(n)] € FO[t(n)] .

(In particular, a property in IND[t(n)] is ezpressible as a FO[t (n)] property
sn which My = false, cf. Definition 2.2.)

Example 2.5 We show how to transfer a logn depth inductive definition

of the transitive closure of a graph to an equivalent FO[log n| definition.
Let E be the edge predicate for a graph G with n vertices. We can

inductively define E*, the reflezive, transitive closure of G, as follows:

E'(z,y) = z2=yVE(z,y) v (3:)(E*(z,2) NE*(2,y)) .

Let Pn(z,y) mean that there is a path of length at most n from z to y.
Then we can rewrite the above definition of E* as:

Pn(x’ y) Ezr=yv E(.’t, y) \ (32)(Pn/2(.’t, Z) A Pn/?(za y)) .
This can be rewritten:
Fa(z,y) = (Y2.M))(32)(Paja(z,2) A Poa(2,9))

where M) = ~(z = yV E(z,y)). Note that there is no free occurrence of the
variable z after the Vz quantifier. Thus in this case (Yz.M))a i3 equivalent
to (M; — a). Nezt,

Pp(z,y) = (Vz2.M;)(32) (Vuv.My) (Paj2(u,v))
where My= (u=zAv=2)V(u=2zAv= y). Now,

Py(z,y) = (Vz.]\[l)(az)(‘v’uv.]\lg)(V:ry.Ma)(P,,/z(z,y))

6

where Mz = (z=uAy=v). Thus,

Po(z,y) = [@BI#"(P(z,y))
where QB = (Vz.M;)(3z)(Vuv.M;)(Vzy.Mzs). Note that

Pi(z,y) = [QB|(false)

It follows that
Pa(z,y) = [QB["*"°5"(false)

and thus E* € FOllogn| as claimed.

2.3 Concurrent Random Access Machines

We define the concurrent random access machine (CRAM) to be essen-
tially the concurrent read, concurrent write parallel random access machine
(CRCW PRAM) described in [23]. A CRAM is a synchronous parallel ma-
chine such that any number of processors may read or write into any word of
global memory at any step. If several processors try to write into the same
word at the same time, then the lowest numbered processor succeeds.? In
addition to assignments, the CRAM instruction set includes addition, sub-
traction, and branch on less than. Each processor also has a local register
containing its processor number.

The difference between the CRAM and the CRCW PRAM described in
[23] is that we also include a Shift instruction. Shift(z,y) causes the word
 to be shifted y bits to the right. Without Shift, CRAM(][t(n)] would be
too weak to simulate FO[t(n)] for ¢(n) < logn. The reason behind the Shift
operation for CRAMs and the corresponding BIT predicate for first-order
logic is that each bit of global memory should be available to every processor
in constant time.

Let CRAM]|t(n)] be the set of problems accepted by a CRAM using
polynomially many processors and time O[t(n)]. Recall that we encode an
input structure 4 = ({0,1,...,n -1}, Rf..Rf,cf...c?), as the binary string
bin(4) of length I(n) = n% + - .. 4 nok 4 r[logn], Where a; is the arity of
the #*P input relation. The input string is placed one bit at a time in the
first I(n) global memory locations.5

*This is the ‘priority write’ model. Our results remain true if instead we use the
‘common write’ model, in which the program guarantees that different values will never
be written to the same location at the same time. See Corollary 3.4.

SWe show in Corollary 3.4 that if placement of the input is varied, e.g. if the first

7

3 Proof of the Main Theorem

Theorem 1.1 follows immediately from three containments: Fact 2.4, and
the following two lemmas:

Lemma 3.1 For any polynomially bounded t(n) we have,

CRAM[t(n)] C INDt(n)]

Proof We want to simulate the computation of a CRAM M. Oninput 4, a
structure of size n, M runs in ¢(n) synchronous steps, using p(n) processors,
for some polynomial p(n). Since the number of processors, the time, and the
memory word size are all polynomially bounded, we need only a constant
number of variables z,,...,z;, each ranging over the n element universe of
A, to name any bit in any register belonging to any processor at any step
of the computation. We can thus define the contents of all the relevant
registers for any processor of M, by induction on the time step.

We now specify the CRAM model more precisely. We may assume that
each processor has a finite set of registers including the following, Proces-
sor: containing the number between 1 and p(n) of the processor, Address:
containing an address of global memory, Contents: containing a word to be
written into or read from global memory, and Program_Counter: containing
the line number of the instruction to be executed next. The instructions to
be simulated are limited to the following:

READ: Read the word of global memory specified by Address into Con-
tents.

WRITE: Write the Contents register into the global memory location
specified by Address.

OP R, Ry: Perform OP on R, and Ry leaving the result in R,. Here OP
may be Add, Subtract, or, Shift.

MOVE R, Ry;: Move R, to Ry.

BLT R L: Branch to line L if the contents of R is less than zero.

I(n)/logn words of memory contain log n bits each of the input, or even if all J (n) bits
are placed in the first word, then all our results remain unchanged. Note that this is
not true of the models used in for example [3]. There processors are assumed to have
unlimited power and thus the partition of the inputs is crucial.

It is straightforward to write a first-order inductive definition for the
relation VALUE(p,1,%,r,b) meaning that bit Z in register r of processor P
Just after step 7 is equal to b. Note that since the number of processors, the
time, and the word size are all polynomially bounded, a constant number of
variables ranging from 0 to n — 1 suffice to specify each of these values.

The inductive definition of the relation VALUE(p,,%,r,b) is a disjunc-
tion depending on the value of 5’s program counter at time I — 1. The most
interesting case is when the instruction to be executed is READ. Here we
simply find the most recent time ¥ < f at which the word specified by p’s
Address register at time 7 was written into, and the lowest numbered pro-
cessor p/ that wrote into this address at time 7. In this way we can access
the answer, namely the Z*M bit of p/s Contents register at time 7.

It remains to check that Addition, Subtaction, BLT, and Shift are first-
order expressible, and that we can express the fact that each processor begins
with its own processor number in its Processor register. Addition was done
in Example 2.1. In a similar way we can express Subtraction, and Less
Than. The main place we need the BIT relation is to express the fact that
the intitial contents of each processor’s Processor register is its processor
number. The relation BIT allows us to translate between variable numbers
and words in memory. Using BIT we can also express addition on variable
numbers and thus express the Shift operation.

Thus we have described an inductive definition of the relation VALUE,
coding M'’s entire computation. Furthermore, one iteration of the definition
occurs for each step of M.) |

Lemma 3.2 For polynomially bounded, and parallel time constructible t(n),

FO[t(n)] € CRAM]t(n)]

Proof Let the FO[t(n)] problem be determined by the following quantifier
free formulas and quantifier block,

Mo, My,..., My, QB= (Qiz,.Mf). o (Qrzi M) .
Our CRAM must test whether an input structure 4 satisfies the sentence,

en = [QBJ(MAL, .

The CRAM will use n* processors and n*~! bits of global memory. Note
that each processor has a number aj ...ax with 0 < a; < n. Using the Shift
operation it can retrieve each of the a; s in constant time.5

The CRAM will evaluate ¢, from right to left, simultaneously for all
values of the variables z,,...,z. For 0 < r<t(n) -k, let,

W;; = (Q,'I,'.]\I,‘) e (kak.A[k)[QB]q]\lo N

wherer=k-(¢g+1)+1—-4. Letzy...%.. -2k be the k — 1-tuple resulting
from z;...z; by removing z;. We will now give a program for the CRAM
which is broken into rounds each consisting of three processor steps such
that:

(*) Just after the r*h round, the contents of memory location a;...4;...a;
is 1 or 0 according as whether 4 k= ¢7(ay,... »@k) oI not.

Note that z; does not occur free in ©h! At the r*P round, processor num-
ber a; ...a; executes the following three instructions according to whether
Qi=3orQ;,=V:

{Qi=3}
1L b—loc(ay...a;4;...az);

2. loc(ay...4;...a;) « 0;
3. if M;(a1,...,ax) and b then loc(ay...q;...a;) «~ 1;

{Qi=V}
1 be—loc(ay...ai4;...az);
2. loc(ay...8;...a;) — 1;
3. if M;(ay,...,a;) and =b then loc(ay...d;...a;) + O;

It is not hard to prove by induction that (*) holds, and thus that the
CRAM simulates the formula. |

Remark 3.3 The proof of Lemma 8.2 provides a very simple network for
stmulating @ FO[t(n)] property. The network has n*=1 bits of global memory
and kn¥ gates, where k is the number of distinct variables in the quantifier

$This is obvious if n is a power of 2. If not, we can just let each processor break its
processor number into k [log n]-tuples of bits. If any of these is greater than or equal to
n, then the processor should do nothing during the entire computation.

10

block. Each gate of the network is connected to two bits of global memory in
a simple connection pattern. The blowup of processors going from CRAM
to FO to CRAM seems large (cf. Corollary 4.1); however, it is plausible
to build first-order networks with billions of processing elements, i.e. gates,
thus accommodating fairly large n and moderately large k.

An immediate corollary of Theorem 1.1 is that the complexity class
CRAM([t(n)] is not affected by minor changes in how the input is arranged,
nor in the global memory word size, nor even by a change in the convention
on how write conflicts are resolved.

Corollary 3.4 For any fucntion t(n), the complezity class CRAM[t(n)] is
not changed if we modify the definition of a CRAM in any consistent com-
bination of the following ways. (By consistent we mean that we don’t allow
input words larger than the global word size, nor larger than the allowable
length of applications of Shift.)

1. Change the input distribution so that either

(a) The entire input is placed in the first word of global memory.

(b) The I(n) bits of input are placed logn bits at a time in the first
I(n)/logn words of global memory.

2. Change the global memory word size so that either

(a) The global word size is one, i.e. words are single bits. (Local reg-
wsters do not have this restriction so that the processor’s number
may be stored and manipulated.)

(b) The global word size is bounded by Ollogn].

8. Modify the Shift operation so that shifts are limited to the mazimum of
the input word size and of the log base two of the number of processors.

4. Remove the polynomial bound on the number of memory locations, thus
allowing an unbounded global memory.

5. Instead of the priority rule for the resolution of write conflicts, adopt
the common write rule in which different processors never write differ-
ent values into the same memory location at a given time step.

Proof The proof is that Lemmas 3.1 and 3.2 still hold with any consistent
set of these modifications. This is immediate for Lemma 3.1. For Lemma
3.2, we must only show that processor number ai...ag still has the power

11

in constant time to evaluate the quantifier free formula M;(ay,...,a;), and
to name the global memory location a;...4;.. .ag, for 1 < 1 < k. Re-
call that we are assuming that the input structure 4 = ({0,1,...,n -
l},Rf...Rj,cf...c:) is coded as a bit string of length I(n) = n" + ... +
n'® + g[logn]. It is clear that all of the consistent modifications, above,
allow processor a;...a; to test in constant time whether or not the rela-
tion R(ty,...,t) holds, where R is an input or logical relation, and ¢; €
{a1,...,ak} U {c;]1 < j < gq). .

4 On the Efficiency of the Simulations

In this section we analyze the proof of Theorem 1.1 in more detail in order
to give the following bounds for translating between CRAM and IND. After
we prove Corollary 4.1, we discuss the cost of the simulation, and how these
bounds can be improved. The proofs in this section involve counting how
many variables are needed in various first-order formulas. This whole section
should be omitted by the casual reader.

Corollary 4.1 Let CRAM]t(n)]-PROC|p(n)] be the complezity class CRAM[t(n)]
restricted to machines using at most O[p(n)] processors. Let IND[t(n)]- VAR[v(n)]
be the complezity class INDI[t(n)] restricted to inductive definitions using at
most v(n) distinct variables. Assume for simplicity that the mazimum size

of a register word, and t(n) are both o[\/n], and that # > 1 s a natural
number. Then,

CRAMt(n)]-PROC[n"]
C IND[t(n)]-VAR[2T + 2]
C CRAMt(n)]-PROC[n?"+?]

Proof We prove these bounds using the following two lemmas.
Lemma 4.2 If the mazimum size of a register word, and t(n) are both

o[\/n], and if M is a CRAM]t(n)]-PROC[n™] machine, then the inductive
definition of VALUE may be written using 27 + 2 variables.

Proof We write out the inductive definition of VALUE in enough detail
to count the number of variables used:

12

~

VALUE(p,t,z,7,b) = ZVIWVSVRVMVBVA.

Where the disjuncts have the following intuitive meanings:

Z: t = 0 and the initial value of r is correct.

W: t # 0 and the instruction just executed is WRITE, and the value of
r is correct, i.e. unchanged unless r is Program_Counter.

S,R,M, B, A: Similarly for SHIFT, READ, MOVE, BLT, and, ADD or
SUBTRACT, respectively.

It suffices to show that each disjunct can be written using the number
of variables claimed. First we consider the disjunct, Z. The only interesting
part of Z is the case where r is ‘Processor’. In this case we use the relation
BIT to say that b = 1iff the z*P bit of pis 1. No extra variables are needed.
Note that the number of free variables in the relation is 7 + 1 because we
may combine the values ¢, z,r, and b into a single variable.

Next we consider the case of Addition. Recall that the main work is to
express the carry bit:

ClA,B](z) = By < 2)[A(W) AB(y) A (V2y < 2 < T)A(2) v B(2)]

This definition uses two extra variables. Thus 7 + 3 < 27 + 2 variables
certainly suffice. The cases S, M, and B are simpler.
The last, and most interesting case is R. Here we must say,

1. The instruction just executed is READ, and,
2. Register r is the Contents register, and,
3. There exists a processor ¢’ and a time t' such that:

(a) t' < t, and,
(b) Address(p/,t') =Address(p, t), and,
(c) VALUE(¢,t, z,7,b), and,

(d) Processor p’ wrote at time #, and,

(e) Forallp” < P/, if p” wrote at time ¢/, then Address(p",t') #Address(7, ')

and,

(f) For all ¢” such that ¢! < ¢” < t and for all p7, if 7" wrote at time
t", then Address(p”,t") #Address(7, t').

13

There is much work to be done. The following general directions suggest
themselves:

1. This paper provides a new way to think about parallel programming.
The programmer provides efficient inductive definitions of the prob-
lem to be solved. Our simulation results then automatically give an
efficient implementation on a CRAM. Much work is needed exploring
whether or not this approach is practical.

2. We have given characterizations of parallel time and number of pro-
cessors in terms of the depth and number of variables in inductive
definitions. One should now develop upper and lower bounds on these
parameters for all sorts of problems. We also feel that the analysis of
the simulation in Section 4 can and should be improved.

3. There are many fascinating questions concerning uniformity and the
power of precomputation. We hope that the notion of syntactic unifor-
mity of circuits will help researchers determine when precomputation/non-
uniformity can help; or, to prove lower bounds on what can be done
by uniform circuits and formulas.

Acknowledgements Thanks to Steve Cook, Steven Lindell, Ruben Michel,
and Larry Ruzzo who contributed comments and corrections to previous
drafts of this paper.

References

[1] David Barrington, “Bounded-Width Polynomial-Size Branching Pro-
grams Recognize Exactly Those Languages in NC!,” 18th ACM STOC
(1986), 1-5.

[2] David Mix Barrington, Neil Immerman, and Howard Straubing, “On
Uniformity Within NC!,” Third Annual Structure in Complezity Theory
Symp. (1988), 47-59.

[3] Paul Beame, “Limits on the Power of Concurrent-Write Paralle] Ma-
chines,” 18th ACM STOC (1986), 169-176.

[4] Ashok Chandra, Larry Stockmeyer and Uzi Vishkin, “Constant Depth
Reducibility,” SIAM J. of Comp. 13, No. 2 (1984), 423-439.

20

[5] Steve Cook, “A Taxonomy of Problems with Fast Parallel Algorithms,”
Information and Control 64 (1985), 2-22.

(6] Herbert Enderton, A Mathematical Introduction to Logic, Academic
Press (1972).

[7] Ron Fagin, “Generalized First-Order Spectra and Polynomial-Time
Recognizable Sets,” in Complezity of Computation, (ed. R. Karp),
SIAM-AMS Proc. 7(1974), 27-41.

[8] Faith Fich, Friedhelm Meyer auf der Heide, Prabhakar Ragde, and Avi
Wigderson, “One, Two, Three, . . ., Infinity: Lower bounds for Parallel
Computation,” 17th ACM STOC Symp. (1985), 48-58.

[9] Faith Fich, Prabhakar Ragde, and Avi Wigderson, “Relations Between
Concurrent- Write Models of Parallel Computation,” Third ACM Symp.
on Principles of Distributed Computing (1984), 179-189.

(10] Merrick Furst, James Saxe, and Mike Sipser, “Parity, Circuits, and the
Polynomial-Time Hierarchy,” 22nd IEEE FOCS Symp.(1981), 260-270.

[11] David Harel and Dexter Kozen, “A Programming Language for the In-
ductive Sets, and Applications,” Ninth ICALP, Springer- Verlag Lecture
Notes in Computer Science 140 (1982).

[12] Johan Hastad, “Almost Optimal Lower Bounds for Small Depth Cir-
cuits,” 18th ACM STOC Symp. (1986), 6-20.

[13] Hong Jia-wei, “On Some Deterministic Space Complexity Problems,”
SIAM J. Comput. 11 (1982), 591-601.

[14] Neil Immerman, “Number of Quantifiers is Better than Number of Tape
Cells,” JCSS 22, No. 3 (1981), 65-72.

[15] Neil Immerman, “Upper and Lower Bounds for First Order Express-
ibility,” JCSS 25, No. 1 (1982), 76-98.

(16] N. Immerman, “Relational Queries Computable in Polynomial Time,”
Information and Control, 68 (1986), 86-104. A preliminary version of
this paper appeared in 14th ACM STOC Symp. (1982), 147-152.

[17] N. Immerman, “Languages That Capture Complexity Classes,” SIAM
J. Comput. 16, No. 4 (1987), 760-778. A preliminary version of this
paper appeared in 15th ACM STOC Symp. (1983), 347-354.

21

[18] Neil Immerman, “Expressibility as a Complexity Measure: Results and
Directions,” Second Structure in Complezity Theory Conf. (1987), 194-
202.

[19] N. Immermén, “Descriptive and Computational Complexity,” to ap-
pear in Proc. AMS Short Course in Computational Complezity Theory
(1988).

[20] Yiannis N, Moschovakis, Elementary Induction on Abstract Structures,
North Holland (1974).

[21] Larry Ruzzo, “On Uniform Circuit Complexity,” J. Comp. Sys. Sci.,
21, No. 2 (1981), 365-383.

[22] Larry Stockmeyer, “The Polynomial-Time Hierarchy,” Theoretical
Comp. Sci. 3 (1977), 1-22.

[23] Larry Stockmeyer and Uzj Vishkin, “Simulation of Parallel Random
Access Machines by Circuits,” S14aa J. of Comp. 13, No. 2 (1984),
409-422, '

[24] Andrew Chi-Chih Yao, “Separating the Polynomial-Time Hierarchy by
Oracles,” 26th IEEE Symp. on Foundations of Comp. Sei, (1985), 1-10.

22

