On the Synthesis and Analysis
of Protection Systems
Lawrence Snyder

Research Report #97

Department of Computer Science
Yale University
New Haven, Connecticut 06520

This work was supported by the Office of Naval Research
under grant N0O0014-75-C-0752.

On the synthesis and analysis of protection systems

Lawrence Snyder
Department of Computer Science
Yale University

10 Hillhouse Avenue
New Haven, Connecticut 06520

Abstract:

The design of a protection system for an operating system is seen
to involﬁe satisfying the competing properties of richness and integrity.
Achieving both requires the interplay of anal?sis‘%nd synthesis. Using
a formal model from the literature, three designs ;ré developed whose

integrity (with the help of the model) can be shown.

ON THE DESIGN AND SYNTHESIS OF PROTECTION SYSTEMS

l. Introduction

In an enumeration of the many properties that a protection system

should have, two distinguish themselves as being especially important:

richness - the property of admitting a complex variety of

sharing relationships,

integrity - the property of guaranteeing that the protection
system cannot be compromised even in the most

hazardous of circumstances.

Both properties are important -- a rich system with dubious integrity is

unacceptable, and vice versa. But how are they both to be attained?

It is a difficult task because the two properties are contfadicting.
For évéry feature, restriction, exception, etc., added to achieve richness
during the synthesis phase of design, a compliéation is introduced into the
analysis phase of validation. We believe that, fraditionally, there has
been too much emphasis on synthesis at the expensé of analeis. This part-
ly explains why clever systems are so often compromised. It is the purpose

of the present report to show how analysis can be used to guide synthesis.

Fifst the theoretical model will be introduced following [1]. The
model is graphical and quite intuitive. In [1] the model was stﬁdied in
some depth and several.important properties were pioved; These are ex-
plained. in seétion 3. Then in section 4 there are presented‘three basic
protection system»desiéns bgsed on the model. Finally, in section 5 the

[

work is discussed together with additional research directions.

2. Graphical Model of The Take-Grant System

In this section the Take-Grant protection model of [1] is described
(with some modifications*). In order to focus on the role that the model
" plays in synthesizing protection systems, the Take-Grant system will be
presented in purely formal (though quite intuitiﬁe) terms in this section
and the interpretation as a protéction model will be postponed until the

next section.

»The state of a Take-Grant Protection system is a directed, edge
labelled graph called a protection graph. There are two types of vertiqes
in the protection graph, subjects and objects. (Notationally, filled cir-
cles, *, will denote subjects, unfilled circles, o, will denote objects,
and crossed circles, %, will denote either subjects or objects.) The

labels on the edges are called rights and are either {t}, {g}, {t,g} where

"t" and "g" are mnemonic for "take" and "grant."T

Example 2.1:

A protection graph with three subjects and three objects.

For those familiar with the model, "t" and "g" labels are used
instead of "r" and "w", respectively. The "call" operation has
been dropped from consideration and "remove" has been weakened,

but not materially..

We will generally elide the braces around sets.

A

protection graph G is modified to G' by means of rewriting rules.

Rules have the form o => B. When & matches some subgraph of G, the rule

can be

a rule

applied to G, producing a new graph G' (the operation of applying

r is written G - G').
r

There are four rewriting rules in the Take-Grant Model:

Take:

Let %, y, and z be three distinct vertices in a protection graph G

such that 2 is a subject. Let there be an edge from x to y labeled

¥ such that "t" € y, and an edge from y to z iabéied o Then the

Grant.:

Create:

take rule defines a new graph G' by adding an edge to the protection
76 9(* /
graph from x to z labeled a. Graphically,

Let x, y, and z be three distinct vertices in a protection graph G
such that x is a subject. Let there be an edge from x to y labeled
y such that "g" ¢ y and an edge from x to z labeled a. The grant

rule defines a new graph G' by adding an edge from y to z labeled a.

Graphically,
o - o .
ﬁ. g T~ g o
X => A\ . Qe
X y z X Y z

Let X be any subject vertex in a protection graph G and let a be
a subset of rights (i.e., a = t, g or tg). Create defines a new
graph G' by adding a new vertex n to the graph and an edge from x

to n labeled a.° Graphically,

*

In the rules, o is a variable representing any of the three

possible labels.

Remove: Let x and y be any distinct vertices in a protection graph G
such that x is a subjec£.~ Let there be an edge from x to y‘
labeled vy, and let o be any subset of rights. Then remove
defines a new graph G' by deleting the o labels from y. If

Y becomes empty as a result, the edge itself is deleted.

Graphically,
) Y Y-a
— WK =D e N
X Y X Yy

Notice that in the case of take and grant if the edge which is
to be added already exists, the label o is simply unioned with

the label presently assigned to the edge.

Example 2.2: Let G be

4
L,
o
y
D

then
G X
. take
g9
r
G x Py tg \{ . t No
rant
g g g
g

tg t
G { % o »
create t
subject t g B J
[o
n
: b4 Yy t
remove tg
g9 g

We say that two verticés, p and q, are connected if there is path betwéen
Vthem without reéard td directi;;;iity. The vertices p and g are

'éubject connected.if'they are connected by a path whose vertices are only
subjects. We say that for vertices p and q of graph G and o a label then

pcan a q means that there exists a sequence of graphs G ,...,Gn such

0’%
that G = GO p'Gl - G2 [Gn and in Gn there is an edge from p to g

with label a.

Theorem 2.1 [1]: Let p, q and r be subject vertices in a protection graph
such that there is an edge from r to g labeled a. Then p can o g if p and

g are subject connected.
The proof is given in [2]{ an example should illustrate the result.

. _
Example 2.3: p can take g

t g tg . t g tg
- : P - 3e& «’ ¢ g
create ‘ :[N
. e '

tg

* . . -
Here dashed lines are used as a visual aid to indicate the added edge.

. t g tg
l————,-'————- p e —eb——o p s q
grant PR e
[S—
tg
t g9 tg
"__-_' p ¢ 75 4?.< q
_take ty N
) t .
e ®
. tg
t NJL d £ tg
b e 79 tg < - q
take N
. \ t t
g b .
tg
& ’ t N et £
t o g tg™
2. ol
!" - b ,‘YT\ g
grant
£ t
. g °
tg

- The remainder of this section may be skipped on first reading -

A plock in a protection graph G is any maximal .subject connected subgraph.

Let p and g be subjects and x .,xn {(n2l) be objects such that

170

p directly connected to Xy

x, directly connected to x,
i . i+l

X directly connected to q,

then p,xl,xz,...,xn,q is a path. With each such path associate a word

over the alphabet

> > < <«
{t,g:t,g}

letters correspond to edge labels in the obvious way, e.g., °

2> 0

. ->
is represented by t, and e t .t SOAPL B tg

e is a path associated
with the two wordS'% % S % and % T 3 3.

Let E be the union of the regular languages defined by

~—~
¥
~
*
a4
-+

¥ EE+
ot ot
-

where A = AA*., A bridge between two blocks exists if from some subject

p in one block there is a path with associated word in E to subject g in

the. other block.

Theorem 2.2 [2]: Let G be a protection gfaph, p and g and r subjects such
that there is an edge from r to g with label o. Then p can o g if and

only if there exists a sequence of blocks B_,...,B

K with p in B

and q in

1 1

Bk and for i=l,...,i-1 there is a bridge from Bi to Bi+l'

Notice that when k=1, theorem 2.2 strengthens theorem 2.1 to be "if

and only if."

3. Interpretation of the Take-Grant Model

The development in the last section was presented in graph-theoretic
terms and would be valid in any interpretation of letters. Our goal here

is to interpret the letters in protection terms.

It is assumed that the protection system is a logically separate
entity from the 6perating system "supervisor" (and thus the supervisor is
Subject to its limitations like any other’process).* In particular, the
independence of fhe prbteétion sYstem allows the userlto query the system
himself for aﬁ audit to verify that certain protection conditions hold.
The protection graph is a description of the currently éxtant protection
relationships. Thus, the protection reiationships among systems entitiés
can be éhanged'only by the fbﬁr rules. The subjects are generally thought
to be "user processes" or components that are "active" from a protection |
point of Qiew, whi}gﬁ;he objects are thought of as files or processes
"known" to be Securé. When a subject "applies" a rule (notice thaﬁ only
subjects can "apply" the rules) it is requesting a modificatian of the
protection state. Take causes a user to acquire a new right over some
systems éntity while grant gives some right éway. Create enables new pro-
cesses and fiies to have their protection configuration added to the system

structure while remove éliminates rights.
Several important fécts should be noted about the system:

(3.1) a. take and grant do not create any new rights -- they merely

* .
Here operating system is the totality of the non-user programs

while "supervisor" refers to the monitor program.

share existing rights.
b. rights, once removed, can never again be restored.

c. rights, once granted, can never be recovered (i.e., once
rights are granted away, they can be distributed by the

recipient without consulting the grantor).

In addition to these obvious properties of the model, the two theorems

- give further information about what is possible in the Take-Grant systems.
Specifically, theorem 2.1 can be interpreted as saying:

"Given a collection of users that are connected, if some
user has a particular right over another user, then every

user can acquire that right."

This result suggests, but by no means proves (see below), that the Take-
Grant system is very weak. Afte; all, how can there be any sharing among
users if everyone can potentially get the objects that one usef inteﬁded
for another? To be safe it appears that users must be unconnected. More-
over, the second theorem does not give much hope, since it implies that in
order to "buffer" against some unwanted sécurity leaks there must be at
least £wo objects separating the various user blocks. But once-again it is
not‘possible to share without the potential of having eveyone acquiring the
rights. The Take-Grant System may be an analyzable system, but it doesn't

appear to be rich!

It would be premature to dismiss the system as being too weak. The
theorems indicate what can happen and what cannot happen. In the former

case, the proofs of the theorems tell how various rights can be acquired

- 10 -

when they can be and this is the key to designing a richer system than
would appear possible. This will be shown in the next section. With
the analysis at hand, it is possible to know the consequences on system.

integrity of design choices.

4. Take-Grant Systems Designs

In this section, three designs will be presented based on the Take-
Grant model. The focus is on understanding how rich each design is (i.e.,
what information is protected and what is exposed) by employing the analysis

of section 2 together with the interpretation of section 3.

As indicated in the last section, the operating system supervisor is
distinct from the protection sysﬁem and is thus treated just like any
other subject in the system. Of course, it does have a special‘role of
joininq new users to the system, managing library programs, etc., so con-
siderable interest will be directed toward understanding how it might per-
form these functions. Accordingly, the initial éonfiguration and the

protocol followed by the operating system will be of crucial importance.

4.1 General form of user processes

Noimally, a user x will be described by the protection subgraph

X

©
tg :
t
Aéwg
o o Y O

assuming that no sharing is currently active. Here X is the user and

the objects are files. To create a subprocess y o operate on two files

- 11 -

a and b, the user simply peffdrms the protection functions

t%z/gl tg create tg N\ tg
subject y tglt

with tg y a b c

I | x
|

grant y take a tg / tg
t

250

y ta b ¢

ete

! grant y take b

Such a user is called a greedy user, since he does not share.

A second general user form achievable in the model are the project
users, used, for example, by a group jointly writing a compiler. Here
x is the project leadér (created by the system) while y and z are project

workers (created by the project leader) and the graphical representation is

where y and z have created their own files, as does x. . Of course, y and
z's files should be generally available to all who are working on the pro-
ject, and the leader enables mutual access by granting y and z take rights

over each others' files.

- 12 -

With a take y can access z's files and vice versa. Other general user

structures can obviously be envisioned, e.g., instructor - teaching assis-

tant - students, and the reader is invited to design them.

4.2 Theft in the take-grant systeﬁ

Notice that according to theorem 2.2 y can take rights to ¢ in both
the greedy user and project user structures. Does this mean that y can
take control of a file that x wants to keep secure? Emphatically ﬁot! The
reason is that y cannot take control of c¢ without x giving the rights away.
Hence, if x wishes to keep it secure, x can choose to do so. This distinc-
tion between what can happen and what might reasonable take place is ab-
solutely crucial to assessing the utility of the take-grant system. It can

be summarized as follows:

Theorem 2.2 defines exactly the protection relations
achievable in an arbitrary state by means (if necessary)
of the combined effect of all system subjects. A max-
imally rich design with the integrity property restricts
the achievable relations to those in which the creator -

of the information must participate in its dissemination.

With this distinction in mind, various systems designs may now be considered.

We avoid .creating arbitrary states and focus instead on "controlling" system

’

growth.

- 13 -

The designs depend on a simple fact of the Take-Grant Model:

If x is a subject, x has no incoming edge labeled "t"
of "tg", and if the rights to any subject or object
created by x can be acquired by some other subject or:
object y, then y can acquire the rights only if x (ini-

tially) grants the rights away.

Thus, subjects satisfying the "no incoming take" requirement can control
what they create. The "initially" caveat is necessary by 3.lc since once

" control is relinquished anything may happen.

In each design the operating system supervisor is the initial subjsct
in the system together with its "service objects", i.e., library files, -etc.

Thus each of the following systems has as its initial configuration

tg tg tg

where s is the operating system supervisor and the objedts are the "service
objects." Notice that no edges are incoming for s, so none will ever be
introduced (by theorem 2.2), so no user will be able to take from the super-

visor.

4.3 Model 1 - Operating.system as communications agent

In this design the supervisor communicates with‘thé systems users by
" means of an object ({thought of, possibly, as a buffer). The users commun-
icate with one another by requesting the'operating‘system supervisor to

act as intermediary.

- 14 -

The protocol for introducing a new user x to the system is:

a. create subject x with g
b. create object b with tg -- this is the buffer
c. grant x tg to b

d. delete g from x.

Graphically, a system with one user, x, can have a new user x' added as

follws:
tg -
a
tg
b
tg
X
[
b
'_

- 15 -

</

ob!

of Ve

X o X

Notice that the user must trust the supervisor not to perférm step (a)
with grant and take and then to retain the take fight.since this would
enable the supervisor to take anything created by the user. But if the
~user requests an audit from the protection system as its first act of
business, it can be verified that no such‘rights exist. Notice that no
arrows are incoming to a user so it can establish a subsystem with‘the
same features as the overall system -- i.e., the user acts as supervisor

to its subordinates.

Given the configuration (when the service objects have been elided)

. tg tg

X can be giveﬁ rights to c¢' using the following protocols.

. subject x : subject s subject x'

a create object d with tg

- 16 -

subject x ' subject s subject x'

b grant "tg" tod to b

c . take "tg" to d from b

d : grant "tg" to d to b'

e ' delete "tg" to 4 .take "tg" to 4 from b'
£ | ' - grant "t" to c' to d

g take "t" to c¢' from 4

Here d acts as a receptical for the data.
In step e the operating system yields its right to possibly taking the
' data and prior to step f, a paranoid x' could request an audit to verify that

s yields its rights and that the others have followed the protocol.

Whether or not this design is adequate is dependent on the system's
requirements -- a question that cannot be answered here. However, it should
be noted that with the supervisor as intermediary there could be a lot of

traffic. Thus, in an effort to reduce this, a second design is considered.

4.4 Model 2 - No agent

Here the operating'system supervisor sets up a buffer (such as b in
ﬁodel 1) between each user pair. Then the sharing’responsiﬁilities are-
placed 6n the users rather than the supervisor. 1In addition, the supef—
visor must retain grant rights over all of the usgrs‘in.order to.establish

the communication.

The protocol for introducing new users assuming x reeesX already

1

exists is: -

- 17 -

a. create subject y with "g"

b. create object b1 with "tg"
c. grant “"tg" to b1 toy
" "
d. grant "tg" to b1 to *l
e. delete "tg" to b1

. Ccreate object bn with'"tg“
‘'g. grant "tg" to bn toy

" "
h. grant "tg" to bn to xn

i. delete "tg" to bn

The following configuration results when y is added and Xy and X, exist.

Communication among users is a simple task and is left as an exercise.

The design may reduce the variable cast by eliminating communication
traffic, but it raises the overhead of the Supervisor to be proportional
to the number of users in the system. Moreover, the protection system is
swamped with information. If modest sharing among processes is anticipated,

model 3 might be preferred.

?

- 18 -

4.5 Model 3 - The supervisor as communications linkage agent

The obvious solution to the shortcomings of Models 1 and 2 is to
combine the features -- i.e., the supervisor sets up communication buffers
on demand. Thus, the supervisor's work is proportional to the number of

users sharing rather than the amount of sharing. Also, only those links

Jthat are needed are created.

The user creation protocol for user x is simply
a. create subject x with "g"

when sharing between subjects x and y is required, the protocol for the

supervisor is

a. create object b with "tg"
b. grant "tg" to be to x
¢c. grant "tg" to b to y

d. delete "tg" to b.

A sample configuration among four users with two of them sharing might be:

-

The communication protocol for éhe users is obviou;. Notice also that the
users mith reques£ an audit oﬁce the object b has been created. Moreover,
in this échgme (and in the other models as well) any user can decide to
isolate himself simply by performing delete. But by 3.1lb, he does so in

model 1 at the risk of perpetual isolation.

-19-

5. Discussion

The three models in the last section do not exhaust the
possible designs, nor do they represent necessarily good désigns._ The
appropriateness of any particular design is contingent bn the system's
' réquirements and these are for the designer to assess. They do show

some alternatives with a certain degree of richness.

The point to be émphasiZed; hqwever, is that the formal Take
Grant Model provides a means of guiding the synthesis of a design and
it enables analysis of the result. For example, in the forgoing models
no user is ever alloﬁed by the operating systems supervisor to have
an incoming edge labeled by t. since this wouldlallow the potential of
having rights taken without the user;s parﬁicipation. Should a user
decide that it desires such rightg over its own subsystems, (i.e. the
ability to steal), then it can create them in this manner. If it is
less interventionist than that it could create subSystems afte; models
1-3. 1In any case the fact that the system has been analyzed and
characterized enables everyone to know the potential consequences of

their actions.

. Finally, it should be noted that the Take-Grant quelfis not
necessary being advocated here, although it does appear to be useful.
Whét is beiné'advocated is the use of some formal model in which
information such as tﬁat embodied in Théorems 2.1 and‘2L2 is known.

" This seems the only possible way to achieve integrity.

Accordingly, as future research directions the folldwing can be

suggested:

-20-

Assess the designs discribed here from a richness and an
efficiency of implementation viewéoint

Find alternative designs withih the Take Grant Model to achieve
even greater richness

Find extensions to the Take Grant Model which are more expressive
with a greater number of rights and/or rules.

Fiﬁd alternatives to the Take Grant Model to remedy problems not

curable in the forgoing approaches.

-21~

Reference

1. A. K. Jones, R. J. Lipton and L. Snyder. A linear time algorithm

for deciding security. Proceedings of the 17th FOCS (1976).

