Yale University
Department of Computer Science

Optimum Broadcasting and
Personalized Communication in Hypercubes

S. Lennart Johnsson and Ching-Tien Ho

YALEU/DCS/TR-610
December 1987

This work has been supported in part by the Office of Naval Research under
Contracts N00014-84-K-0043 and N00014-86-K-0564. Approved for public re-
lease: distribution is unlimited.

1 A revised edition of TR-500. To appear in IEEE Transactions on Computers.




Optimum Broadcasting and
Personalized Communication in HypercubesT

S. Lennart Johnsson and Ching-Tien Ho
Departments of Computer Science
Yale University
New Haven, CT 06520

Abstract. Effective utilization of communication resources is crucial for good overall performance
in highly concurrent systems. In this paper we address four different communication problems in
Boolean n-cube configured multiprocessors: (1) one-to-all broadcasting: distribution of common
data from a single source to all other nodes; (2) one-to-all personalized communication: a single
node sending unique data to all other nodes; (3) all-to-all broadcasting: distribution of common
data from each node to all other nodes; and (4) all-to-all personalized communication: each node
sending a unique piece of information to every other node. Three new communication graphs for
the Boolean n-cube are proposed for the routing, and scheduling disciplines provably optimum
within a small constant factor proposed. One of the new communication graphs consists of n
edge-disjoint spanning binomial trees, and offers optimal communication for case 1; a speed-
up with a factor of n over the spanning binomial tree for large data volumes. The other two
new communication graphs are a balanced spanning tree, and a graph composed of n rotated
spanning binomial trees. With appropriate scheduling and concurrent communication on all
ports of every processor, routings based on these two communication graphs offer a speed-up of
up to %, 3 and O(y/n) over the routings based on the spanning binomial tree for cases 2, 3 and
4 respectively. All three new spanning graphs offer optimal communication times for cases 2, 3
and 4 and concurrent communication on all ports of every processor. The graph consisting of n
edge-disjoint spanning trees offers graceful degradation of performance under faulty conditions.
Timing models and complexity analysis have been verified by experiments on a Boolean cube
configured multiprocessor.

1 Introduction

In this paper we investigate broadcasting and personalized communication on Boolean n-cube
configured ensemble architectures. In broadcasting, a data set is copied from one node to all
other nodes, or a subset thereof. In personalized communication, a node sends a unique data
set to all other nodes, or a subset thereof. We consider broadcasting from a single source to
all other nodes, one-to-all broadcasting, and concurrent broadcasting from all nodes to all other
nodes, or all-to-all broadcasting. Broadcasting is used in a variety of linear algebra algorithms
[10,17,19] such as matrix-vector multiplication, matrix-matrix multiplication, LU-factorization,
and Householder transformations. It is also used in data base queries and transitive closure

Rl A short version of this paper received the “Outstanding Paper Award” at the 1986 International Conference
on Parallel Processing.



algorithms [4]. The reverse of the broadcasting operation is reduction, in which the data set is
reduced by applying operators such as addition/subtraction or max/min.

For personalized communication we consider one-to-all personalized communication and all-
to-all personalized communication. Fundamentally, the difference between broadcasting and per-
sonalized communication is that in the latter no replication/reduction of data takes place. The
bandwidth requirement is highest at the root and is reduced monotonically towards the leaves.
Personalized communication is used, for instance, in transposing a matrix, and the conversion
between different data structures [17,22]. Matrix transposition is useful in the solution of tridi-
agonal systems on Boolean cubes for certain combinations of machine characteristics [20,23], and
for matrix-vector and matrix-matrix [21] multiplications.

For single source broadcasting and personalized communication a one-to-all communication
graph is required. Graphs of minimum height have minimum propagation time which is the
overriding concern for small data volumes, or a high overhead for each communication action.
For large data volumes it is important to use the bandwidth of a Boolean cube effectively, in
particular, if each processor is able to communicate on all its ports concurrently. We propose
three new spanning graphs for Boolean n-cubes of N = 2" nodes: one consisting of n edge-disjoint
binomial trees (nESBT); one that consists of n rotated spanning binomial trees (nRSBT); and
one balanced tree (SBnT), i.e., a tree with fanout n at the root and approximately % nodes in each
subtree. We prove some of the critical topological properties of the new one-to-all communication
graphs, and compare them with Hamiltonian paths and binomial tree embeddings. For each of

the communications we consider, we prove the lower bounds in Table 1.

| Comm. model | Communication task | Lower bound |
| One-to-all broadcasting max((M +n — 1)t.,n7)
one-port One-to-all personalized comm. | max{{N — 1)Mi,, nr
All-to-all broadcasting max{(N — 1)Mt,,nr)
All-to-all personalized comm. max( 24t nr)
One-to-all broadcasting max({¥ + n — 1}, nr)
n-port One-to-all personalized comm. max( T 0r)
All-to-all broadcasting max(Z—0M; )
All-to-all personalized comm. max(Z¢,, nr)

Table 1: Lower bounds for some Boolean cube communications.

We generalize the one-to-all communications to all-to-all communications and study the in-
terleaving of communications from different sources by defining all-to-all communication graphs
as the union of one-to-all communication graphs. We define scheduling disciplines for the four
different communications as follows: (1) one-to-all broadcasting; (2) personalized communication;
(3) all-to-all broadcasting; and (4) personalized communication. We show that for communication
restricted to one port at-a-time, our spanning binomial tree scheduling results in communication
times within a factor of two of the best known lower bounds for communications 2, 3, and 4. For
case 1, the scheduling we define for the n edge-disjoint spanning binomial trees completes within
a factor of four of the best known lower bound, also for concurrent communication on all ports.
For concurrent communication and one-to-all personalized communication the schedules for both
the n edge-disjoint and the rotated binomial trees are of optimal order, as are the schedules for
the balanced graph. These graphs also yield all-to-all communication within a factor of two of
the lower bound for arbitrary cube sizes and data volumes, except for the nESBT graph which
allows optimum scheduling within a factor of two only asymptotically, Table 16.



Communication in Boolean cubes has recently received significant interest due to the success
of the Caltech Cosmic Cube project [30] and commercially available Boolean cube configured
concurrent processors (from Intel, NCUBE[12], and Ametek, and cube-like architectures from
Floating-Point Systems[11] and Thinking Machines Corp. [13]). Embedding of complete binary
trees is treated in [33,17,29,6,3]. Wu [33] also discusses the embedding of k-ary trees. Embedding
of arbitrary binary trees is discussed in [3] and improved in [2]. Efficient routing using randomiza-
tion for arbitrary permutations has been suggested by Valiant et al. [32]. Our algorithms attain
a speed-up of up to a factor of n for case 1 with one-port and n-port communication, and cases 2
and 4 with n-port communication over the best previously known algorithms [28]. For case 3 and
n-port communication, the improvement is by a constant factor. Communication on hypercubes
have also been studied independently by Fox et al. [8] and Stout et al. [31]. For case 1, the best
algorithm in (8] is about a factor of two slower than the best algorithm presented here and in
[14]. The best algorithm in [31] requires one less routing cycle. The nRSBT routing [24] for cases
2, 3 and 4 with n-port communication was also discovered independently by Stout. However, the
SBnT routing [14] described here performs better, or as well as the nRSBT routing. The nESBT
routing degrades gracefully under faulty conditions. The analysis is compared with experimental
data. ‘
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The outline of the paper is as follows. Notations, definitions, and general graph properties
used throughout the paper are introduced in section 2. In section 3, one-to-all communication
graphs are defined and characterized. Scheduling disciplines and associated complexity estimates
are given in section 4 for one-to-all broadcasting; in section 5 for one-to-all personalized com-
munication; in section 6 for all-to-all broadcasting; and in section 7 for all-to-all personalized
commaunication. Section 8 presents implementation results for some of the communication algo-
rithms on the Intel iPSC. Conclusion follows in section 9.

2 Preliminaries

In the following, node ¢ has address (f,—1fn—2...%0), and node s has address (sp—19p-2...30).
The bit-wise ezclusive-or operation is denoted @, and throughout the paper 1 @ s = ¢ =
(en—16n-2 -..¢c0) where cm = 1 @ Sy. c is the relative address of node ¢ with respect to node
8. Address bits are numbered from 0 through n — 1 with the lowest order bit being the 0f*
bit. The m* bit corresponds to the m** dimension in a Boolean space. Caligraphic letters are
used for sets. The set of node addresses is N = {0,1,..., N — 1}, and the set of dimensions is
D={0,1,...,n —1}. |$| is used to denote the cardinality of a set S. d or m is used to denote
an arbitrary dimension, d,m € D.

Definition 1 The Hamming distance between a pair of binary numbers, or nodes, ¢ and j is
Haemming(i,7) = 01 (i © 7m)-

Definition 2 A Boolean n-cube is a graph B = (V, £B) such that V = N and €8 = {G,Nlies=
2™,YVm € D,Vi,5j € N}. An edge (i,7) such that 1 ® § = 2™ is in dimension m, and nodes § and
7 are connected through the m®® port.

An edge (1,7) is directed from node 1 to node j, and of unit length, i.e., Hamming(i,5) = 1.
It is a 0 — 1 edge if the bit that differs in 1 and j is zero in 1; otherwise, it isa 1 — 0 edge. In a
directed graph all edges are directed. A node with no edges directed to it is a root (source) node,
and a node with no edges directed away from it is a leaf (sink) node. A node that is neither a
leaf node nor a root node is an internal node. If (4, 7) is a directed edge, then node 1 is the parent
of node 7, and j is the chsld of 1.



Lemma 1 [18,29] A Boolean n-cube has N = 2" nodes, diameter n, (7) nodes at Hamming
distance z from a given node, and n edge-disjoint paths between any pair of nodes, ¢ and j. Of
these n paths, Hamming(s,7) are of length Hamming(¢,7) and n — Hamming(i, j) paths are of
length Hamming(¢, 7) + 2. Every node has n edges directed to it, and n edges directed away from
it. The total number of (directed) communication links is nN.

Definition 3 With Rotation of a node we mean a right cyclic rotation of its address, Ro(i) =
(fofn—1...9291). With Rotation of a graph G(V,€) we mean a graph Ro(G(V,€)) = G(Ro(YV),
Ro(£)), where Ro(V) = {Ro(s)|Vi € V} and Ro(€) = {(Ro(%), Ro(7))|V(¢,7) € £€}. Moreover,
Ro™! is a left rotation and Ro* = Roo Ro*~! for all k.

The right rotation operation is also known as an unshuffle operation and the left rotation as
a shuffle operation.

Definition 4 With Reflection of a node we mean a bit-reversal of its address, Re(t) = (of1...{n-2
in—1). With Reflection of a graph G(V,€) we mean a graph Re(G(V,£)) = G(Re(V), Re(£)),
where Re(V) = {Re(1)|Vi € V} and Re(€) = {(Re(¢), Re(5))|V(¢,7) € £}.
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Definition 5 With Translation of a node i by s we mean a bit-wise exclusive-or of the ad-
dresses, Tr(s,s) = c. With Translation of a graph G(V,€) with respect to node s, we mean a
graph Tr(s,G(V,€)) = G(Tr(s,V),Tr(s,)), where T'r(s, V) = {Tr(s,i)|Vi € V} and Tr(s, £) =
{(Tr(s,4),Tr(s,9)|V(,5) € €}.

Lemma 2 Rotations, Reflections, and Translations of a graph preserves Hamming distance
between nodes. The Rotation operation Ro* maps every edge in dimension d to dimension
(d — k) mod n, the Reflection operation maps every edge in dimension d to dimension n — 1 — d,
and the Translation operation preserves the dimension of every edge. Rotation and Reflection
preserves the direction of every edge. Translation reverses the direction of all edges in the dimen-
sions for which s,, =1, m e D.

Corollary 1 The topology of a graph remains unchanged under Rotation, Reflection, and Trans-
lation.

Definition 6 For a binary number i the Period of {, P({) = minmso Ro™(f) = i. A binary
number ¢ is eyelic if P(1) < n; and non-cyclic, otherwise. A cyclic node is a node with cyclic
relative address.

The period of the number (011011) is 3. A cyclic node is defined only when the source node
is given. Node (001000) is cyclic with respect to the source node (000001).

Definition 7 A Spanning Tree T‘d(s) rooted at node s of a Boolean cube is a tree containing
all the nodes of the Boolean cube. id is used to identify different spanning trees. T%(s) =
Tr(s, T"4(0)).

Definition 8 For the Boolean n-cube a one-to-all communication graph, o-graph, with source
node s is a connected, directed graph G*¢(s) = T'r(s,G'%(0)) where G*¢(0) is either a span-
ning tree, G'¢(0) = T"4(0), or a composition of n distinctly rotated spanning trees, G*(0) =
Uaep Ro%(T#(0)). The weight of every edge in an o-graph is 1 if the graph is a tree; and 1,
otherwise. id' identifies the generating spanning tree for the o-graph.



The weight % is introduced to account for the data to be communicated being split into n
pieces for an o-graph composed of n spanning trees. There exist n paths from the root to any
other node. If no two edges of T%%(s) and T"% (s) are mapped to the same cube edge Vz,y € D,
z # y, then the paths of the o-graph are edge-disjoint, and there is no contention problem.

The root of a spanning tree has level 0. The node { in a spanning tree has a level which is
one more than the level of its parent. The height h of a tree is the largest level of all the nodes.

Definition 9 For an o-graph G*¢, the total weight of the edges in dimension d between levels [
and I + 1 is denoted €'%(d,!), and the total weight of edges in dimension d is E*4(d).

Lemma 3 Given an o-graph G'4(s) = T'r(s,G'4(0)) where G'4(0) = Ugep Ro%(T*¥(0)), then,
Ei(d) = B=1 and €4(d, 1) = L T4ep €4 (d,0).

Proof: The lemma follows from definition 9 and the rotation property in lemma 2. I

We define three basic spanning trees: a Hamiltonian path, TH, a Spanning Binomial Tree,
~ T5BT  and a Spanning Balanced n-Tree, TSB"T . These trees are used to form composition graphs
that provide multiple paths (not necessarily edge-disjoint) to all other nodes.

For the definition/implementation of 0-graphs we use distributed algorithms that for any node
computes the addresses of its set of children nodes, if any, and the address of the parent node,
except for the root node. A node has one parent and a set of children nodes for each spanning
tree used for the composition.

Definition 10 The childrenid(i, s, k) function generates the set of children addresses of node
in the k** spanning tree of G'4(s). The parent'®(i,s, k) function generates the address of the
parent of node ¢ in the k*» spanning tree of G'4(s). For the G*¢ being a spanning tree we omit
the last parameter.

Definition 11 A greedy spanning tree rooted at node s of a Boolean n-cube is a spanning tree
such that Vi € N, the level of node ¢ is Hamming(s,s). A greedy o-graph of a Boolean n-cube is
a composition of greedy spanning trees.

Lemma 4 A greedy o-graph contains only 0 — 1 edges “relative” to the root.

Lemma 5 A spanning tree is greedy iff |{i| Hamming(i,s) = I}| = (]). A greedy o-graph is
acyclic and of minimal height.

Corollary 2 If G*¢(0) = Ugep Ro?(T"¢(0)), and T*? is greedy, then *(d,l) = (MR

Lemma 5 follows from definition 11 and lemma 1. Corollary 2 follows from lemmas 3 and 5.

Note that an o-graph of minimum height is not necessarily a greedy o-graph. In all-to-all
personalized communication only greedy o-graphs have scheduling disciplines that accomplishes
minimal data transfer time.

Definition 12 In one-port communication a processor can only send and receive on one of its
ports at any given time. The port on which a processor sends and receives can be different. In
n-port communication a processor can communicate on all its ports concurrently.



We also assume that there is an overhead, start-up time 7, associated with each communication
of B elements, each of which require a transfer time t.. B,y; denotes an optimal packet size. For
the analysis it is convenient to assume that communication takes place during distinct time
intervals. The duration of a Routing Cycle is r + Bt.. Routing cycles are labeled from 0.

For Broadcasting the data is replicated |children'd(i, s, k)| times in node # for spanning tree
k of the o-graph G'%(s). With n-port communication, and negligible time for replication, all
ports are scheduled concurrently. With one-port communication the order of communications on
different ports is important.

In Personalized Communication the source node sends a unique message to every other node.
An internal node needs to receive and forward all the data for every node of the subtree of which
it is a root. The ordering of data for a port is important for the communication time both for
one-port and n-port communication.

The Scheduling Discipline defines the communication order for each port, and the order be-
tween ports for every non-leaf node. We assume the same data independent scheduling discipline
for every node. The scheduling disciplines are completely specified later.

Definition 13 In a reverse-breadth-first scheduling discipline for one-to-all personalized commu-
nication based on an o-graph of height h, the root sends out the data for the nodes at level h — p
" during the p** cycle, 0 < p < h. The data received by an internal node is propagated to the
next level during the next cycle, if the data is not destined for the node itself. In a postorder [1]
scheduling discipline each node sends out the entire data set to each of its children nodes before
accepting its own data.

The analysis of the complexity of the communication algorithms is considerably simplified
for n-port communication, if only the subtree with the maximum number of nodes need to be
considered. The following lemma guarantees that this is the case, if the subtree with the maximum
number of nodes also has the maximum height.

Lemma 6 Given a spanning tree, let ¢*%(¢,z) be the number of nodes at distance z from node
i in the subtree rooted at node i. If ¢*4(i, z) > ¢*(4, z) for any child node j of node 3, then the
data transfer time of n-port one-to-all personalized communication based on reverse-breadth-first
ordering is dominated by the data transfer over the edges from the root.

Proof: The lemma follows from the fact that with reverse-breadth-first scheduling, the propaga-
tion time for the internal nodes is at most the same as the transmission time for the root during
each routing cycle. |

Definition 14 An all-to-all communication graph, a-graph, G*4(x) = U,ey G*4(s).

The quantities v*¢(d,!) and u*4(d,l) defined next are useful in deriving the time complexity
of all-to-all personalized communication for the a-graph.

Definition 15 Define v*%(d,!) of an o-graph as the total weight of all edges within all subtrees
rooted at level [ + 1 of all spanning trees with subtree roots connected to a parent node through
an edge in dimension d, inclusive of the edge to the parent node. Let S = {jlj € V,(s,5) €
£% and 1 @ j = 2%}. Define u*4(d,l) to be the total weight of edges terminating on all nodes k
such that k is a descendent of j at distance I, Vj € S¥.

Lemma 7 v*4(d,l) = u*¥(d,l) = Th2} eid(d,z) = L T A 1 S yep 69 (d,2), Vi€ [0,h - 1], d € D

z=l

for an o-graph G*4(0) = Uzep Ro%(T*¥ (0)), where h is the height of T%¢'.



Proof: From the n distinct rotations and lemma 2, it follows that v*¢(d,l) = 1x (the sum of
the number of nodes at levels z, I + 1 < z < k) of T°%". Similarly, u*¢(d,!) = Lx (the sum of the
number of nodes at levels z, | + 1 < z < k) of T*¢'. By lemma 3, e'd(d,l) = %x (the number of
edges between levels [ and I+ 1) of T’ = 1 = Y dep e (d,1). 1

Corollary 3 If an o-graph G'4(0) = Ugaep Ro*(T*%(0)) and T%¢ is greedy, then via(d,l) =
w(d,0) = 25041 (7)-

Proof: The corollary follows from lemma 7 and corollary 2. 1

Lemma 8 For an a-graph G'%(%), the total weight of communication graph edges mapped to
every cube edge in dimension d is E*¥(d). The total weight of communication graph edges
between levels [ and I + 1 in dimension d is e*¢(d, ).

Proof: Since G'(¥) = U,ey G*¥(s) = U,en Tr(s,G9(0)), every o-graph edge is mapped to a
distinct cube edge in the same dimension through N distinct exclusive-or operations. Hence, the
total weight of a-graph edges mapped to every cube edge in dimension d is E*¢(d). The bit-wise
exclusive-or operation preserves the topology of a spanning tree, and hence the number of edges
at a given distance from the source node. I

3 Spanning Graphs

3.1 Three Spanning Trees
3.1.1 A Hamiltonian Path

A Hamiltonian path H originating at node 0 is defined by traversing the nodes of the Boolean
cube in a binary-reflected Gray code [27] order with starting address equal to 0. Let the n-bit
code of 2™ integers be Gray(n). Two definitions of the code that are convenient to use are the
following.

Definition 16 The bmary-reﬂected Gray code on n bits is defined recursively as follows. Let
Gray(n) = (Go,Gl, G2"—2,G2"—1)

Then Gray(n + 1) = (0G0,0G1, . ,Oézn_z,Oézn_l, lézn_l, lézn_z, ceey 1@'1, léo),
or alternatively, Gray(n+1)= (éoo,éol, G’11,G‘10,G‘20,G‘21, ... ,é’zu_ll,é'zn_IO).

The following alternative definition is also useful for distributed routing algorithms. Let
T(n) = (to,t1,...,t2n—2) be the sequence of dimensions on which a transition takes place in
proceeding from integer O to integer 2" — 1 in the n-bit Gray code with the most significant bit
labeled n — 1.

Definition 17 Then the binary-reflected Gray code can be defined through the recursion
T(n)=(T(n-1),n-1,T(n-1)), T()=

Note that ¢; is also the lowest order dimension with a 0-bit in the bma.ry encoding of 1. Let the
binary encoding of { = ({n—1fn—2...40) and the Gray code encoding be G; = = (gn—19n—-2---90)-
Then the conversions between blna.ry and Gray code encoding are defined by

gm =im @ im41, and conversely tm = gm+1 OImi2® D gn-1.



3.1.2 A Spanning Binomial Tree

A O-level binomial tree has 1 node. An n-level binomial tree is constructed out of two (n —1)-level
binomial trees by adding one edge between the roots of the two trees, and by making either root -
the new root, [1,7]. The familiar spanning tree rooted in node 0 of a Boolean n-cube generated
by complementing leading zeroes of the binary encoding of a processor address ¢ [9,17,26,28,29]
is indeed a Spanning Binomial Tree (SBT).

Definition 18 The spanning binomial tree rooted at node s, 7587 (s), is defined as follows. Let
p be such that ¢, =1 and ¢,y =0,Ym € {p+1,p+2,...,n — 1} = M5BT (c) and let p = —1 if
¢ =0. The set M5BT (c) is the set of leading zeroes of ¢. Then,

childrenSBT (i,8) = {(in-18pn—2...3m...10)},¥Ym € M5BT (c),

SBT; ¢ 1=s;
parent®BT (i, 5) = { (',rl—l’n—z i)y i s’

It is easy to verify that the parent and children functions are consistent, i.e., that node jis a
child of node ¢ iff node { is the parent of node j. Figure 1 shows the T5BT (0) for a 4-cube.

0000

1101

Figure 1: A spanning binomial tree in a 4-cube.

Definition 19 Subtree k of the T5BT(s) consists of all nodes such that ¢; = 1 and ¢,, = 0,Ym €
{0,1,...,k—1}.

Lemma 9 There are 2"~*~1 nodes in subtree k, and the maximum degree of any node at level
linsubtree kisn—-k—-1,0<l<n-k.

Lemma 10 Let ¢5BT (i, s,z) be the number of nodes at distance z from node § in the subtree
rooted at node 1 of the SBT rooted at node s. Then, ¢5BT(i,s,z) > ¢5BT(5,s,z), if 5 €
childrenSB7T (3, 5). :
Proof: From the definition of the SBT, the subtree rooted at node j is a connected subgraph of
the subtree rooted at node 1. 1



3.1.3 A Spanning Balanced n-Tree, and a Spanning Balanced Graph

In the Spanning Balanced n-Tree [15] the node set is divided into n sets of nodes with approx-
imately an equal number of nodes. Each such set forms a subtree of the source node. The
maximum number of elements that need to traverse any edge directed away from the source node
is minimized for personalized communication.

Definition 20 Let K(t,s) = {ki,k2,...,km|0 < k3 < k2 < -+ < kn < n}, be such that
Ro%*(c) = RdP(c), Va,B € K(4,s), and Ro*(c) < Ro'(c), Va € K(i,s), v &€ K(§,s). Then,
baseSB T (5,5) = k.

For example, baseSB"T ((011100),0) = 2 and baseSB"T ((110100), (000010)) == 1. Note that
|K(%,8)| = n/P(c) where P(c) is the period of c. The value of the base equals the minimum
number of right rotations that minimizes the value of ¢. For non-cyclic nodes |K(t,s)| = 1, but
for a cyclic node ¢, P(c) < n, and |K(¢,s)| > 1. The notion of baseSB"T is similar to the notion
of distinguished node used in [25] in that baseSB"T = 0 distinguishes a node from a generator set
(necklace). To simplify the notation we omit the subscript on k in the following.

Definition 21 Subtree k of the Spanning Balanced n-Tree rooted at node s consists of all nodes
§ # s such that baseSB"T (i, s) = k.

Note that all nodes in subtree k have c; = 1, but not all nodes with ¢y = 1 are in the k**
subtree.

Definition 22 Let baseSB"T(i,s) = k. For ¢ = O let p = —1, else if ¢; = 1 then p = k, else
let p be the first bit cyclically to the right of bit k that is equal to 1 in ¢, i.e., ¢, = 1, and
em = 0,¥Ym € {(p+ 1) mod n,(p+ 2) mod n,...,(k - 1) mod n} = MSBrT (4 5) with k = n if
¢ = 0. The spanning tree T58"T () is defined through

{(in-1fn—-2...%m...50)},¥m € MSBT (4 ), ifc=0;
childrenSBEnT (5,8) ={ {gm = (fn-18n-2...tm...%0)},
Vm € MSB"T (i, s) and baseSB"T (g,,,s) = baseSBnT (i,5), if ¢ #0.

parentSBnT (5 ) = 9, _ ife=0;
’ (fn—18p-2...8p...a0), otherwise.

The parentSB"T function preserves the base, since for any node ¢ with base k, ¢p is the highest
order bit of Ro*(c). Complementing this bit cannot change the base. It is also readily seen that
the parentSB"T and childrenSB"T functions are consistent.

Theorem 1 The parentSB"T(i ,8) function defines a spanning tree rooted at node s.

Proof: For every node 1 the parentSB"T (i, 5) function generates a path to node s. Hence, the
graph is connected. Moreover, the parent node of a node at distance ! from node s is at distance
1 -1 from node s, and each node only has one parent node. Hence, the graph is a spanning tree.

Figure 2 shows a spanning balanced 5-tree in a 5-cube.

Lemma 11 The SBnT is a greedy spanning tree.

Proof: From the definition of the parentSB"T(i,s) function it follows that the distance from
node ¢ to node s is Hamming(s,s).
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Figure 2: A spanning balanced 5-tree in a 5-cube.

Lemma 12 [15] Let $5B"T(i,s,z) be the number of nodes at distance z from node ¢ in the
subtree rooted at node 7 of the SBnT rooted at node s. Then, $58"T (i, s,z) > ¢S5BT (5, s, 2), if
J € childrenSBrT (i 5).

Theorem 2 Ezcluding node (8n—13n—2...50), all the subtrees of the root of the SBaT are iso-
morphic, if n is a prime number. Furthermore, the k** subtree can be derived by (k—7) mod n
left rotation steps of each node of the ** subtree.

Proof: For n a prime number there are no cyclic nodes, except nodes with relative addresses
(00...0) and (11...1). For all other nodes |K(#,s)| = 1, and each generator set has n members.
Any subtree has the same number of nodes as any other subtree at every level. It follows from the
definition of baseSBT that if j € childrenSB"T (i, s), then Ro*(j) € childrenSBrT (Rok(i), s),Vk €
o.1

If n is not a prime number then some subtrees of the root of the SBnT will contain more
nodes than others. It can be shown that the number of nodes in a subtree is of O(¥) [15]. The
imbalance is illustrated in Table 2. This imbalance is important for personalized communication.
The number of elements transferred over the edges can be perfectly balanced in the sense that
the maximum at any level is minimized by allowing multiple paths to cyclic nodes. With multiple
paths to cyclic nodes the graph is no longer a tree. We call the SBnT so modified a Spanning
Balanced Graph (SBG). The SBG can be defined as a composition of n distinctly rotated SBnT’s
as follows.

Definition 23 Define G58%(0) = Uyep Ro?(TSB T (0)) and GSBC (s) = Tr(s, G5BG(0)).

The number of different paths to a node ¢ in an SBG rooted at node s is Pligs) Where P(i) is
the period of 1.

3.2 Spanning Graphs Composed of n Spanning Trees

3.2.1 n Rotated Hamiltonian Paths
Definition 24 The graph G"?*H(s) = T'r(s, G**H(0)), and G"RH (0) = Ugep Ro(TH(0)).
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[ n ] SBT(max) | SBnT(max) | SBanT(min) | (N —1)/n | factor |
2 2 2 1 1.50 1.33
3 4 3 2 2.33 1.29
4 8 5 3 3.75 1.33
5 16 7 6 6.20 1.13
6 32 13 9 10.50 1.24
7 64 19 18 18.14 1.05
8 128 35 30 31.88 1.10
9 256 59 56 56.78 1.04
10 512 107 99 102.30 1.05
11 1024 187 186 186.09 1.00
12 2048 351 335 341.25 1.03
13 4096 631 630 630.08 1.00
14 8192 1181 1161 1170.21 1.01
15 16384 2191 2182 2184.47 1.00
16 32768 4115 4080 4095.94 1.00
17 65536 7711 7710 7710.06 1.00
18 131072 14601 14532 14563.50 1.00
19 262144 27595 27594 27594.05 1.00
20 524288 52487 52377 52428.75 1.00

Table 2: A comparison of subtree sizes of SBT and SBnT. The last column contains the ratio of
SBnT(max) to =1,

The paths generated through n distinct rotations of the G (s) path are not edge-disjoint, for
n > 2. For instance, the edge (2,6) is used in two paths of the graph G3FH (0), and these paths
are part of every graph G"RH(O) for n > 3.

Lemma 13 Path Ro*(TH(s)) and path Ro™(T#(s)) share 2"~ + 2"~A~1 _ 2 edges, where
a = (k—m) mod n and 8 = (m — k) mod n.

Each of the n cube edges ((00...0140...0),(00...01(441)modn140-..0)), Vd € D are shared

by n — 1 paths for s = 0. Figure 3 shows the graph G3#(0). The fact that the paths are not
edge-disjoint limits the potential for pipelining.

100 101 100 101 100 101
000"
Ky . '
: fo 11
010 011 010 011 010 011
Ro%(TH) Ro!(TH) Ro*(TH)

Figure 3: Three rotated binary-reflected Gray code paths in a 3-cube.

Lemma 14 In the graph G™"BH (s), the edges between nodes at distance / and distance [+ 1 from
the source node are edge-disjoint for { € N.

11



Proof: By construction the edges are in different dimensions. I

Note that even though the n rotated Hamiltonian paths are not edge-disjoint it is possible
to have edge-disjoint embeddings of several Hamiltonian paths generated in other ways. But, to
our knowledge, there does not exist 3 edge-disjoint paths on a 3-cube. However, there exist 4
edge-disjoint paths on an n-cube, n > 4, Figure 4.

0100 0191

1100 1101

Figure 4: Four directed edge-disjoint Hamiltonian paths in a 4-cube. Only two paths are shown.
The other two paths can be derived from the reversed paths.

3.2.2 n Rotated Spanning Binomial Trees
Definition 25 The graph G*?5B7 (5) = T'r(s, G*?5BT(0)), and G"F5BT (0) = Ugep Ro?*(TSBET(0)).

Figure 5 shows the nRSBT graph of a 3-cube. In general, a cube edge (¢, 5) is part of several
rotated SBT’s. The number on each cube edge in the Figure shows the sum of the weights of the
graph edges mapped onto it.

Lemma 15 For any node in the graph G"#SBT(0), except the root, the weight of the incoming

cube edge in dimension d is %1, where p is the number of consecutive 0-bits immediately to the

left of bit d.

Proof: A node in the SBT graph has an incoming edge in dimension d if the bit in dimension
d is the highest order bit that is one. In the nRSBT graph the number of incoming edges (1, 5)
to node j is equal to the number of graphs Ro™(GSBT(0)), m € D such that there exists an
edge (i™,;™), where { = Ro™™, and j = Ro™j™. Such an edge occurs in Ro™(£5B7(0)) for
m={d+1,d+2,...,d+p+1},ie., in these p+ 1 SBT’s, bit d is the last bit complemented in
reaching node j. |

For instance, node (011001) has an incoming cube edge in dimension 0 with weight 3, an
incoming edge in dimension 3 weighted %, and an incoming edge in dimension 4 weighted %

12
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Figure 5: Three rotated spanning binomial trees as an o-grapk in a 3-cube.

Corollary 4 The sum of the weights of incoming edges is 1 for every node, except the source
node.

Proof: From lemma 15 the weight of an incoming edge is equal to the number of dimensions
between the dimension considered and the next higher dimension with a 1-bit. 1

Lemma 16 In any dimension the edges of the nRSBT graph are only mapped to half of the cube
edges.

Proof: Rotation does not change the direction of edges. 1

3.2.3 n Edge-Disjoint Spanning Binomial Trees

The nESBT (n Edge-disjoint Spanning Binomial Trees) graph is composed of n SBT’s with one
tree rooted at each of the nodes adjacent to the source node. The SBT’s are rotated such that
the source node of the nESBT graph is in the smallest subtree of each SBT. The nESBT graph
is then obtained by reversing the edges from the roots of the SBT’s to the source node.

Definition 26 The nESBT graph G"F5BT(5) = Tr(s,G"ESBT(0)), where G"ESBT(0) =
Ugep T5B74(0), and T5B74(0) = Tr(2¢, Ro" 41 (T5BT(0))) (with the root being node 0 instead
of node 2%).

Figure 6 shows an nESBT graph in a 3-cube. The nESBT graph is not a tree, and contains
cycles. Every node appears in every subtree of the source node. The height of the nESBT graph
is n + 1, since the source node is adjacent to all the roots of the SBT’s used in the definition
of the nESBT graph. The number of distinct edges in the n SBT’s is n(N — 1). An alternative
definition of G"ESBT i3 through the functions children™ESBT and parent™®SBT below.

Definition 27 For a given k, let p be such that ¢, =1, and ¢, =0, Vm € {(p+ 1) mod n,(p +
2)modn,...,(k—1)modn}. Forc=0,p = -1,k =n,and for cg = 1, p = k. Then

13
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Figure 6: Subtrees of an nESBT viewed as SBT’s.
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Figure 7: Three edge-disjoint directed spanning trees in a 3-cube.

MrESBT (5 g k) = {(p + 1) mod n,(p+ 2) mod n,...,(k — 1) mod n}. The children and parent
of node 1 in the k*» spanning tree, TSBT(s), are:

{(in-19n-2...7k...0), i if c=0;
. nESBT ¢, _ {("n—lin-z . ’m .o -’b)};vm EM™ (’1 8, k) U{k}1 if Cp = lap # ky
chaldren™ 00, 8,K) =N f(insin s im.. i0)}. Vm € MEESER), if ey =1,p=k;
?, if ¢ =0,¢#0.
o, ifc=0;
parent™BT (i 5 k) = { (in-10n—2...1k...50), if ¢k =0,c#0;

(in-1fn—2...5p...50), if cpg = 1.

Dimension p is the first dimension to the right of dimension k, cyclically, which has a bit equal
to one. All nodes with ¢, = 0, except node s, are leaf nodes of the k** subtree (or k** spanning
tree). Conversely, all nodes with ¢; = 1 are internal nodes of the k** subtree. The exceptional
connection to node 0 is handled by the conditions on p. The first case defines the children for
the source node, the second the set of children nodes of internal nodes of the k** subtree, except
the node at level 1. The third case handles the node at level 1, and the last case handles the
leaf nodes. Figure 7 and 12 show that the three subtrees (spanning trees) of a 3ESBT graph are
edge-disjoint. The labels on the edges will be used later. Figure 8 shows a 4ESBT graph with
source node 0. Every 1-bit in the node address divides the outgoing edges into distinct sets. The
set of O-bits to the right of a 1-bit defines children nodes for a spanning subtree with the same
index as the dimension of the 1-bit, Figure 9.

Theorem 3 The n subtrees of the nESBT graph are edge-disjoint.
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Figure 8: Four edge-disjoint directed spanning trees in a 4-cube.

Dimension By 6
00001000001 10000010000
] ! |
Subtree 5 a B 7 5

Figure 9: Scheduling of broadcasting operations for a node with nESBT routing.

Proof: We only need to prove that for an arbitrary node the address of its parent node in each
of the n subtrees is obtained by complementing a distinct bit.

From the definition of the children™E5BT (i s k) (or parent™ESBT (i, s k)) function it is clear
that a node is a leaf node of the k** subtree iff c; = 0, with the exception of node s. If a
node is a leaf node in a particular subtree, then its parent address in that subtree is obtained
by complementing the corresponding bit in its address (bit k for the k** subtree). If a node is
an internal node of the k** subtree, then the corresponding bit is 1, and the parent address is
obtained by complementing the first bit cyclically to the right of the k"‘ address bit that is equal
to 1. Hence, the addresses of the parent nodes for all the subtrees of which the node is an internal
node are also obtained by complementing distinct bits. lI

Figure 10 shows the parents and children of one node in a 6-cube. The numbers on the edges
are the dimensions through which the node connects to its parents or children nodes in different
subtrees. The labels on the nodes denotes the subtree to which the parent and children nodes
belong.

Corollary 5 There exists an edge-disjoint embedding of n Spanning Binomial Trees in an n-cube.

Corollary 6 The nESBT graph for a Boolean n-cube is a directed graph, such that all directed
cube edges, except those incident on the source node, appear precisely once in the nESBT graph.

Proof: Follows from theorem 3. 1

Corollary 7 The in-degree and the out-degree of any node in an nESBT graph is n, with the
exception that the source has in-degree O and all the neighbors of the source have out-degree
n—1.

15



SBTs SBTy

SBT, 011110 010100

010010

SBT,
000110

SBTs
110110

SBT,
010111

___--==Dimension
-

011110 010100
SBT, SBT,

000110 010111

SBTs 10010 110110 SBT

SBT; SBT:

Figure 10: Parents and children of a node in a 6-cube.

Theorem 4 The height of the nESBT graph is mintmal among all possible configurations of n
edge-disjoint spanning trees.

Proof: To prove that with n edge-disjoint spanning trees, the height n + 1 is minimal, we prove
that n disjoint spanning trees with height n is impossible. The total number of directed edges in
an n-cube is nN, but only the edges directed out from the source may be used. Each spanning
tree has N — 1 edges. Hence, every eligible edge is used by the n edge-disjoint spanning trees.
It follows that the edges directed out from the node with address (8,-13n—2...50) also must be
used, and since this node is at distance n from the source node, the theorem follows. 1

Lemma 17 The number of nodes at level ! of a subtree of the nESBT graph is

""1)+( )—(l_'_'l), forn+1>1>1,1#2;
1, for I = 0;
n—1, forl = 2.

Proof: Follows directly from the definition. §

Lemma 18 Let ¢"ESBT (i s z) be the number of nodes at distance z from node ¢ in the subtree
rooted at node 1 of the nESBT rooted at node s. Then, ¢"ESBT (i s :z:) > ¢"ESBT (5 5 2), if
J € children™ESBT (5 g),

Proof: By definition 26, each subtree of the nESBT is a SBT with the smallest subtree removed.
The lemma can be shown by lemmas 10, 17 and 9. 1

3.3 Summary of Topological Properties of the Communication Graphs

The topological characteristics used for the complexity analysis are summarized in Table 3.

With respect to the entry for the SBT graph in Table 3 note that (‘;) = 0if z < y. Moreover,

(Fe2m-2-1, ifle {o,..., 25|}

ax vSBT = BT (min(2l. n — =
(d,1) ( (21, 1),1) { (nl—l)’ if[e{l_izﬂj,...,n—l}-
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| Graph | E(d) | e(d, 1) | v(d, 1) | u{d, 1) ]

(e2id gn-d-1 0,d#torl, o.w. 0, d#tior N—I1—-1,0ow. | =5 — ]'"7?-'_’;'{'—1]
GrFE | AL 3 Z(N-1-1) s(N~-1-1)
o Eon {( ——

G" = n t-'l.—x n ng=g+1 H n Lai=it] K
G”fﬁ" ? Li=0n—1,1=1; 1{7),1>2 N-1,ll='?;N—2,t=1;iz'.:,___lu(j‘),tz'z
G "7.——1 %(111) 7 Loiz=lt] (':) I i EE_L-[—I (?)

Table 3: Some topological characteristics of some o-graphs.

The entries in Table 3 for the SBG graph can be proved by lemmas 3 and 11, and corollaries
2 and 3. The characteristics for the nRH graph can be proved from definition 24 and lemmas 3
and 7, and the entries for the nRSBT graph proved using definition 25, corollaries 2, 3, and the
fact that T5BT is greedy. The nESBT properties can be proved using definition 26 and lemmas
3, 7 and 17.

4 One-to-All Broadcasting

Lemma 19 A lower bound for one-to-all broadcasting with one-port communication is max((M+
n — 1)t;,n7r), and max(([¥] + n — 1)t.,nr) for n-port communication.

Proof: The height of any o-graph is at least n. The root needs a time of Mt. (or [%]t.) to send
out the data. An additional delay of at least (n — 1)t. is required to reach the node at maximum
distance from the root. 1

With M = 1 a tight lower bound is n(t; + 7) both for one-port and n-port communication.
This bound is realized by SBT routing and appropriate scheduling. In fact, it can be shown that
with M = 1 and one-port communication, any routing for broadcasting that yields the lower
bound is topologically equivalent to the graph G5BT, With n-port communication any o-graph
of height n can realize the lower bound communication for M = 1. The scheduling discipline we
propose for the graph G"ZSBT yields the lowest communication complexity of the broadcasting
algorithms we consider, both for one-port and n-port communication, except B, = M for
one-port communication and Byp = % for n-port communication. For these two cases our
scheduling for the graph G"ESBT ig inferior only by 1 routing cycle. With 1 < M < n and n-port
communication , our scheduling for the graph G"FSBT yields the lower bound, n(t. + 7).

4.1 The Time Complexity of One-to-All Broadcasting

Table 4 summarizes the routing algorithms and scheduling disciplines we have analyzed. The
estimated communication times are summarized in Table 5. For an o-graph composed of n
spanning trees the data set M is divided into n approximately equal size subsets, and each such
subset communicated by one of the spanning subtrees. If the trees are not edge-disjoint we assume
no pipelining.

For the graph G"FH the n paths are not edge-disjoint. But, all edges at a given distance
from the source are mapped to different cube edges. Sending the entire data set % for each path
concurrently is contention free. The data transfer time is an order of % higher than that of the H
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| Comm. | Routing | ‘ Scheduling discipline

H Pipeline.

SBT All data for a port at once. Tallest remaining subiree first.

one-port | nRSBT All data for the tallest remaining subtree of the spanning trees 0,1,...,p at once during
routing cycle p < n, and all data for the tallest remaining subtrees of all spanning trees
during cycles n < p < 2n — 1. For the source B = ZXIM for p < n, and B = 2n=2=l)
forn<p<2n-1.

nESBT The source node sends to spanning trees 0,1,...,n — 1 cyclically, i.e., pipeline among n
spanning trees. The internal nodes always propagate (replicate) to the tallest subtree of
the same spanning tree first.

SBT Pipelining for each subtree, subtrees concurrently.

n-port nRSBT All data at once for the tallest remaining subtree of every spanning tree. (The subtrees of
each spanning tree are treated sequentially, and spanning trees concurrently.)

nESBT Pipelining for each subtree; subtrees and spanning trees concurrently.

Table 4: Scheduling disciplines for one-to-all broadcasting.

| Comm. [ Routing | T {  Bopt | Tmin ]
H |(M+(N-2)B)t.+([%]+N-2)r \/ﬁ,— (VM. + /(N = 2)r)?
one-port SBT Mnt. + [ nT M n(Mt. + 1)
nRSBT nMt.+ (2> 0[]+ [M])r M aMt, + (2n — 1)1
nESBT (M +nB)t. + ([¥] +n)r \/ o (VMt; + +/nT)?
SBT M+(n-1)B)tc+([¥+n-1)r e | (WME ++/(n—1)r)?
n-port | nRSBT Mt + [ nT £ Mt.+ nr
nESBT (X +nB)t.+ ([ K] +n)r 1/ (V™= + \/n1)?

Table 5: The complexity of one-to-all broadcasting.

routing with pipelining. For nRSBT routing the number of elements traversing every edge from
the root is the same as in the SBT routing, and the transmission time is bounded from below by
nMt. with one-port communication. This time is an order of n higher than the lower bound.

Theorem 5 For a fized packet size, the number of routing cycles to broadcast n packets by nRSBT
routing is bounded from below by 2n — 1 for one-port and n for n-port communication.

Proof: For one-port (n-port) communication, the root needs n (1) cycles to send out n packets,
and the last packet has a latency of n — 1 cycles for a fixed packet size. I

With one-port communication, our scheduling discipline for the nRSBT routing completes in
2n — 1 routing cycles for a packet size B > M. With n-port communication the scheduling of the
data for each SBT used in the nRSBT graph is made as in the case of one-port communication for
asingle SBT. Since the SBT’s are rotated, all ports of the root are used in every routing cycle until
the last packet leaves the root. Data for the m'® SBT is sent across dimension (m + p) mod n
during cycle p. There is no edge-conflict for this non-pipelined routing. Figure 11 shows the
routings of the three distinctly rotated SBT’s in a 3-cube. The labels on the edges represent the
routing cycle.
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Figure 11: Broadcasting based on 3 rotated SBT’s in a 3-cube.

The number of routing cycles to broadcast n packets by nESBT routing is bounded from
below by 2n for one-port and n + 1 for n-port communication, since the height of the graph is
n 4+ 1. The scheduling discipline for one-port communication and nESBT routing is defined by
labeling the edges of the nESBT graph. The labels define the routing cycles during which the
first packet arrives through that graph edge. We first define the edge label in the 0** spanning
tree of the nESBT graph. Edges in dimension m is labeled m, except that the labels of the edges
to the leaf nodes are labeled n. The labels of the edges in the k** spanning tree are defined by
adding k to the label of the corresponding edges in the 0** spanning tree.

Figure 7 shows an nESBT graph for a 3-cube labeled by the algorithm above. Figure 12 shows
a different view of the labels of the 3 composed spanning trees.

100 3 101 100 101

0]..0 Oil
SBT, SBT SBT,

Figure 12: Scheduling in an nESBT graph with one-port communication.

Theorem 6 For the nESBT graph the scheduling discipline defined by the labeling scheme allows
conflict free one-port communication.

Proof: It follows from the labeling scheme that edges in dimension m are labeled m (mod n).
Also, for each spanning tree, the label of the outgoing edges of any node are greater than the
label of the incoming edge. 1

The largest label of all the input edges is 2n — 1. Broadcasting the first n packets (one packet
per subtree) can be done in 2n cycles. The complexity for one-port nESBT routing follows directly
from the definition of the scheduling discipline, and the proof of it being contention free. For
n-port communication it is easy to determine the time of arrival of messages. The path length
between nodes s and 1 in the k** spanning tree is equal to

lel -1, ifex=1;
lej+1, if e =0.
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The input ports of node ¢ that correspond to bits that are equal to 1 in the binary encoding of ¢
receives the first element during the (|¢| — 1)*? routing cycle. The other input ports receive the
first element during the (|jc| + 1)** cycle.

4.2 Summary of One-to-All Broadcasting

In general, the data set to be broadcast is divided into a number of distinct packets. If the o-graph
is a spanning tree, then every packet needs to be sent on every port of the root. The number
of routing cycles required by the root to complete the communication of each distinct packet is
summarized on the left of Table 6, and the maximum propagation delay is summarized on the
right.

Routing | # of cyc. per pkt. | Propagation delay |
one-port | n-port |  one- & n-port ]
H 1 1 N-1
SBT n 1 n
nRSBT n 1 n
nESBT 1 1 n+1

Table 6: Number of cycles per distinct packet (left) and propagation delay (right).

In the nRSBT routing, every packet needs to be routed on every port because of the edge
sharing. Note, that broadcasting by Hamiltonian path routing may be faster than by SBT routing
depending on the values of M, t., r and N. With n-port communication, the source can send out
n distinct packets every cycle in the nESBT routing since the spanning trees are edge-disjoint,
but only one packet for the nRSBT routing.

For n-port communication, the data transmission time is reduced by a factor of approximately
n for an arbitrary packet size in the SBT, nRSBT, and nESBT routings and the schedulings
defined in Table 4. Optimizing the packet size makes the number of routing cycles proportional
to the height of the o-grapk. The data transmission times for the optimum packet sizes and n-
port communication are approximately a factor of n less than the transmission times for one-port
communication with optimized buffers and an o-graph for which the root has degree n.

The nESBT routing always offers a reduction in bandwidth requirement for individual com-
munication links by a factor of approximately n over the SBT and nRSBT routings. The nESBT
routing offers a speed-up of up to n over SBT and nRSBT routings for sufficiently large values of
M, both for one-port and n-port communication. Communication complexities of broadcasting
based on the H, SBT and nRSBT algorithms are compared with that based on the nESBT in
Table 7.

5 Omne-to-All Personalized Communication

In personalized communication no replication of information takes place during distribution, nor
is there any reduction during the reverse operation; the root has M elements for every node.

Lemma 20 The data transmission time for one-to-all personalized communication is bounded

from below by (N — 1)Mt, for one-port communication, and by U—v—‘;l)ﬁ—ltc for n-port commu-

20



Communication Routing One | B = Bop, | B = Bops,
model packet | 7> Mt, | n’r < Mt.
[ H/nESBT =il B 1
one-port SBT/nESBT 2 &1 n
nRSBT/nESBT a1 &2 n
n-port H/nESBT e = n
SBT,nRSBT/nESBT | —*-- 1 n

Table 7: Relative complexities of one-to-all broadcasting.

nication. A lower bound for the total time is max((N — 1)Mt,n7), and ma.x((N—';‘llMtc,nr),
respectively.

Proof: The root needs to send out (N — 1)M elements. 1

In SBT routing for personalized communication the maximum number of nodes connected to
the root through one of its edges is %N M, and a data transmission time of the order given in the
lemma is not achievable for n-port communication. In a SBnT graph all edges of the root connect
subtrees of approximately equal size. For the SBG, nRSBT and nESBT graphs, all outgoing
(cube) edges of the root transmit the same amount of data, m

5.1 The Time Complexity of Personalized Communication

The general strategy for personalized communication is to schedule the data for the most re-
mote nodes first. With n-port communication the ordering between ports is irrelevant, and a
reverse-breadth-first ordering for each port of each node is the scheduling discipline. For one-port
communication the scheduling disciplines depend on the o-graph, Table 8.

{ Comm. | Routing | Scheduling discipline
H Order nodes by decreased distance, pipeline.
SBT Order nodes by complementing their binary addresses.

nESBT All data for the tallest remaining subtree for each spanning tree.

one-port | nRSBT All data for the tallest remaining subtree of the spanning trees 0,1,...,p at once during
routing cycle p < n, and all data for the tallest remaining subtrees of all spanning trees
during cycles n < p < 2n — 1. For the source B = N(1 — 1) for p < n, and
B=N(gs==—-w)Y¥forn<p<2n-1.

SBG Order nodes by decresing distance for each subtree. Order subtrees cyclically.
n-port All Order nodes in reverse-breadth-first order. All subtrees (spanning trees) are scheduled
concurrently.

Table 8: Scheduling disciplines for one-to-all personalized communication.

Lemma 21 Scheduling nodes by complementing their binary addresses results in port commu-
nications in a binary-reflected Gray code order for one-port SBT routing.

Note that for one-port communication, scheduling the tallest remaining subtree first for each
node recursively has the same complexity as the suggested discipline, but if a certain overlap
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between communications on different ports is possible, as on the Intel iPSC, then the discipline
we adopt yields a lower time complexity.

5.2 Summary of One-to-All Personalized Communication

Tables 9 and 10 summarize the communication complexities of personalized communication. For
the SBT routing and one-port communication, our scheduling discipline yields a time complexity
within a factor of two of the lower bound, providing the packet size is sufficiently large. The
data transmission time of the nRSBT scheduling discipline is the same as the lower bound,
M(N —1)t., however, the minimum number of routing cycles is 2n — 1. For the SBG routing and
B> -(I—v—:”l)—A—l- the root needs to perform only one communication per subtree, and completes the
communication in time T' = (N — 1)Mt. + nr. But, an additional n — 1 routing cycles are needed
to complete the communication. An upper bound on the time for personalized communication
with unbounded packet size is T = N(1 + 22&2)Mt, + (2n — 1)r for SBG routing [15]. The
number of routing cycles is almost twice that of the SBT personalized communication, and the
total transfer time is higher by a lower order term. With a packet size of Lﬂ:nlﬂ’ the number
of routing cycles is approximately 2n for SBT, nESBT, nRSBT, and SBG communication. With
one-port communication and a packet size B < M, the complexities of SBT, nRSBT, SBG and
H communications are approximately the same.

With n-port communication and reverse-breadth-first scheduling, the data transmission time
of the SBT, nESBT, nRSBT and SBG routings are all dominated by the root by lemmas 6,
10, 12 and 18. The number of element transfers is approximately the same for all ports of the
root except for the SBT communication. The number of routing cycles and the transmission
time of the nESBT, SBG and nRSBT communications are lower than that of the SBT by a
factor of -%—n for a'packet size B < M. With a sufficiently large packet size all communications
yield a minimum of n routing cycles, with the exception of the nESBT, which requires one more

cycle. The optimum packet size for the nESBT, nRSBT and SBG communications is —,2;%7";,
NM

oy for the SBT. The nRSBT routing is never of a lower complexity than the
SBG routing, and of a higher complexity if n does not divide M. With (M modn) =k #0a
combination of reflections and rotations minimizes the maximum number of elements that need
to be transferred over any cube edge. For k even k/2 distinct rotations should be used, and for
every rotated graph a reflected graph is also used. For k even and optimally rotated SBT’s the

o
maximum number of elements transferred over a cube edge is (N — 1) :; 11 and for optimally

reflected and rotated SBT’s it is (N — l)ﬁ‘::--,‘.;i"-’l
2k -1

compared to

6 All-to-All Broadcasting

6.1 Time Bounds and Scheduling Disciplines

Theorem 7 A lower bound for all-to-all broadcasting is max((N — 1)Mt., nr) for one-port com-
munication and ma.x((N—_nlMtc,nr) for n-port commaunication.

Proof: Each node receives M elements from every other node, i.e., each node receives (N — 1)M
elements. Hence, for one-port communication a lower bound for the data transfer time is (N —
1)Mt., and with n-port communication the time is bounded by LN_'nlMtc. |
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| Comm. | Routing | T |

| H (N—l)Mt.‘.,+max(|'-(———-)-—N'Bl M1 N-1)r
one-port SBT (N - 1)Mt, + E:‘_’:"?_'.M_ r

e |
nESBT | =H(N - )Mt + (o T3] + S [ ZM )

nRSBT | (N —1)Mt, + (Sor /[ N=2IM7 4 S~n [ G -1M1y,

1=1 1=l

SBT MMy + >0 [("7H) 4]
n-port | nESBT | O—DM; o ([M75[le=
nRSBT =20 4+ ]
SBG DMy 5 1r

Table 9: The complexity of one-to-all personalized communication.

{ Comm. | Routing [ Bope | Trmin |
H M (N-1)Mt. + (N=1)r
SBT oM (N-1)Mt, + nr
one-port | nESBT | {F=1 2tl(N — 1)Mt, + 2n71

nRSBT | &-1M (N-1)Mt. +(@n—1)r
SBG TOM T N(1 + 2880t 3 (2n— 1)7
SBT M BM: +nr

2x{n—1)
n-port | nESBT 2 M E=0M; 3 (n+ 1)7

nRSBT | /22 WM nr

SBG | /24 W=OMy "y oy

Table 10: The optimum complexity of one-to-all personalized communication.

Lemma 22 The data transfer time for one-port communication is minimized if one dimension
is routed per cycle, and all nodes use the same scheduling discipline.

Proof: The number of elements transferred on every edge in the dimension subject to routing is
the same, since the communication graphs for the different sources are translations of each other.

For one-port all-to-all broadcasting it remains to define a scheduling discipline that minimizes
the number of start-ups, preserving the minimum data transfer time. This can be accomplished
implicitly by labeling the edges of the o-graph generating the a-graph. The label on the edge
corresponds to the cycle during which the data is transferred across that edge. The rules are
summarized in Table 11, which also gives the scheduling discipline for the n-port case. Rule 1 is
obvious. Rule 2 is a sufficient condition satisfying the one-port communication constraint. The
labeling scheme is the same as the one used in the one-port one-to-all personalized communication
based on the nESBT graph. The number of start-ups required for the broadcasting is equal to
the maximum label plus 1 (the least label being 0). For a spanning tree of height 4, the minimax
label is at least h — 1 by rule 1.

For the H path, we label the ¢** edge in the path {. The maximum label is N — 2, which is
a minimax label. For the SBT graph labeling edges in dimension ¢ by ¢ satisfies both rules. The
maximum label is n — 1, which is also a minimax label. For an a-graph based on the nESBT,
nRSBT or SBG graphs, we first define the edge label in the 0** spanning tree of each such graph.
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{ Comm. | Scheduling discipline ]

one-port 1. For each spanning tree of the a-graph, the labels of the outgoing edges of any node
are greater than the label of the incoming edge.

2. All the edges with the same label in the o-graph are in the same dimension.
n-port All data sent at once, spanning trees concurrently.

Table 11: Scheduling disciplines for all-to-all broadcasting.

Edges in dimension ¢ are labeled 1, except for the nESBT graph for which the labels of the edges
to the leaf nodes (all in dimension 0) is n. The 0** subtree of the nESBT graph is equal to an n
level SBT with the smallest subtree deleted. Hence, the minimax label is n for the 0¢* spanning
tree of the nESBT graph. For the nESBT and nRSBT graphs, the labels of the edges in subtree
J are defined by adding j to the label of the corresponding edges in subtree 0. The minimax label
for the entire graph is equal to the minimax label of subtree 0 plus n — 1. For the SBG graph,
all the n composed SBnT’s are labeled in the same way. By theorem 2, it can be shown that the
minimax label of the rotated SBnT R*(GSB"T), de D, is 2n — 2 if d = 1; and 2n — 3, otherwise.
The minimax label of the nESBT, nRSBT and SBG are 2n — 1, 2n — 2 and 2n — 2 respectively.
The labeling of the nESBT graph defined here is the same as the labeling for one-port one-to-all
broadcasting, Figure 12. The amount of data transferred during cycle ¢ is equal to A—'f X (number
of edges labeled ¢). The maximum packet size and the number of start-ups can be derived easily
from the labels of the edges.

Lemma 23 A lower bound for data transmission time of all-to-all broadcasting based on G*4(x)
and “any” scheduling discipline is .

max E*4(d) Mt,.

vdep

Proof: E'%(d)M elements need to be sent across every cube edge in dimension d. I

Theorem 8 The communication time for all-to-all broadcasting based on G'%(x) of height h,
n-port commaunication and the defined scheduling discipline requires a time of

h—-1

; M ;
_ id o td
T_;=§o (Mtcx\‘,‘}é’,fe (d,1)+'-B X max e (d,l)] r) .

If B > maxp<i<h—1, vaep (M X e'.d(d, 1)) then
h-1 a

= 4 (d, | t .

T (gﬁge (d, ))Mc+hr

Proof: Each node broadcasts its data set M according to its own o-graph. During the I** routing
cycle all nodes at level [ + 1 of each o-graph receives messages sent out from the roots during
the 0°* routing cycle. By lemma 8, the amount of data contending for a communication link in
dimension d is M x e*(d,l). 1

Theorem 7 gives a lower bound for the communication time for any routing and scheduling
discipline, and lemma 23 a lower bound expressed in terms of an a-graph. Theorem 8 gives an
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upper bound. Next we give complexity estimates for some a-graphs, and show that broadcasting
based on GB7 () with the scheduling disciplines in Table 11 is optimum within a factor of 2 for
one-port communication, and that the schedulings of the GSB¢ (%) and G™FSBT (x) graphs are
optimum within a factor of 2 for n-port communication.

Corollary 8 For a given a-graph satisfying e'd(z,l) = €'¥(y,l), Vz,y € D, and 0 < I < h, the
communication time for all-to-all broadcasting based on the graph G*¢(«) of height h and n-port
communication and the scheduling disciplines of Table 11 is

p= W =DM, b B> max (M x é4(d,1).
n o<i<h

Proof: The corollary follows from theorem 8. 1

From Table 3 and corollary 8, the nRH, nRSBT, nESBT and the SBG routings all yield the
lower bound for the data transfer time with n-port communication. In fact, following corollary
8, we have the following corollary.

Corollary 9 For G*¢(+) with G*%(0) composed of n distinctly rotated spanning trees, the data
transfer time for all-to-all broadcasting is minimum with n-port communication and the defined
scheduling.

Routing according to a greedy o-graph, while it is a necessary condition for the all-to-all
personalized communication to attain the minimum data transfer time, is not necessary for the

all-to-all broadcasting. The nRSBT and the SBG both with minimum height also attain the
minimum number of start-ups.

6.2 The Complexity of All-to-All Broadcasting

Tables 12 and 13 summarize the complexity of all-to-all broadcasting.

| Comm. | Routing | T l
| H (N— DMt + [Z|(N-1Dr
one-port SBT (N —1)Mt, + ?:nlf%“i]r
nRSBT | (N — 1)Mt, + (22 [ S50 4 3on A =2y,
RESBT | (N — UM, + (F2, 12 + 5 1 Boicg M)y
nRH W-OMy L TMI(N _1)r
532 it Y, [T ) BT
report | nRSBT =80 + 3o, [(7) M1
RESBT O+ O TC) et 1 + [ 2] + (= )r
SBG ot + 200 [(7) 2 1r

Table 12: The complexity of all-to-all broadcasting.

The one-port G¥(+) routing is employed in the matrix multiplication algorithm by Dekel
[5], [21]. Messages with different source nodes are routed through different H paths. Messages
are exchanged along a sequence of dimensions such as 0, 1,0, 2,0, 1, 0, 3, ..., etc. The SBT
communication amounts to a single exchange per dimension [28].
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[ Comm. | Routing |  Bope | Tmin ]
H M (N~1)Mt. +(N-1)r
SBT A (N —1)Mt, + n1
one-port | nRSBT | T=1M (N _1)Mt, + (2n — 1)7
nESBT | (—IM (N — 1)Mt, + 2n7
SBG N=IOM1"(N — 1)Mt. + (2n — 1)1
nRH M W=OM; " (N - 1)r
NM M
SBT m 2 te + nr
n-port nRSBT %f;% Ljv—_;ua—‘t., +nr
nESBT Tha T EOM o (n 4 1)r
N—
SBG 2 Sy +nr

Table 13: The optimum complexity of all-to-all broadcasting.

With one-port communication SBT routing for all-to-all broadcasting is optimum within a
factor of two. The H, nESBT, nRSBT and SBG routings all have the minimum data transfer
time. The number of start-ups is (N — 1), 2n, 2n — 1 and 2n — 1, respectively, with a packet size
of M(ﬁq), M(ﬁ_l) and M(z'l), respectively. With a packet size of order M;‘ﬂ, the number of
start-ups for SBT, nESBT, nRSBT and SBG routings are all comparable. Note that if the packet
size is smaller than the data set to be broadcast, then the SBT routing is of the same complexity
as the H routing. But, if B > 2MN then Tpmin = (N — 1)Mt, + nr, which is optimum within a
factor of 2. The start-up time is reduced by a factor of ]% compared to the H routing.

With n-port communication the nRH, nESBT, nRSBT, and SBG routings achieve the lower
bound transmission time for a sufficiently large packet size. Both the nRSBT and SBG routings

also attain the minimum number of start-ups n with the same packet size B > \/g f;)i The
nESBT routing has one more start-up. The nRH routing, though optimum for data transfer
time, has N — 1 start-ups. The SBT routing yields a slow-down of approximately § for the data

transfer time compared to the lower bound routing.

7 All-to-All Personalized Communication

7.1 Time Bounds

Theorem 9 A lower bound for one-port all-to-all personalized communication 1s max(’m;M

The packet size must be at least %M to attain this lower bound.

t.,nr).
Proof: The bandwidth requirement for distributing personalized data from one node is

n
Zi('.’)M: nNM
1 2

=0

The total bandwidth requirement is "N;M . During each cycle only N edges of the n-cube can
communicate in the case of one-port communication; "I\;M is the minimum number of element
transfers in sequence. The number of start-ups is at least n. The maximum packet size can be
derived by dividing the total bandwidth requirement "N;M by the number of cycles n, and the

number of directed edges that can be used in each routing cycle N. I
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Theorem 10 A lower bound for n-port all-to-all personalized communication is max(NiM-tc, nr).
The packet size must be at least Ig_ﬁl to attain this lower bound.

Proof: From theorem 9 the total bandwidth requirement is "N; M During each routing cycle nN
directed edges can communicate concurrently. The maximum packet size is derived by dividing

the total bandwidth requirement by the number of cycles n and the total number of links nN. §

Theorem 11 The time for n-port all-to-all personalized communication based on G*%(x) of height
h and postorder scheduling 1s

h-1

; M ;
— id e id
T—I=EO(Mt¢x\¥‘1€a.§v (d,0) + [B X\rgggv (d,l)] ‘r) .

If B > max g<ich-1, vdep (M X v*4(d,1)) then

h-1
T= (g max vid(d, l)) Mt, + hr.

Proof: For each G'4(s), the total amount of data transmitted across all edges in dimension d
during routing cycle I is v*4(d,l) x M, 0 < I < h — 1. For G'4(x) = U,ey Tr(s,G*4(0)), each
a-graph edge is mapped to N distinct cube edges with N distinct exclusive-or operations on both

end-points. The amount of data transmitted across each cube edge in dimension d during routing
cycle I is v*4(d,l) x M. 1
Theorem 12 The time for n-port all-to-all personalized communication based on G*%(x) of height
h and reverse-breadth-first scheduling s
h-1 ) M )
T= g (Mt,, X mmax u'd(d,l) + I-E X max u'd(d, l)] ‘r) .

If B > max o<ich-1, vaep (M x u'd(d,[)) then
A-1 y
- 1
T= (E Imax u (d, l)) Mt + hr.

Proof: Similar to the proof of theorem 11. 1

Theorem 13 The all-to-all personalized communication based on N translated o-graphs will at-
tain the lower bound for the data transfer time iff the o-graph is greedy.

Proof: The bandwidth requirement for each node is

h—1n-1 h-1n-1 h
32 vi(d, ) = 33 Wi(d, ) = > 1x (the number of nodes at level J).
=0 d=0 =0 d=0 =1

Hence, non-greedy o-graphs require more data transfer than greedy o-graphs. 1

Theorem 14 All-to-all personalized n-port communication based on G*4(x) where G'3(0) =
Ugep Ro% (T (0)) and T4 (0) is greedy, can attain both the minimum data transmission time,
N—thc , and the minimum number of start-ups, n, for B > (N—_nlm both for postorder and reverse-
breadth-first schedulings.
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Proof: From theorem 11 and corollary 3, the data transfer time is

N

S5 M),
=0 |-l+1

The packet size N_nl M occurs during routing cycle 0. Similarly, the reverse-breadth-first schedul-

ing discipline can be shown to be optimum, and has the same value of the maximum packet size.

It occurs during the last routing cycle. |

Corollary 10 All-to-all personalized n-port communication based on G™F5BT (x) and GSBC ()
can attain the time N M, 4+ nr, which is within a factor of 2 of the lower bound.

Notice that in one-port communication the data transfer time is always optimal if the routing
is based on N translated greedy o-graphs and appropriate scheduling. But, not all greedy o-
graphs have the same number of start-ups. Only the SBT graph allows a minimum of n start-ups
for sufficiently large packet size. The minimum number of start-ups can be decided by the
same labeling rules as were used in all-to-all broadcasting. The minimum number of start-ups is
the same as for the all-to-all broadcasting. The difference is that the amount of data transferred
during cycle 1 is equal to the sum of weighted subtree sizes with the root of each subtree connected
through an edge labeled ¢ to its parent.

7.2 The Complexity of All-to-All Personalized Communication

Tables 14 and 15 summarize the complexity estimates.

| Comm. | Routing | T
H

SBT

one-port | nRSBT
nESBT
SBG
nRH LE-_I)_N__t +E.—.1 [ ]7
SBT C @ + e (7)) M

n=-3i-1 n—
+(Th () 25 + o [(77) M)

n-port nRSBT 4NMtc + rTa lnT ‘
nESBT | (§+52)Mt.+ (37,107, (5) 2% 1+r w1t o5 D)7
SBG =5 e+ . N . ]1’

Table 14: The complexity of all-to-all personalized communication.

With one-port communication and H routing both the data transfer time and the start-up
times are off by a factor of {% compared to the optimum for one-port communication. The
complexity for n-port communication and nRH routing holds for both the postorder and reverse-
breadth-first schedulings. The routing fully utilizes the cube bandwidth; however, much of the
data transfer is not through the shortest path, i.e., non-greedy.

Figure 13 shows all-to-all personalized communication on a 3-cube based on 8 SBT’s. The
shaded area represents the portion of the data residing in processor 0 (denoted P,). The task
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| Comm. | Routing | Bopt | Tmin |

H (N-ym | E=ONM; o (N1
SBT M 28824 + nr
one-port | nRSBT =2 ARt + (2n—1)7
nESBT | M(FEIT "1y | (28 4 N — 2)M¢, + 2n1
SBG =2 aM; "4 (2n — 1)1
“RH WM =089, (N 1)
SBT T OC/m)NME. + ot
n-port nRSBT aM Mt +nr
nESBT L2 gy E+ Mt + (n+1)r
SBG TEOM | NMy 4 nr

Table 15: The optimum complexity of all-to-all personalized communication.

is to exchange the j** block of data of processor ¢ with the i** block of processor j for any two
distinct processors 1 and j. If initially processor i owns the *# block column as in figure 13-(1)
then on completion of the all-to-all personalized communication processor i contains the ¢*# block
row as in figure 13-(4).

Lemma 24 All-to-all personalized one-port communication based on G°B7 (%) can be accom-
plished in time "I;M t. + nr, which is within a factor of 2 of the lower bound.

Proof: During the first routing cycle, %M data is exchanged along the lowest dimension. Then,
the procedure is applied recursively with the data set doubling for each cycle of the recursion
and the dimension of the cube decreasing by 1. Let T'(i, M) be the time required by the stated
personalized all-to-all routing algorithm with initially M data per node in an i-cube. Clearly,

T(n,M) =2""'Mt.+1+T(n-1,2M) and T(1, M) = Mt,+r. Hence, T(n, M) = BEM} 4 nr
1

2

In the case of n-port communication we can find the communication complexity from the pre-
viously derived formula. The interesting quantity for postorder scheduling is E{:ol max v'4(d, l).

n—1 $BT '.'n-z-_l.l 2l 2 n-1 n—1

_ -21-1

o= & (rers 3 (7)
= =0 =24

which is of O(y/nN). Since uSBT(d,l) = vSBT(n — d — 1,1), Table 3, the reverse-breadth-first

scheduling yields the same result.

The maximum packet size for nRSBT communication can be reduced from (N—:‘ILM—— to "‘;—ﬁl by
using a scheduling such that each SBT used in composing the nRSBT graph is the same as the
scheduling for the SBT graph in one-port one-to-all personalized communication. The n SBT’s

are scheduled concurrently. Note that the same scheme, if applied to all-to-all broadcasting, will

increase the maximum packet size from \/g %‘%— to % The time for nESBT communication is

obtained from theorems 11 and 12.

7.3 Summary of All-to-All Personalized Communication

With one-port communication, the SBT, nRSBT, SBG and nESBT routings with postorder and
reverse-breadth-first schedulings for all-to-all personalized communication are optimum within
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Figure 13: All-to-all personalized communication in a 3-cube based on SBT’s.

constant factors, Table 15. The SBT has the lowest complexity with a sufficiently large packet
size. Only greedy o-graphs attain the optimum data transfer time. In fact, the optimum data
transfer time can always be attained for the greedy o-graphs with appropriate scheduling. The
number of start-ups is equal to the maximum edge label plus one for a graph labeling such that
edges in the same dimension carry the same label, and outgoing edges always carry a higher label
than incoming edges for the spanning trees making up the o-graph. Both the nRSBT and the
SBG routings attain the optimum data transfer. The nESBT and H routings have a data transfer
time that exceed the lower bound by a factor of &3_2’ and LX— The number of routing cycles for
the SBT communication is at least n, for the nRSBT and SBG communications it is 2n — 1 and
for the nESBT communication it is 2n.

With n-port communication, the nESBT, nRSBT and SBG routings are optimum within a
constant factor of ~ 2 for postorder and reverse-breadth-first schedulings. Both the nESBT and
nRH are non-greedy, but the extra distance of the edges from the root of the nESBT is constant.
The SBT routing, though greedy, does not evenly utilize edges in the same dimension, and hence
is non-optimum. The data transfer time for the nESBT, the SBT, and the nRH routings are a
factor of 22, \/n, and % higher than the optimum time.

8 Experimental Results

Some of the communication algorithms presented here have been implemented on an Intel iPSC
[16] with 128 nodes, connected as a 7-dimensional Boolean cube. It has a message passing
programming model. Up to 16k bytes, an ezternal packet, can be passed in each communication,
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however, the operating system subdivides messages into internal packets of size 1k bytes. There is
a communication overhead (start-up time) associated with each packet. For an external packet we
recorded a start-up time averaging 8ms. For internal packets the start-up time was approximately
6ms (at the time our programs were tested). Interprocessor communication channels are 10M-
bit ethernet channels. Although there are 7 ports per processor, the storage bandwidth can only
support 2—3 ports concurrently. However, we have effectively been unable to realize this potential
with the available operating system. The concurrency in communication on different ports of the
same processor amounts to an overlap of about 20%.

For one-to-all broadcasting the communication time increases almost linearly for external
packet sizes below 1k bytes, Figure 14. Figure 15 shows the measured time of the SBT and
nESBT communications for an external packet size of 1k bytes and for cube dimensions ranging
from 2 to 6. As predicted, measured speed-up is approximately n.

SBT (Broadcastin
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Figure 14: One-to-all broadcasting for the SBT routing.
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Figure 15: One-to-all broadcasting for the SBT and nESBT routings.

For one-to-all personalized communication based on SBT routing we schedule port communi-
cations in a binary-reflected Gray code order to take advantage of the partial overlap in commu-
nication on different ports. In the SBG routing, the root determines which node belongs to which
subtree. If n is a prime number the subtrees are isomorphic (excluding node (3p,-13n-2---30))
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and the root only needs to keep one table of length = % with each entry of size n bits. The order
of the entries corresponds to the transmission order for each port. The table entries point to the
messages transmitted over port 0. The pointers for the other ports are obtained by (right) cyclic
shifts of the table entries. A one step cyclic rotation is used for port 1, two steps for port 2, etc.
For n not a prime number there are also other cyclic nodes. The period P(¢) for each table entry
needs to be found, and the message divided into P(f) pieces. Our implementation uses a single
path to every node (SBnT).

Internal nodes can either route according to the destination address if it is included, or use
tables. If the destination is included, then a node first checks if it is the destination. Otherwise,
the output port is determined by finding the base from base®B"T ((myaddress) @ (source)) and
then finding the first bit that is equal to 1 in ((myaddress) @ (destination)) to the left (cyclically)
of the bit corresponding to the base. If tables are used instead of a destination field, then for
postorder scheduling it suffices that each internal node keeps a count for each port. Since the
number of ports used in each subtree is at most n —~ 3 and the number of nodes in the entire
subtree is approximately %, a bound on the table size in each node is n? bits. A reverse-breadth-
first scheduling can be implemented by internal nodes keeping a table of how many nodes there
are at a given level in each of its subtrees. The table has at most n? entries. An upper bound
for the number of nodes in a subtree at any level is ,WN?’ and the total table size in a node is at
most n® bits. Hence, without a more sophisticated encoding the postorder scheduling discipline
requires less table space. It is used for the measurements presented in Figure 16.

SBnT and SBT, M = 1 kbytes
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Figure 16: One-to-all personalized communication for the SBnT and SBT routings.

With one-port one-to-all personalized communication the expected time for SBT routing and
SBG routing is the same for B = M. The observed advantage of the SBG over the SBT routing
is due to the fact that the SBG can take better advantage of the overlap between communication
on different ports. In the SBT case, even though messages were communicated over different
ports in a binary-reflected Gray code order, the nodes adjacent to the root may not be finished
with retransmitting the last packet received when a new packet arrives, in practice. In the
SBG, a subtree receives a packet once every n cycles, and full advantage of the 20% overlap in
communication actions is taken.

For all-to-all broadcasting the execution times are expected to be of the same order for all
forms of all-to-all broadcasting on the Intel iPSC with B = M. The results of implementing the
SBT, SBG and two H routings are shown in Figure 17.
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Figure 17: All-to-all broadcasting on the Intel iPSC.

We have also implemented the all-to-all personalized communication based on the SBT graph
on the iPSC. The result is presented in [22].

9 Summary and Conclusions

We have presented three new communication graphs for Boolean cubes and defined scheduling
disciplines for: (1) one-to-all broadcasting; (2) one-to-all personalized communication; (3) all-to-
all broadcasting; and (4) all-to-all personalized communication, so that the communication tasks
are completed within a small constant factor of the best known lower bounds. For each case
we. considered two communication models: communication restricted to one-port at-a-time for
each processor; and concurrent communication on all ports of every processor. One of the new
communication graphs consists of n edge-disjoint spanning binomial trees. Another is a balanced
tree. Each subtree of the root of the balanced n-tree we define has approximately % nodes.

For communication restricted to one-port at-a-time, the nESBT routing is optimum for case
1 within a factor of 4 of the best known lower bound, a speed-up of up to n over the SBT routing.
For cases 2, 3, and 4, the SBT routings with appropriate scheduling are shown to be optimum
within a factor of 2. The nESBT, nRSBT, and SBG routings are all optimum within a factor of
4. For concurrent communication on all ports, the nESBT routing is optimum within a factor of
4 for case 1, a speed-up of up to n over the SBT routing. For cases 2, 3, and 4, the nRSBT and
SBG routings are optimum within a factor of 2. The nESBT routing is optimum within a factor
of ~ 2. The speed-up of the data transmission time for the three routings over the SBT routing
is 2, 2, and O(y/n) for cases 2, 3, and 4 respectively. Table 16 summarizes the results.!

The SBG routing has the additional property that the order of the time complexity holds for
any data volume, while this is not true for the routings using n paths to every node, such as
the nESBT and nRSBT routings. The nESBT routing offers n edge-disjoint paths between the
source and any destination node, and hence inherently has a good degree of fault tolerance with
respect to communication links.

'For the nESBT routing, Tomin is valid only if 1 < Bopt < M for one-port and 1 < Bope < _1\_:_ for n-port
communication.
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Routing for the four communication operations can also be based on Two-rooted Complete
Binary Trees (TCBT) [3,6]. Communication algorithms based on the TCBT may yield perfor-

mance comparable to the algorithms presented here for one-port communication. For some such
scheduling algorithms see [24].

The packet size is very important for the communication complexity. With one-port commu-
nication and a packet size less or equal to the data set to be communicated to every node, all

considered routings have approximately the same complexity for one-to-all personalized commu-
nication and all-to-all broadcasting.

Experimental results on the Intel iPSC/d7 confirm the timing model and complexity analysis.

The generic communications have been applied to matrix multiplication {21], matrix transposition
[22], and tridiagonal systems solvers [23].

| Comm. | Data distribution | Assumption | Routing | Bope | Tmin | Factor |

One-to-all M=1" SBT 1 n(t. +7) 1
Broadcasting M>1 nESBT n (VMt. + /n1)? 4
one-port One-to-all P.C. M>1 SBT M (N —1)Mt. +nr 2
All-to-all B. M>1 SBT fie s (N - 1)Mt. +nr 2
All-to-all P.C. M>1 SBT M Mt + nr 2
One-to-all M<n nRSBT 1 n(t. + 1) 1
Broadcasting M>n nESBT i\/“f—c’ (V= + /n7)? 4

One-to-all M2n nESBT 2 NP SE_':ML, +(n+1)r ﬂ"ﬂ—“)
Personalized comm. | M >1, M >n | SBG, nRSBT | /2 &M WM+ nr 2

n-port All-to-all M>n nESBT 2ap T Iy (g 1)y | 2Rl
Broadcasting M>1,M>n | SBG, nRSBT | \/2 2% WoOMy " nr 2

Allto-all M>n nESBT | T=0M | (K F=0)35 3 (g D)7 | 20E2

Personalized comm.. M>1 SBG L EMi +nr 2
M>n nRSBT e NMt, +nt 2

Table 16: Time complexity of communication algorithms. The last column shows the constant
factors as compared to the best known lower bounds.
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