
In the present paper we describe a method for solving inverse problems for the Helmholtz
equation in radially-symmetric domains given multi-frequency data. Our approach is based
on the construction of suitable trace formulas which relate the impedance of the total field
at multiple frequencies to derivatives of the potential. Using this trace formula we obtain
a system of coupled differential equations which can be solved to obtain the potential in a
stable manner. Finally, the performance of the reconstruction algorithm is illustrated with
several numerical examples.
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1 Introduction

Inverse scattering problems for the Helmholtz equation are ubiquitous in both pure math-

ematics and applied sciences. Such problems arise inter alia in medical imaging, ocean

acoustics, remote sensing, geophysical exploration, non-destructive testing, radar, etc.

Despite the obvious utility of numerical methods for inverse scattering, the construction

of stable numerical inversion algorithms poses several difficulties. First and foremost is

the inherent non-linearity of the problem. For the one-dimensional problem, it can be

mapped to a linear problem [8, 16], though the mapping is not always numerically stable.

In two and three dimensions no such mappings are known. This makes the construction

of mathematically-rigorous inversion approaches difficult except in low-contrast regimes.

Even when a mathematically-rigorous inversion approach exists the construction of a

numerically stable scheme often adds significant challenges. Finally, given a stable nu-

merical algorithm the computational cost is an additional factor; many algorithms can

become prohibitively slow when the contrast is large or high accuracy is required.

The simplest approach is to linearize the nonlinear problem; specifically, the nonlinear

problem in question is replaced by its linearization about an approximation to the true

material parameters (most frequently assuming them to be constant). The result is a

linear system which can be solved using standard techniques (see [29] for example).

Two classes of algorithms for solving the fully nonlinear problem are nonlinear opti-

mization methods and direct methods. Broadly speaking, nonlinear optimization meth-

ods seek to recover material parameters in an iterative fashion by solving a sequence of

(forward or inverse) scattering problems (see for example [32, 25, 27, 2, 3, 5, 4, 20, 17,

18, 19, 23, 24, 6]), while direct methods rely on a variety techniques originating from

signal and image processing (see for example [11, 12, 28, 21]).

A frequently encountered third approach, particularly in one dimension, is based on

trace formulae (for example [14],[13],[30], [31]) which relate data in a range of frequencies

to local material parameters. In [9] an algorithm based on trace formulas was introduced

for solving the inverse scattering problem for the Helmholtz equation in one dimension
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with multifrequency data in a numerically stable and computationally efficient manner.

This paper extends this approach to the case of radially-symmetric problems in two

dimensions, though the apparatus described here can be immediately applied to higher

dimensions.

The remainder of the paper is organized as follows. In Section 2 we give a detailed

description of the problem and review necessary mathematical preliminaries. In Section

3 we summarize the analytical apparatus necessary for the remainder of the paper. In

Section 4 we state and prove a trace formula for two-dimensional radially-symmetric

scattering. Finally, Section 5 describes a numerical algorithm based on the constructed

trace formula and provides numerical illustrations demonstrating the reconstructions it

produces.

2 Preliminaries

2.1 Formulation of the problem

In this paper we consider the inverse scattering problem for acoustic waves in radially-

symmetric annuli in two dimensions. Let Ω denote the annulus centered at the origin

with inner radius a and outer radius b. Let Ba denote the ball of radius a centered at

the origin. At a single frequency k ∈ C such that Im k ≥ 0, the time-harmonic acoustic

wave equation is

∆u(x) + k2 (1 +Q(x))u(x) = f(x) (1)

subject to the Sommerfeld radiation condition

lim
r→∞

(
∂u

∂r
+ iku

)
= 0.

Here we assume the source f ∈ L2 is a function supported on Ba and the potential

Q is a continuous compactly-supported radially-symmetric function. In particular, we

assume that Q(r) = q(‖r‖) for some continuous function q : R → R supported on
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the interval [a, b] with 0 < a < b < ∞. Here ‖ · ‖ denotes the standard Euclidean

norm in R2. Moreover, we assume that there exist two constants q0 and q1 such that

−1 < q0 < q(r) < q1 <∞ for all a < r < b.

2.2 Reduction to the radial problem

In this section we reduce the radially-symmetric acoustic scattering problem to a set

of decoupled one-dimensional scattering problems. Let un : [0,∞) → C be the Fourier

coefficient of u with respect to the angle θ, i.e.

un(r) =

∫ 2π

0
e−inθu(r cos θ, r sin θ) dθ. (2)

For any integer n the function un satisfies the differential equation

u′′n(r) +
1

r
u′n(r) + k2[1 + q(r)]un(r)− n2

r2
un(r) = fn(r), (3)

where

fn(r) =

∫ 2π

0
e−inθf(r cos θ, r sin θ) dθ, (4)

is the Fourier coefficient of f.

Remark 2.1. On any interval c < x < d on which the source f and potential q are iden-

tically zero the solutions to equation (3) are a linear combination of the Bessel function

Jn(kr) and the Hankel function Hn(kr). Specifically, if fn is supported on the interval

[0, R] and q is supported on the interval [a, b] then for all A ∈ C there exist constants

α, µ depending only on the source fn and potential q such that for all R < r < a

un(r) = AHn(kr) + αJn(kr) (5)
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and for all r > b,

un(r) = µHn(kr). (6)

Remark 2.2. The data required by the recovery algorithm presented in this paper depends

only on the quantity u′n(r)/un(r). Hence in the remainder of the paper we will assume

that solution un(r) is scaled so that µ = 1.

In the following it will be convenient to rescale un by
√
r. This new quantity,

√
run(r),

also satisfies a differential equation which can be readily obtained from equation (3).

Lemma 2.1. Let un be a solution to the differential equation

u′′n(r) +
1

r
u′n(r) + k2[1 + q(r)]un(r)− n2

r2
un(r) = 0, (7)

and define the function ψn : [a, b]→ C by

ψn(r) =
√
r un(r). (8)

Then ψn satisfies the equation

ψ′′n(r) + k2 (1 + q(r))ψn(r)−
n2 − 1

4

r2
ψn = 0, (9)

with the boundary conditions

ψn(b) =
√
bHn(kb), (10)

ψ′n(b) = k
√
bH ′n(kb) +

1

2b
Hn(kb). (11)

Remark 2.3. The function ψn : [a, b] → C can be extended to a function defined on

(0,∞). Specifically, for r > b we set

ψn(r) =
√
rHn(kr) (12)
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and for r < a we set

ψn(r) = α
√
rHn(kr) + β

√
rJn(kr) (13)

where the coefficients α and β are chosen so that ψn(r) and ψ′n(r) are continuous at a.

2.3 Impedance

In this section we introduce the concept of impedance (see, for example, [31]) and sum-

marize its properties which are relevant to the subsequent analysis.

Definition 2.1. Given a solution ψn of (8) the impedance φn : [a, b] × {z ∈ C : z 6=

0, Imz ≥ 0} → C is the function defined by the formula

φn(r, k) =
ψ′n(r)

ikψn(r)
. (14)

Remark 2.4. The impedance φn corresponds to a scattering problem in which the

source is located inside an annulus and propagates outward to infinity. One could in

principle define an inward impedance corresponding to an incoming wave impinging upon

an annulus and reflecting outward. For the inward impedance interference from waves

passing through the scatterer from opposite directions produces poles which necessitate

a different approach. A detailed analysis of the trace formula for the inward impedance

will be published at a later date.

The definition of the impedance and equation (9) immediately imply the following

lemma.

Lemma 2.2. For all a ≤ r ≤ b, the impedance φn satisfies the Riccati equation

∂

∂r
φn(r, k) = −ikφ2

n(r, k)− ik(1 + q(r)) + i
n2 − 1

4

kr2
, (15)

6



together with the boundary condition

φn(b, k) =
H ′n(kb)

iHn(kb)
+

1

2ibk
. (16)

Remark 2.5. In a mild abuse of notation unless otherwise stated we will denote deriva-

tives of φn(r, k) with respect to r by φ′n(r, k).

Corollary 2.3. Suppose n is a non-negative integer and consider the function

w : [a, b]× {k ∈ C : k 6= 0, Im k ≥ 0} → C

defined by

w(r, k) = φn(r, k)− (
√
rHn(kr))′

ik
√
rHn(kr)

, (17)

where φn is the impedance defined in (14). Then for all a ≤ r ≤ b

w′(r, k) = −ikw(r, k)

(
w(r, k) + 2

(
√
rHn(kr))′

ik
√
rHn(kr)

)
− ik q(r), (18)

and w(b, k) = 0 for all non-zero k ∈ C with non-negative imaginary part. Obviously, the

differential equation (18) is equivalent to the integral equation

w(r, k) = ik

∫ b

r

(
w(x, k)

(
w(x, k) + 2

(
√
rHn(kx))′

ik
√
rHn(kx)

)
+ q(x)

)
dx, a ≤ r ≤ b.

(19)

We conclude this section with the following lemma which characterizes the symmetry

of the impedance in frequency.

Lemma 2.4. Let k be a non-zero real number and 0 < r <∞. Then for all non-negative

integers n

φn(r, k) = φn(r,−k). (20)
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2.4 Properties of Bessel functions

In this section we list certain properties of Bessel and Hankel functions which will be

used in the subsequent analysis.

Proposition 2.5. Let n be a non-negative integer and z be a non-zero complex number

with a non-negative imaginary part. The Bessel functions of the first and second kind

have the following expansions about z = 0

Jn(z) =
(z

2

)n ∞∑
n=0

(−1)k
(

1
4z

2
)k

k! Γ(n+ k + 1)
,

Yn(z) = −
(

1
2z
)−n
π

n−1∑
k=0

(n− k − 1)!

k!

(
1

4
z2

)k
+

2

π
log

(
1

2
z

)
Jn(z)− (21)

(
1
2z
)n
π

∞∑
k=0

(Ψ(k + 1) + Ψ(n+ k + 1))

(
−1

4z
2
)k

k!(n+ k)!
,

where Ψ(z) = Γ′(z)/Γ(z) and we take the branch cut of log to lie along the negative

imaginary axis.

Moreover, if Hn(z) denotes the nth order Hankel function then

Hn(z) =
(z

2

)n ∞∑
n=0

(−1)k
(

1
4z

2
)k

k! Γ(n+ k + 1)
(22)

− i
(

1
2z
)−n
π

n−1∑
k=0

(n− k − 1)!

k!

(
1

4
z2

)k
+ i

2

π
log

(
1

2
z

)
Jn(z)−

i

(
1
2z
)n
π

∞∑
k=0

(Ψ(k + 1) + Ψ(n+ k + 1))

(
−1

4z
2
)k

k!(n+ k)!
.

Remark 2.6. It follows immediately from (22) that for all n = 0, 1, 2, . . . there exists a

constant Cn depending only on n such that if |z| ≤ Cn then

∣∣∣∣H ′n(z)

Hn(z)

∣∣∣∣ ≤ 4(n+ 1)

|z|
(23)

Hankel functions also have the following asymptotic expansions valid for large argu-

ments.
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Proposition 2.6. Let n be a non-negative integer and z ∈ C such that Im(z) ≥ 0. Then

Hn(z) ∼ 2

πin+1

√
π

2z
eiz+

iπ
4

(
1− n2 − 1

−8iz
+

(4n2 − 1)(4n2 − 9)

2(−8iz)2
+ . . .

)
(24)

Corollary 2.7. Let n be a non-negative integer and z a complex number of magnitude

one with non-negative imaginary part. Then for all λ ∈ R with λ > 0,

∣∣∣∣H ′n(λz)

Hn(λz)
+

1

2λz

∣∣∣∣ = O(λ−2) (25)

as λ→∞.

The following proposition gives a formula for the Wronskian of Jn and Yn and can

be found, for example, in [1].

Proposition 2.8. Let n be an integer and z be a complex number which is not a non-

positive purely-imaginary number. Then

Jn(z)Y ′n(z)− J ′n(z)Yn(z) =
2

πz
. (26)

A similar result holds for the Wronskian of Jn and Hn. Its proof is an immediate

consequence of the definition of Hn and the preceding proposition.

Corollary 2.9. Let n be an integer and z be any complex number which is not a non-

positive purely-imaginary number. Then

Jn(z)H ′n(z)− J ′n(z)Hn(z) =
2i

πz
. (27)

2.5 Basic lemmas

Lemma 2.10 provides a variant of Gronwall’s inequality (see, for example, [26]).

Lemma 2.10. Suppose that A,B ∈ C and F,G are two positive real numbers. Suppose

further that f : [a, b]→ C and g : [a, b]→ C are two functions such that |f(r)| ≤ F <∞
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and |g(r)| ≤ G <∞ for all a ≤ r ≤ b and that w : [a, b]→ C is the function defined by

w(r) = A

∫ b

r
(w(x) + f(x))w(x) dx+B

∫ b

r
g(x) dx. (28)

If the constants A,B, F, and G are such that

(
1 +

F

|B|G

)
>

1

2
e

|A|
F

(b−a), (29)

then for all a ≤ r ≤ b,

|w(r)| ≤ 4

F
. (30)

The following lemma provides a bound on the solutions to a certain initial value

problem arising in the WKB approximation of solutions to inhomogeneous Helmholtz

equations in one dimension (for proofs see, for example, [15, 9]).

Lemma 2.11. Suppose that T and M are positive constants and let K be the set defined

by

K = {k 6= 0 ∈ C : Im k ≥ −M, |k| ≥ 1}.

Suppose further that η : [0, T ] ×K → R is an absolutely continuous function uniformly

bounded on [0, T ] × K. Let w : [0, T ] × K → C be the solution to the following initial

value problem

w′′(t, k)− 2ikw′(t, k) = η(t, k)w(t, k) (31)

w(0, k) = 1 (32)

w′(0, k) = 0, (33)

where ′ denotes differentiation with respect to t. Then there exist constants C1 and C2
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depending on η, M and T but which are independent of t and k such that

∣∣∣∣w(t, k)− 1 +
1

2ik

∫ t

0
η(τ, k)

∣∣∣∣ ≤ C1

|k|2
, (34)

∣∣w′(t, k)
∣∣ ≤ C2

|k|
, (35)

for all t ∈ [0, T ].

3 Mathematical apparatus

In this section we establish properties of the impedance used in the construction of the

trace formula.

Proposition 3.1. Let n be a non-negative integer, and k be a non-zero complex number

with non-negative imaginary part. Then the function un (see (3)) has no zeros on the

interval 0 < r <∞ and hence neither does ψn defined in (8).

Proof. First suppose that Im k2 6= 0. Note that limr→∞ un(r) = 0 and hence

run(r)ū′n(r)− ru′n(r)ūn(r) =

∫ ∞
r

(
ūn(x) (xu′n(x))′ − un(x) (xū′n(x))′

)
dx.

(36)

The substitution of (7) into the right-hand side of the previous equation yields

run(r)ū′n(r)− ru′n(r)ūn(r) = Im k2

∫ ∞
r

x|un(x)|2dx, (37)

and hence clearly un cannot vanish for any r > 0.

Next suppose k = iκ, for κ ∈ R+. Then un is real and

∫ ∞
r

un(x)(xu′n(x))′ −
(
κ2(1 + q) +

n2

x2

)
xu2

n(x) dx = 0. (38)
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Integrating (38) by parts gives

run(r)u′n(r) = −
∫ ∞
r

x(u′n(x))2 +

(
κ2(1 + q) +

n2

x2

)
xu2

n(x) dx (39)

which implies that un(r) 6= 0 for all r > 0.

Finally, suppose that k ∈ R. By Remark 2.1 there exists a constant β such that for

all r > b, un(r) = βHn(kr). If k > 0 then Jn(kr) and Yn(kr) are real in which case

Re (un(r)/β) = Jn(kr) and Im (un(r)/β) = Yn(kr). Substituting these expressions into

(26), we obtain

Re

(
u′n(r)

β

)
Im

(
un(r)

β

)
− Re

(
un(r)

β

)
Im

(
u′n(r)

β

)
=

2

πkr
(40)

and hence un(r) 6= 0 for all r > 0. An almost identical argument applies to the case

where k < 0. �

Theorem 3.2. Let q : (0,∞)→ [q0, q1] with −1 < q0 ≤ q1 <∞ be a continuous function

supported on the interval [a, b] with 0 < a < b <∞. For all non-negative integers n and

for all real numbers r > 0 the impedance φn(r, k) is an analytic function of k everywhere

in the complex upper-half plane.

Proof. By Proposition 3.1 the impedance is well-defined for all non-zero k with non-

negative imaginary part. Theorem 3.2 follows from the analytic dependence on param-

eters of solutions to ordinary differential equations (see, for example, [10]). �

The following theorem describes the behaviour of the impedance in the vicinity of

k = 0.

Theorem 3.3. Let 0 < a < b <∞, and n be any non-negative integer. Then

φn(r, k) =
(
√
rHn(kr))′

ik
√
rHn(kr)

+O(k), (41)

as k → 0 in the complex upper half-plane (including the real axis).
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Proof. Let n be a non-negative integer and k a non-zero complex number with non-

negative imaginary part. Consider the function w : [a, b]× {k 6= 0 ∈ C : Im k ≥ 0} → C

defined by

w(r) = φn(r, k)− (
√
rHn(kr))′

ik
√
rHn(kr)

. (42)

We begin by observing that by Corollary 2.3, w satisfies the integral equation

w(r, k) = ik

∫ b

r

(
w(x, k)

(
w(x, k) + 2

(
√
rHn(kx))′

ik
√
rHn(kx)

)
+ q(x)

)
dx, (43)

for all a ≤ r ≤ b. Next we note that by Remark 2.6, if |k| < Cn/b then

∣∣∣∣(√rHn(kr))′

ik
√
rHn(kr)

∣∣∣∣ ≤ 4(n+ 1)

|k|a
+

1

2|k|a

≤ 4(n+ 2)

|k|a
(44)

for all a ≤ r ≤ b. Applying Lemma 2.10 to the integral equation (43) with |A| = |B| = |k|,

F = 8(n+ 2)/(|k|a) and G = |q0|+ |q1|, and using the bound (44) we obtain

|w(r)| ≤ |k|a
2(n+ 2)

(45)

for all a ≤ r ≤ b provided that

1 +
8(n+ 2)

|k|2a(|q0|+ |q1|)
≥ 1

2
e
a|k|2

8(n+2)
(b−a)

(46)

and |k| ≤ Cn/b. Substituting |k| < Cn/b into the right-hand side of (46) and rearranging

yields

|k| ≤ min

{
Cn
b
,

√
16(n+ 2)

a(|q0|+ |q1|)

√
1

|eC2
n/(8(n+2)) − 2|

}
. (47)
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Combining (45), (47) and the definition of w in (42) we see that for all r ∈ [a, b],

φn(r, k) =
(
√
rHn(kr))′

ik
√
rHn(kr)

+O(k) (48)

as k → 0 in the complex upper half-plane (including the real axis). �

The following theorem describes the behaviour of the impedance at large frequencies.

Theorem 3.4. Suppose q ∈ C2(R) is a compactly supported function on the interval

[a, b]. Moreover, suppose that there exist constants q0 and q1 such that −1 < q0 ≤ q(r) ≤

q1 <∞ for all r ∈ [a, b]. Let φn be the impedance defined in (14). Then

φn(r, k) =
√

1 + q(r)− 1

4ik

q′(r)

1 + q(r)
+O

(
1

k2

)
, (49)

as k →∞, Im(k) ≥ 0.

Proof. The proof is a slight modification of the standard analysis of the WKB approx-

imation applied to equation (9) (see [9, 15] for example). Indeed, let s(r) =
√

1 + q(r)

and define t : [a, b]→ [0,∞) by

t(r) =

∫ b

r
n(s) ds, (50)

observing that

t(a) ≤
√

1 + q1(b− a). (51)

We set T = t(a) and define k̃ ∈ C by

k̃ = k

(
H ′n(kb)

Hn(kb)
+

1

2kb

)
. (52)

It follows from Corollary 2.7 that |k̃ − k| = O(|k|−1) as |k| → ∞ anywhere in the upper

half-plane.
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Next we define w(t, k) implicitly by

ψn(r(t), k) =
√
kbHn(kb)

e−ik̃tw(t, k)√
s(r(t))

. (53)

For notational convenience in the following we will suppress the dependence of w on k

and write w(t) in place of w(t, k).

After inserting (53) into (9), clearly w satisfies the following initial value problem

w′′(t)− 2ik̃w′(t) = η(t)w(t), (54)

w(0) = 1,

w′(0) = 0,

where

η(t) =

(
k̃2 − k2 +

n2 − 1
4

r2(t) s2(r(t))
+

s′′(r(t))

2s2(r(t))
− 3(s′(r(t)))2

4s3(r(t))

)
. (55)

We note that k̃2 − k2 = O(1) as k → ∞ in the upper half-plane and thus that η is

an absolutely continuous function on [0, T ] and is bounded uniformly in k and t for all

Im k ≥ 0, |k| > 1 and t ∈ [0, T ]. Moreover, since k − k̃ = O(|k|−1), there exists some

constant M such that Im k̃ ≥ −M for all k ∈ C such that Im k ≥ 0, |k| > 1.

Applying Lemma 2.11 to the initial value problem (54) we obtain

∣∣∣∣w(t)− 1 +
1

2ik̃

∫ t

0
η(τ) dτ

∣∣∣∣ = O(|k̃|−2), (56)

∣∣w′(t)∣∣ = O(|k̃|−1), (57)

for all t ∈ [0, T ].

Finally, it follows from the definition of w, see equation (53), that

ψ′n(r)

ψn(r)
= ik̃

√
1 + q(r) +

n′(r)

2s(r)
+O(|k̃|−1) (58)
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as k̃ →∞ anywhere in the upper half plane. �

4 The trace formula

In this section we present a trace formula for the impedance which is the principle

analytic tool used in the inversion algorithm.

Theorem 4.1. Suppose that q ∈ C2(R) is a compactly supported function on the interval

[a, b] and that there exist constants q0 and q1 such that −1 < q0 ≤ q(r) ≤ q1 <∞ for all

r ∈ [a, b]. Let φn be the impedance defined in Definition 2.1. Then

q′(r)

1 + q(r)
=

4

π

∫ ∞
−∞

(
φn(r, k)− (

√
rHn(kr))′

ikHn(kr)
+ 1−

√
1 + q(r)

)
dk. (59)

Proof. For a ≤ r ≤ b define the function fr : {k 6= 0 ∈ C : Im k ≥ 0} → C by

fr(k) = φn(r, k)− (
√
rHn(kr))′

ikHn(kr)
+ 1−

√
1 + q(r). (60)

By Theorem 3.2, for all a ≤ r ≤ b the function fr is analytic in the upper half-plane and

hence if Ω is any positive real number then

∫ Ω

−Ω
fr(k) dk = −iΩ

∫ π

0
fr(e

iθΩ)eiθ dθ. (61)

Substituting the asymptotic expansion of φn from equation (49) into the previous ex-

pression yields

∫ Ω

−Ω
fr(k) dk = iΩ

∫ π

0

1

4iΩeiθ
q′(r)

1 + q(r)
eiθ dθ +O

(
1

Ω

)
. (62)

Taking the limit as Ω→∞ completes the proof. �

The following corollary is an immediate consequence of Theorem 4.1 and Lemma 2.2,

and is the basis for the reconstruction algorithm described in Section 5.1.
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Corollary 4.2. Suppose that q ∈ C2(R) is a compactly supported function on the interval

[a, b] and that there exist constants q0 and q1 such that −1 < q0 ≤ q(r) ≤ q1 <∞ for all

r ∈ [a, b]. Then φn and q satisfy the following system of integro-differential equations

φ′n(r, k) = −ikφ2
n(r, k)− ik(1 + q) + i

n2 − 1
4

kr2
, k ∈ R (63)

q′(r)

1 + q(r)
=

4

π

∫ ∞
−∞

(
φn(r, k)− (

√
rHn(kr))′

ikHn(kr)
+ 1−

√
1 + q(r)

)
dk (64)

for all r ∈ [a, b] together with the initial conditions

φn(a, k) = k

(
H ′n(ka)

iHn(ka)
+

1

2ika

)
, k ∈ R, (65)

q(a) = 0. (66)

5 Numerical algorithm and results

5.1 The reconstruction algorithm

In this section we describe a reconstruction algorithm based on the trace formula derived

in Theorem 4.1. As input it takes a non-negative integer n, an interval [a, b] with

0 < a < b < ∞, a spatial step size h, a bandlimit Ω, and the number of frequency

samples N to use. As output the algorithm produces an approximation to the potential

q on the interval [a, b].

Step 1. Initialization: For j = 1, . . . , N let fj = 2Ω(j − 1)/(N − 1) − Ω and w1 = Ω
N ,

wN = Ω
N and wj = 2Ω

N , j = 2, . . . , N − 1. We note that this corresponds to

an N -point trapezoidal quadrature rule on the interval [−Ω,Ω]. Set r0 = a and

q0 = q(r0) = 0. Set φ0,j = φm(a, fj), for j = 1, . . . , N.

For ` = 0, . . . , (b− a)/h− 1
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Step 2. Obtain q′(r`) via the formula

q′(r`) =
π(1 + q`)

4

N∑
j=1

(
φ`,j −

H ′n(fjri)

iHn(fjr`)
− 1

2ifjr`
+ 1−

√
1 + q`

)
wj ,

(67)

and compute q`+1 via the formula

q`+1 = q` + hq′(r`). (68)

Step 3. For j = 1, . . . , N set

φ`+1,j = φ`,j + h

(
−ifjφ2

`,j − ifj(1 + q`) + i
n2 − 1

4

fjr2
`

)
.

Remark 5.1. The above algorithm is first-order in 1/Ω and h and 1/N. In the next

section we discuss modifications which improve its rate of convergence with respect to

these parameters.

5.2 Numerical acceleration of convergence

The algorithm presented in the previous section is first-order in the bandlimit Ω, the

number of frequency samples N, and the spatial step size h, and is suitable for situations

in which a few digits of relative precision are required for the reconstructions. If higher-

precision reconstructions are required then the number of samples, the bandlimit and the

number of spatial discretization points can become prohibitively large. In this section

we outline straightforward modifications to the above algorithm which increase the rate

of its convergence with respect to Ω, h, and N.

Dependence on N

As written the algorithm uses the trapezoidal rule to approximate the integral appearing

in the trace formula (59) over a truncated interval [−Ω,Ω]. Theorem 3.3 guarantees that
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computing the integral over this interval using trapezoid rule will result in an error that

decays like 1/N where N is the number of frequencies used. For k ∈ R away from zero

the integrand is smooth and hence any smooth quadrature rule such as Gauss-Legendre

quadratures or nested Gauss-Legendre quadratures can be used to obtain arbitrarily high

accuracy. Near k = 0 the presence of terms depending on log(k) cause singularities in

the higher derivatives of the integrand which necessitate the use of a different quadrature

rule. In particular, using generalized Gaussian quadratures [7] we produced a 35-point

quadrature rule which integrates all functions of the form

fm,n(k) = km logn(k)

on the interval 0 ≤ k ≤ 1/2 for m = 1, 2, . . . , 18 and n = −10, . . . , 4 to a relative

precision of 10−16. The resulting quadrature rule can be used to perform the integrals in

the neighborhood of k = 0. Alternatively, one could use an endpoint corrected trapezoid

rule [22] to evaluate the contribution of the integral in the vicinity of the origin.

Using this quadrature method, for any Ω > 0 and 0 < r <∞, integrals of the form

4

π

∫ Ω

−Ω

(
φn(r, k)− (

√
rHn(kr))′

ikHn(kr)
+ 1−

√
1 + q(r)

)
dk (69)

can be computed numerically to full machine precision with relatively few quadrature

nodes (typically no more than 500 and often significantly fewer).

Dependence on Ω

The method outlined in the previous section allows one to compute integrals of the form

4

π

∫ Ω

−Ω

(
φn(r, k)− (

√
rHn(kr))′

ikHn(kr)
+ 1−

√
1 + q(r)

)
dk (70)

accurately and with relatively few quadrature nodes. It does not, however, eliminate

the truncation error introduced by replacing the integral over the entire real line in the

system (63) by the integral over the finite interval [−Ω,Ω]. From Theorem 3.4 it can be
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observed that the resulting error due to this truncation will decay like 1/Ω. In this section

we describe a modification to the inversion algorithm described above which produces

faster convergence in Ω. The principle tool is Richardson extrapolation.

For notational convenience we denote the real part of the integrand appearing in

the trace formula (59) by F (r, k), noting that for any 0 < r < ∞, F (r, k) = F (r,−k).

Specifically, F : (0,∞)× R→ R is defined via the formula

F (r, k) =

(
φn(r, k)− (

√
rHn(kr))′

ikHn(kr)
+ 1−

√
1 + q(r)

)
. (71)

We observe that the imaginary part can be neglected since by Lemma 2.4 the integral of

the imaginary part vanishes provided the endpoints of integration are symmetric about

k = 0. Additionally, Theorem 4.1 guarantees that F (r, k) = O(k−2) for large k. In fact,

for any fixed r it has an asymptotic expansion in k valid in the limit as k goes to infinity;

namely, there exist coefficients A2(r), A4(r), . . . depending on the potential q and the

point r, such that

F (r, k) =
A2(r)

k2
+
A4(r)

k4
+ · · ·+ A2m(r)

k2m
+O(k−2m−2) (72)

for any m ≥ 1.

Thus

2

∫ 2Ω

−2Ω
F (r, k) dk −

∫ Ω

−Ω
F (r, k) dk = O(Ω−3). (73)

Rather than compute both integrals, this extrapolation can be performed by adjusting

the frequency quadrature weights wj , j = 1, . . . , N. In addition, this extrapolation can

be performed multiple times, each time increasing the rate of convergence by a factor

of Ω−2. Finally, we remark that it is not necessary to double the bounds of integration

for each step of Richardson extrapolation: smaller ratios can be used at the expense of

increasing the coefficients multiplying the integrals.
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5.3 Dependence on h

The recovery algorithm described in Section 5.1 uses the forward Euler method to evolve

both the impedance φn and the potential q from the inner radius of the annulus a to the

outer radius b, which produces an error decaying linearly in the step size h. If one instead

uses Heun’s method for the evolution of the potential q followed by the Crank-Nicholson

method to evolve the equations for the impedance φn, the result is a second-order method

in h.

Remark 5.2. The above algorithm is second-order accurate in the step size h both

for the evolution of the impedance as well as for the evolution of the potential q; using

Richardson extrapolation it is easy to obtain higher-order convergence in h.

5.4 Numerical results

The algorithm described above, together with the modifications, was implemented in

Fortran and the results are summarized below. All code was compiled in GFortran and

run on a 2.7 GHz Apple laptop with 8 Gb of memory. To avoid so-called inverse crimes

the forward data was obtained by solving the equation for the field un given in equation

(3) using a fourth-order Runge-Kutta method. We show both the effect of increasing

the order n (Figure 3) as well as changing the distance of the annulus from the origin

(Figure 4). Finally, in Figure 5 we show recovery for a discontinuous potential.

6 Conclusions and discussion

In this paper we present an algorithm for solving the interior inverse-scattering problem

for radially-symmetric domains in R2 given multifrequency reflection data. The source

used to generate the measurements is assumed to be inside the object and the measure-

ments are taken at the center of the domain. The approach is based on the construction

of a trace formula for the impedance of the angular moments of the field. As in [9],

this leads to a system of coupled equations for the impedance and unknown potential

which can be evolved starting from the measured data in the interior of the scatterer
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(c) The recovery error

Figure 1: Numerical results for a Gaussian bump q(r) = e−32(x−2)2 with n = 0. The
time to generate the data was 54 seconds, and the time to solve was 140 seconds. The
solve was done using 270 frequencies in the range [−160, 160], and a spatial step size of
1/20000.
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(c) The recovery error

Figure 2: Numerical results for the potential
q(r) = 1

10 [cos(a(r − 2)π) + 1] − a2

10b2
[1− cos(b(r − 2)π)] with a = 5, b = 6 and n = 0.

The time to generate the data was 67 seconds, and the time to solve was 141 seconds.
The solve was done using 270 frequencies in the range [−160, 160] and a spatial step size
of 1/20000.
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(c) The recovery error

Figure 3: Numerical results for a Gaussian bump q(r) = e−32(x−2)2 with n = 4. The
time to generate the data was 37 seconds, and the time to solve was 88 seconds. The
solve was done using 470 frequencies in the range [−240, 240], and a spatial step size of
1/40000.

24



-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 10  10.5  11  11.5  12

(a) The exact and recovered
potential

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-40 -30 -20 -10  0  10  20  30  40

(b) The initial data
φ0 − (

√
rH0(kr))′/(H0(kr))

-4x10-6

-3x10-6

-2x10-6

-1x10-6

 0

 1x10-6

 2x10-6

 3x10-6

 4x10-6

 10  10.5  11  11.5  12

(c) The recovery error

Figure 4: Numerical results for the potential
q(r) = 1

10 [cos(a(r − 2)π) + 1] − a2

10b2
[1− cos(b(r − 2)π)] with a = 9, b = 10 and n = 0.

The time to generate the data was 62 seconds, and the time to solve was 130 seconds.
The solve was done using 270 frequencies in the range [−160, 160] and a spatial step size
of 1/20000.
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Figure 5: Numerical results for the potential q(r) which is identically one on the interval
[1.5, 2.5] and zero otherwise. Here n = 0. The time to generate the data was 65 seconds,
and the time to solve was 130 seconds. The solve was done using frequencies in the range
[−160, 160] and a spatial step size of 1/20000.

and continuing to the outermost edge of the scatterer. The algorithm was implemented

in Fortran and numerical results were presented illustrating its accuracy.

The method developed in this paper applies almost immediately to the three-dimensional

radially-symmetric problem as well as waveguides with constant cross-sectional param-

eters. Details of the analysis and numerical implementation will be published at a later

date. Finally, it should be possible to remove the requirement for radial symmetry,

obtaining trace formulas involving the coupling of multiple modes for non-radially sym-

metric scatterers. This line of inquiry is being vigorously pursued.
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