Yale University
Department of Computer Science

The Automated Crystal Runtime System: A Framework

Joel H. Saltz, Ravi Mirchandaney, Roger M. Smith,
David M. Nicol and Kay Crowley

YALEU/DCS/TR-588
January 1988

This work has been supported in part by the U.S. Office of Naval Research
under Grant N00014-86-K-0564

The Automated Crystal Runtime System:
A Framework *

Joel H. Salt:AT Rawvi Mz'rchcmda'neg/§ Roger M. Smith$
David M. Nicoltt Kay Crowley§

January 1988

§Depa,rtme_nt of Computer Science iDepartment of Computer Science

Yale University College of William and Mary
New Haven, CT., 06520 Williamsburg, VA 23185
saltz-joel@yale.arpa nicol@icase.arpa
Abstract

There exists substantial data level parallelism in scientific problems. The Crys-
tal/ACRE runtime system is an attempt to obtain efficient parallel implementations
for scientific computations, particularly those where the data dependencies are man-
ifest only at runtime. This can preclude compiler based detection of certain types
of parallelism. The automated system is structured as follows: An appropriate
level of granularity is first selected for the computations. A directed acyclic graph
representation of the program is generated on which various aggregation techniques
may be employed in order to generate efficient schedules. These schedules are then
mapped onto the target machine. We describe some initial results from experi-
ments conducted on the Intel Hypercube and the Encore Multimax that indicate
the usefulness of our approach.

Using the runtime system, it will be relatively easy to program different applica-
tions and study the performance implications of the various parameters. When the
performance data is available, we would like to develop mathematical models that
describe the relationships between the various important parameters in the system.

*This work was supported by the U.S. Office of Naval Research under Grant N00014-86-K-0564.
Ot Supported by NASA Grant NAS1-18107 while consulting at ICASE, NASA Langely Research
Center, Hampton, VA 23185

1 Introduction

There is substantial data level parallelism that can be exploited when one seeks to
solve problems in a large number of application areas. Many algorithms have been run
with good speedups on parallel machines with vastly differing architectures. The list of
algorithms that have been implemented on multiprocessors include:

e iterative and direct methods for solving linear systems of equations

e explicit, implicit and operator splitting methods for solving partial differential
equations

e image and signal processing algorithms

e graph and combinatorial algorithms

Unfortunately, experience has shown that a very substantial programming effort is
required to obtain correct solutions and good performance on many currently available
architectures. Parallel programs are often much less general and flexible than sequential
programs. The complexity involved in partitioning the data and computation causes
programmers to tend to take advantage of problem specific information in mapping and
scheduling work. In order to do this, programmers need to have good understanding
of the architecture and the problem. Furthermore, when problem partitioning must be
explicitly specified, the number of lines of code required to solve a problem using current
methods often increases dramatically on a parallel machine.

High performance multiprocessor architectures differ both in the number of proces-
sors, and in the delay costs for synchronization and communication. In order to obtain
good performance on a given architecture for a given problem, an appropriate choice
of granularity is essential. Hand tailoring programs to obtain good performance on a
given architecture is a laborious, error prone task that is often of only transient value
due to changes in hardware or changes in the implemented algorithm.

In this document we outline the design of the Automated Crystal Runtime Envi-
ronment, or simply ACRE. ACRE allows for the high level specification and control
of computational granularity along with a robust load balancing mechanism for auto-
‘mated scheduling and mapping. While the system is being developed to complement
the advantages exhibited by Crystal, our design is only loosely coupled to the language
Crystal. We are endowing ACRE with a C interface designed to allow wide use of
its features. The rest of this document is organized as follows: In the remainder of
Section 1, we illustrate the need for a runtime system. Section 2 includes the motiva-
tion for automating the main features of the runtime system. In Section 3, we outline
ACRE’s organization, and provide an example of the C interface being designed. Sec-
tion 4 comprises a description of the various issues concerning mapping and scheduling

of computations. In Section 5, we substantiate the promise of our methodology with
empirical data, and summarize the paper in Section 6.

Throughout this paper, we illustrate our approach with functions that are used in
conjugate gradient type algorithms for the solution of linear sytems which are precondi-
tioned by incomplete factorization (we refer to these as PCG algorithms). The problem
itself is important and the algorithms are reasonably representative of a large body
of scientific applications. The two main areas where a runtime system can provide
performance benefits are the following;:

e Automatic detection of parallelism that cannnot be determined by a compiler due
to data dependencies that become manifest only at runtime.

e Partitioning and mapping of the computation in a manner that is able to take
advantage of the multiprocessor architecture.

We illustrate the above issues with example C programs.

One crucial issue is the ability to extract sufficient parallelism from a computation
despite ambiguities in data dependencies that may be present during compilation. Take
for example the example of the sparse triangular solve as written in C and depicted in
Figure 1. Imagine that we parallelize the computation by allocating all work associated
with a given row to a single processor. If the matrix is dense, the solution must proceed
in a strictly sequential manner, with the solution of row 0 followed by row 1 and so on
as the structure of the matrix necessitates this schedule. But, in many sparse matrix
computations, each row has only a few non-zero elements. For a given row R, solution
values from the rows corresponding to the columns of the non-zero elements of R are
needed before R may produce its solution value. This implies that the solution for row
R need only wait for solutions from a few other rows. Once these solutions are available,
a solution for row R can be obtained.

The structure of matrices used in many scientific problems are defined at runtime.
In the example of the triangular solve, the compiler must sequentialize the solution of
matrix rows. A parallelizing compiler could detect parallelism obtainable from the inner
products involved in solving individual rows, however, in many cases there are very few
non-zero elements in a row so that the amount of parallelism available from intra-row

parallelization is not substantial. We depict the relevant experimental results in Section
5.

Another aspect of ACRE deals with partitioning and mapping of the computa-
tion in a manner that is able to take advantage of the multiprocessor architecture. In
many instances, the canonical representation of a computation is specified at a very
fine computation grain. As a result of this, various performance problems can occur, as
described in [21]. Using the data dependencies discovered at runtime, the system uses
this information to aggregate work into units which take into account the characteristics
of machine architecture.

Data Structures

struct st_matrix

{
int *col;
float *value;

}

struct st_matrix *matrix;
double soln;

Code Segment

for (i=0; i < nrows; i++)
for (j=0; j < MAXCOLS; j++)
{

soln[i] = b[i] - matrix[i].value[jl*soln[matrix[i].col[j1];
}

!
i
|
|
i
i
|
|

Figure 1. Triangular Solve

An example of the relevance of aggregation may be seen in the code for the sparse
Jacobi iteration, shown in Figure 2. One of the natural methods for partitioning the
work related to this function is based upon the distribution of one or more rows onto each
processor. A compiler can detect the parallelism here and distribute this work among
the processors. However, data dependencies affect the frequency of communication
between the processors. A compiler based mapping is unable to take advantage of
this important fact because the structure of the sparse matrix (and consequently the
data dependencies) is not available to the compiler. To illustrate this aspect of the
problem, we depict a 6x4 mesh with two possible partitions onto a 4 processor system.
A partitioning that takes into account geometry is shown in Figure 2b, with the mesh
having been divided into four quadrants and each of these being assigned to a processor.
The property of this partition is that the amount of data transfer between iterations
grows as N'/2 where N is the size of the mesh. Depending upon the way the mesh points
are numbered, a compiler, because it does not possess any knowledge of the problem
structure, might assign rows 1-6 to processor 1, 7-12 to processor 2 and so on, as shown
in Figure 2c. Asymptotically, this method incurs a communication cost of order N,
which is significantly worse. When the problem is less regular than the one shown, the
effect of not knowing problem geometry tends to become even more significant.

The system also allows for the automated pipelining of communication and/or syn-
chronization. Dynamic and static mapping is directed towards a virtual message pass-
ing machine where binding of work to processors occurs only at lowest level of the
system. Performance considerations that determine how particular problems are to
be mapped have been widely considered (see for example [11], [19], [9]). Methods of
problem mapping and performance analysis that are applicable to a broader range of
scientific computations are discussed in [8], [4], [7], [21].

In some problems, the data dependencies are determined by functions whose pa-
rameters are other functions whose values are only determined at some unknown point
during the computation. In these cases, a self-scheduled approach must be used in
parallelizing the computation. An example of such a computation is the sparse LU fac-
torization with incomplete fill, utilized in PCG algorithms. A very high level description
of the data dependencies arising in this computation is shown in Figure 3.

In the above form, the pivot rows (signified by the outer index i) operate one at a
time on all rows depicted by index j. next(j) is a function that provides the index of
the pivot row that needs to modify row j. However, the value returned by this function
could depend upon fill created by the operation of some earlier row on row j. Hence,
it 1s not possible to preschedule the computation resulting from the inner loop of the
above code, resulting in the need for self scheduling.

A number of programming enviroments have been developed that facilitate the cre-
ation of programs in which pools of work are dynamically shared among a number of
processors [15],[2], [12]. While the self-scheduling methods described here use principles
that are in many ways analogous to those described above, an explicit description of

4

/* Sparse matrix jacobi */

Data Structures

struct st_matrix
{
int *col;
float *value;

}

struct st_matrix *matrix;

Code Segment

for(i=0;i<num_iters;i++)
{
for(i=0;i<numrows;i++)
{
for(j=0;j<matrix[i] .ncol;j++)
{
newsoln[i] -=matrix[i].value[j]*
oldsoln[matrix[i].col[jl];
}
}
for(i=0;i<numrows;i++)
{
oldsoln[i] = newsoln[i]
}
}

(a)

Figure 2. Sparse Jacobi Iterations

1 1 12

20

21

22 23 24

()

for (i=0; i < ROWS; i++)

{
for (j=i+1; j < ROWS; j++)
{
if (next(j) ==1i)
modify(j, i)
}
}

Figure 3. Sparse LU Factorization

the parallel algorithm is not necessary. In self-scheduled computations as a whole, the
choice of appropriately sized schedulable computational units is of great importance.
Overhead can be reduced by the appropriate choice of computatational granularity, but
the self-scheduled nature of the computation makes aggregating work units difficult.

The advantages of our approach include a great simplification of programming. The
system design is deliberately architecture insensitive; the system scales if the architec-
ture is augmented due to technological developments and the system has the potential
to dynamically scale if portions of the system become unavailable.

The issues that must be understood in order to ensure the development of a robust
system requires a substantial amount of experimental work. The problems to be studied
in this context include:

e solution of sparse linear systems by Preconditioned Conjugate Gradient Meth-
ods. These methods require forward and back substitution of very sparse triangu-
lar systems, incomplete matrix factorizations, matrix vector multiplies and inner
products,

o discrete event and time-stepped simulations

e realistic simulation of neural networks,

¢ adaptive mesh solutions of fluids problems,

¢ string matching problems.

The machines utilized for various portions of this work include the Intel iPSC, the

Encore Multimax and the Connection machine. Work is partitioned among the pro-
cessors by assigning different index values associated with a computation to different

6

processors. It is possible to perform these index partitions using various different tech-
niques, as we will see later in this document.

2 Motivation for Automated Runtime System

Various research efforts have been underway to write compilers for both imperative as
well as applicative languages in order to extract parallelism from user programs written
in a sequential form [17], [13], [10]. While there has been considerable success in this
endeavor, it has been recognized that 1) compile time data is not always adequate to
exploit hidden parallelism that may manifest itself only at runtime, and 2)sophisticated
aggregation and mapping techniques may be needed once this runtime parallelism is
detected.

There have been several efforts in which problem specific information is utilized at
runtime to detect parallelism and perform appropriate mappings of these computations
onto parallel machines. Fox [8] has utilized a scatter decomposition strategy for the
Caltech Hypercube. This method partitions the problem domain into a fine lattice
of tasks (which are far more numerous than the processors) and then scatters each
processors work assignment throughout the domain. Baden [3] has used a method
that takes advantage of the locality of interactions in certain types of problems in fluid
dynamics and implemented a dynamic load balancing scheme for the Intel iPSC. Nicol
and Saltz [7] have implemented the triangular solve and a battlefield simulation program
on the Intel iPSC and the Encore Multimax. Lusk and Overbeek [15] implement a self
scheduled mechanism to dynamically allocate work to processors. While this method
has the advantage of simplicity, there are many potential problems, especially with
distributed memory machines.

In many of the examples we have seen, each user ends up designing their own spe-
cific runtime system. The problems with this approach are numerous. Primarily, each
time there is a slight change in the application, reprogramming may be needed. Each
new application will warrant a completely new runtime system specific to the problem.
We believe that this approach hinders the speedy development and understanding of
parallel systems and applications. Thus, our goal is to provide the runtime detection
of parallelism and mapping using an automated system which is able to abstract away
the unnecessary details of different computations. We use a standard directed acyclic
graph, or DAG representation for this purpose. It is possible that we may be unable
to generate optimal performance for any of the problems, but if the system provides
good performance over a large range of application areas, then the significantly reduced
programmer effort involved will be very important. This aspect becomes even more
significant as the size and complexity of parallel machines as well as the applications
being run on these machines, increases dramatically. There is an obvious but important
analogy with the use of demand paging in virtual memory systems. One might expect

a programmer to know enough about the runtime behavior to allow him to improve
performance by taking direct control over paging decisions. But he is likely to make
errors, will certainly spend more time coding, the ultimate performance gains may not
be substantial.

3 Methodology

There is a proliferation of languages being used to program parallel machines; from par-
allel versions of FORTRAN and C, to new parallel languages. Some of these languages
are functional in nature and are able to exploit program parallelism without tremen-
dous effort on the part of the programmer. They possess the useful property of being
side-effect free, making the detection of parallelism much less problematic [5], [10]. One
such language language being designed here at Yale is called Crystal.

Crystal is a very high level machine independent functional language that enables the
user to specify parallel algorithms. This language provides an easy to use notation that
allows a direct mathematical specification of a problem. Crystal is designed to have the
modularity and freedom from side effects that has been shown to be of substantial benefit
in the automatic detection of parallelism. For an overview of the Crystal language
constructs and programming examples, see [6], [5]. No explicit passing of messages is
needed in the program specification. When the data dependencies are known at compile
time, task decomposition is done automatically by the Crystal compiler. The compiler
generates as many logical processes as possible and then combines clusters of logical
processes to produce a problem decomposition that possesses a degree of granularity
that is appropriate for the target machine [14]. A high-level pictorial description of the
aspects of the system thus far discussed is given by Figure 4.

Crystal is being designed and implemented as a language that provides several useful
features for massive data-level parallelism. Because many problems in scientific com-
puting are comprised of functions that operate on large amounts of data, it is natural
to link our runtime system with Crystal. We utilize a C based interface for the control
of the runtime system, this provides us a very clean interface to Crystal and leaves
the possibility open of linking the runtime system to other programming environments.
With little additional work, it will be possible to generate performance data from ap-
plications already developed in C as well as from Crystal programs. Using these data,
we hope to design performance models of parallel programs/machines. It is important
to remember though that our goals are achieved with a well-defined, but functionally
limited interface. The rules we impose on the interface specification are ones deemed
expedient for our larger goal of building a working runtime system.

Figure 5 provides an example of the triangular solve written in the intermediate C
form. The user is made to specify the scope of a computational DAG with the syntax
begin dag block and end dag-block. This structure enables the runtime system to

8

Data + Algorithm

Compiler Generated

Space-time Mapping

|

Parameterized Compile

Time Aggregation

Source
‘ DECOMPOSE
Transformations
Run-time
Granularization
l AGGREGATE
Run-time
Aggregation
SCHEDULE
Virtual Messsage
Passing Machine
MAP

Actual Machine

-~ Figure 4. Data and Control Flow in Crystal Runtime System.

extract the hitherto unexploited parallelism from the code block and perform various
optimizations on the resulting DAG, for the purposes of mapping and scheduling. The
DAG block contains node functions whose individual invocations will be represented
by DAG nodes, and by C code that organizes these invocations. Within this block,
additional syntactic rules are in effect. Some variables may not be changed during the
execution of the computation represented by the DAG. Such variables are called fized;
this concept gives rise to data types such as fized int, fized float, etc. All fixed variables
are declared following the begin dag block statement. We also declare ezchange vari-
ables here. An ezchange variable is used to exchange data between DAG nodes. A DAG
node representing one function’s invocation may write into an exchange variable (and
may read a value that it has written itself), while one representing a different function
may read from it. Another critically important type of data are integers of type indez.
Every node function invocation is to be called with a unique set of index values—the
invocation is identified by the function’s name and the index values. Other variables
local to the dag_block are also declared here.

Node function definitions follow the variable declarations. The node functions follow
the usual C syntax, with the additional requirement the function’s index values be
explicitly passed as parameters, and that pointers to any exchange variables used are
also passed. Throughout the node function, any index variable is “marked” with an #.
This serves to force the programmer to be additionally aware of the restrictions we place
on the use of index variables. An exchange variable is identified in a function’s preamble
as being an input variable if the function reads it, or a value variable if the function
writes it. An exchange variable may be multi-dimensional, and it is possible that only
some proper subset of its dimensions are indexed by the node function’s indices. For
example, a two-dimensional array of floating point numbers e_variable that is an input
variable, and is indexed only in the second dimension by index 7, is declared as input
float e_variable[][#i]. A node function may call other functions, provided that
they are not node functions. All variables assigned values within a node function must
either be variables local to the function, or value variables. Index variables may not be
altered by a node function.

The main body of a dag block consists of C statements which manipulate local
variables, index variables, and which call node functions. The main body does not
represent computational work to be done by the system. Instead, it uses C syntax to
express algorithms for computing the indices of node function calls. The main body
may not change the value of a fixed or exchange variable.

This ideas are made more concrete by studying figure 5. The code is written such that
the solution of each row is partitioned into several sub-reductions, each one calculated by
an invocation of the node function reduce. The main body computes the variable num,
which which determines the number of data elements involved in a single reduction.
num is determined by r_size, a fixed variable that controls granularity. All of the
work performed by a given reduce call is serialized. reduce called with indices i and j

10

calculates the jth sub reduction corresponding to a row i, and sets the exchange variable
inter[#i] [#j] to this value. Then, for each i, the function solve_row sums up certain
values of inter[#i] [] and subtracts these from the right hand side of the equations.
Note that the subset of inter[#i] [] values that are summed are not explicitly stated
in the node function preamble.

The system is being designed to symbolically transform programs specified in our
expanded C syntax to: (1) a program that encodes the directed acyclic graph corre-
sponding to the data dependencies between the variables designated and (2) a program
that executes the code on a multiprocessor according to the schedule obtained through
the analysis of the encoded DAG. The DAG encoding is accomplished in two stages.
At compile-time, the dag block code is analyzed to create for every node function a
routine which computes the indices used to write value variables, as a function of the
node function call parameters. Secondly, we create a routine that computes all node
function call parameters, once the values of the fixed variables are given. At runtime,
the fixed variables become established, and the index analysis code is run. The index
information created by the index analysis code allows us to identify all DAG nodes, and
the data dependencies (through exchange variables) between them.

The DAG analysis, as stated above, involves both parallelization and aggregation;
the programs for performing the DAG analysis operate on the DAG data structures
that describe the encoded DAG. In the expanded version of the runtime system, users
will not need to specify the granularity, unless they so desire. Based upon the machine
characteristics and computation structure, the automated system will decide the basic
grain of computation and adapt this parameter during execution, if necessary.

The encoded DAG represents data dependencies that will depend on values of vari-
ables defined at runtime. In C, values of variables can be redefined during the execution
of the program. Certain variables, the fized variables, must remain unaltered in order
for the encoded DAG to remain valid. If any of these critical data structures are modi-
fied, it will be the responsibility of the user to inform the runtime system about these
changes. The status of the “flag” passed as an argument to the dag_block informs the
runtime system about the current condition of the relevant data structures. Changes
in structure which imply a different computation DAG necessitate the reapplication of
the index analysis code, and the DAG manipulation routines. Crystal being a single-
assignment language, the identification of fixed variables when the runtime system is
linked to Crystal will consequently not be a problem.

4 Aggregation and Mapping of the Computations

In the previous chapters, we have discussed the two most 'important features of our
runtime system:

11

begin dag_block(flag)
fixed int numrows, r_size; fixed struct st_matrix *matrix;
exchange float soln[MAXSIZE], inter[MAXSIZE]; index i,j;

/* Main Body */

for(i=0;i<numrow;i++)
{ num = matrix[i].ncol/max_cols;
/* Calculate and sum num elements of the row inner product */

for(j=0;j<num;j++) {
reduce(i,j,maxcol,matrix,inter,soln,numrow);

}

/* sum the partially computed row inner products */

solve_row(i,num,rhs,soln,inter,numrow);

}

reduce(i, j,maxcol,matrix,inter,soln,numrow)

index i,j; struct st_matrix matrix[#i];

int maxcol,numrow; value float inter[#i][#j]; input float
soln[#i];

{
int 1;
for(1=j*(maxcol+1);((l<matrix[#i].ncol)l|(1<j*(maxcol+1)));1++)
inter[#i] [#j] += matrix[#i].value[ll*soln[matrix[#i].col[1]];
}

solve_row(i,num,rhs,soln,inter,numrow)
index i; int num,numrow; float rhs[#i];
value float soln[#i]; input float inter[#i][];

{
int k;

soln[#i] = rhs[#i];

for(k=0;k<num;k++) soln[#i] -= inter[#i][k];
}

end dag_block

Figure 5. Triangular Solve in Intermediate C Form

12

o the detection of parallelism at runtime that a compiler is not able to detect because
of certain data dependencies that are manifest at runtime, and

o the aggregation and mapping of basic units of work such that the system is able to
take advantage of the computation structure as well as the machine architecture.

The performance of a large class of problems on multiprocessor machines is largely
determined by the runtime mapping of the problem onto the target machine. This
mapping is specified by the assignment of indices into clusters representing schedulable
units of work. In order to make reasonable decisions concerning this assignment, we
must be able to take into account the data dependencies that occur within and between
systems of recurrence relations.

In making assignment decisions, a variety of objectives must be taken into account:

(1) mapping and scheduling the problem in such a way that the load on the multi-
processor is balanced during each portion of the computation,

(2) partitioning the work so that the ratios of communication and or synchronization
to computation are reasonably low,

(3) partitioning the work so that good performance can be obtained from any fast
cache, local memory or vector processing capabilities that a target machine may have.

A variety of methods are under investigation to perform this scheduling and aggre-
gation. All of these methods require a representation of the data dependency relations
manifested by the problem. It is important to note that the data dependency relations
need only be considered when they impact on scheduling and aggregation decisions.
When we specify that a given computation be scheduled as an indivisible unit on a sin-
gle processor, any data dependency relations that pertain only to relationships between
elements within that unit can be ignored. For example, in the triangular solve function
in Figure 1, we perform a reduction over the index j for each value of the index i. If we
specify that all work involved in solving for a single value of the index i is to be assigned
to a single processor, we need only take into account data dependencies between the
indices 1.

Before work may be scheduled onto processors, the computation written in the in-
termediate C form is encoded into a DAG format. A topological sort is then performed
on the DAG to determine the potential parallelism. DAG manipulation techniques may
then be utilized to aggregate clusters of work. Using sparse matrix computations as
a model of a difficult problem, we have tested some strategies to aggregate and map
these type of computations. One principal method used to aggregate involves two steps.
In the first step, a sort of coordinate system is obtained for the DAG. This system is
essentially a process of peeling off layers of the DAG. It is then straightforward to map
the problem to a multiprocessor in a manner that restricts the fan-in and fan-out of
data between processors. To the extent allowed by the data dependencies in the algo-
rithm, mapping work so that only nearby processors have to communicate also becomes

13

possible. Furthermore, the coordinate system is used to allow the specification of work
clusters in a parametric manner. In the applications discussed here, the clustering of
work is controlled by two parameters, the block size which describes the number of
consecutive DAG layers assigned to a processor and the window size, or number of
wavefronts per block. The reduction in communication overhead is however, achieved
at the risk of load imbalance, making this the critical tradeoff. The reader is referred
to [21] for further details regarding this issue.

We seek to utilize a standard representation of the directed acyclic graph that de-
scribes the inter-index data dependencies. For dependencies involving a single index,
we use the following set of data structures to represent the dependency DAG. The first
data structure is a tuple of tuples edges that represents the edges that originate from
each DAG node. The second is a data structure incoming that denotes the number of
edges pointing to each DAG vertex.

In many cases, the best strategy for parallelizing and aggregating index sets will
depend on data produced at runtime. For instance, there may be at least three different
strategies for parallelizing a triangular solve. The best strategy depends on the sparsity
structure of the matrix, the number of times a set of recursion relations with the same
data dependencies will be solved, the number of processors available and the communi-
cation capabilities and structure of the machine. In the presence of uncertainty about
the best mechanism for decomposing programs and mapping them to processors, sev-
eral different strategies can be symbolically generated at compile time. The significant
scheduling overhead does not occur until the dependency DAG is actually manipulated,
hence the decision on the decomposition strategy to be used can be deferred until run
time.

4.1 Self-Scheduled Computations

Thus far, we have dealt with preschedulable computations, i.e., those that can be
completely scheduled once the input matrices are provided to the system. However,
there are classes of computation which prohibit any prescheduling. An example compu-
tation of this type is the symbolic factorization whose high level code is shown in Figure
3. In general, it appears hard to classify functions as definitely requiring self-scheduling
but we utilize the following heuristic: Recall that functions whose evaluations depended
upon entities that were made available at runtime were candidates for runtime anal-
ysis. Once the sparse matrices were available, the computation could be completely
prescheduled. However, in many computations, the input data structures are not in-
variant during execution and changes in these structures can influence the flow of the
computation.

In general,.some of these functions have the property that their outputs depend
upon other functions which may only be computed sometime during the execution of
the program and consequently the indices over which the function is to be computed is

14

unknown. By filtering out self-scheduled functions on this basis, we may be incorrectly
classifying certain functions as non-preschedulable, when in fact, after some amount of
analysis we may find them to be be preschedulable. In any event, after one complete
execution of a function in a self-scheduled manner, the resulting DAG generated by this
execution can be then used to subsequently preschedule the computation.

Given a system of recursion equations that involve a particular set of variables, we
will now describe how the self-scheduling process will proceed. First, evaluation requests
are placed for all function evaluations that we know must be calculated. These evalua-
tion requests will be represented by DAGs which may be constructed and evaluated as
described in [1]. In cases where the meaning may be ambiguous, these DAGs will be
called function evaluation DAGs, to distinguish then from the DAGs used in calculat-
ing prescheduled partitions. Function evaluation DAGs represent the data dependencies
involved in computing the value for a particular function evaluation. These DAGs do
not represent any flow of control: an evaluation request (characterized by a function
evaluation DAG) is only placed when conditionals are resolved and a definite expression
is obtained describing how a function evaluation is to be computed.

Each function evaluation DAG D is assigned to a single processor P, and is evaluated
until a reference is made to a function evaluation e(...) whose value has not been
computed. At this computation of D is suspended, and we arrange to make D ready for
reactivation on processor P when the function evaluation e(...) needed by D becomes
available. Data pertaining to each function evalution D will be stored and retrieved
using hashing functions known to the system as a whole. This data will include the
function evaluation DAG, the value of the function evaluation when this is known, and
pointers to other function evaluations awaiting the calculation of the value of D. Work
with the Linda system [2] has demonstrated that in many cases, such database like
operations can be performed in a multiprocessor setting without incurring unacceptable
overheads.

The assignment of work to processors depends on the partitioning of responsibility
for function evaluations. Due to the lack of global knowledge in self-scheduled compu-
tations, the assignment of function evaluations will generally be performed using simple
heuristics for job placement. Much of the literature on this subject can be found in
[16]. Migration of function evaluations between processors could also be carried out,
but is likely to be infeasable in many circumstances due to the overhead incurred by this
migration. Unlike prescheduled computations, work performed by the self-scheduling
system takes into account only local information about the workload of the problem.
Consequently, the self-scheduled system cannot be expected to provide the optimizations
produced by the prescheduling system.

15

5 Experimental Data

We will present the results of a number of experiments that underscore the need for and
the feasibility of a runtime system such as the one outlined here. The runtime system
is designed for two basic functions; (1) detect parallelism in cases where substantial
parallelism is present but where this parallelism cannot be identified by the compiler
and (2) aggregate computational work so that the costs of inter-processor interaction
are minimized. We will use measurements that are obtained from measuring the per-
formance of preconditioned Krylov space iterative solvers implemented on the Encore
Multimax and the Intel iPSC multiprocessors. In the following, speedup is defined as
the time to run an optimized sequential algorithm divided by the time required to run
the parallel algorithm. The term efficiency is defined as the speedup divided by the
number of processors.

5.1 Results from a Shared Memory Machine |

A sequential version of PCGPAK [18] [22] was ported to the Encore Multimax/120
machine and code was benchmarked on eight test problems to identify the tasks taking
most of the time. Parallel implementations of these tasks were developed and bench-
marked. The following four operations are performed repetitively each iteration: (1) the
SAXPY operation, adding a scalar times a vector to a vector, (2) the calculation of the
inner product of a vector, (3) sparse matrix vector multiples and (4) sparse triagular
solves. The relative contribution of each task to the sequential running time of the
program was measured; these relative contributions were used to to estimate the overall
parallel efficiency of the iterative portion of the PCG algorithm.

As expected, the first three operations proved to be quite parallelizable, with ef-
ficiencies measured in all cases of well above 0.90. Since the matrices used in the
preconditioning are obtained from incomplete factorizations, the number of non-zeros
within each row tends to be very limited when sparse systems of equations are solved
using these methods. Exploitation of inter-row parallelism is consequently essential for
obtaining significant speedups in sparse triangular solves.

The PCGPAK code stores all matrices using sparse matrix storage methods, inter-
row data dependencies arising from the triangular solve consequently depends on the
values of the elements of the sparse matrix. Since the matrix elements are not defined
until runtime, methods such as those described above must be used in order to schedule
the concurrent execution of rows. We depict data from the solution of two problems
described in [18], the matrix describing the system of equations to be solved for the first
model problem has 3969 unknowns with 34474 non-zero elements, the matrix describing
the second system of equations has 27000 unknowns and 105301 non-zero elements.
These matrices are quite sparse with an average of under 9 and 4 nonzeros per row
respectively.

16

In Figures 6 and 7, we depict for varying numbers of processors the following effi-
ciencies: (1) that obtained from the sparse triangular solve parallelized by scheduling
rows concurrently, (2) that obtained from parallelizing only the inner products of the
triangular solves, (3) the estimated overall efficiency obtained from the entire iterative
portion of the calculation, when the triangular solve parallelized by rows is employed,
and (4) the estimated overall efficiency for the iterative portion of the calculations that
would result when only the inner products of a triangular solve are parallelized. It is
clear in both of these cases that runtime parallelization is crucial if we are to obtain
good efficiencies in this situation.

5.2 Results from a Message Passing Machine

Computational granularity is a crucial determinant of performance in message pass-
ing multiprocessors which possess relatively high communication latencies. It become
crucial to aggregate or clump work to varying degrees using the methods described
in [21], This aggregation leads to a controlled tradeoff between load imbalance and
communication requirements. In particular, these methods of aggregation reduce the
number of communication startups required for the problem. The results presented in
this subsection deal with the problem of triangular solve, and tested on the Intel iPSC.

The granularity of parallelism is parameterized using the concepts of windows and
blocks. A window and block size of 1 corresponds to a partition in which all paral-
lelism that can occur between individual row substitutions in the solve is extracted, and
processor work assignments are carried out in a way that attempts to maximize con-
currency. As window and block sizes increase, the size of the scheduled computational
grains increases.

An illustration of the considerations involved in making the tradeoff between the
costs of communication and of load imbalance will be presented using data from a
triangular system generated from a zero fill incomplete factorization of a sparse matrix
generated by a 120x120 five point template. The tradeoffs between load imbalance and
communication costs in this model problem have been formally analyzed in some detail
[20], [21]. |

In Table 1 we depict parallel efficiency, estimated optimal time, the estimated com-
munication time, and the total time required to solve the problem on a 32 node Intel
iPSC. The estimated optimal time indicates the computation time that would be ob-
tained in the absence of any multiprocessing overheads including communication delays.
This figure is obtained by dividing the sequential time by an operation count based esti-
mate of the speedup. The communication time estimate is obtained by running problems
in which computation is deleted but communication patterns are maintained. We note
that when we employ a very fine grained parallelism (window and block size equal to
one), we pay a very heavy communication penalty relative to the computation time. The
completion of this non-computationally intensive problem requires 240 phases, each one

17

Table 1: Matrix from 120x120 mesh, 5pt. template

window | efficiency | total time | estimated | communication
block size optimal time time
1 0.06 1.25 0.09 1.09
2 0.12 0.60 0.11 0.49
4 0.18 0.40 0.15 0.25
8 0.15 0.48 0.31 0.10
10 0.13 0.56 0.36 0.08

of which requires processors to both send and receive data. We can reduce the num-
ber of computational phases, and consequently the communication time, at the cost
of increased load imbalances. While appropriate choice of computational granularity
is essential for maximizing computational efficiency, the nature of the triangular solve
limits the performance that can be obtained in small to intermediate sized problems.
The example described here illustrates this well, we obtain a three fold improvement in
efficiency through a moderate increase in granularity, i.e. speedup increases to 5.8 from
1.9. The absolute efficiency obtained for this rather small problem is still quite limited,
even with the appropriate choice of granularity.

In Tables 2 and 3 we present results from somewhat larger problems solved on a 32
node Intel iPSC hypercube. A matrix A is formed using a mesh with a 5 point template.
A different matrix B, with half the number of rows is generated by forming the reduced
system; this matrix B is factored without fill to form the triangular system C. We depict
the total parallel efficiency, the total execution time, the number of computational
phases and the estimated communication time. Note that the best efficiencies we are
able to obtain increase with the size of the problem. In the smaller of the two problems
(Table 2, 200 by 200 mesh) the best efficiency is 31% while in the larger problem (Table
3, 300 by 300 mesh) the best efficency increases to 53%. The ability to aggregate work
plays a central role in the increased efficiency from larger problems. When matrix rows
are assigned to processors in an unaggregated manner, each row corresponding to an
interior mesh point must communicate its value to another processor. Consequently,
the communication volume does not tend to decrease as problems become larger.

The aggregation here is performed using graph techniques on sparse matrices. In
the absence of a method that is able to capture the geometrical relationship between
matrix rows, it is not possible to optimize the mapping of the unaggregated problem.
Aggregation allows a tradeoff between communication costs and time wasted due to
load imbalance. For a given size machine, as problem size grows, one can obtain the
same load balance by aggregating work into increasingly large chunks. This leads to
increasingly favorable ratios of computation to communication costs.

In Tables 2 and 3, we also depict the performance figures when the problems were
executed without the use of gray coding. This was a conservative attempt to estimate the

18

Table 2: Matrix from 200x200 mesh, 5pt. template reduced system

window | efficiency | total time | phases | communication
block size time
1- no grey 0.06 4.58 398 -
code
1 0.12 2.34 398 1.92
2 0.21 1.35 200 1.06
4 0.31 0.90 100 0.45
6 0.24 1.21 67 0.65
8 0.18 1.54 50 0.57

Table 3: Matrix from 300x300 mesh, 5pt. template reduced system

window | efficiency | total time | phases | communication
block size time
1- no grey 0.08 7.61 598 -
code
1 0.16 3.99 598 3.45
2 0.31 2.07 299 1.57
4 0.53 1.21 149 0.88
6 0.44 1.44 99 0.65
8 0.33 1.95 75 0.45

effect of not taking the problem geometry into account. In this case we assume that the
assignment of work to processors was such that each processor needed to communicate
with only one other processor in each phase. Clearly, when one takes into account the
geometry, the performance difference is substantial.

For reasons that related to the consequences of the 16 bit architecture of the current
iPSC machine, the solution of large sparse irregular problems proved to be extremely
difficult from a programming and debugging point of view. For this reason we were
not able to run extensive tests on problems of the size that we feel justify the use of a
multiprocessor. The absolute sequential time of the most computationally intensive of
these solves is 20.4 seconds. Our results on smaller problems and the detailed breakdown
of timings indicate clearly that the trends are in our favor; through the use of aggregation
we can take advantage of the widely documented improvements in efficiency that come
from increasing problem size, given a fixed number of processors.

19

6 Conclusions

In this paper, we have presented a framework for the automated runtime system (Crys-
tal/ACRE) being designed at Yale. The goals of the runtime system effort are manifold:

e to exploit the parallelism in programs which only becomes apparent at runtime
and consequently is not detected by compile time techniques,

¢ to manipulate the resulting DAGs into more efficient schedulable units,

e to automate the entire process and be able to generate performance data from a
large variety of problems much more quickly than if the mapping and scheduling
were specified by the programmer,

e to generate realistic performance models of parallel systems.

Figure 1 shows a detailed description of the various possible mechanisms by which
a user program may be transformed into an efficient representation, given knowledge
of the underlying machine and its characteristics. When the data dependencies of the
problem are known at compile time, task decomposition is automatically performed by
the compiler which generates a virtual systolic array representing the computation. The
involvement of the runtime system in such cases is not significant. However, there are
problems where workloads cannot be fully characterized during compilation due to data
dependencies that become manifest only at runtime. Typically, a large body of scientific
problems possess this characteristic.

One of the very first steps in the process consists of selecting the appropriate level of
granularity at which the computation is to be scheduled. The appropriate granularity
will be a function of the machine architecture as well as the structure of the sparse ma-
trix. In cases where the computation can be symbolically prescheduled at compile time,
a transformed program is generated by symbolic manipulation. Once the input data
is available, the computation is represented by DAGs at various levels of granularity.
Runtime aggregation of these DAGs is performed to block units of work together to im-
prove performance. The resulting virtual message passing machine is then mapped onto
the physical machine. From our initial results described in Section 5, it is quite clear
that not only is the runtime detection of parallelism possible, it is absolutely essential
if maximum performance improvement is desired for parallel programs.

In certain computations, it is not possible to generate DAG’s representing the com-
putation even after the input data is available to the system. We have seen an example
of such a phenomenon in the symbolic factorization code described in Figure 3. A mech-
anism to handle such problems in a self-scheduled manner was also described earlier in
the paper.

We have also provided some initial results that indicate the usefulness of a runtime
system. We have seen that for the PCG computation on the Encore Multimax, the

20

efficiencies generated by runtime parallelization were significantly higher than those
without runtime support. We can thus claim that an efficient, automated runtime
system is desirable and that it can be built using the principles outlined in this paper.

As regards the status of the various parts of the runtime system is concerned, we
have preliminary designs of the intermediate C syntax as well as the design of the DAG
encoding mechanism for the prescheduled system. We are in the process of developing
the system that encodes a DAG from the intermediate C program. The designs for
the self scheduled systems are still being developed. As regards running software is
concerned, we have a schedule executer program, a version of which runs on the Intel
iPSC and another the Encore Multimax. The experimental results presented in this
paper were obtained using this schedule executer.

Acknowledgements: We would like to thank Martin Schultz, Doug Baxter,

Stan Eisenstat and Scientific Computing Associates for work in the parallelization of
PCGPAK.

References

[1] A. V. Aho, R. Sethi, and J.D. Ullman. Compilers Principles, Techniques, and
Tools. Addison Wesley, 1986.

[2] Sudhir Ahuja, Nicholas Carriero, and David Gelerter. Linda and friends. IEEE
Computer, August 1986.

[3] S. B. Baden. Run-Time Partitioning of Scientific Continuum Calculations Run-
ning on Mutiprocessors. PhD thesis, Mathematics Dept., University of California,
Berkeley, June 1987.

[4] M. J. Berger and A. Jameson. Automatic adaptive grid refinement for the euler
equations. AAIA Journal, 23:561-568, August 1985.

[5] Chen. Can Data Parallel Machines be Made Easy to Program. Technical Re-
port YALEU/DCS/RR-556, Department of Computer Science, Yale University,
August 1987.

[6] M. C. Chen. Very-high-level parallel programming in crystal. In The Proceedings
of the Hypercube Microprocessors Conf., Knozville, TN, September 1986.

[7] Nicol D.M. and Saltz J.H. Principles for Problem Aggregation and Assignment in
Medium Scale Multiprocessors. Report 87-39, ICASE, September 1987.

[8] G. C. Fox and S. W. Otto. Concurrent Computation and the Theory of Complex
Systems. Report CALT-68-1343, Caltech, 1986.

21

[9] G. A. Geist and M. T. Heath. Matrix factorization on a hypercube multiproces-
sor. In The Proceedings of the Hypercube Microprocessors Conf., Knozville, TN,
pages 161-180, September 1986.

[10] P. Hudak. Para-functional programming. Computer, Aug 1986.

[11] I. Ipsen, Y. Saad, and M.H. Schultz. Complexity of dense linear system solution
on a multiprocessor ring. Lin. Algebra Appl., 77:205-239, 1986.

[12] J. F. Jordan, M. S. Benten, and N. S. Arenstorf. Force User’s Manual. Depart-
ment of Electrical and Computer Engineering 80309-0425, University of Colorado,
October 1986.

[13] K. Kennedy. Compilation for n-processor architectures. In Proceedings of the
IEEE International Conference on Computer Design: VLSI in Computers, page 15,
October 1985.

[14] J. Li, M.C. Chen, and M.F. Young. Design of Systolic Algorithms for Large Scale
Multiprocessors. Technical Report YALEU/DCS/RR-513, Department of Com-
puter Science, Yale University, February 1987.

[15] E. Lusk, R. Overbeek, and et. al. Portable Programs for Parallel Processors. Holt,
Rinehart and Winston Inc., 1987.

[16] R. Mirchandaney. Adaptive Load Sharing in the Presence of Delays. PhD thesis,
ECE Dept., University of Massachusetts, August 1987.

[17] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomput-
ers. CACM, Dec 1986.

[18] PCGPAK User’s Guide. 1984.

[19] Y. Saad. Communication complexity of the gaussian elimination algorithm on
multiprocessors. Lin. Algebra Appl., 77:315 —340, 1986.

[20] Y. Saad and M. Schultz. Parallel Implementations of Preconditioned Conjugate
Gradient Methods. Department of Computer Science YALEU/DCS/TR-425, Yale
University, October 1985.

[21] J. Saltz. Automated Problem Scheduling and Reduction of Communication Delay
Effects; submitted for publication. Report 87-22, ICASE, May 1987.

[22] M. Schultz, D. Baxter, S. Eisenstat, and J. Saltz. Building Software Packages
for Large Sparse Linear Systems of Equations on Shared Memory Multiprocessors.
Technical Report SCA-115, Scientific Computing Associates, 1987.

22

Fig. 6: Parallel Efficiency
| ! l !

100 l I

Wavefront PCG

o) I
O

Efficiency

Wavefront

Triangular Solve

Intra—row Triangular Solve

| | I ! | !)
10 12 14 16
Processors

Triangular System from ILU(R) Factorization
of Matrix from 127x127 grid, 9pt. Template

Efficiency

100

(o))
o

I
o

20

B Wavefront PCG

Fig. 7: Parallel Efficiency
I I | ’ 1

Wavefront Triangular Solvé

Intra—row PCG

Intra—row Triangular Solve

10 12 14 16
Processors

Triangular System from ILU(0) Factorization
of Matrix from 30x30x30 grid, 7pt. Template

