
We introduce a family of bounded, multiscale distances on any space equipped with an
operator semigroup. In many examples, these distances are equivalent to a snowflake of an
intrinsic distance on the space. Under weak regularity assumptions on the kernels defining
the semigroup, we derive simple characterizations of the Lipschitz norm and its dual with
respect to these distances. As the dual norm between the difference of two probability
measures is the Earth Mover’s Distance (EMD) between these measures, our characteriza-
tions give simple formulas for a metric equivalent to EMD. We extend these results to the
mixed Lipschitz norm and its dual on the product of spaces, each of which is equipped with
its own semigroup. Additionally, we derive an approximation theorem for mixed Lipschitz
functions in this setting.
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1 Introduction

Operator semigroups are ubiquitous objects in pure and applied mathematics. It is
well-known that many basic function spaces, such as the Besov spaces on Rn, can be
characterized using, for example, the heat kernel [2, 23]. Recent work has generalized
these results to Besov spaces in more general domains; see, for instance, the papers [1]
and [11]. Even more abstractly, a substantial amount of classical harmonic analysis in
Rn can be pushed through to the setting of a measure space equipped with a diffusion
semigroup, as found in Stein’s book [22]. A limiting aspect of the theory developed
in this book is the absence of an explicit geometry; though the statement of maximal
theorems, Littlewood-Paley theorems and interpolation theorems make sense in this
general setting, basic notions such as Lipschitz functions cannot be defined as there is
no distance on the space.

A natural way of overcoming this lack of geometry is to use the semigroup itself to
define a distance. This is the approach taken in the theory of diffusion maps [5]. If
the kernel of the semigroup at time t is denoted by at(x, y), then the diffusion distance
at time t is defined as ∥at(x, ·)− at(y, ·)∥2. This conceptually meaningful distance has
found wide application in machine learning, where the kernel at(x, y) is a power of an
affinity matrix measuring the relationship between two points in a data set.

The idea of letting the semigroup itself define a distance on the data is the starting
point for the present work. However, the ground distances Dα(x, y) we introduce in
Section 2 are not defined at a fixed scale, but incorporate all scales at once; the parameter
α controls the weight placed at each scale, but all scales are present. In a variety of
examples, we will show that this distance is equivalent to a “snowflake” of the the
intrinsic distance ρ(x, y) on the underlying space; that is, the distance ρ(x, y) raised to
a power less than 1 [12]. However, the distance we define makes sense even when there
is no externally given distance.

Next, we consider the space of functions on the measure space that are Lipschitz
with respect to the distance Dα(x, y). In the settings where Dα(x, y) is a snowflake of an
intrinsic distance ρ(x, y), Lipschitz functions are Hölder with respect to ρ(x, y). We will
give simple characterizations of the Lipschitz norm using the semigroup itself, analogous
to corresponding formulas from classical harmonic analysis. As in the classical setting,
the basic principle is that the size of a function’s variation across scales, as defined by
the semigroup, is equivalent to the size of its variation across space with respect to the
distance Dα(x, y).

Finally, we consider the space of measures that can be integrated against Lipschitz
functions – that is, the space dual to the Lipschitz space. We will give simple charac-
terizations of the norm on this space that generalize formulas from classical analysis.
This is of particular interest as the dual norm of the difference between two probability
measures is equal to the Earth Mover’s Distance (EMD) between the two probability
measures. We will recall the definition and some basic properties of EMD in Section 6;
we note here that it is a popular tool in machine learning applications that suffers from
high computational cost, and that the equivalent metrics we develop provide, in many
situations, a fast way of approximating it.

We will play close attention to the regularity conditions we impose on the semigroup

1



needed to make our theory hold. The conditions are highly non-restrictive, and we will
show that they hold for a very broad class of semigroups. Examples include heat kernels
on closed Riemannian manifolds, heat kernels on certain fractals, and subordinated heat
kernels in Rn, as well as the non-symmetric example of shifted heat kernels on Rn. In
addition, we will show that if the theory holds for some finite collection of semigroups
on different spaces, then it holds for their product on the cross-product of these spaces.
This subsumes the theory of mixed-homogeneity distances.

Another contribution of this paper is to generalize the aforementioned results to the
setting of tensor products of two or more measure spaces, each equipped with its own
semigroup. We derive characterizations of the norms on the space of mixed Lipschitz
functions and its dual. The application areas to which this topic applies is the comparison
of two databases that can be viewed as functions on a product of two spaces, each with its
own natural geometry defined by a semigroup. For example, we might wish to compare
the spectrograms of two signals. The time and frequency domains each have their own
natural geometry, independent of the other. The metric we derive provides a natural
way of comparing the spectrograms by the maximum difference in their response to a
class of sensors, the mixed Lipschitz functions.

1.1 Notation

By “A . B” or “B & A” we mean inequalities up to positive constants; that is, there
is a constant C > 0 such that A ≤ C · B. Similarly, by “A ≃ B” we mean there are
constants c, C > 0 such that c ·A ≤ B ≤ C ·A. What is meant by C being a “constant”
will be clear in each instance. The other notation used throughout is specific to each
section and will be defined as it is encountered.

2 Multiscale diffusion distance

Our setting throughout the paper will be an abstract measure space X , whose measure
we will denote dx. We suppose that X is equipped with a family of kernels at(x, y),
t > 0, in L1. Defining the operators

Atf(x) =

∫
X
at(x, y)f(y)dy

we assume the following conditions:

(S ) (The semigroup property.) For all t, s > 0, AtAs = At+s. This property can be
expressed in terms of the kernels at(x, y) as

at+s(x, y) =

∫
X
at(x,w)as(w, y)dw.
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(C ) (The conservation property.) If 1 is the constant function 1 on X , then for all
t > 0, At1 = 1. This property can be expressed in terms of the kernels at(x, y) as∫

X
at(x, y)dy = 1.

(I ) (The integrability property.) There is a constant C > 0 such that for all t > 0 and
x ∈ X , ∫

X
|at(x, y)|dy ≤ C.

(R) (The regularity property.) There are constants C > 0 and α > 0 such that for
every 1 ≥ s ≥ t > 0 and every x ∈ X ,∫

X
|at(x, y)| · ∥as(x, ·)− as(y, ·)∥1 dy ≤ C

(
t

s

)α

.

We will have more to say about the regularity condition (R) later in this section. In
particular, we will give an alternate characterization that reveals its geometric content.
In Section 3, we will show that condition (R) holds for a wide variety of examples. In
Section 4 we will show that this condition also implies convergence to the identity for a
class of suitably regular functions.

As noted in the Introduction, we do not assume any external geometry on the space
X . Rather, we will use the kernels at(x, y) to define a geometry from scratch. This
approach is inspired by the paper [5]. In this work, each time t defines a diffusion
distance: the time t diffusion distance between x and y is the L2 distance between
at(x, ·) and at(y, ·). These distances also have the feature that they can be approximately
embedded into a low-dimensional Euclidean space. Each distance captures the geometry
of the space at a particular scale.

In the present work, however, we consider a single distance that incorporates all
scales at once. Also, we use the L1 distance between kernels at each scale, rather than
the L2 distance. This avoids use of the spectral theory of the operators At present in [5].
Furthermore, though there are not Euclidean embeddings of the distance we define as
with L2 diffusion distance, for the application areas we have in mind there will usually
be no need to explicitly compute our distance for all pairs of points.

We will be concerned with dyadic scales t ∈ (0, 1]; that is, scales t = 2−k, k ≥ 0. To
this end, define

Pk = A2−k

and
pk(x, y) = a2−k(x, y).

Also, we define
Dk(x, y) = ∥pk(x, ·)− pk(y, ·)∥1 .
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Define the multiscale distance

Dα(x, y) =
∑
k≥0

2−kαDk(x, y). (1)

Note that the condition
∫
X |at(x, y)|dy ≤ C guarantees Dα(x, y) is uniformly bounded

for all x, y; in particular, it is finite.
In Section 3 we will compute the distance Dα(x, y) for many examples of semigroups.

Before doing so, however, it will be convenient to turn our attention to the regularity
condition (R) we impose on the kernels at(x, y). We reformulate condition (R) in ge-
ometric terms, where the geometry is defined by the distance Dα(x, y). To that end,
define the geometric condition (G) by

(G) (The geometric property.) There are constants C > 0 and α > 0 such that for all
k ≥ 0 and x ∈ X , ∫

X
|pk(x, y)| ·Dα(x, y)dy ≤ C2−kα.

We show that conditions (R) and (G) are essentially equivalent. The following lemma
will be convenient.

Lemma 1. If there are constants C > 0 and α > 0 such that for every k, l ≥ 0 and
x ∈ X ∫

|pk(x, y)|
k∑

l=0

∥pl(x, ·)− pl(y, ·)∥1 dy ≤ C2−kα.

then (G) holds, for the same choice of α and a possibly different constant C.

Proof. By the integrability condition (I ) the integrals
∫
X |pk(x, y)|dy are uniformly

bounded. Therefore ∑
l≥k+1

2−lα ∥pk(x, ·)− pk(y, ·)∥1 . 2−kα

and so∫
X
|pk(x, y)|

∑
l≥k+1

2−lα ∥pk(x, ·)− pk(y, ·)∥1 dy . 2−kα

∫
X
|pk(x, y)|dy . 2−kα

from which the result follows.

Proposition 1. Suppose that (R) holds for some α > 0 and all dyadic times s = 2−l, t =
2−k, where 0 ≤ l ≤ k. Then (G) holds for all k ≥ 0 and for any 0 < α′ < α.

Proof. For all x, we have∫
X
|pk(x, y)|2−lα′ ∥pl(x, ·)− pl(y, ·)∥1 . 2−kα2l(α−α′).
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Summing over l = 0, . . . , k gives∫
X
|pk(x, y)|

k∑
l=0

2−lα′ ∥pl(x, ·)− pl(y, ·)∥1 . 2−kα
k∑

l=0

2l(α−α′) . 2−kα2k(α−α′) = 2−kα′
.

By Lemma 1, we are done.

Proposition 2. Suppose condition (G) holds for some α > 0. Then (R) holds for all
dyadic times s = 2−l, t = 2−k, and for all 0 < α′ ≤ α. In other words, for all 0 < α′ ≤ α
there is a constant C such that for all 0 ≤ l ≤ k and x ∈ X ,∫

X
|pk(x, y)| · ∥pl(x, ·)− pl(y, ·)∥1 dy ≤ C2−(k−l)α′

.

Proof. Since 2−lα ∥pl(x, ·)− pl(y, ·)∥1 ≤ Dα(x, y) for all l ≥ 0, we have∫
X
|pk(x, y)| · ∥pl(x, ·)− pl(y, ·)∥1 dy ≤ 2lα

∫
X
|pk(x, y)|Dα(x, y)dy . 2−(k−l)α.

Since α′ ≤ α, the result follows.

We will find condition (G) to be a more useful statement of regularity than (R) going
forward. We note too that to recover (G) we need only assume (R) for dyadic times s
and t between 0 and 1.

3 Examples of kernels satisfying our conditions

In this section, we show that the conditions we impose on the kernels at(x, y) hold
for a great diversity of semigroups arising in different settings. In all the examples
we consider here, the analysis proceeds by obtaining an upper bound on the distance
Dα(x, y). Although the metric Dα(x, y) given by equation (1) is defined from the kernels
at(x, y) themselves — that is, it is not given externally — there are many examples of
spaces X on which there is already defined a natural distance ρ(x, y) with respect to
which the kernels at(x, y) exhibit certain regularity. We will show that if at(x, y) satisfies
a certain Hölder continuity condition and a decay condition, then the distance Dα(x, y)
is bounded above by a power of ρ(x, y).

It will follow easily that condition (G) (and consequently (R) as well) is true for such
kernels, and thus that the general results in this paper apply in this setting. Further-
more, by imposing even stronger assumptions on at(x, y) we will show that the distance
Dα(x, y) is in fact equivalent to a power of ρ(x, y). We will follow up with a number of
specific examples that satisfy one or both sets of conditions.

Throughout this section, we will always assume 0 < α < 1.
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3.1 Hölder continuous kernels with decay

Suppose that there is a metric ρ(x, y) on X and a measure µ such that µ(B(x, r)) . rn,
where n > 0 is fixed. In addition to the conservation property (C ) and the uniform L1

bound (I ) that we already assume, the kernel at(x, y) is assumed to be symmetric, and
the following two regularity conditions are imposed:

1. An upper bound on the kernel: there is a non-negative, monotonic decreasing
function Φ on [0,∞) and a number β > 0 such that for any γ < β,∫ ∞

τn+γΦ(τ)
dτ

τ
< ∞

and

|at(x, y)| ≤
1

tn/β
Φ

(
ρ(x, y)

t1/β

)
.

2. The Hölder continuity estimate: there is some constant Θ > 0 sufficiently small
for such that for all t ∈ (0, 1] and for all x, y, u with ρ(x, y) ≤ t1/β ,

|at(x, u)− at(y, u)| ≤
(
ρ(x, y)

t1/β

)Θ 1

tn/β
Φ

(
ρ(x, y)

t1/β

)
.

These conditions are found in the paper [11]. As discussed there, examples of semi-
groups satisfying these estimates include the subordinated heat kernels in Rn, the heat
kernel on certain Riemanninan manifolds, the heat kernel on a variety of fractals such as
the unbounded Sierpinksi Gasket, and the heat kernel of the semigroup e−tL for certain
elliptic operators L on Rn.

We will show that if we assume conditions 1 and 2, then our geometric condition
(G) is satisfied for all α < min{1,Θ/β}. The first step in showing this is to prove that
our distance Dα(x, y) defined from the semigroup is bounded above by a power of the
distance ρ(x, y).

Lemma 2. For any 0 ≤ η < 1, there is a finite constant C > 0 such that for every
0 < t ≤ 1 and every x ∈ X ,∫

X
ρ(x, y)βη

1

tn/β
Φ

(
ρ(x, y)

t1/β

)
dy ≤ Ctη.

Proof. Let Vk = B(x, 2k+1t1/β) \ B(x, 2kt1/β). The upper bound on the kernel from
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condition 1 yields the following inequality:∫
X
ρ(x, y)βη

1

tn/β
Φ

(
ρ(x, y)

t1/β

)
dy =

1

tn/β

{∫
B(x,t1/β)

+
∞∑
k=0

∫
Vk

}
ρ(x, y)βηΦ

(
ρ(x, y)

t1/β

)
dy

. tηt−n/β

{
Φ(0)µ(B(x, t1/β))

+

∞∑
k=0

2kηβΦ(2k)µ(B(x, 2k+1t1/β))

}

. tηt−n/β

{
Φ(0)tn/β +

∞∑
k=0

Φ(2k)2k(n+ηβ)tn/β
}

. tη
{
Φ(0) +

∫ ∞

1
τn+ηβΦ(τ)

dτ

τ

}
. tη.

We used that η < 1 and condition 1 to conclude that the last integral is finite. This is
the desired result.

Proposition 3. For every 0 < α < min{1,Θ/β}, there is a constant C > 0 such that
Dα(x, y) ≤ Cρ(x, y)αβ.

Proof. First, condition 2 and Lemma 2 above with η = 0 imply that whenever ρ(x, y) ≤
t1/β,

∥at(x, ·)− at(y, ·)∥1 ≤
(
ρ(x, y)

t1/β

)Θ 1

tn/β

∫
X
Φ

(
ρ(x, y)

t1/β

)
dy .

(
ρ(x, y)

t1/β

)Θ

.

Consequently, if we define K so that 2−K ≤ ρ(x, y)β < 2−K+1, then

Dα(x, y) . ρ(x, y)Θ
K∑
k=0

2−kα2kΘ/β +

∞∑
k=K+1

2−kα . ρ(x, y)Θ2K(Θ/β−α) + 2−Kα

. ρ(x, y)αβ .

We used that α < Θ/β for the upper bound on the first sum.

With this upper bound on Dα(x, y), it is now straightforward to show that our
geometric condition (G) holds for a range of α.

Proposition 4. Under conditions 1 and 2, condition (G) holds for all 0 < α <
min{1,Θ/β}.

Proof. From Proposition 3, we have the upper bound Dα(x, y) . ρ(x, y)αβ. Conse-
quently, taking η = α in Lemma 2 yields∫

X
|at(x, y)|Dα(x, y)dy .

∫
X
ρ(x, y)αβ

1

tn/β
Φ

(
ρ(x, y)

t1/β

)
dy . tα

which is the desired result.
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3.2 The distance Dα(x, y) for kernels with a matching lower bound

Having established conditions (G) and (R) from the upper bound Dα(x, y) . ρ(x, y)αβ

for all α < min{1,Θ/β} under the continuity and decay conditions 1 and 2 of the previous
section, we now formulate general conditions under which we can prove a corresponding
lower bound, Dα(x, y) & ρ(x, y)αβ. We will then study several examples where both
conditions are satisfied. Note that the lower bound is not necessary for the general
results of our paper to hold; in particular, our primary concern is to establish condition
(G) (and hence condition (R) as well) for a large class of examples. We only prove the
lower bounds to show that the distance Dα(x, y) is equivalent to the “natural” geometry
of the space under consideration in a plethora of cases.

Again, we suppose in this section that X comes equipped with a metric ρ(x, y). We
assume, however, a stronger relation between the measure and the metric µ, namely the
two-sided estimate µ(B(x, r)) ≃ rn.

We suppose that in addition to the conditions 1 and 2 of the previous section, we
also have the following condition:

3. A lower bound on the kernel: there is a monotonic decreasing function Ψ on [0,∞)
and R > 0 such that for all t ∈ (0, 1] and all ρ(x, y) < R

|at(x, y)| ≥
1

tn/β
Ψ

(
ρ(x, y)

t1/β

)
.

We will show

Proposition 5. Under the conditions 1,2 and 3, Dα(x, y) & min{1, ρ(x, y)αβ}.
We will deduce the result from the following lemmas.

Lemma 3. There is a constant A > 1 and a constant ϵ > 0 such that whenever At1/β ≤
ρ(x, y) < R, we have

∥at(x, ·)− at(y, ·)∥1 > ϵ.

Proof. Temporarily fix any A > 1 and suppose At1/β ≤ ρ(x, y) < R. Then for any
u ∈ B(x, t1/β), the triangle inequality implies

ρ(y, u) ≥ ρ(x, y)− ρ(x, u) ≥ (A− 1)t1/β .

From the monotonicity of Φ it follows that Φ(ρ(y, u)/t1/β) ≤ Φ(A − 1). Consequently,
using the upper and lower bounds on |at(x, y)| and the fact that µ(B(x, r)) ≃ rn, we
have

∥at(x, ·)− at(y, ·)∥1 ≥
∫
B(x,t1/β)

|at(x, u)|du−
∫
B(x,t1/β)

|at(y, u)|du

≥ 1

tn/β

∫
B(x,t1/β)

Ψ

(
ρ(x, u)

t1/β

)
du− 1

tn/β

∫
B(x,t1/β)

Φ

(
ρ(y, u)

t1/β

)
≥ 1

tn/β

∫
B(x,t1/β)

Ψ

(
ρ(x, u)

t1/β

)
du− 1

tn/β

∫
B(x,t1/β)

Φ(A− 1)

& Ψ(1)− Φ(A− 1).
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Since Φ is decreasing, by choosing A large enough we can guarantee ϵ ≡ Ψ(1)−Φ(A−1) >
0, yielding the desired result.

Corollary 1. For all ρ(x, y) < R,

Dα(x, y) & ρ(x, y)αβ

Proof. By the previous lemma, ∥at(x, ·)− at(y, ·)∥1 > ϵ > 0 whenever At1/β ≤ ρ(x, y).
Let L = ⌊log2(ρ(x, y)β/Aβ)⌋. Then

Dα(x, y) ≥
∞∑

k=L

2−kα ∥pk(x, ·)− pk(y, ·)∥1 ≥ ϵ

∞∑
k=L

2−kα ≃ 2−Lα ≃ ρ(x, y)αβ .

Lemma 4. There are constants C > 0 and δ > 0 such that whenever ρ(x, y) ≥ R and
t1/β < δR,

∥at(x, ·)− at(y, ·)∥1 ≥ C.

Proof. Since ρ(x, y) ≥ R, the balls B(x,R/2) and B(y,R/2) are disjoint. Consequently

∥at(x, ·)− at(y, ·)∥1 ≥
∫
B(x,R/2)

|at(x, u)|du−
∫
B(x,R/2)

|at(y, u)|du

≥
∫
B(x,R/2)

|at(x, u)|du−
∫
B(y,R/2)c

|at(y, u)|du

≥ 1−
∫
B(x,R/2)c

|at(x, u)|du−
∫
B(y,R/2)c

|at(y, u)|du.

The result follows from the next lemma.

Lemma 5. Fix any r > 0 and ϵ > 0. Then there exists some δ > 0 sufficiently small so
that whenever 0 < t1/β < δr, ∫

B(x,r)c
|at(x, u)|du ≤ ϵ.

Proof. Temporarily fix δ > 0 and suppose 0 < t1/β < δr. Then if we let Vk =
B(x, 2k+1r) \B(x, 2kr), we have∫

B(x,r)c
|at(x, u)|du ≤ 1

tn/β

∫
B(x,r)c

Φ

(
ρ(x, y)

t1/β

)
du =

1

tn/β

∑
k≥1

∫
Vk

Φ

(
ρ(x, y)

t1/β

)
du

. 1

tn/β

∑
k≥1

Φ

(
2kr

t1/β

)
(2k+1r)n . rn

tn/β

∫ ∞

1
τnΦ

(
τr

t1/β

)
dτ

τ

=
rn

tn/β

∫ ∞

rt−1/β

tn/βr−nsnΦ(s)
ds

s
≤

∫ ∞

δ−1

snΦ(s)
ds

s
.

By taking δ small enough, the integral can be made as small as desired, completing the
proof.

9



Corollary 2. There is a constant B > 0 such that whenever ρ(x, y) ≥ R, Dα(x, y) ≥ B.

Proof. Take C and δ from Lemma 4. Let K = ⌊log2(1/(δβRβ))⌋. Then 2−K ≤ δβRβ,
and so

Dα(x, y) ≥
∞∑

k=K

2−kαC ≃ CδαβRαβ > 0

which completes the proof.

Corollary 1 and Corollary 2 easily imply Proposition 5. Furthermore, Proposition 5
and Proposition 3 yield the following theorem:

Theorem 1. If all the conditions 1, 2 and 3 on at(x, y) apply, then for 0 < α <
min{1,Θ/β} the distance Dα(x, y) is equivalent to the thresholded distance min{1, ρ(x, y)αβ}.

3.3 Heat kernel on a Riemannian manifold

We illustrate the results above on some selected examples. First, we consider the case
where X is a closed (compact, without boundary) Riemannian manifold of dimension
n, and at(x, y) is its heat kernel. Since X is compact, it is true that µ(B(x, r)) ≃
rn. Furthermore, the following two lemmas can be easily derived from the parametrix
construction of the heat kernel given in Chapter VI, Section 4 of [4]. Here, ρ(x, y) is
geodesic distance on the manifold.

Lemma 6. There are positive constants A,B such that

at(x, y) ≤
A

tn/2
e−Bρ(x,y)2/t

for all t sufficiently small.

Lemma 7. There are positive constants C,D

C

tn/2
e−Dρ(x,y)2/t ≤ at(x, y)

whenever t ∈ (0, 1] and ρ(x, y) are sufficiently small.

In other words, we have the upper and lower bounds on the kernel from conditions
1 and 3, with Φ(τ) ≃ Ψ(τ) ≃ e−τ2 and β = 2. It remains to show condition 2. We will
deduce the continuity estimate from the following gradient bound:

Lemma 8. There are constants E,F > 0 such that for all t ∈ (0, 1] and for all x and y
in X ,

∥∇xat(x, y)∥ ≤ E√
t

e−Fρ(x,y)2/t

tn/2

where ∇x denotes the gradient with respect to the first variable.
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Proof. Using the asymptotic expansion of at(x, y) in Chapter VI, Section 4 of [4], it is
easy to show a Gaussian upper bound on the time derivative of at(x, y), namely∣∣∣∣∂at∂t

(x, y)

∣∣∣∣ ≤ b

t

e−cρ(x,y)2/t

tn/2

for some positive constants b, c. Since the curvature of X is bounded (because X is
compact) we can apply Theorem 1.4 from [14], which states that there are constants
A1, A2, A3 such that

∥∇xat(x, y)∥2 ≤
(
A1 +

A2

t

)
at(x, y)

2 +A3at(x, y)
∂at
∂t

(x, y).

For t ∈ (0, 1], it follows from the Gaussian estimates on at(x, y) and ∂tat(x, y) that

∥∇xat(x, y)∥2 ≤
Ã

t

e−2Bρ(x,y)2/t

tn
+

b

t

e−cρ(x,y)2/t

tn/2
A

tn/2
e−Bρ(x,y)2/t . 1

t

e−B̃ρ(x,y)2/t

tn

for sufficiently small B̃ > 0, from which the result follows.

Lemma 9. If x, y are sufficiently close, then for any smooth function h : X → R and
any two points x and y in X , there is a point x̃ lying on the minimal geodesic from x to
y such that

|h(x)− h(y)| ≤ ∥∇h(x̃)∥ ρ(x, y).

Proof. Suppose r ≡ ρ(x, y) is less than the injectivity radius of the manifold M (which
is positive, since M is compact). Let γ(t) be the unit speed geodesic connecting x to y.
Then γ(r) = y, and γ(0) = x. For details, see, for instance, Chapter 13, Section 2 of [8].

Consider the function ĥ(t) = h(γ(t)). Observe that ĥ(0) = h(x) and ĥ(r) = h(y).
By the mean value theorem, there is some point t1 between 0 and r such that

h(y)− h(x)

ρ(x, y)
=

ĥ(r)− ĥ(0)

r
= ĥ′(t1) =

d

dt
h(γ(t))

∣∣∣∣
t=t1

= ⟨∇h(γ(t1)), γ
′(t1)⟩

Consequently, since γ has unit speed, the Cauchy-Schwarz inequality gives

|h(y)− h(x)| = |⟨∇h(γ(t1)), γ
′(t1)⟩|ρ(x, y) ≤ ∥∇h(γ(t1))∥ ρ(x, y).

Consequently, if we let x̃ = γ(t1), then x̃ lies on the minimal geodesic connecting x and
y, and

|h(x)− h(y)| ≤ ∥∇h(x̃)∥ ρ(x, y).

11



Corollary 3. There are positive constants G,H such that whenever ρ(x, y) ≤ t1/2,

|at(x, u)− at(y, u)| ≤ G
ρ(x, y)√

t

e−Hρ(x,y)2/t

tn/2
.

Proof. From the mean value theorem (Lemma 9) and the gradient estimate from Lemma
8, we have the bound

|at(x, u)− at(y, u)| ≤ ρ(x, y)
E√
t

e−Fρ(u,x̃)2/t

tn/2
.

where x̃ is some point on the minimal geodesic connecting x and y. Since ρ(x, y) ≤ t1/2,
it is also true that ρ(x, x̃) ≤ t1/2. Consequently, we have

ρ(u, x)2 ≤ 2ρ(u, x̃)2 + 2ρ(x̃, x)2 ≤ 2ρ(u, x̃)2 + 2t

and so

|at(x, u)− at(y, u)| ≤ ρ(x, y)
E√
t

e−Fρ(u,x̃)2/t

tn/2
≤ ρ(x, y)

E√
t

e−F (ρ(u,x)2−2t)/2t

tn/2

≤ ρ(x, y)
Ee√
t

e−(F/2)ρ(u,x)2/t

tn/2

which is the desired result.

We can therefore apply the results of the previous sections to the Gaussian upper
bound from Lemma 6 and the continuity estimate from Corollary 3 to conclude that
condition (G) is satisfied for all α < 1/2, and that Dα(x, y) . ρ(x, y)2α. Furthermore,
the Gaussian lower bound from Lemma 7 and the fact that the geodesic distance is
bounded (since X is compact) shows that Dα(x, y) & ρ(x, y)2α as well. Consequently,
Dα(x, y) is equivalent to the distance ρ(x, y)2α when α < 1/2.

Of course we can derive a similar result, namely that condition (G) holds for α < 1/2
and that Dα(x, y) ≃ min{1, ρ(x, y)2α}, for non-closed manifolds whose heat kernels
satisfy the same Gaussian bounds. We note again that we only need condition (G)
to hold for our theory to hold, and hence only need the Gaussian upper bound, the
continuity estimate, and the upper bound µ(B(x, r)) . rn. For example, as discussed
in [11], the Gaussian upper bounds and continuity estimates hold for the heat kernel on
any geodesically complete Riemannian manifold with non-negative curvature. The lower
bounds are only used to prove the lower bound Dα(x, y) & min{1, ρ(x, y)2α}.

We note too that this section may be of particular interest to those in the machine-
learning community, as approximations to the heat kernel on data sampled from sub-
manifolds of Rn are a widely-used model for many data sets, e.g. a collection of high-
dimensional images defined by a relatively small number of parameters. See, for instance,
[16, 17].
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3.4 Subordinated heat kernels with shifts on Rn

Next we consider the case in which at(x, y) = Kt(x− y), where Kt(u) is a radial kernel,
i.e. Kt(x) = Kt(y) if |x| = |y|, satisfying the following scaling property:

Kt(x) = t−n/βK1(t
−1/βx)

where 0 < β ≤ 2. For details on the construction of such kernels in one dimension, the
reader can refer to the book [26]; also see the paper [10] for a useful summary. These
kernels are known as subordinated heat kernels on Rn, since they can be expressed as
an average of the heat kernel at different scales. Concretely, when 0 < β < 2 (that is,
β ̸= 2), Kt(x) is of the form

Kt(x) =

∫ ∞

0
ηt(s)gs(x)ds

where gs is the Gaussian kernel at time s, and for each t the function ηt(s) is a probability
density on (0,∞), known as the subordinator. In fact, ηt satisfies the identity

exp(−tλβ/2) =

∫ ∞

0
ηt(s)e

−sλds

for all λ ≥ 0, from which it easily follows that the Fourier transform of Kt is

K̂t(ξ) = exp(−t|ξ|β).

It is shown in [11] that any subordinated heat kernel satisfies conditions 1, 2 and 3. More
precisely,

at(x, y) ≃
1

tn/β

(
1 +

|x− y|
t1/β

)−(n+β)

and

|at(x, u)− at(y, u)| .
|x− y|
t1/m

1

tn/m

(
1 +

|x− y|
t1/m

)−(n+m)

.

It follows immediately that the distance Dα(x, y) with respect to the kernel at(x, y) is
equivalent to min{1, |x−y|αβ} whenever α < 1/β. Note that our use of the parameter β
in the definition of the subordinated heat kernel coincides with its use in the conditions
1, 2 and 3.

This leads us immediately to a family of examples of non-symmmetric semigroup
for which condition (G) holds, namely the subordinated heat kernels with shifts. Take
β ∈ [1, 2] and define Kt(u) as above. Then for a fixed parameter θ ∈ R, define

at(x, y) = t−nβK1(t
−1/β(x− θt− y)).

It is easy to check from the semigroup property for the non-shift case θ = 0 that at(x, y)
is also a semigroup. Furthermore, we still have Dα(x, y) ≃ min{1, |x− y|αβ}. Therefore,
we can verify condition (G) directly by writing

13



∫
Rn

at(x, y)Dα(x, y)dy .
∫
Rn

t−n/βK1(t
−1/β(x− θt− y))min{1, |x− y|αβ}dy

=

∫
Rn

t−n/βK1(t
−1/β(x− y))min{1, |x− y + θt|αβ}dy

≤
∫
Rn

t−n/βK1(t
−1/β(x− y))min{1, |x− y|αβ}dy

+

∫
Rn

t−n/βK1(t
−1/β(x− y))|θt|αβdy

. tα + tαβ .

The last line follows from condition (G) in the case θ = 0. As long as β ≥ 1, condition
(G) is satisfied. Note that this range of β includes both the heat kernel (β = 2) and the
Poisson kernel (β = 1).

3.5 Products of kernels and mixed homogeneity kernels

Suppose that at(x1, x2) and bt(y1, y2) are two semigroups on spaces X and Y, respec-
tively, for which the conditions (S ), (C ), (I ) and (R) (and thus (G)) hold. We define
their product by ct((x1, y1), (x2, y2)) = at(x1, x2) · bt(y1, y2). It is easy to check that the
kernel ct defines a semigroup on X ×Y, and that the three conditions (S ), (C ), and (I )
all hold. We will check that (G) holds as well. Since we have three semigroups, it will be
convenient to distinguish between the distances each one induces. Fixing the distance
parameter α, we will write Da

α(x1, x2) for the distance induced by at, and similarly for
bt and ct. We then have:

Proposition 6. The distance Dc
α((x1, y1), (x2, y2)) on X×Y is equivalent to Da

α(x1, x2)+
Db

α(y1, y2).

Proof. This follows immediately from the following lemma.

Lemma 10. For every z1 = (x1, y1), z2 = (x2, y2) in X × Y, we have

∥ct(z1, ·)− ct(z2, ·)∥1 ≃ ∥at(x1, ·)− at(x2, ·)∥1 + ∥bt(y1, ·)− bt(y2, ·)∥1 .

Proof. First, we prove that

∥ct(z1, ·)− ct(z2, ·)∥1 . ∥at(x1, ·)− at(x2, ·)∥1 + ∥bt(y1, ·)− bt(y2, ·)∥1 .

To see this, observe that if x1 = x2 then

∥ct((x1, y1), ·)− ct((x1, y2), ·)∥1 =
∫
X

∫
Y
|at(x1, x)||bt(y1, y)− bt(y2, y)|dydx

. ∥bt(y1, ·)− bt(y2, ·)∥1

14



where have used condition (I ) on the kernels at. Similarly,

∥ct((x1, y2), ·)− ct((x2, y2), ·)∥1 . ∥at(x1, ·)− at(x2, ·)∥1 .

We therefore have

∥ct((x1, y1), ·)− ct((x2, y2), ·)∥1 ≤ ∥ct((x1, y1), ·)− ct((x1, y2), ·)∥1
+ ∥ct((x1, y2), ·)− ct((x2, y2), ·)∥1

. ∥at(x1, ·)− at(x2, ·)∥1 + ∥bt(y1, ·)− bt(y2, ·)∥1 ,

as desired.
For the other direction, observe that

∥ct(z1, ·)− ct(z2, ·)∥1 =
∫
X

∫
Y
|at(x1, x)bt(y1, y)− at(x2, x)bt(y2, y)|dydx

≥
∫
X

∣∣∣∣ ∫
Y
[at(x1, x)bt(y1, y)− at(x2, x)bt(y2, y)]dy

∣∣∣∣dx
=

∫
X

∣∣∣∣at(x1, x)∫
Y
bt(y1, y)dy − at(x2, x)

∫
Y
bt(y2, y)dy

∣∣∣∣dx
=

∫
X
|at(x1, x)− at(x2, x)|dx = ∥at(x1, ·)− at(x2, ·)∥1 .

Similarly
∥ct(z1, ·)− ct(z2, ·)∥1 ≥ ∥bt(y1, ·)− bt(y2, ·)∥1

from which it follows

∥ct(z1, ·)− ct(z2, ·)∥1 ≥
1

2
(∥at(x1, ·)− at(x2, ·)∥1 + ∥bt(y1, ·)− bt(y2, ·)∥1)

completing the proof.

From Proposition 6 we can easily deduce that condition (G) holds for ct if it holds
for at and bt.

Proposition 7. If condition (G) holds for at and bt, then it holds for their product ct
as well.

Proof. We have, using condition (I ) for both at and bt,∫
X×Y

|ct(z1, z2)|Dc
α(z1, z2)dz2

.
∫
X

∫
Y
|at(x1, x2) · bt(y1, y2)|(Da

α(x1, x2) +Db
α(y1, y2))dx2dy2

.
∫
X
|at(x1, x2)|Da

α(x1, x2)dx2 +

∫
Y
|bt(y1, y2)|Db

α(y1, y2)dy2

. tα

which is the desired result.
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Of course, these results hold for the product of any number of kernels, not just two,
and the proofs are similar. A natural example is the product of subordinated heat kernels
on Rn. Suppose that n = n1+· · ·+nl and that on each space Rni we have a subordinated

heat kernel a
(i)
t (xi, yy) with scaling βi. Then as long as α < min{1/β1, . . . , 1/βl}, for

x = (x1, . . . , xl), y = (y1, . . . , yl), xi, yi ∈ Rni , the kernel

at(x, y) =
l∏

i=1

a
(i)
t (xi, yi)

generates the distance

Dα(x, y) ≃ min{1, |x− y|MH}

where

|x− y|MH =
l∑

i=1

|xi − yi|αβi

is a mixed-homogeneity distance on Rn.

4 Lipschitz functions

We now turn to characterizing functions that are Lipschitz with respect to the distance
Dα(x, y), for a fixed α ∈ (0, 1). We assume that α is chosen so that condition (G) holds;
in particular, by Proposition 1 if the kernel satisfies condition (R) for some α′, we take
any 0 < α < α′.

For a function f on X define the seminorm

V (f) = sup
x ̸=y

|f(x)− f(y)|
Dα(x, y)

We then define the Lipschitz norm of a function f on X to be

∥f∥Λα
= sup

x
|f(x)|+ V (f)

and Λα is the space of functions f for which this norm is finite.
Our goal in this section is to define two norms equivalent to this one on Λα. We

define the difference operators

∆k = Pk+1 − Pk, δk = I − Pk.

We also define the seminorms

V (1)(f) = sup
k≥0

sup
x

2kα|∆kf(x)|

and
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V (2)(f) = sup
k≥0

sup
x

2kα|δkf(x)|.

The two norms can now be defined as

∥f∥(1)Λα
= sup

x
|f(x)|+ V (1)(f)

and
∥f∥(2)Λα

= sup
x

|f(x)|+ V (2)(f).

We immediately see the use of condition (R) and its equivalent condition (G) in the
following result:

Proposition 8. V (2)(f) . V (f).

Proof. Take any k ≥ 0. Since pk(x, ·) has integral 1 for every x, we have

|f(x)− Pkf(x)| =
∣∣∣∣f(x)− ∫

X
pk(x, y)f(y)dy

∣∣∣∣ = ∣∣∣∣ ∫
X
pk(x, y)(f(x)− f(y))dy

∣∣∣∣
≤ V (f)

∫
X
|pk(x, y)|Dα(x, y)dy . V (f)2−kα

from which the desired inequality follows trivially.

Corollary 4. ∥f∥(2)Λα
. ∥f∥Λα

.

Next, we make the following simple observation about uniform convergence:

Lemma 11. If ∥f∥(2)Λα
< ∞, then Pkf converges to f uniformly as k → ∞.

Proof. This is clear from the definition of ||f ||(2)Λα
(more specifically, the definition of

V (2)(f)).

Since ∥f∥(2)Λα
. ∥f∥Λα

, it follows that:

Lemma 12. For all f ∈ Λα, Pkf converges to f uniformly as k → ∞.

We now prove:

Proposition 9. The seminorms V (1)(f) and V (2)(f) are equivalent for f ∈ Λα.

Proof. First, write f as a telescopic series:

f − P0f =
∞∑
l=0

[Pl+1f − Plf ]

where the series converges uniformly by Lemma 12.
Similarly we can write Pkf as a telescopic series
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Pkf − P0f =

k∑
l=0

[Pl+1f − Plf ]

and subtracting the two series gives:

|f − Pkf | =
∣∣∣∣ ∞∑
l=0

(Pl+1f − Plf)−
k∑

l=0

(Pl+1f − Plf)

∣∣∣∣
=

∣∣∣∣ ∞∑
l=k+1

(Pl+1f − Plf)

∣∣∣∣ ≤ ∞∑
l=k+1

|Pl+1f − Plf |

≤ V (1)(f)

∞∑
l=k+1

2−lα = V (1)(f)
2−α

1− 2−α
2−kα

and consequently

2kα sup
x

|δkf(x)| ≤
2−α

1− 2−α
V (1)(f).

Taking the supremum over all k ≥ 0 shows V (2)(f) . V (1)(f).
For the other direction, we simply observe

|Pkf − Pk+1f | ≤ |(Pk − I)f |+ |(Pk+1 − I)f | ≤ 2V (2)(f)2−kα

implying
2kα sup

x
|∆kf(x)| ≤ 2V (2)(f).

Taking the supremum over all k ≥ 0 gives the result.

Corollary 5. The norms ∥f∥(1)Λα
and ∥f∥(2)Λα

are equivalent on Λα.

Now we turn to proving the main result of this section, namely that ∥f∥(1)Λα
and ∥f∥(2)Λα

are equivalent to ∥f∥Λα
. The following simple observation will be useful:

Lemma 13. (Pk+1 + Pk)∆k = ∆k−1.

Proof. This is a simple algebraic computation:

(Pk+1 + Pk)∆k = (Pk+1 + Pk)(Pk+1 − Pk) = Pk+1Pk+1 − Pk+1Pk + PkPk+1 − PkPk

= A2−(k+1)A2−(k+1) −A2−kA2−k = A2−(k+1)+2−(k+1) −A2−k+2−k

= A2−k −A2−(k−1) = Pk − Pk−1 = ∆k−1.

Lemma 14. Suppose f is bounded. Then V (Pkf) ≤ 2kα supx |f(x)|.
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Proof.

|Pkf(x)− Pkf(y)| =
∣∣∣∣ ∫

X
pk(x, u)f(u)du−

∫
X
pk(y, u)f(u)du

∣∣∣∣
=

∣∣∣∣ ∫
X
[pk(x, u)− pk(y, u)]f(u)du

∣∣∣∣
≤ sup

x′
|f(x′)| ∥pk(x, ·)− pk(y, ·)∥1

≤ sup
x′

|f(x′)|2kαDα(x, y).

Proposition 10. For f ∈ Λα, ∥f∥Λα
. ∥f∥(1)Λα

.

Proof. Expand f in a telescopic series:

f − P0f =
∞∑
k=0

[Pk+1f − Pkf ] =
∞∑
k=0

∆kf(x) =
∞∑
k=0

[(Pk+1 + Pk+2)∆k+1f ]

where we have used Lemma 13. The series converges uniformly by Lemma 12.
For all x, y ∈ X ,

|Pk∆kf(x)− Pk∆kf(y)| =
∣∣∣∣ ∫

X
pk(x, u)(∆kf)(u)du−

∫
X
pk(y, u)(∆kf)(u)du

∣∣∣∣
=

∣∣∣∣ ∫
X
(pk(x, u)− pk(y, u))(∆kf)(u)du

∣∣∣∣
≤ V (1)(f)2−kαDk(x, y).

(2)

Similarly,

|Pk+1∆kf(x)− Pk+1∆kf(y)| ≤ V (1)(f)2−kαDk+1(x, y). (3)

For every x, y ∈ X

f(x)− f(y) =
∞∑
k=0

[(Pk+1 + Pk+2)∆k+1f ](x)−
∞∑
k=0

[(Pk+1 + Pk+2)∆k+1f ](y)

+ P0f(x)− P0f(y).
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From the inequalities (2) and (3) we get∣∣∣∣ ∞∑
k=0

[(Pk+1 + Pk+2)∆k+1f ](x)−
∞∑
k=0

[(Pk+1 + Pk+2)∆k+1f ](y)

∣∣∣∣
≤
∣∣∣∣ ∞∑
k=0

(Pk+1∆k+1f(x)− Pk+1∆k+1f(y))

∣∣∣∣+ ∣∣∣∣ ∞∑
k=0

(Pk+2∆k+1f(x)− Pk+2∆k+1f(y))

∣∣∣∣
≤

∞∑
k=0

V (1)(f)2−(k+1)αDk+1(x, y) +
∞∑
k=0

V (1)(f)2−(k+1)αDk+2(x, y)

≤V (1)(f)(1 + 2α)Dα(x, y).

By Lemma 14, we also know |P0f(x)−P0f(y)| ≤ supx′ |f(x′)|Dα(x, y). Consequently,
for every x, y ∈ X

|f(x)− f(y)| ≤ (V (1)(f)(1 + 2α) + sup
x′

|f(x′)|)Dα(x, y)

and so

sup
x ̸=y

|f(x)− f(y)|
Dα(x, y)

≤ V (1)(f)(1 + 2α) + sup
x′

|f(x′)|.

Therefore

∥f∥Λα
= sup

x
|f(x)|+ sup

x ̸=y

|f(x)− f(y)|
Dα(x, y)

≤ V (1)(f)(1 + 2α) + 2 sup
x

|f(x)| ≤ 3 ∥f∥(1)Λα
.

Putting together Corollary 4, Corollary 5 and Proposition 10, we have shown:

Theorem 2. The norms ∥f∥Λα
, ∥f∥(1)Λα

and ∥f∥(2)Λα
are equivalent on Λα.

5 Norm dual to Lipschitz

We now turn to the space of L1 measures defined on X . Since all Lipschitz functions are
in L∞, any such distribution can be integrated against any Lipschitz function. We will
denote the action of a distribution T on a Lipschitz function f by ⟨f, T ⟩ =

∫
X f(x)dT (x).

The dual norm to the Lipschitz space Λα is defined as:

∥T∥Λ∗
α
= sup

∥f∥Λα
≤1
⟨f, T ⟩.

The space Λ∗
α is the space of all L1 distributions T equipped with the norm ∥T∥Λ∗

α
. In

Section 6, we will give a well-known interpretation of the dual norm of the difference of
two probability measures.
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Our goal in this section is to define two other norms on Λ∗
α and prove their equivalence

to ∥T∥Λ∗
α
. First, we define

W (1)(T ) =
∑
k≥0

2−kα ∥∆∗
kT∥1

and

W (2)(T ) =
∑
k≥0

2−kα ∥d∗kT∥1

where

dk = Pk − P0.

Now we define the equivalent norms. The first is defined by

∥T∥(1)Λ∗
α
= ∥P ∗

0 T∥1 +W (1)(T )

and the second is defined by

∥T∥(2)Λ∗
α
= ∥P ∗

0 T∥1 +W (2)(T ).

We show that all three norms ∥T∥Λ∗
α
, ∥T∥(1)Λ∗

α
and ∥T∥(2)Λ∗

α
are equivalent on Λ∗

α.

Proposition 11. The seminorms W (1)(T ) and W (2)(T ) are equivalent on Λ∗
α.

Proof. We first show W (1)(T ) ≤ 2W (2)(T ).

W (1)(T ) =

∞∑
k=0

2−kα ∥∆∗
kT∥1 =

∞∑
k=0

2−kα
∥∥(P ∗

k − P ∗
k+1)T

∥∥
1

≤
∞∑
k=0

2−kα ∥(P ∗
k − P ∗

0 )T∥1 +
∞∑
k=0

2−kα
∥∥(P ∗

k+1 − P ∗
0 )T

∥∥
1

≤ 2W (2)(T ).

For the other direction, we write d∗k as the telescopic sum

d∗kT = P ∗
kT − P ∗

0 T =

k−1∑
l=0

[(P ∗
l+1T (x)− P ∗

l )T ] =

k−1∑
l=0

∆∗
l T.

Then ∥d∗kT∥1 ≤
∑k−1

l=0 ∥∆∗
l T∥1, and consequently Fubini’s theorem yields
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W (2)(T ) =
∞∑
k=0

2−kα ∥d∗kT∥1 ≤
∞∑
k=0

2−kα
k−1∑
l=0

∥∆∗
l T∥1

=
∞∑
l=0

∥∆∗
l T∥1

∑
k≥l+1

2−kα

=
∞∑
l=0

∥∆∗
l T∥1

2−(l+1)α

1− 2−α
=

2−α

1− 2−α
W (1)(T )

completing the proof.

Corollary 6. The norms ∥T∥(1)Λ∗
α
and ∥T∥(2)Λ∗

α
are equivalent.

Next we turn to the main result of this section, namely that ∥T∥(1)Λ∗
α
and ∥T∥(2)Λ∗

α
are

equivalent to ∥T∥Λ∗
α
.

Proposition 12. ∥T∥Λ∗
α
. ∥T∥(2)Λ∗

α
.

Proof. Suppose f is any function with ∥f∥Λα
≤ 1. Making use of Lemma 13 and the

uniform convergence of Pkf to f as k → ∞ we can write

f − P0f =

∞∑
j=0

∆jf =

∞∑
j=1

Pj∆jf +

∞∑
j=1

Pj+1∆jf

=

∞∑
j=1

(Pj − P0)∆jf +

∞∑
j=1

(Pj+1 − P0)∆jf + 2P0(I − P1)f.

Therefore,

⟨f, T ⟩ =
∞∑
j=1

⟨T, (Pj − P0)∆jf⟩+
∞∑
j=1

⟨T, (Pj+1 − P0)∆jf⟩

+ ⟨T, (3P0 − 2P0P1)f⟩

=

∞∑
j=1

⟨(P ∗
j − P ∗

0 )T,∆j⟩+
∞∑
j=1

⟨(P ∗
j+1 − P ∗

0 )T,∆jf⟩

+ ⟨P ∗
0 T, (3I − 2P1)f⟩.

Consequently, we have
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|⟨f, T ⟩| ≤
∞∑
j=1

∥∥(P ∗
j − P ∗

0 )T
∥∥
1
sup
x

|∆jf(x)|+
∞∑
j=1

∥∥(P ∗
j+1 − P ∗

0 )T
∥∥
1
sup
x

|∆jf(x)|

+ ∥P ∗
0 T∥1 sup

x
|(3I − 2P1)f(x)|

.
∞∑
j=1

2−jα
∥∥d∗jT∥∥1 + ∞∑

j=1

2−jα
∥∥d∗j+1T

∥∥
1
+ ∥P ∗

0 T∥1 sup
x

|f(x)|

where in the last inequality we have used the equivalence of ∥f∥Λα
and ∥f∥(1)Λα

and the fact
that supx |Pkf(x)| . supx |f(x)| (a trivial consequence of condition (I ) on the kernel).
Since supx |f(x)| ≤ ∥f∥Λα

≤ 1, it follows immediately that

|⟨f, T ⟩| .
∞∑
j=1

2−jα
∥∥d∗jT∥∥1 + ∥P0T∥1 = ∥T∥(2)Λ∗

α
.

Now take the supremum over all f with ∥f∥Λα
≤ 1 to reach the desired conclusion.

Proposition 13. ∥T∥(2)Λ∗
α
. ∥T∥Λ∗

α
.

Proof. Define the function f by

f(x) =
∞∑
k=1

2−kα(Pk − P0) sgn[(P
∗
k − P ∗

0 )T ](x) + P0[sgn(P
∗
0 T )](x)

=

∞∑
k=1

2−kαPk sgn[(P
∗
k − P ∗

0 )T ](x) + P0F (x)

where

F (x) = sgn(P ∗
0 T )(x)−

∞∑
k=1

2−kα sgn[(P ∗
k − P ∗

0 )T ](x).

Since

sup
x

|F (x)| ≤ 1 +

∞∑
k=1

2−kα ≤ 1 +
2−α

1 + 2−α

therefore, by Lemma 14

|P0F (x)− P0F (y)| ≤
(
1 +

2−α

1 + 2−α

)
Dα(x, y)

for all x, y ∈ X . Furthermore, letting hk = sgn[(P ∗
k −P ∗

0 )T ], Lemma 14 also implies that
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|Pkhk(x)− Pkhk(y)| ≤ Dk(x, y), and consequently∣∣∣∣ ∞∑
k=1

2−kαPk sgn[(P
∗
k − P ∗

0 )T ](x)−
∞∑
k=1

2−kαPk sgn[(P
∗
k − P ∗

0 )T ](y)

∣∣∣∣
≤

∞∑
k=1

2−kα|Pkhk(x)− Pkhk(y)|

≤
∞∑
k=1

2−kαDk(x, y) ≤ Dα(x, y).

We also have the estimate

∥f∥∞ .
∞∑
k=1

2−kα + 1 ≤ 1 +
2−α+1

1 + 2−α
.

It follows that ∥f∥Λα
≤ C(α), where C(α) is a constant depending only on α (in

particular, not on T ). By the definition of f , we see

⟨f, T ⟩ =
∞∑
k=1

2−kα⟨(Pk − P0) sgn[(P
∗
k − P ∗

0 )T ], T ⟩+ ⟨P0[sgn(P
∗
0 T )], T ⟩

=

∞∑
k=1

2−kα⟨sgn[(P ∗
k − P ∗

0 )T ], (P
∗
k − P ∗

0 )T ⟩+ ⟨sgn(P ∗
0 T ), P

∗
0 T ⟩

=
∞∑
k=1

2−kα ∥(P ∗
k − P ∗

0 )T∥1 + ∥P ∗
0 T∥1 .

So

∥T∥Λ∗
α
≥ C(α)−1⟨f, T ⟩ ≃

∞∑
k=1

2−kα ∥(P ∗
k − P ∗

0 )T∥1 + ∥P ∗
0 f∥1

which is the desired result.

Putting together Corollary 6, Proposition 12 and Proposition 13 we have shown:

Theorem 3. The norms ∥T∥Λ∗
α
, ∥T∥(1)Λ∗

α
and ∥T∥(2)Λ∗

α
are equivalent on Λ∗

α.

6 Application to Earth Mover’s Distance

The dual norm ∥T∥Λ∗
α
has a natural interpretation when the distribution T is the differ-

ence of two probability measures µ and ν. We will explain this in a more general setting.
Suppose Ω is any metric/measure space with metric ρ. A measure π on Ω× Ω satisfies
the equality-of-marginals condition with respect to µ and ν if
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π(Ω, E) = µ(E)

π(E,Ω) = ν(E)
(EM)

for all measurable sets E ⊂ Ω. The Kantorovich-Rubinstein Theorem states that if Ω is
separable, and if the expected distance under µ and ν from any point is finite, we have
the dual relationship

sup
g:|g(x)−g(y)|≤ρ(x,y)

{∫
Ω
gdµ−

∫
Ω
gdν

}
= inf

π: (EM) holds

∫
Ω×Ω

ρ(x, y)dπ(x, y). (KR)

For a proof, see [9].
The quantity on the right of (KR) is known as the Earth Mover’s Distance between µ

and ν, denoted EMD(µ, ν). It has the following interpretation. We view each measure π
satisfying the equality-of-marginals condition (EM) with respect to µ and ν as a transport
between the measures ν and µ; that is, for any two measurable sets A,B ⊂ Ω, π(A,B) is
interpreted as the amount of mass moved from set A to set B. The equality-of-marginals
condition (EM) guarantees that the transport rearranges the mass distribution described
by ν to end up with the distribution described by µ. If ρ(x, y) is the cost-per-mass of
moving mass from location x to location y, then EMD(µ, ν) is the minimal cost over all
transports; in other words, it is the cheapest way of rearranging mass distributed like ν
to get mass distributed like µ.

The quantity on the left of (KR) is equal to the norm of T = µ − ν in the space
dual to Lipschitz functions, except we do not require that the functions T is integrated
against lie in L∞. However, when the diameter of the space is finite, as for the distances
Dα we have defined, and

∫
dµ =

∫
dν, then the two definitions are easily seen to be

equal, and the norm ∥µ− ν∥Λ∗
α
is equal to the left side of (KR).

Due to the way it exploits the geometry of the metric space on which probability
distributions are defined, EMD has many desirable properties that make it a natural
choice of metric for many problems in machine learning [15, 18, 20, 21, 24]. We now
describe one such property, which helps explain its robustness.

Suppose p1 is a probability distribution on a space Ω with metric ρ(x, y) and measure
µ such that the Kantorovich-Rubinstein Theorem holds; for instance, Ω might be sepa-
rable. Let h : Ω → Ω be a 1-1, absolutely continuous (with respect to µ) transformation
satisfying

ρ(x, h(x)) ≤ ϵ (4)

for all x ∈ Ω. Let ν be the measure induced by the change-of-variable h, that is,
ν(S) = µ(h(S)) for measurable subsets S ⊂ Ω; and let dν

dµ denote the Radon-Nikodym
derivative of ν with respect to µ. Then we define the distribution

p2(x) = p1(h(x))
dν

dµ
(x)

25



obtained from p1 by the change-of-variable h. We think of p2 as a perturbation of p1. In
L1, for example, the distance between p1 and p2 could be quite large; however, we now
show that EMD(p1, p2) is no greater than the size of the perturbation itself.

Theorem 4. Under the assumptions described above, EMD(p1, p2) ≤ ϵ.

Proof. We use that

EMD(p1, p2) = sup

{∫
Ω
f(x)(p1(x)− p2(x))dµ(x) : |f(x)− f(y)| ≤ ρ(x, y)

}
.

Take any f with |f(x)− f(y)| ≤ ρ(x, y) for all x and y, and observe that

∫
Ω
f(x)p2(x)dµ(x) =

∫
Ω
f(x)p1(h(x))

dν

dµ
(x)dµ(x)

=

∫
Ω
f(x)p1(h(x))dν(x) =

∫
Ω
f(x)p1(h(x))dµ(h(x))

=

∫
Ω
f(h−1(y))p1(y)dµ(y)

and consequently

∫
Ω
f(x)(p1(x)− p2(x))dµ(x) =

∫
Ω
p1(x)(f(x)− f(h−1(x)))dµ(x).

Now by assumption (4) on h and the fact that h is 1-1, we have ρ(x, h−1(x)) ≤ ϵ;
hence, since f has Lipschitz constant 1, we have

|f(x)− f(h−1(x))| ≤ ρ(x, h−1(x)) ≤ ϵ

and consequently

∫
Ω
f(x)(p1(x)− p2(x))dµ(x) =

∫
Ω
p1(x)(f(x)− f(h−1(x)))dµ(x) ≤ ϵ

∫
Ω
p1(x)dµ(x) = ϵ

since p1 is a probability distribution; then taking the supremum over all Lipschitz f
gives

EMD(p1, p2) ≤ ϵ

as desired.

In order to apply this theory to the setting of this paper, we need to check that the
Kantorovich-Rubinstein Theorem applies when we equip our space X with the metric
Dα(x, y). As noted, a sufficient condition is to check that the resulting metric space is
separable. We can prove separability under the additional assumption that X is sigma-
finite.
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Lemma 15. Under the metric Dα(x, y), balls in X of positive radius have positive
measure.

Proof. We deduce this from condition (G) as follows. Suppose that there were some ball
B(x, r), r > 0, with measure zero. Then

1 =

∫
X
pk(x, y)dy ≤

∫
X
|pk(x, y)|dy =

∫
B(x,r)c

|pk(x, y)|dy

and consequently

r ≤
∫
B(x,r)c

|pk(x, y)|Dα(x, y)dy ≤ C2−kα.

Since r > 0, taking k → ∞ yields a contradiction.

Proposition 14. Suppose that the measure space X is sigma-finite. Then the metric
Dα(x, y) turns X into a separable metric space; in particular, the Kantorovich-Rubinstein
Theorem holds on X .

Proof. By sigma-finiteness, we can write X as a countable union of finite measure sets.
Without loss of generality, we can therefore assume that X itself has finite measure. Use
Zorn’s Lemma to find a maximal collection of points {xi}i∈I so that Dα(xi, xj) ≥ 1/n,
where I is some index set. By maximality, every point in X is within 1/n of one of the
points xi; so we will be done if we can show that I is necessarily countable. To see this,
observe that the balls B(xi, 1/2n) are pairwise disjoint and have positive measure. Since
X has finite measure, there can only be finitely many balls whose measure lies in the
interval (2−k−1, 2−k], for each k ∈ Z. Since the measure of each ball must lie in one such
interval, and there are countably many intervals, there are only countably many balls,
and the proof is complete.

In our setting of the space X with the semigroup at(x, y), the formulas for the norm
∥T∥Λ∗

α
from Section 5 provides an approximation to Earth Mover’s Distance. From The-

orem 3, and the Kantorovich-Rubinstein Theorem, the Earth Mover’s Distance between
two probability measures µ and ν is equivalent to the expressions

∥µ− ν∥(1)Λ∗
α
= ∥P ∗

0 (µ− ν)∥1 +
∑
k≥0

2−kα ∥∆∗
k(µ− ν)∥1

and
∥µ− ν∥(2)Λ∗

α
= ∥P ∗

0 (µ− ν)∥1 +
∑
k≥0

2−kα ∥d∗k(µ− ν)∥1 .

In machine learning applications, these formulas can often be computed fast, and
thus provide a fast approximation to Earth Mover’s Distance. We only give a sketch of
how this works, waving our hands regarding the issues that arise when using discrete
data. We take X to be a collection of n data points, and the operators Pk to be dyadic
powers of a Markov matrix M on the data, as in the theory of diffusion maps [5].
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We assume that the one-step Markov matrix on the data is at scale t = 1/n. There-
fore, we need only take N = ⌊log2(n)⌋ dyadic powers of M before reaching scale 1. So
to approximate Earth Mover’s Distance (with respect to the ground distance Dα(x, y))
between two probability vectors µ and ν on the data, we propose the heuristic formula

∥(Mn)∗(µ− ν)∥1 +
N∑
k=0

2(k−N)α∥(M2k+1 −M2k)∗(µ− ν)∥1

or the formula

∥(Mn)∗(µ− ν)∥1 +
N∑
k=0

2(k−N)α∥(M2k −Mn)∗(µ− ν)∥1.

If all dyadic powers of the matrix M can be applied rapidly, say in time O(n logk n),
then these formulas can be evaluated at the same cost. This is not an unreasonable
supposition; for instance, see the papers [6] and [7]. Note that a simplifying consideration
in the case of diffusion maps is that the Markov matrices M considered there are similar
to a symmetric positive definite matrix (with maximum eigenvalue equal to 1), and so
any algorithm that permits fast application of all powers of such matrices will enable a
fast approximation of EMD in our setting.

In more specialized cases similar formulas have been shown to approximate EMD as
well. The work that most closely resembles this one is wavelet EMD [19]. Here, wavelets
are used in place of the operators ∆k and dk. The applicability of this method limited
to Rn, where the ground distance is a snowflake of the Euclidean metric.

The reader can also refer to the papers by Charikar [3] and Indyk and Thaper [13].
Though the particulars are quite different than those in the present work, the general
spirit is the same; EMD can be approximated by a weighted sum of L1 norms of difference
operators at different scales, whatever the notion of “scale” might mean for the geometry
under consideration.

7 Mixed Lipschitz functions on product spaces

We now consider the setting where we have a product of spaces, each equipped with its
own semigroup satisfying (S ), (C ), (I ) and (R) so that the theory developed so far can
be applied. For simplicity, we will consider only two spaces, which we will denote X and
Y, each with a semigroup As and Bt with kernels at(x, x

′) and b(y, y′), respectively. All
the results and their proofs can be extended to arbitrarily many semigroups. We define
the dyadic discretizations for times between 0 and 1

Pk = A2−k , pk(x, x
′) = a2−k(x, x′), k ≥ 0

and
Ql = B2−l , ql(y, y

′) = b2−k(y, y′), l ≥ 0
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and the distances
DX ,k(x, x

′) =
∥∥pk(x, ·)− pk(x

′, ·)
∥∥
1

and

DY,l(y, y
′) =

∥∥ql(y, ·)− ql(y
′, ·)

∥∥
1
.

For 0 < α, β < 1, such that the geometric condition (G) holds for Pk with respect to
α and (G) holds for Ql with respect to β, we define metrics on X and Y by

DX ,α(x, x
′) =

∑
k≥0

2−kαDX ,k(x, x
′)

and

DY,β(y, y
′) =

∑
l≥0

2−lβDY,k(y, y
′).

For brevity, we will let DX = DX ,α and DY = DY,β.
We will define a regularity norm and its dual on the product space X × Y. We first

define the following quantities:

VX (f) = sup
y,x ̸=x′

f(x, y)− f(x′, y)

DX (x, x′)
,

VY(f) = sup
x,y ̸=y′

f(x, y)− f(x, y′)

DY(y, y′)
,

and

M(f) = sup
x ̸=x′,y ̸=y′

f(x, y)− f(x, y′)− f(x′, y) + f(x′, y′)

DX (x, x′)DY(y, y′)
.

We then define the norm

∥f∥Λα,β
≡ M(f) + VX (f) + VY(f) + sup

x
|f(x)|

and denote by Λα,β the space of all functions f where ∥f∥Λα,β
< ∞.

Lemma 16. Taking

ṼX (f) = sup
y,x ̸=x′

(Q0f)(x, y)− (Q0f)(x
′, y)

DX (x, x′)
,

ṼY(f) = sup
x,y ̸=y′

(P0f)(x, y)− (P0f)(x, y
′)

DY(y, y′)

in place of, respectively, the seminorms VX and VY in the definition of ∥f∥Λα,β
yields an

equivalent norm.
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Proof. From condition (I ), it is immediate that ṼX (f) . VX (f) and ṼY(f) ≤ VY(f).
For the other inequality, we can control VX (f) by ṼX (f) and M(f), and control VY(f)
by ṼY(f) and M(f). To see this, observe that

|(Q0f)(x, y)− (Q0f)(x
′, y)− f(x, y) + f(x′, y)|

=

∣∣∣∣ ∫
X
q0(y, y

′)[f(x, y′)− f(x′, y′)− f(x, y) + f(x′, y)]dy′
∣∣∣∣

≤CDX (x, x
′) diam(Y)M(f)

.M(f)DX (x, x
′)

where we have used condition (I ) in the second-to-last inequality. Consequently, VX (f) .
ṼX (f) +M(f); similarly, VY(f) . ṼY(f) +M(f). It follows that replacing VX (f) and
VY(f) by, respectively, ṼX (f) and ṼY(f) in the definition of ∥f∥Λα,β

yields an equivalent
norm.

Of course, other minor variations in the definition of ∥f∥Λα,β
yielding equivalent

norms are also possible. However, as in the case of a single space our primary goal is to
give simpler characterizations of the norm ∥f∥Λα,β

involving the changes in the function’s
averages across scales. In Section 8, we will use these to give simple characterizations of
the norm on the space dual to Λα,β.

We define the difference operators

∆P,k = Pk+1 − Pk, ∆Q,l = Ql+1 −Ql.

as well as

δP,k = I − Pk, δQ,l = I −Ql.

We then define

V
(1)
X (f) = sup

k≥0
sup
x,y

2kα|∆P,kf(x, y)|, V
(1)
Y (f) = sup

l≥0
sup
x,y

2lβ |∆Q,lf(x, y)|,

and

M (1)(f) = sup
k≥0,l≥0

sup
x,y

2kα+lβ|∆P,k∆Q,lf(x, y)|.

Similarly, define

V
(2)
X (f) = sup

k≥0
sup
x,y

2kα|δP,kf(x, y)|, V
(2)
Y (f) = sup

l≥0
sup
x,y

2lβ |δQ,lf(x, y)|,

and

M (2)(f) = sup
k≥0,l≥0

sup
x,y

2kα+lβ |deltaP,kδQ,lf(x, y)|.
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We can now define the equivalent regularity norms by

∥f∥(1)Λα,β
= M (1)(f) + V

(1)
X (f) + V

(1)
Y (f) + sup

x,y
|f(x, y)|

and
∥f∥(2)Λα,β

= M (2)(f) + V
(2)
X (f) + V

(2)
Y (f) + sup

x,y
|f(x, y)|.

We first show that ∥f∥Λα,β
controls ∥f∥(2)Λα,β

. It will follow that on Λα,β we have

uniform convergence of the semigroups and their products to the identity.

Proposition 15. For any function f , ∥f∥(2)Λα,β
. ∥f∥Λα,β

.

Proof. Showing that V
(2)
X (f) and V

(2)
Y (f) are controlled by, respectively, VX (f) and

VY(f) is an immediate consequence of the one-dimensional result, Lemma 8. To show
M (2)(f) . M(f), observe that Lemma 8 also gives

|2kαδP,k2lβδQ,lf(x, y)| . sup
x ̸=x′

2lβδQ,lf(x, y)− 2lβδQ,lf(x
′, y)

DX (x, x′)

= sup
x̸=x′

2lβδQ,l[f(x, ·)− f(x′, ·)](y)
DX (x, x′)

.

Now apply Lemma 8 again to the function y 7→ f(x, y)− f(x′, y) to obtain the bound

|2lβδQ,l[f(x, ·)− f(x′, ·)](y)| . sup
y ̸=y′

f(x, y)− f(x′, y)− f(x, y′) + f(x′, y′)

DY(y, y′)
.

The result follows.

It is easy to see that if ∥f∥(2)Λα,β
< ∞, then

lim
k→∞,l→∞

PkQlf = f

uniformly, where the limits can be taken in either order or simultaneously. Since

∥f∥(2)Λα,β
. ∥f∥Λα,β

, the same convergence applies for any f ∈ Λα,β.

We will next show that ∥f∥(1)Λα,β
and ∥f∥(2)Λα,β

are equivalent, and then that ∥f∥Λα,β
.

∥f∥(1)Λα,β
. To that end:

Lemma 17. The seminorms V
(1)
X (f) and V

(2)
X (f) are equivalent, as are the seminorms

V
(1)
Y (f) and V

(2)
Y (f).

Proof. This follows immediately from Proposition 9 for a single semigroup.

Lemma 18. The seminorms M (1)(f) and M (2)(f) are equivalent.
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Proof. From Proposition 9, we have

|2kα∆P,k2
lβ∆Q,lf(x, y)| . sup

x′
sup
k′≥0

2k
′α|δP,k′2lβ∆Q,lf(x

′, y)|

= sup
x′

sup
k′≥0

2lβ |∆Q,l2
k′αδP,k′f(x

′, y)|

. sup
x′

sup
k′≥0

sup
y′

sup
l′

2l
′β|δQ,l2

k′αδP,k′f(x
′, y)|

which proves M (2)(f) . M (1)(f). The other direction is proved similarly.

Combining Lemmas 17 and 18, we get:

Proposition 16. The norms ∥f∥(1)Λα,β
and ∥f∥(2)Λα,β

are equivalent.

To finish proving that all three norms are equivalent, we will show that ∥f∥Λα,β
.

∥f∥(1)Λα,β
.

Proposition 17. For all f ∈ Λα,β, ∥f∥Λα,β
. ∥f∥(1)Λα,β

.

Proof. First, it is trivial to deduce VX (f) . V
(1)
X (f) + supx,y |f(x, y)| and VY(f) .

V
(1)
Y (f) + supx,y |f(x, y)| from Proposition 10. Therefore, it remains to show M(f) .

∥f∥(1)Λα,β
.

Fix any y, y′ ∈ Y and define

g(x) =
f(x, y)− f(x, y′)

DY(y, y′)
.

From Proposition 10 again, we have that for all x ̸= x′,

f(x, y)− f(x, y′)− f(x′, y) + f(x′, y′)

DX (x, x′)DY(y, y′)
. sup

k≥0
sup
x′′

2kα|∆P,kg(x
′′)|+ sup

x′′
|g(x′′)|.

The supremum of g is bounded by

sup
x′′

|g(x′′)| ≤ VY(f) . V
(1)
Y (f).

Furthermore, we have

2kα|∆P,kg(x
′′)| = 2kα

|∆P,kf(x
′′, y)−∆P,kf(x

′′, y′)|
DY(y, y′)

. 2kα sup
l≥0

sup
y′′

2lβ |∆Q,l∆P,kf(x
′′, y′′)|

≤ M (1)(f).

It follows that M(f) . M (1)(f) + V
(1)
Y (f) ≤ ∥f∥(1)Λα,β

, which completes the proof.

Combining Proposition 15, Proposition 16, and Proposition 17, we have shown

Theorem 5. The norms ∥f∥Λα,β
, ∥f∥(1)Λα,β

and ∥f∥(2)Λα,β
are equivalent on Λα,β.
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7.1 Approximating mixed Lipschitz functions

The reader will recall Lemma 8, which states that for a Lipschitz function f on a single
space X ,

sup
x

|f(x)− PLf(x)| ≤ CV (f)2−Lα

for some constant C > 0 depending only on the semigroup. Another way of saying this
is that given any ϵ > 0, if we take L ≥ log2(1/ϵ) then supx |f(x) − PLf(x)| . ϵα. In
other words, Lipschitz functions f are well-approximated by their averages under the
semigroup. We will derive a similar result for mixed Lipschitz functions. For any integer
L, define the operator PL by

PLf =
∑

k,l:k+l≤L

∆P,k∆Q,lf + δQ,LP0f + δP,LQ0f + P0Q0f.

We then have the following result:

Proposition 18. Fix any ϵ and let L ≥ log2(1/ϵ). Then

sup
x,y

|PLf(x, y)− f(x, y)| ≤ C ∥f∥Λα,β

{
ϵα log2(1/ϵ), if α = β

ϵmin(α,β), if α ̸= β

where C > 0 is some constant depending only on the semigroup in both cases.

Proof. We can write f as

f =
∑
k,l≥0

∆P,k∆Q,lf +
∑
l≥0

∆Q,lP0f +
∑
k≥0

∆P,kQ0f + P0Q0f

=
∑
k,l≥0

∆P,k∆Q,lf +
∑
l≥L

∆Q,lP0f + δQ,LP0f +
∑
k≥L

∆P,kQ0f + δP,LQ0f + P0Q0f.

Therefore,

f − PLf =
∑

k,l:k+l>L

∆P,k∆Q,lf +
∑
l≥L

∆Q,lP0f +
∑
k≥L

∆P,kQ0f.

We have ∣∣∣∣∑
l≥L

∆Q,lP0f

∣∣∣∣ ≤ ∑
l≥L

V
(1)
Y (f)2−lβ ≤ 1

1− 2−β
V

(1)
Y (f)2−Lβ . V

(1)
Y (f)ϵβ

and similarly ∣∣∣∣∑
l≥L

∆Q,lP0f

∣∣∣∣ ≤ 1

1− 2−α
V

(1)
X (f)2−Lα . V

(1)
X (f)ϵα.
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Finally, we control the mixed difference term:∣∣∣∣ ∑
k,l:k+l>L

∆P,k∆Q,lf

∣∣∣∣ = L+1∑
k=0

∞∑
l=L−k

|∆P,k∆Q,lf |+
∞∑

k=L+2

∞∑
l=0

|∆P,k∆Q,lf |

≤ M (1)(f)

L+1∑
k=0

2−kα
∞∑

l=L−k

2−lβ +M (1)(f)

∞∑
k=L+2

2−kα
∞∑
l=0

2−lβ

≤ M (1)(f)

1− 2−β
2−Lβ

L+1∑
k=0

2−k(α−β) +
M (1)(f)

1− 2−β

1

1− 2−α
2−(L+2)α.

Now, if α = β, then
∑L+1

k=0 2
−k(α−β) = L+ 2, and∣∣∣∣ ∑

k,l:k+l>L

∆P,k∆Q,lf

∣∣∣∣ . M (1)(f)L2−Lα ≤ M (1)(f)ϵα log2(1/ϵ)

from which the estimate supx,y |PLf(x, y) − f(x, y)| . ∥f∥(1)Λα,β
ϵα log2(1/ϵ) follows im-

mediately.
If α < β, then

∑L+1
k=0 2

−k(α−β) ≃ 2L(β−α), and so∣∣∣∣ ∑
k,l:k+l>L

∆P,k∆Q,lf

∣∣∣∣ . M (1)(f)(2−Lβ2L(β−α) + 2−Lα) . M (1)(f)2−Lα ≤ M (1)(f)ϵα

from which the estimate supx,y |PLf(x, y)− f(x, y)| . ∥f∥(1)Λα,β
ϵα follows.

Finally, if α > β, then
∑L+1

k=0 2
−k(α−β) ≃ 1, and so∣∣∣∣ ∑

k,l:k+l>L

∆P,k∆Q,lf

∣∣∣∣ . M (1)(f)(2−Lβ + 2−Lα) . M (1)(f)2−Lβ ≤ M (1)(f)ϵβ

from which the estimate supx,y |PLf(x, y) − f(x, y)| . ∥f∥(1)Λα,β
ϵβ also follows. Since

∥f∥(1)Λα,β
. ∥f∥Λα,β

by Theorem 5, we are done.

8 Norm dual to mixed Lipschitz

We now consider the space Λ∗
α,β of L1 distributions dual to the space Λα,β of mixed

Lipschitz functions. We will derive two simpler norms that are equivalent to the canonical
dual norm on Λ∗

α,β, as we did for the case of a single semigroup.
We define the norm of a distribution T in Λ∗

α,β by

∥T∥Λ∗
α,β

= sup
∥f∥Λα,β

≤1
⟨f, T ⟩
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Before defining the equivalent norms, we introduce some notation. Define

dP,k = Pk − P0, dQ,l = Qk −Q0

and

W
(1)
X (T ) =

∑
k≥0

2−kα
∥∥∆∗

P,kQ
∗
0f

∥∥
1
, W

(1)
Y (T ) =

∑
l≥0

2−lβ
∥∥∆∗

Q,lP
∗
0 f

∥∥
1

and

W
(2)
X (T ) =

∑
k≥0

2−kα
∥∥d∗P,kQ∗

0T
∥∥
1
, W

(2)
Y (T ) =

∑
l≥0

2−lβ
∥∥d∗Q,lP

∗
0 T

∥∥
1

as well as

N (1)(T ) =
∑

k≥0,l≥0

2−kα2−lβ
∥∥∆∗

P,k∆
∗
Q,lT

∥∥
1
, N (2)(T ) =

∑
k≥0,l≥0

2−kα2−lβ
∥∥d∗P,kd∗Q,lT

∥∥
1
.

With these definitions, we define the two norms we will show are equivalent to
∥T∥Λ∗

α,β
. The first norm is defined by

∥T∥(1)Λ∗
α,β

= N (1)(T ) +W
(1)
X (T ) +W

(1)
Y (T ) + ∥P ∗

0Q
∗
0T∥1

and the second is defined by

∥T∥(2)Λ∗
α,β

= N (2)(T ) +W
(2)
X (T ) +W

(2)
Y (T ) + ∥P ∗

0Q
∗
0T∥1 .

Lemma 19. The seminorms W
(1)
X (T ) and W

(2)
X (T ) are equivalent, as are the seminorms

W
(1)
Y (T ) and W

(2)
Y (T ).

Proof. This follows immediately from Proposition 11.

Lemma 20. The seminorms N (1)(T ) and N (2)(T ) are equivalent.

Proof. We reduce the proof to the case of the single semigroup by applying Proposition
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11 repeatedly. We have

N (1)(T ) =
∑
l≥0

2−lβ
∑
k≥0

2−kα
∥∥∆∗

P,k∆
∗
Q,lT

∥∥
1

=

∫
Y

∑
l≥0

2−lβ
∑
k≥0

2−kα
∥∥∆∗

P,k∆
∗
Q,lT (·, y)

∥∥
L1(X)

dy

≃
∫
Y

∑
l≥0

2−lβ
∑
k≥0

2−kα
∥∥d∗P,k∆∗

Q,lT (·, y)
∥∥
L1(X)

dy

=

∫
X

∑
k≥0

2−kα
∑
l≥0

2−lβ
∥∥∆∗

Q,ld
∗
P,kT (x, ·)

∥∥
L1(Y )

dx

≃
∫
X

∑
k≥0

2−kα
∑
l≥0

2−lβ
∥∥d∗Q,ld

∗
P,kT (x, ·)

∥∥
L1(Y )

dx

=
∑
k≥0

2−kα
∑
l≥0

2−lβ
∥∥d∗Q,ld

∗
P,kT

∥∥
1
= N (2)(T ).

Proposition 19. The norms ∥T∥(1)Λ∗
α,β

and ∥T∥(2)Λ∗
α,β

are equivalent.

Proof. This follows immediately from the preceding two lemmas.

We will now prove that ∥T∥Λ∗
α,β

and ∥T∥(2)Λ∗
α,β

are equivalent. We will work formally;

all manipulations can be easily justified by the fact that PkQlf converges uniformly to
f as k, l → ∞, whenever f ∈ Λα,β. Take any function f with ∥f∥Λα,β

≤ 1. Write

f =
∑

k≥0,l≥0

∆P,k∆Q,lf +
∑
k≥0

∆P,kQ0f +
∑
l≥0

∆Q,lP0f + P0Q0f. (5)

We want to show that |⟨f, T ⟩| . ∥T∥(2)Λ∗
α,β

. We will deal with the inner product of f with

each of the four terms in the right side of (5) separately. First, we have

|⟨P0Q0f, T ⟩| = |⟨f, P ∗
0Q

∗
0T ⟩| ≤ ∥P ∗

0Q
∗
0T∥1

since ∥f∥∞ ≤ 1.
To control the inner product of T with

∑
k≥0∆P,kQ0f , first observe that

∆P,kQ0 = ∆P,k+1(Pk+2 + Pk+1)Q0

= ∆P,k+1Pk+2Q0 +∆P,k+1Pk+1Q0.
(6)

Now,
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∆P,k+1Pk+1Q0 = ∆P,k+1(Pk+1 − P0)Q0 +∆P,k+1P0Q0

= ∆P,k+1dP,k+1Q0 +∆P,k+1P0Q0,

and so

|⟨∆P,k+1Pk+1Q0f, T ⟩| ≤ |⟨∆P,k+1dP,k+1Q0f, T ⟩|+ |∆P,k+1P0Q0f, T ⟩|
= |⟨∆P,k+1f, d

∗
P,k+1Q

∗
0T ⟩|+ |∆P,k+1f, P

∗
0Q

∗
0T ⟩|

≤ sup
x,y

|∆P,k+1f(x, y)|
{∥∥d∗P,k+1Q

∗
0f

∥∥
1
+ ∥P ∗

0Q
∗
0T∥1

}
≤ 2−kα

∥∥d∗P,k+1Q
∗
0T

∥∥
1
+ 2−kα ∥P ∗

0Q
∗
0T∥1 .

Similarly,

|⟨∆P,k+1Pk+2Q0f, T ⟩| ≤ 2−kα
∥∥d∗P,k+2Q

∗
0T

∥∥
1
+ 2−kα ∥P ∗

0Q
∗
0T∥1

Combining these inequalities yields, by equation (6),

|⟨∆P,kQ0f, T ⟩| ≤ 2−kα
{∥∥d∗P,k+1Q

∗
0T

∥∥
1
+

∥∥d∗P,k+2Q
∗
0T

∥∥
1
+ 2 ∥P ∗

0Q
∗
0T∥1

}
Summing over k ≥ 0 then yields

∣∣∣∣⟨∑
k≥0

∆P,kQ0f, T

⟩∣∣∣∣ . W
(2)
X (T ) + ∥P ∗

0Q
∗
0T∥1 .

A nearly identical proof shows that

∣∣∣∣⟨∑
l≥0

∆Q,lP0f, T

⟩∣∣∣∣ . W
(2)
Y (T ) + ∥P ∗

0Q
∗
0T∥1 .

The only term left to control from (5) is the inner product of T with∑
k≥0,l≥0

∆P,k∆Q,lf.

Using the identity

∆P,k−1∆Q,l−1 = ∆P,k(Pk+1 + Pk)∆Q,l(Ql+1 +Qk)

= ∆P,kPk+1∆Q,lQl+1 +∆P,kPk∆Q,lQl+1

+∆P,kPk+1∆Q,lQl +∆P,kPk∆Q,lQl

(7)
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it follows that we must control the inner product of T with each of the four terms on
the right side (applied to f). The argument is the same for each, so we will show it only
for ∆P,kPk∆Q,lQlf = ∆P,k∆Q,lPkQlf .

We have the easily-verified identity

PkQlf = dP,kdQ,lf + dP,kQ0f + dQ,lP0f + P0Q0f

and consequently

∆P,k∆Q,lPkQlf = ∆P,k∆Q,ldP,kdQ,lf +∆P,k∆Q,ldP,kQ0f

+∆P,k∆Q,ldQ,lP0f +∆P,k∆Q,lP0Q0f
(8)

We will bound the inner product of T with the sum over k ≥ 0 and l ≥ 0 of each of the
four terms in (8) separately. First, we have

|⟨∆P,k∆Q,lP0Q0f, T ⟩| = |⟨∆P,k∆Q,lf, P
∗
0Q

∗
0T ⟩| ≤ 2−kα2−lβ ∥P ∗

0Q
∗
0T∥1

and summing over k and l gives the upper bound ∥P ∗
0Q

∗
0T∥1.

Next, observe that

|⟨∆P,k∆Q,ldQ,lP0f, T ⟩| = |⟨∆P,k∆Q,lf, d
∗
Q,lP

∗
0 T ⟩| ≤ 2−kα2−lβ

∥∥d∗Q,lP
∗
0 T

∥∥
1

and summing over k and l gives the upper bound
∑∞

l=0 2
−lβ

∥∥∥d∗Q,lP
∗
0 T

∥∥∥
1
= W

(2)
Y (T ). Sim-

ilarly, the inner product of T with ∆P,k∆Q,ldP,kQ0f can be bounded above by W
(2)
X (T ).

Finally, we have the upper bound

|⟨∆P,k∆Q,ldP,kdQ,lf, T ⟩| = |⟨∆P,k∆Q,lf, d
∗
P,kd

∗
Q,lT ⟩| ≤ 2−kα2−lβ

∥∥d∗P,kd∗Q,lT
∥∥
1

and summing over k and l gives the upper bound
∑

k,l 2
−kα2−lβ

∥∥∥d∗P,kd∗Q,lT
∥∥∥
1
= N (2)(T ).

Putting the four bounds together and applying equation (8) yields∣∣∣∣⟨∑
k,l

∆P,k∆Q,lPkQlf, T

⟩∣∣∣∣ . ∥T∥(2)Λ∗
α,β

and the same estimate applied to each of the four terms on the right side of equation
(7) gives ∣∣∣∣⟨ ∑

k≥0,l≥0

∆P,k∆Q,lf, T

⟩∣∣∣∣ . ∥T∥(2)Λ∗
α,β

completing the proof that ∥T∥Λ∗
α,β

. ∥T∥(2)Λ∗
α,β

.

To prove the reverse inequality, as in the proof of Proposition 13 for a single semigroup
we define a function f such that ∥f∥Λα,β

≃ 1 and whose inner product with T achieves

the norm ∥T∥(2)Λ∗
α,β

. It is easy to check that the function f defined by

f =
∑
k,l≥0

2−kα2−lβdP,ldQ,l sgn(d
∗
P,kd

∗
Q,lT ) +

∑
k≥0

2−kαdP,kQ0 sgn(d
∗
P,kQ

∗
0T )

+
∑
l≥0

2−lβdQ,lP0 sgn(d
∗
Q,lP

∗
0 T ) + P0Q0 sgn(P

∗
0Q

∗
0T ).
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satisfies the necessary conditions; in fact, each of the four terms defining f have mixed

Lipschitz norm bounded independently of T , and ⟨f, T ⟩ = ∥T∥(2)Λ∗
α,β

. We have therefore

shown

Theorem 6. The norms ∥T∥Λ∗
α,β

, ∥T∥(1)Λ∗
α,β

, and ∥T∥(2)Λ∗
α,β

are equivalent on Λ∗
α,β.
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