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Abstract

This paper reports on a fast implementation of the three-dimensional non-
adaptive Parallel Multipole Method (PMM) on the Connection Machine system
model CM-2. The data interactions within the decomposition tree are modeled by
a hierarchy of three dimensional grids forming a pyramid in which parent nodes
have degree eight. The base of the pyramid is embedded in the Connection Ma-
chine as a three dimensional grid. The standard grid embedding feature is used.
For 10 or more particles per processor the communication time is insignificant. The
evaluation of the potential field for a system with 128k particles takes 5 seconds,
and a million particle system about 3 minutes. The maximum number of particles
that can be represented in 2G bytes of primary storage is ~ 50 million. The ex-
ecution rate of this implementation of the PMM is at about 1.7 Gflops/sec for a
particle-processor-ratio of 10 or greater. A further speed improvement is possible by
an improved use of the memory hierarchy associated with each floating-point unit
in the system.

* Also affiliated with the Dept. of Computer Science, Yale University
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1 Introduction

Many physical phenomena can be modeled as an ensemble of NV particles interacting in a
gravitational (or Coulombic) field, known as the N-body problem. Efficient computation
of the gravitational (or Coulombic) potentials and forces exerted on each other by N
particles has been of great interest. Recently, a class of fast algorithms known as tree-
like particle methods has been developed. These methods, notably the Barnes-Hut tree
algorithm [1] and the Multipole Method [8, 20], compute the potentials (or the forces) by
partitioning them into two parts:

d’total = ¢near—f1:eld + ¢far—field, : (1)

where @pear—sicia is the potential due to nearby particles and ¢;4,—sic1a is the potential
due to faraway particles. Since @peqr— sieta can be computed directly and relatively fast,
we are mostly concerned with the fast computation of ¢sar—sietd-

The tree-like particle methods compute ¢ar—fietd by recursive decomposition of the
computational domain. The decomposability of ¢tar—field is the direct consequence of the
assumed additivity of ¢ses—sicta and the spatial locality in the particle distribution. The
same tree data structure can be used both for the Barnes-Hut and the Greengard-Rokhlin
algorithms.

An example of additive potential fields is a Newtonian particle system. The Newtonian
gravitational field E,, () on a particle with unit mass at location = due to a particle with
mass m at location @z, is given by

— m _ _
Eo(z) = G"—g—_?o‘ﬂg(m — %o),

where || Z — T || is the Euclidean distance between locations Z and Zo.

Greengard and Rokhlin [8] have shown that the Multipole Method solves the N-body
problem in linear time on sequential machines. The focus of this paper is the implementa-
tion of the non-adaptive Multipole Method on the Connection Machine. We first review
the method and its computational structure, then discuss the efficient implementation of
the required communication, and conclude with experimental results on performance.

2 The Parallel Multipole Method

The Parallel Multipole Method (PMM) is the parallel version of the Multipole Method. It
achieves significant speed-up on parallel machines [20, 6]. In [20] we presented a data par-
allel version of the PMM, and showed that its parallel complexity is O(log V'), asymptot-

ically. The asymptotic growth rate was verified by an implementation on the Connection
Machine.
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Figure 1: Recursive domain decomposition and the decomposition tree in two spatial
dimensions.

2.1 Decomposition tree

The computational domain of the Multipole Method is a square in two spatial dimensions
and a cube in three spatial dimensions. The domain is recursively divided into subdo-
mains, i.e., subsquares in two dimensions and subcubes in three dimensions. A domain
subject to decomposition is the parent of its subdomains after the decomposition. These
subdomains are the children of the parent domain. The recursive decomposition process
continues until some prespecified condition is met. Clearly, there is no reason to fur-
ther decompose a subdomain containing only one, or no particles. However, as has been
shown both analytically [5] and in several implementations [20, 6, 7] the direct method is
faster than the Multipole Method for particle systems with sufficiently few particles. To
minimize the computational complexity the decomposition of a subdomain should stop
at a level where for instance using the direct method instead yields a lower comutational
complexity. Subdomains that are not further decomposed are leaves.

The recursive decomposition is most conveniently represented by a decomposition tree,
within which a node corresponds to a subdomain in the decomposition process. The root
of the tree is the original domain under consideration. Each parent has four children in
two dimensions, and eight children in three dimensions. With a uniform distribution of
particles over the domain the height of the decomposition tree is at most log; N, where
d = 4 for two spatial dimensions, and d = 8 for three spatial dimensions. The root is at
level 0, and the leaves at level A < log; N. The implementation of the PMM described
here is non-adaptive. The complexity estimates, as well as the implementation, assumes a
uniform distribution of particles in the domain. The decomposition tree in two dimensions
is illustrated in Figure 1.

The Multipole Method involves computations at all levels of the decomposition tree.
In the non-adaptive case the decomposition tree is balanced. This tree is represented by a
hierarchy of grids, or a pyramid. A point within the grid at level £ represents a subdomain
corresponding to a node of the decomposition tree at level £. In three dimensions the




Figure 2: The near-field and the interactive-field in two dimensions.

grid size at level £ is 2¢ x 2¢ x 2%, The computations consist of interactions between
parent/child nodes in the pyramid, i.e., between adjacent grid levels, and among grid
points representing subdomains within a local neighborhood at each level of the pyramid.
For the Multipole Method it is advantageous to distinguish among three regions relative
to each grid point at each grid level [8, 5, 20, 18]: the near-field, the interactive-field, and
the far-field. The near-field consists of those subdomains that share a boundary, or an
edge, or a corner with the considered subdomain. In two dimensions the near-field consists
of eight subdomains, i.e., eight adjacent grid points. In three dimensions the number of
subdomains (grid points) in the near-field is 26. The near-field is represented by a 9-point
stencil in two dimensions and by a 27-point stencil in three dimensions. The far-field of
a subdomain is the entire domain excluding the subdomain and its near-field. In three
spatial dimensions the number of subdomains (grid points) in the far-field is 2% — 27
for a subdomain at level £, £ > 1. The interactive-field of a subdomain is the part of the
far-field that is contained in the near-field of its parent. The number of subdomains in the
interactive-field in two dimensions is 27 = 62 — 3%, and in three dimensions the interactive
field consists of 189 = 6% — 33 subdomains. The concepts of near-field and interactive-field
are illustrated in two dimensions in Figure 2 [20]. For the subdomain s, its near-field is
the union of subdomains labeled n and its interactive-field is the union of those labeled :.

2.2 The algorithm

The Multipole Method can be specified in terms of three functions G, ® and ¥, three
translation operators Ty, T, and T3, and a set of recursive equations (8, 20, 18]. G is




the potential function in explicit Newtonian formulation. T, T, and T3 are higher order
translation operators on the functions ¢ and ¥!

Ty (@,y(o)) —_ (q),y'(o))
T, : (3,59) = (T,4'®)
Ts: (T,3) — (2,4"7)
where y(® and y"®) are the reference centers for the corresponding functions ¢ and ¥.

® represents the far-field and ¥ the local field. More precisely, ®¢ is the contribution
to the potential field in the far-field region of subdomain i at level £ due to the particles in
subdomain i, as computed by a multipole expansion centered at the center of subdomain
i. U4 represents the contribution to the potential field in subdomain ¢ at level £ due to
particles in the far-field region of subdomain i. For the computation of U# it is convenient
to introduce \if, which represents the contribution to the potential field in subdomain ¢
at level £ due to the particles in the far-field of its parent domain. In order to obtain
! it is necessary to add to ¥! the contributions of the particles in the interactive-field
of subdomain i at level £. The interactive-field of subdomain i at level £ is part of its

far-field.

The Multipole Method computes ® tr—fie1a of (1) in two distinct phases. The com-
putations performed at intermediate levels of the decomposition tree reduce the far-field
interactions via an upward-pass and an downward-pass. The tree is traversed twice. In
the upward-pass the far-field interactions ®4 are computed by shifting the multipole ex-
pansions of child nodes to the center of the parent node, and adding the result. The
downward-pass through the tree distributes the results of far-field interactions, aligns
them properly, and combines them to form the local expansion ¥. The computation of
® pear— fieta of (1) performed at leaf nodes reduces near-field interactions. In the recursive
formulation by J. Katzenelson [18], the upward-pass consists of the computation

Compute ®" for all nodes i at the leaf level k (2)
e= > (@M, 3)
i€{children(n)}

and the downward-pass consists of the computation

Ut = To(Yi ) (4)

parent(1)

Ui=Vi 4 > T5(%%). (5)

j€{interactive— field(i)}

The first term in ¥4 computes the local field due to the particles in the far-field of the
parent node by shifting the center of the expansion from the center of the parent domain

1Ty, Ty and Ty are defined in Lemmas 3.2.1 through 3.2.3 in [20].
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to that of the current subdomain. The second term converts the far-field expansions to a
local expansion.

At the end of this recursion it remains to compute the potential field due to particles
in the near-field of subdomain ¢ at level . This contribution to the potential field is
computed by a direct evaluation of the Newtonian interaction with nearby particles

Qf near— field — Z GJ(z)‘ (6)
j€{near— field(i)}

The complete solution, therefore, is given by

Q? total — ‘I’f + Q? near— field*®

In the upward-pass (3), the shifting operations of T} for different subdomains within
each level are independent of each other and can be performed concurrently, as long as
the computation at levels below is completed. Similarly, the shifting operations of T3
in the downward-pass (5) can be performed concurrently across all levels of the grids.
The conversion of the far-field multipole expansions to local expansions represented by
the operator T; can also be performed concurrently for all subdomains at a given level.
The reduction operation in the upward-pass can be performed concurrently not only for
different parent nodes, but also for each parent node by performing the reduction in
a binary-tree-like manner with trees of height two in two dimensions and height three
in three dimensions. The distribution operation in the downward-pass has the same
characteristics with respect to concurrency as the reduction in the upward-pass. The
computations of (6) at different leaf nodes are entirely independent of each other, and
can proceed concurrently. Moreover, the computations within any level of the grid are
uniform across all grid points. The PMM exploits the high degree of independence and
the regularity of the Multipole Method, and achieves significant speed-up on a large
number of particles with a large number of processors. The PMM requires O(log N) time
asymptotically for N particles distributed with a fixed number of particles per processor
[20, 6].

The PMM algorithm performs the computations implied by the expressions (2), (3),
(4), (5), and (6). Expression (2) is evaluated concurrently for all leaf nodes. In each
such node a multipole expansion due to all particles within the leaf node is formed. The
multipole expansions formed at the leaf nodes are shifted and reduced in parallel during
the upward-pass through the tree, as described by (3). The far-field interactions are
then accumulated and distributed in parallel during the down-ward pass through the
decomposition tree, as defined by (5). The far-field interaction for each of the particles
is obtained by evaluating the multipole expansion from (5) at the particle position. The
near-field interaction at the leaf nodes is computed by direct evaluation of the Newtonian
gravitational field. This evaluation is performed concurrently for all leaf nodes. The sum
of the far-field interaction and the near-field interaction gives the answer.

The algorithm for PMM on the Connection Machine is given in Figure 3.
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(1) global-initialization
set-up arrays for @, ¥, and intermediate results;
precompute difference vectors among tree nodes;
precompute shifting arrays by theorem-3-2-2 in [20] for
local-field-reduction;
precompute mathematical tables.

(2) far-field-reduction
init-ezpansion at leaf nodes
forall nodes i at leaf-level h do
compute & by theorem-3-2-1 in [20];
end
multigrid-reduction
for level £ from h to 1 step -1 do
forall nodes i at level £ do
compute & by lemma-3-2-1 in [20];
reconfigure CM grid;
reduce & with + op;
end
end

(3) local-field-reduction
multigrid-distribution
for level £ from 1 to h do 5
forall nodes ¢ at level £ do
compute Zje{interactiue— field(iyy 12 (‘I’f) by lemma-3-2-2 in [20];
compute ¥4 by lemma-3-2-3 in [20];
compute ¥;
distribute ¥# with identity op;
reconfigure CM grid;
end
end

(4) local-interaction
forall nodes 7 at leaf-level h do
for j € {near — field(:)} do
for each particle in node i do
for each particle in node j do
compute G;(7);

end ;
end
end
B .
compute §i near— field’

end

(5) final-evaluation
forall nodes 7 at leaf-level A do
for each particle p in node i do
evaluate ¥% at p;
compute <I>£‘ total fOT D3
end
end

;
{
7 i

Figure 3: The Parallel Multipole Method on the Connection Machine



3 Embedding of hierarchical grids

The Connection Machine system model CM-2 has 64k bit-serial processors divided evenly
among 4096 processor chips. These chips are interconnected as a 12-dimensional Boolean
cube. The Connection Machine model CM-2 can also be equipped with hardware floating-
point units (fpu’s). Two processor chips share such a unit. Each Connection Machine
processor is associated with 8k bytes of storage with 256k bit memory chips, or 32k bytes
with 1M bit memory chips. The storage per floating-point unit is 64k or 256k 32-bit
words. The total storage is 512M bytes, or 2G bytes. The programming systems on
the Connection Machine supports the notion of virtual processors. A program is written
for a number of virtual processors consistent with the application. A virtual processor
may for instance represent the data associated with a grid point, and carry out all the
computations associated with it. The virtual processors are mapped to real processors.
The number of virtual processors assigned to each real processor is the virtual processor
ratio. Virtual processors time share a real processor. Each virtual processor assigned to
a real processor is assigned a distinct segment of real processor memory.

Inter-processor communication can take place either by using the general routing fa-
cility, or via embedded grids. The Boolean cube network interconnecting the processor
chips contains regular grids of up to twelve dimensions as subgraphs. Address encoding by
a binary-reflected Gray code [19] provides a mechanism for grid emulation [17, 13]. The
dimensionality and shape of the grid can be altered dynamically. The Gray code has the
property that adjacent integers are at Hamming distance one, i.e., Hamming(i,1 £+ 1)=1.
By using this encoding successive integers are mapped into adjacent nodes of a Boolean
cube. Each node of a Boolean cube of 2™ nodes has n neighbors. The address of a neighbor
can be obtained by complementing a bit in the address.

For a lattice with several axes each axis can be encoded in a binary-reflected Gray
code. The address space is partitioned with [log, N;] bits assigned to the encoding of
the N; elements along axis i. All edges of the lattice are mapped to distinct cube edges.
The separate binary-reflected Gray code encoding of each array axis results in an effective
utilization of the nodes in the Boolean cube, if the length of the array axes is a power
of two. In general, the utilization of the nodes in the Boolean cube offered by the Gray
[log, I, NVi]
¢, [log, N;]

as ~ —. Any embedding of grids into Boolean cubes preserving adjacency will have this

code encoding is For grids of arbitrary shape the utilization may be as low

processor utilization [9]. In order to increase the processor utilization for grids of arbitrary
shape it is necessary to allow some grid edges to be mapped into paths of a length greater
than one. The dilation of an edge is the length of the path into which it is mapped, and
the dilation of the embedding is the maximum dilation of any edge. The ezpansion of the
embedding is the ratio between the number of nodes of the Boolean cube required for the
embedding and the number of nodes in the grid being embedded. Any two-dimensional
grid can be embedded into a Boolean cube with dilation two and minimum expansion [2].




Any three dimensional grid can be embedded with at most dilation seven and minimal
expansion [4]. Grids with k dimensions can be embedded with a dilation of at most 4k +1
and minimal expansion [3]. Several dilation two embeddings of two and three dimensional
grids are given in [10, 11].

In the Connection Machine programming systems data represented by arrays configure
the address space as a grid. Configuring the address space as a grid implies that the array
indices are encoded in a binary-reflected Gray code. Each axis is encoded separately.
The encoding is transparent to the programmer. The Connection Machine address field -
has three parts (of f-chip|on-chip|memory). The off-chip address field has 12 bits, the
lowest order bit of which encodes the pair of Connection Machine processor chips sharing a
floating-point unit (fpu). The on-chip address field encodes the processors on a Connection
Machine processor chip. The memory address field encodes the bits of the memory local
to a processor. Only the off-chip part of the address field is subject to the binary-reflected
Gray code encoding in the lattice emulation mode. The on-chip and memory fields are
encoded in binary code.

With a non-adaptive recursive decomposition of the domain it suffices to consider
grids with axis lengths being powers of two. For such grids the following two properties
[12, 13] of the binary-reflected Gray code are important for the embedding of a hierarchy
of grids: Hamming(s,i ® 27) = 2,5 > 0, and Hamming(i,1 + 3)=1 for imod 2 = 0. If
the computations performed on a hierarchy of grids only take place at one grid level at
a time, then the different grids can be mapped on to the same set of processors without
loss of efficiency. By embedding the finest grid in a Boolean cube by a binary-reflected
Gray code adjacent nodes in a coarser grid consisting of every other grid point along an
axis are at distance two. The same property is true for all coarser grids obtained in the
same manner. Hence, even though successively coarser grids consist of points with indices
differing by increasing powers of two, the points are always in proximity when the grid
is mapped to a Boolean cube by a binary-reflected Gray code. This property is easily
proven [12] and apparent from Figure 4.

Communication between adjacent nodes in the finest grid is nearest neighbor commu-
nication in the Boolean cube. Communication between adjacent nodes in coarser grids
implies communication between processors at distance two in the Boolean cube. All dis-
tance two communications can be arranged such that there is no contention for channels
[12]. Then, the communication time for bit-serial pipelined communication, which is the
communication mode on the Connection Machine system, is dominated by the message
length. The path length is an additive term.

Subselecting grid points for coarse grids by choosing the grid at level £ to consist of
all points such that s mod 2*~% = 0 for each axis causes the grid points to be allocated to
different subcubes. In [13] an exchange step was introduced to move the selected points
into subcubes identified by address bits. After the exchange the subselected points are
embedded by a binary-reflected Gray code in a half size subcube. For instance, in the
example above, if 2 and 3, 6 and 7, 10 and 11, and 14 and 15 are exchanged, then the




Integer | Gray code
0 0000
1 0001
2 0011
3 0010
4 0110
5 0111
6 0101
7 0100
8 1100
9 1101

10 1111
11 1110
12 1010
13 1011
14 1001
15 1000

Figure 4: A 4-bit binary-reflected Gray code.

grid points with the same lowest order bit are Gray coded in a code with one less bit,
i.e., at Hamming distance one. Locations with the lowest order bit zero contain all the
even points, locations with the lowest order bit one contain all the odd grid points. In
general, at each step k,k > 0 exchanging grid points between locations that differ only
in bit k if the parity of bits k + 1 through n — 1 for an n-bit code is odd guarantees that
the subselected grid points are at distance one. This scheme converts the binary-reflected
Gray code to a binary code [13, 14]. This exchange algorithm implicitly and recursively
makes use of the fact that Hamming(i,i+3)=1 for s mod 2 = 0. If the interaction between
adjacent grid levels consists in a reduction/distribution operation the exchange step need
not be performed. In the one-dimensional case and a reduction on pairs of grid points the
reduction operation on nodes : mod 4 = 0 and 7 mod 4 = 1 can be rooted in grid point
i mod 4 = 0, and the reduction on ¢ mod 4 = 2 and 7 mod 4 = 3 rooted in ¢ mod 4 = 3.
This strategy is used in our implementation of the PMM. It was previously used in [16, 15].
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4 Implementation

4.1 Overview

The first implementation of the PMM on the Connection Machine [20] mapped the nodes
at all levels of the decomposition tree to processors by a binary encoding of the node
addresses. The nodes of the decomposition tree were labeled in a breadth first order.
At the time of the first Connection Machine implementation, the grid communication
mechanism was not available. Communication between processors was by way of the
router. The binary encoding does not preserve locality in the index space. The Hamming
distance between consecutive integers may be as high as the number of bits required for
the encoding. With this mapping of the grid points to processors more than 60% of the
execution time is spent in communication.

The objective of the implementation of the PMM described here was to yield high per-
formance on three-dimensional problems with a large number of particles, say 1,000,000
or more. In order to exploit the locality of reference present in the non-adaptive recur-
sive subdivision of the domain, the grid emulation feature of the Connection Machine
programming systems was used. The address space was configured as a three dimen-
sional grid. The different grids in the hierarchy were mapped to processing units such
that coarser grids were contained in subcubes identified by higher order bits. The re-
duction/distribution operations were performed such that the grids at any level were
embedded by a binary-reflected Gray code, as described above.

In the field-wise programming model a word is allocated serially, i.e., in successive
‘memory locations of a processor. The field-wise programming model is used by all pro-
gramming languages on the Connection Machine. In this model each processor has its
own memory. But, a floating-point unit shared by 32 Connection Machine processors can
access their memories in bit-slices. Hence, with a word stored with one bit per Connection
Machine processor a word can be accessed by a floating-point unit in a single cycle. This
type of data representation and data access corresponds to the slice-wise programiming
model of the Connection Machine system. In this model the Connection Machine consists
of 2,048 processing units interconnected as an 11-dimensional cube with two communica-
tion channels between each pair of units. The slice-wise view of the Connection Machine
offers the potential for exploiting the memory hierarchy introduced through the registers
within the floating-point unit. The registers and associated buses on the floating-point
unit increase the effective memory bandwidth. The floating-point units are not complete
processors and some operations have to be performed on the Connection Machine pro-
cessors. At the time of this implementation the supported programming systems did not
contain features allowing access to the internal features of the floating-point units. Many
functions were implemented using a mixture of the field-wise bit-serial model and the
slice-wise 32-bit wide model.

In three dimensions the near-field consists of 26 subcubes, and the interactive-field
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consists of 189 (=63 — 27) subcubes. In order to simplify the implementation a 7 X
7 x T neighborhood of subcubes (consisting of 343 (=72) subcubes), symmetrized with
respect to each subcube by including a few more “null” subcubes from the far-field and
the near-field, is considered, and an interactive-field mask is used to subselect from the
enlarged neighborhood the subcubes of the interactive-field. The dominating operations
are reduction, distribution, and convolution as defined by the near-field (a 27-point kernel
with respect to grid points) and the interactive-field. The implementation is restricted to
one leaf node per floating-point unit. The leaf node is represented in the field-wise model,
i.e., by 32 Connection Machine processors.

In our implementation computation-intensive static data are precomputed. For ex-
ample, the translation operator T; requires that first a set of coefficients (b, [20]) be
computed before the convolution against the ®’s contributed by the interactive-field is
carried out. For each subdomain this operation is repeated for every member of its
interactive-field (in our case, for up to 189 times). This computation accounts for most of
the execution time within the tree. The coefficients (b; ;) are obtained from expansions
on difference vectors between centers of different subcubes that can be predetermined,
and thus can be computed ahead of time. The precomputation makes use of the fact that

there exist a subset of kernels from which the coefficients can be computed with a modest
effort [18].

4.2 Reduction and distribution functions

In the upward-pass (3) of the PMM a reduction operator is applied recursively on a
three-dimensional grid data structure. The downward-pass (5) accumulates the data and
distributes the results. The reduction operator and the distribution operator are very
general. The same type of operators are extensively used in Multigrid type of algorithms.
We have implemented these two operators as genericfunctions called Multigrid-reduce
and Multigrid-distribute. The arguments of the Multigrid-reduce function include a
reduction operator, the source grid variable indicating where to get the source data to be
reduced, and the destination grid variable on a smaller grid specifying where to put the
result. The operator for the Multigrid-distribute function is always a copy operator. The
reduction of grid size as described above is implicit in the Multigrid-reduce function, and
the expansion is implicit in the Multigrid-distribute function.

The subselection of grid points can be achieved by reshaping each axis. By adding
a “dummy” axis for each array axis a plane is created for each axis. The shape of this
plane is changed throughout the recursion such that the total number of grid points in
the plane is preserved for every step. For instance, an axis with 32 points is represented
as a 1 x 32 array, and for successively coarser grids is represented as a 2 x 16,4 x 8, 8 X 4,
16 x 2, and 32 x 1 array. This reconfiguration can take place dynamically. The first axis
requires 0,1,2,3,4 and 5 bits, respectively. The second axis requires 5,4,3,2,1 and 0 bits. If
the encoding of the elements along the first axis is assigned bits starting with the lowest
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order bit, then successive points along the second axis in the 2 x 16 grid consists of all
even points in the first grid, etc.

(asasazayao) (asasaza; ao ) (asaszaz a1aq)...
N e’ S N e N e’
azis—1 azis—1 azis—0 azis—1 azis—0

Applying reshaping to the on-chip part of the axis yields no performance advantage.
The lowest order off-chip address bit shall be treated in the same manner as the on-chip
bits, since it defines the processor chips sharing memory. An example of the representation
of one reshaping step of a 16 x 16 x 16 grid is the following: (116 116 116) — (28282 8).
The second, fourth and sixth dimensions are reduced. The first, third, and fifth dimensions
are used to collect grid points not part of the reduced grid.

The syntax for the Multigrid-reduce function is

Multigrid —reduce(dest src reduce—operator indices)

The Multigrid-Reduce reduces src with reduce-operator and stores the result in dest.
indices is a list of axes along which reduction takes place. Multigrid-Reduce also reduces
the geometry of the src and returns the dest with the reduced geometry.

As an example, Multigrid —reduce(dest source '+!! (2 4)) will reduce source with
4+ along the 2nd and the 4th axes, and store the result in dest.

Likewise the syntax for the Multigrid-distribute function is

Multigrid —distribute(dest src distribute—operator indices)

4.3 Direct interaction

The computation of the direct interaction with particles in the near field at the base of
the pyramid is implemented in the field-wise model, except for the data motion. The
interaction between a pair of subdomains is defined by the interaction of every particle in
one domain with every particle in the other domain. The communication is implemented
by first performing an exchange of particle information between the domains, then ro-
tating the received information through the Connection Machine processors representing
the subdomain. After a complete revolution the interaction between all particles in one
domain with all particles in the other domain has been evaluated. The rotation within a
domain is implemented using some of the slice-wise features of the Connection Machine.
The measured performance of this implementation is 1.46 Gflops/sec on a 64k processor
Connection Machine, which is very close to the maximum possible within the high level
languages at a virtual processor ratio of one.
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5 Results

The first implementation of the PMM on the Connection Machine [20] required 94 seconds
on a 8k CM-2 for the evaluation of the potential field due to 16,000 particles. More
than half of the total time was spent in communication. The measured performance
of the new implementation of the PMM on the Connection Machine is 1.67 Gflops/sec
at a particle-processor-ratio of 10. The communication time is insignificant. With the
new implementation the computation of the potential field for 16,000 particles requires 5
seconds on a 8k CM-2.

5.1 Timing results

In the experiments reported here we compute the potential field using third order mul-
tipole expansions. The measured root-mean-squared error E,., is less than 1072, Only
uniform particle distributions were used. The performance measurements were carried
out on a 16k CM-2 at a virtual processor ratio of 1. There was one leaf node, or one
grid point in the base of the pyramid, per floating-point unit associated with a cluster of
32 CM processors. With ten or more particles per CM processor the execution time is
entirely dominated by the computation of the local interaction, which is made by a direct
evaluation.

Running Time

particle-processor-ratio 1 2 3 4

init-expansion (ms) 26.6 | 36.6 | 46.6 | 57.0
far-field (ms) 21.7 | 217 | 215 | 215
local-field (sec) 1.78 | 1.86 | 1.76 | 1.79
multipole-exp-eval (ms) || 7.07 | 14.2 | 21.2 | 28.3
local-direct (sec) 0.846 | 2.99 | 6.45 | 11.2
total (sec) 2.68 | 4.02 | 8.30 | 13.1
particle-processor-ratio 10 20 30 40

init-expansion (ms) 116 | 218 | 316 | 435
far-field (ms) 21.5 | 21.5 | 21.8 | 21.5
local-field (sec) 1.79 | 1.76 | 1.81 | 1.75
multipole-exp-eval (ms) || 71.1 | 149 | 222 | 291
local-direct (sec) 66.8 | 264 | 590 | 1050
total (sec) 68.8 | 266 | 592 | 1052

Table 1: Timing results for potential field evaluation by the Parallel Multipole Method.

Explanation of the entries in Table 1:

e init-ezpansion: form multipole expansions at leaf nodes;

14




e far-field: upward-pass through the pyramid;
o local-field: downward-pass through the pyramid;

e multipole-exp-eval: evaluate the resulting multipole expansions at each particle po-
sition;

o local-direct: compute interactions with nearby particles directly.

5.2 Complexity and performance analysis
5.2.1 Time complexity

Using the timing results from Table 1, we can express the time complexity for each of the
subroutines of the PMM in terms of the particle-processor-ratio » and with one leaf node
per floating-point unit

Tinit—ezpansion = 16.6 + 107 (ms)
Ttar—gida = 21.6 (ms)
Tiocal—fietd = 1.79 (sec)
Trnultipole—ezp—eval = 117 (ms)

Tlocal—direct = 01977’+0649T2 (sec)

The total running time of the PMM is

Tiotar() = 1.84 + 0.2147r + 0.6497°  (sec).

In order to gain insight into the relative importance of communication Tcomm and
computation T,om, for the PMM, detailed timings were conducted and summarized in
Table 2.

The results of Table 2 show that for r = 1 the time for communication is 21.5% of the
total time. The T¢omp component grows much faster with » than the Tomm component.
For r = 10, T.omm is only 3.4% of the total time. The computation in far-field and local-
field is essentially 3D convolution, and the one in local-direct is Newtonian interaction.

5.2.2 Speed

343, 40 | |
The local-field computations require about (343 + —8—-) x ( T + 32) floating-point opera-
tions in our implementation. The computations labeled local-direct require 14 x 32 x 32 X
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Running Time
time component Teomm Teomp
init-expansion (ms) 17.7 10r — 1.1
far-field (ms) 3.8 17.8
local-field (sec) 0.36 1.43
multipole-exp-eval (ms) 0 7.1r .
local-direct (sec) 0.1977 0.649r?
total (sec) 0.38 +0.197r | 1.45 4+ 0.017r + 0.649r*

Table 2: Communication and computation time as functions of the number of particles
per processor.

4072 floating-point operations. Since these two parts are dominant in terms of floating
point operations, we use them as an approximation for the total number of operations.
With W floating-point processors and one leaf node of the decomposition tree per floating-
point unit the speed of the PMM is determined by

43 4+ ¥3) % (42 4 32) + 14 x 32 x 32 X 40r2)W
SpeedpMM(r) = ((3 3 + 8 ) X ( 8 + 311) +(r) X X X r )
total

(14277 + 57344072)W
1.84 + 0.214r + 0.64972

I

(flop/sec)

On a 64k CM—2 W = 2048. For r = 1, Speedparar(1) = 435 Mflops/sec; For r = 10,
Speedpuar(10) = 1.67 Gflops/sec, which is close to the asymptotic speed 1.81 Gflops/sec.
The performance for the arithmetic operations +,—, x is 1.5-2.4 Gflops/sec in *Lisp, }
with the lower figure achievable for a virtual processor ratio of one. All of our timings -
were made at a virtual processor ratio of one. Some code segments are implemented in f
lower level code, which explains a peak performance in excess of the *Lisp performance.
But, an improvement in the arithmetic performance by a factor of 2-3 is expected from
a complete change to the slice-wise, 32-bit wide, model.

5.2.3 Storage requirements

With a multipole expansion of degree p, the total number of terms retained in the expan-
sion is 1
m==(p+1)(p+2)(p +3)-

For a pyramid of & levels the state and the problem description for a grid point at the
base (leaf node) and its ancestors require (h—2)m words of storage for ®, 2m words for ¥,
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[(h—2) %’-] words for the interactive-field masks, 6(h —2) words for cell coordinates, and

about another 100 words for miscellaneous variables. In the downward-pass 343m words
are required to store the intermediate results. Each particle takes 10 words of storage
(the position, the velocity, and the acceleration require three words each plus one word
for the mass). Thus, the total storage required for a grid point at the base (leaf node)
and its ancestors is

343

S =88 +343m+ [(h — 2)32—] + h(m+6)+ 10R (words),

where R is the particle-node-ratio. For p = 3 (and therefore m = 20), a three level tree
requires S = 7037 + 10R (words), a four level tree S = 7074 4+ 10R (words), and a five
level tree § = 7111 + 10R (words) for a grid point at the base and its ancestors. Clearly,
the storage requirement per leaf node is nearly independent of the depth of the tree.

In the field-wise mode each of the 32 processors sharing a floating-point unit allocates
the same storage. Our implementation uses the model of mixed field-wise and slice-wise
data representation. Each CM processor represents different particles. The part of storage
for 343m words is allocated slice-wise. The rest of the memory is allocated field-wise, that
is, replicated in each CM processor, if there are fewer than 32 leaf nodes per floating-point
unit. The actual storage allocated for each leaf node in our implementation is

Spieed 2= 343m + 32((88 + [(h — 2)%923] +h(m+6)]+10R (words),

where R is again the particle-node-ratio with one leaf node per floating-point unit.

For a Connection Machine system the maximum depth of the decomposition tree that
is of interest is three, four, or five, which corresponds to 512, 4096, or 32768 leaf nodes,
respectively. In a 64k processor Connection Machine system the number of leaf nodes
per floating-point unit is 2 for a four level tree, and 16 for a five level tree. Tables 3 and
4 summarize the number of particles that can be represented with 64k words and 256k
words of storage per floating-point unit as a function of the height of the decomposition
tree for the slice-wise data representation and for the mixed field-wise and slice-wise data
representation. Figure 5 shows the total number of particles that can be represented in the
slice-wise representation. With the increase in the height of the decomposition tree the
number of leaf nodes increases and the total number of particles that can be represented
in a fixed size storage decreases. The difference in the two models of storage allocation is
the reason for the difference in the size of the particle systems between Tables 3 and 4.

In our implementation that uses the mixed data representation on a 16k CM, with
64k words of storage per floating-point unit the maximum number of particles per leaf
node is ~ 5,300 for a three level tree. With 256k words of memory per floating-point
unit the maximum number of particles per leaf node for a three level tree is ~ 25,000.
The measured maximum number of particles for a three level tree using the mixed field-
wise and slice-wise representation is about 4160(= 130 x 32). The difference between the
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Connection Machine configuration

Storage
per fpu Tree 8k 16k 32k 64k
(words) height Particles Particles Particles Particles
leat ipn Total leaf fpu Total leaf ipu Total leaf {fpu Total
h=3 2,570 5,150 1.32 M 5,850 5,850 3.00 M —_ -— —_ — — —
64k h=4 — — — 112 894 458 K 930 3,720 3.81M 2,570 5,140 10.5 M
h=3 124 K 2483 K 6.35 M 255 K 25.5 K 131 M -_— - - — —_ —_—
256k h=4 931 149K 3.81 M 2,570 20.6 K 105 M 5,850 234K 23.9 M 124 K 248 K 50.8 M
h=25 — — —_ —_ -— — 108 3,460 3.54 M 927 14.3 K 30.4 M

Table 3: Estimated maximum number of particles per leaf node and total particle system
size for some Connection Machine systems (slice-wise data representation).

Connection Machine confignration

Storage
per {fpu Tree 8k 16k 32k 64k
(words) | height Particles Particles Particles Particles
Teai ipu Total Teal ipu Total leaf fpu Total leaf ipu ‘Total
R=3 2,310 1,620 | 1.18 M 5,300 5,300 | 2.71 M = = = e = p=—
64k h=4 —_ —_ — 48 381 195 K 781 3,120 3.20 M 2,250 4,500 9.21 M
h=3 12.1 K 243 K 6.21 M 25.0 K 25.0 K 128 M —_ —_— — —_— — —
256k h=4 910 146 K 3.73 M 2,510 200 K 10.3 M 5,700 223K 23.3 M 121 K 24.2 K 49.5 M
h=5 _— — —_— o —_— — 108 3,460 3.54 M 902 14.4 K 29.6 M

Table 4: Estimated maximum number of particles per leaf node and total particle system
size for some Connection Machine systems (mixed field-wise and slice-wise data represen-

tation).

Number of
particles
50 M - + 256k words per fpu .
— o 64k words per fpu
40 M |
30 M
20 M
10 M — . )
i . . |
R I B —~ oM
0 8k 16k 32k g4k Configuration

Figure 5: The maximum number of particles in primary storage for various Connection
Machine systems and a four level decomposition tree (slice-wise data representation).
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measured and the predicted maximum number of particles is due to the allocation of stack
variables not accounted for in the expression for the required storage.

5.3 Optimizing the number of leaf nodes

The points in the grid of finest granularity represents the leaf nodes of the decomposition
tree. Each leaf node holds a number of particles. The interaction among the particles in
the same leaf node is computed by direct evaluation of the Newtonian gravitational field.
The associated computational complexity is quadratic in the number of particles per leaf
node. With a leaf node together with all its particles assigned to a single floating-point
unit, the computation of the direct interactions within leaf nodes requires no communica-
tion. The computations are local and sequential for each leaf node, and “embarrassingly”
parallel across different leaf nodes.

The decomposition tree of the non-adaptive Multipole Method corresponds to data
interaction in the form of a pyramid with the same height h as the decomposition tree.
The number of grid points at the base of the pyramid is 23", If the number of grid points
at the base is greater than the number of floating-point units 27, then a unit has to per-
form the computations of several grid points, that is, the grid points of a subpyramid
of height A — 2. The optimal value of h with respect to performance depends upon the
relative overheads of different methods. Greengard and Rokhlin [5] compared the non-
adaptive Multipole Method with the direct evaluation of the Newtonian field on a VAX.
The cross-over point below which the direct method is faster was found to be in the range
of 200 — 400 particles for a variety of two dimensional particle distributions including
highly non-uniform distributions. In [7] the non-adaptive algorithm is compared with the
direct method for three dimensional problems. For uniform distributions the cross-over
point on a VAX-8600 is in the range of 1000 — 2000 particles. In the three dimensional
implementation of the Multipole Method reported in [20] the cross-over point is at about
1000 particles. The local direct interaction at the leaf node includes the direct interaction
within the same leaf node as well as that with adjacent leaf nodes. The further subdi-
vision of a subdomain with a few thousand particles, increases the computation time for
interactions within the same subdomain, however reduces the computation of the direct
interactions with adjacent subdomains which are smaller in size after the subdivision.
Hence, the stopping criteria for the recursive subdivision with respect to minimum exe-
cution time is at somewhat fewer number of particles per subdomain, than that indicated
by the comparisons referenced above. The optimum stopping point is implementation
dependent.

The stopping criterion for the subdivision of a domain represented by several floating-
point processors also has to acknowledge the difference in communication needs between
the methods. In the parallel implementation of the two-dimensional Multipole Method re-
ported in [6] a comparison was made with a parallel implementation of the direct method.
The two implementations were made on a shared memory machine, the Encore Multimax.
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The speed-up for the direct method was almost identical to the number of processors, when
the particle to processor ratio in the experiments ranged from 40 to 1250. The speed-up
of the Multipole Method was about % of the number of processors for 40 particles per
processor, but increased to become almost identical to the number of processors for a
larger number of particles per processor. We have not compared the Parallel Multipole
Method with the direct method, or any other tree method for the Connection Machine.
The expected speed-up for the direct method is linear in the number of processors as
long as the particle-to-processor ratio is high since the communication is linear and the
computations are quadratic in the number of particles. For the Multipole Method the
communications and the computations are of the same order, and the speed-up is likely
to be less. Assigning several processors to a subdomain favors stopping the recursive
subdivision at an earlier stage.

6 Summary

The goal of the PMM implementation described here was the efficient use of the Con-
" nection Machine architecture. For the implementation reported in [20] about 60% of the
total execution time was due to interprocessor communication. With a non-adaptive re-
cursive partitioning of the domain the data interaction is defined by a pyramid in which
each parent node has degree eight in three dimensions. The base of the pyramid was
embedded in the Connection Machine as a three dimensional grid by making use of the
lattice emulation feature of the Connection Machine programming systems. With other
performance enhancements the speed-up of the new implementation compared to the old
one is approximately a factor of 20. The new implementation achieves a performance in
excess of 1.67 Gflops/sec for a particle-processor-ratio of 10 or higher.

The new implementation can be sped up further by more efficient coding of the arith-
metic operations. All operations are currently performed as scalar operations. However,
each floating-point processor can be operated as a vector processor with a performance
increase of up to a factor of 10 for operations such as matrix-vector multiplication and
convolution. A further speed enhancement by a factor of three is expected. By a slice-
wise data representation slightly larger particle systems can be represented in the primary
storage.

With 512M bytes of storage a system of about 6 million particles can be simulated
without external memory. With 2G bytes of storage systems up to about 50 million
particles can be simulated. The potential field evaluation for one million particles requires
about 3 minutes. A field calculation for 50 million particles would require approximately
100 hours with the current implementation. Future work on the PMM includes dynamic
load-balancing on particle systems with highly non-uniform distributions.
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