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ABSTRACT

This paper introduces a technique of relativizing already relativ-
ized computations and gives two interesting applications. The tech-
niques developed here are simpler than the usual methods for con-
structing oracles that satisfy several requirements simultaneously.

The first application shows that a result of Karp and Lipton (If
sets in NP are decidable with polynomial-size circuits, then =5 = I15
[KL80].) cannot be strengthened in the presence of certain oracles.
This means that current proof techniques cannot strengthen the con-
clusion to, say, P = NP [BGS75]. Such a stronger conclusion would
be desirable as it would establish the equivalence of polynomial-time
programs and polynomial-size circuits for solving NP-complete prob-
lems and would extend the known equivalence of polynomial-time
programs and programs that are allowed a single query to a
polynomial-size table [M82].

The second apglication gives an oracle C for which
PC # (NPC () coNP® ) #+ NPC and NP€ (M coNPC has complete
sets under polynomial-time many-one reductions. This complements
a result of Sipser [S82] in which an oracle B is constructed for which
NP2 (M coNP2 has no complete sets. These results suggest that

current proof methods will not settle whether NP (M coNP has com-
plete sets.

-
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1. Introduction

Relativization [BGS75] is a method of introducing additional information into
models of computation. In its simplest form a Turing machine (TM) computation
may write an oracle query string onto a designated tape; it may enter a query state
and then will enter one of two states indicating whether or not the oracle query
string is in the oracle set A. Analogous to the classes P and NP, the relativized
computational complexity classes P* and NPA denote sets accepted in deterministic

(resp. nondeterministic) polynomial-time by TM’s that use the oracle set A.

Typical uses of relativization are in [BGS75] where oracles A and B are con-
structed that satisfy requirements P4 = NP4 and P® # NPB. The interpretation
.of these results follows from noting that conventional proof methods in complexity
(diagonalization, simulation, etc.) apply equally well to relativized computations.
Thus, a conventional proof of P = NP implies that for all oracles B, P2 = NPB.
This contradicts the result cited above. A conventional proof of P # NP has simi-
lar consequences. We interpret this to mean that settling the P vs. NP problem

will require new proof techniques that do not relativize.

The construction of oracles that satisfy more than one requirement has typi-
cally been done by complex arguments that alternate among the requirements.
These arguments are difficult because the infinitely many assignments to the oracle
that are made to satisfy one requirement may interfere with assignments needed to

satisfy a different requirement.

This paper introduces a method to apply relativization to already relativized

complexity classes. It has generally been overlooked that relativization can be
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applied to a class of computations, even if that class is already relativized. With
this method we can begin with an oracle A that establishes one requirement, then
add another oracle A, to establish a second requirement, and so on. The succes-
sive oracles can be constructed without concern for how the previous requirements
were satisfied. This method permits us to obtain simple proofs of some new and
some known oracle results. The reason our methods are simpler than these tech-
niques is that we can satisfy one requirement at a time and, indeed, recycle exist-

ing constructions. Examples can best illustrate the ease of this method.

For example, we consider relativized classes such as P4 and NPA. We show
that the familiar oracle construction methods (e.g. [BGS75], [BS79] ) can be
applied to these classes of relativized computations. Thus, for any oracle A we can
use the construction of [BGS75] to obtain a set S such that PA*S # NPA*S, (A+S
denotes the set of strings 04 (J 15.) When these methods are applicable, the ora-
cle constructions are much simpler than single constructions that meet multiple

requirements.

Our first application of these methods shows that there are relativizations in
which a result of Karp and Lipton regarding the consequences of polynomial-size
circuits for NP cannot be substantially improved. In [KL80], they showed that if
there is a sparse set S such that NP C PS (which is equivalent to assuming sets in
NP have polynomial-size circuits), then =% = 11§. We apply our methods to show
that there is an oracle A and sparse set S such that NP4 C PA*S (informally, NP4
has ‘polynomial-size A circuits;’ see [W85])‘, but the results of Karp and Lipton

cannot be improved to =54 ¢ =04,
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Our method first uses an oracle C such that PC = NPC; the oracle con-
structed in [BGS75] suffices. Then we construct an oracle S with polynomial-size
circuits T such that 35:€*S # SPC*S; the method of [BS79] with minor modifica-
tion is sufficient. We treat T as a sparse set of strings describing the circuits as in
[BH77). We then show that the sparse oracle M (T) of prefixes of strings in T is
sufficient to establish NPC*5 ¢ pC+S+MT)

Since these results were obtained, Heller [H84] and Wilson [W8S5] indepen-

dently constructed oracles that establish a stronger non-improvability of the Karp

and Lipton result. Both [H84] and [W85] exhibit oracles X such that NPX QPX +S
where § is sparse, but 35X # ADX,

Our second application complements [S82] in which Sipser presented an oracle
in which NPAncoNPA has no complete sets. We present a simple construction of
an oracle B in which NP3 () coNP® has complete sets and NP2 (M coNPB is nei-
ther equal to P2 nor equal to NPB. (Thus the complete sets are not trivially the
complete sets of P2 nor those of NPB.) This result was previously obtained by

Hartmanis and Immerman [HI85], but the proof here is much simpler.

2. Definitions

We assume familiarity with basic definitions in computational complexity as
found in [HU79] including P, NP, PSPACE, polynomial-time many-one and Turing
reductions, complete sets, and relativization. Less familiar definitions follow.
Definition 2.1. A set S is sparse if there is a polynomial p(n) such that the

number of elements in § of size n is at most p(n).

Definition 2.2. We will use A +B to denote 0A| J1B (corresponding to a disjoint
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union of two oracle sets.) For definiteness, A +B is left associative. With oracle

A +B the query x € A means Ox €A +B.

Definition 2.3. A set S has polynomial-size circuits if there is a polynomial p(n), a
family {C,} of strings such that |C,| = p(n), and a polynomial-time computable
circuit evaluator predicate E (x,C) such that for all x € 3" of size upton, x €Sif
and only if E (x,C,) evaluates to true. The strings C,, can be thought of as circuits
for S. This is known to be equivalent to S being polynomial-time Turing reducible

to a sparse set T [BH77].
3. Polynomial Size circuits for NP

3.1. Overview and Motivation

Sparse sets are used in computational complexity as an alternative to P, deter-
ministic polynomial time, for a model of feasible computability. Note that polyno-
mial Turing reducibility to a sparse oracle corresponds to solvability with
polynomial-size circuits and that polynomial many-one reducibility to a sparse set

corresponds to solvability by ‘look-up’ in a small table [BH77].

Two recent results show that if computational problems are reducible to such
small amounts of information, then there are strong consequences for complexity
classes.

Theorem 3.1. [KL80] If sets in NP are polynomial-time Turing reducible to a
sparse oracle S (equivalently NP C PS), then 35 = ns.
Theorem 3.2. [M82] If NP-complete sets are polynomial-time many-bne reducible

to a sparse set S, then P = NP.
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The second result has not only a stronger conclusion, it also gives a precise
characterization of a nonstandard computational model. Note that the hypothesis
of Theorem 3.1 is equivalent to sets in NP being solvable by polynomial-size cir-
cuits [BH77]. The hypothesis of Theorem 3.2 is that the NP-complete sets are

solvable by a single ‘look-up’ in a polynomial-size table.

If we view Theorem 3.2 as addressing the question of whether the model of
computing with a single look-up in a polynomial-size table is more powerful than
deterministic polynomial time, we see that, measured by their power to recognize
NP-complete sets these models are equivalent: the table look-up gives no advan-
tage. Theorem 3.1 has no such interpretation and it is natural, therefore, to
attempt to strengthen the cpnclusion for the sake of a similarly precise characteri-

zation of the power of the computational model of polynomial-size circuits.

Another advantage of Theorem 3.2 is that we get a precise answer to the
question of whether there is hope of solving NP-complete problems with table
look-up methods. If those more general methods can work, then P = NP and we
might as well seek ordinary algorithms for these problems. Theorem 3.1 indicates
that polynomial-size circuits for NP-complete problems are unlikely to exist; how-
ever, lacking a stronger conclusion such as P = NP, we cannot rule out the advan-

tage of their existence as we can in the case of Theorem 3.2.

We show here by methods of relativization [BGS75, BS79] that our present

methods are unlikely to strengthen the conclusion of Theorem 3.1.

Theorem 3.3. There is an oracle A and a sparse oracle S such that NPA ¢ pA*S

(or, equivalently, NP4 <B4 §) but P4 # NP4,
q y T
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Theorem 3.4. There is an oracle A and a sparse oracle S such that NP4 ¢ pA+S
(or, equivalently, NP4 <¥'A S), but 25"‘ # NPA (= Ef’A ).

It follows from Theorems 3.3 and 3.4 that improving the consequence of
Theorem 3.1 to, say, P = NP or NP = 2‘; , will require new proof methods that
do not relativize. Note that Theorems 3.1 and 3.2 remain true in the presence of

oracles.

Theorem 3.5. For any oracle A, if sets in NP4 are polynomial-time Turing reduci-
ble to a sparse oracle (even with reductions that use the oracle A: <’T”A), then
P4 = b,
Theorem 3.6. For any oracle A, if sets in NP4 are polynomial-time, many-one
reducible (even with reductions that use the oracle A: <;'A) to a sparse set, then
PA = NPA, |

Theorems 3.4 and 3.5 indicate that Theorem 3.1 seems to be the best possible
result with present techniques. For both results it is interesting to note that the

combinatorial methods in the proofs remain valid even with oracles present.

3.2. Proofs

In this section we prove Theorems 3.3 and 3.4.
Theorem 3.7. [BGS75] For C = QBF or any other PSPACE-complete set,
PC = NPC,

The following illustrates our contention that many relativization methods

carry over without modification to relativized classes.

Theorem 3.8. For any oracle C, there is a sparse oracle S so that




PC*S 3+ NPC*S,

Proof. The proof is a straightforward adaptation of results in [BGS75]. Let
L'(S)={1":3x |x|=nandx €S }.
Recall that the construction in [BGS75] separates PS5 and NPS by "hiding" strings
x € S from the deterministic computations of sets in PS. We observe that this con-
struction can be applied directly to hiding strings from the deterministic computa-

tions of P¢*S. Thus, L'(S) will be in NP€*S but not in PC*S, QED

A sparse set § has short, easily decoded descriptions of its elements. Expli-
citly, the elements of S of size up to n can be coded into a single string, s, of size
polynomially bounded in n. (The polynomial depends on the polynomial bounding

the number of strings in §.)

A more general property than sparseness is for a set S to have polynomial-size
circuits. Suppose S has circuits C, for elements of size up to n; the C,’s are
encoded as strings whose size is p(n), a polynomial. (Shorter strings can be pad-

ded as needed.) The set T = {C, : n=0 } consisting of the circuits for § is sparse.
Definition 3.9. For T a sparse set in =* we define M (T), the map of T, to be pad-
ded prefixes of elements of T:

M(T) = {x = p#* :3 wwithpw € T and |pw| = |x|}

where ‘#’ is a new symbol.

Since T is sparse, M (T) is sparse also. It is clear from the coding that if a set
S has polynomial-size circuits, then these circuits can be encoded in a sparse set
M(T) from which the circuits can be reconstructed by a deterministic polynomial

time machine.
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Theorem 3.10. Suppose S has polynomial-size circuits, T = {C, : n=0 }.
(a) If NP€ = PC, then NPC*S C pC+S+M(D).

(b) If NP€ M coNPC = PC, then NP€*S M coNPC*S C pPC+S+MD.

Proof of part (a). Let M©*S be a nondeterministic Turing machine running
in polynomial time g(n). We will show that M’s computations with oracle C +S§

can be simulated by a deterministic machine D with oracle C +S +M (T).

For an input x to M®*S with |x| = n, M can query strings of § of size at
most g(n). Let Cg(,y be the small circuit coded in M (T) which describes this part
of S. Then M®*5(x) can be simulated be a nondeterministic polynomial-time
machine Mf(x,Cq(,,)) in which queries to S are answered by decoding the circuit in

the input and simulating the circuit on the query.

Since M§ defines an NPC language, there is an equivalent deterministic
polynomial-time machine Df for a language in P°. We can now define a
PC*S$*MT) machine D to decide acceptance of x by MC*S. The machine D first
uses M (T) to compute C, () and then runs Df(x,Cq(,,)).

The proof of part (b) is similar. QED

We now note that Theorem 3.3 follows as a corollary of Theorem 3.10. To
obtain Theorem 3.4 we adapt the arguments in [BS79] where an oracle is con-

structed that separates 25 A and NPA. We modify this construction to insure that

the oracle has polynomial-size circuits. Theorem 3.4 is then immediate.

Theorem 3.11. There is an oracle A such that 25" # NP2 and A has

polynomial-size circuits.

Proof. We adapt a construction from [BS79]. Let
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L2A)={x:Qu |u| = |x)(Vv |v] = |x|) uv € A}.
We will build an A which has polynomial-size circuits and satisfies
L%*(A) € 254 - NP4,

Let Ag = . At stage i, the construction will satisfy the condition that L2(A)
is not the language accepted by M# where M; is the i” nondeterministic oracle
machine running in polynomial time p;(n).

Let n; be large enough that 2" > p,(n;) and no strings of size n; have been
queried or put into A; in previous stages. Let

S,’ = A,‘_l U {Oniw . |W| =n; }
Consider a run of Mf" on the input 0". If M; rejects, then, letting A, = S;, we
have met the i” condition. Otherwise, M‘,-S" accepts 0. Choose a string w such
that 0"'w is not queried in the computation. Then, letting A; = S; — { 0"w }, we

have again satisfied the i’ condition.

Finally, let A = US;. Then A satisfies all the conditions. Note that we need
at most n +1 bits of information to describe all the strings of size n in A. Thus A

has polynomial-size circuits. QED

4. Complete sets for NP (M) coNP

The following theorem due to Sipser establishes the possibility under relativi-

zation that NP (M) coNP has no complete sets.
Theorem 4.1. [S82] There is an oracle A such that NP4 () coNP# does not have a
complete set.

In this section we establish the opposite conclusion using our simple methods: there

is an oracle C such that NP¢ N coNPC€ has complete sets. Of course we want our
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oracle to satisfy P # NPC () coNPC # NPC, lest the complete sets arise for

trivial reasons. As before, the oracle is built in steps.

Theorem 4.2. [BGS75] There exists an oracle A such that

PA = NPA M coNP# # NPA.
Theorem 4.3. Let A be any oracle such that

PA = NP2 (M coNP# # NPA.

Then there is a sparse oracle D such that

pA+D 4 NpA+D () coNPA*D # NPA+D,

Proof. We will construct a set of sizes, § = {n; < n, < -} such that §
in unary, {0":n €S}, is recognizable in DTIMEA*P[n]. We will simultaneously
construct D to contain a unique string of size n for each n € S. For a string w let
last(w) denote the last bit of w. It will follow that the language defined by

Z(D) ={0":n €S & last(w) = 0 for the unique w € D of size n }.
Then Z(D) has both NP2 *P and coNPA*P characterizations:

Z(D)={0":n€S & 3w) (|w|=n & w € D & last(w)=0)}
Z(D)={0":n€S & (Yw) (|w|=n & w € D = last(w)=0)}
so it is in NPA*D M coNPA*D. We will construct D so that Z(D) £ PA*P,

Construction.

Let SATA*P be a complete set for NP4 *2. Let D, be the set consisting of the
first k strings of D. Let M;, My, - - - be a listing of all clocked deterministic
polynomial-time TM’s where the runtime of each M; is bounded by some polyno-
mial p;(n). The construction satisfies the following conditions:

C1(i): The i coNPA*P machine does not recognize SATA*2,
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C,(i): M2*P does not recognize Z(D).
The conditions C;(i) will assure the separation of NPA*2 and coNPA*P, The

PA +D

conditions C,(i) will assure that Z(D) is not in and thus

PA*D % NPA*D (M coNPA™D,

We define n; to be the smallest natural number such that

(a): Conditions C;(1), C;(2), ..., C;(i) are all witnessed by computations of
length less than -'-ll:i-, with D, _; substituted for D.

(b): 2" > 2 X p(n).
Note that such n; always exist because D, _, is finite and thus the oracle A guaran-

tees that NP *Pi-1 % conpA*Di-1,

Define D, as follows: Examine the computation of MY'™! on input 0".
Choose a w such that |w| = n;, w is not queried by M;, and last(w) = 0 if and
only if M? *Di-1 rejects 0", Such a w must exist since (b) ensures that fewer than
1/2 of the strings of size n; may be queried. Let D; = D;_; |J {w}. This ensures
that every condition C,(i) is met.

Thus we have

PA +D + NPA +D n CONPA +D # NPA+D.
QED

Corollary 4.4. There is an oracle A +D such that

PA+D # NPA+D n CONPA+D + NPA+D

and such that there is a sparse set § which is complete for NPA*D M coNPA*D

under polynomial-time Turing reductions.
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Proof. Let A be as in Theorem 4.3 and let D be constructed as above. Then

by application of Theorem 3.10 (b),

NPA+D n CONPA+D - PA +D+M(D).

Thus, M(D) is a sparse complete set for NPA*2 () coNPA*D under polynomial-

time Turing reductions. QED

Hartmanis and Immerman [HI85] showed that NP (M) coNP has a complete set
under polynomial-time, Turing reductions if and only it has a complete set under
polynomial-time hiany-one reductions. It is not hard to see that their proof goes
through when relativized to any oracle C:

Theorem 4.5. For any oracle C there is a complete set for NP N coNP€ under
polynomial-time Turing reductions if and only if there is a complete set under
polynomial-time many-one reductions.

Applying Theorem 4.5 to Corollary 4.4 we have
Corollary 4.6. There is an oracle C for which

PC # NPC (M coNP€ # NPC
and NP€ N coNPC has complete sets under polynomial-time many-one reduc-

tions.
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