
Yale University
Department of Computer Science

YALEU/DCS/TR-1552
February 07 2020

Carbide: Highly Reliable Networks Through
Real-TimeMultiple Control Plane Composition

Shenshen Chen Geng Li Kerim Gokarslan Bin Li
Qiao Xiang Haitao Yu Franck Le Richard Yang Ying Zhang

Abstract
Achieving highly reliable networks is essential for network
operators to ensure proper packet delivery in the event of
software errors or hardware failures. Networks must ensure
reachability and routing correctness, such as subnet isolation
and waypoint traversal. Existing work in network verification
relies on centralized computation at the cost of fault toler-
ance, while other approaches either build an over-engineered,
complex control plane, or compose multiple control planes
without providing any guarantee on correctness. This paper
presents Carbide, a novel system to achieve high reliability in
networks through distributed verification and multiple control
plane composition. The core of Carbide is a simple, generic,
efficient distributed verification framework that transforms a
generic network verification problem to a reachability verifi-
cation problem on a directed acyclic graph (DAG), and solves
the latter via an efficient distributed verification protocol (DV-
protocol). Equipped with verification results, Carbide allows
the systematic composition of multiple control planes and
realization of operator-specified consistency. Carbide is fully
implemented. Extensive experiments show that (1) Carbide
reduces downtime by 43% over the most reliable individual
underlying control plane, while enforcing correctness require-
ments on all traffic; and (2) by systematically decomposing
computation to devices and pruning unnecessary messaging
between devices during verification, Carbide scales to a pro-
duction data center network.

1 Introduction

The expectation for network availability is increasingly de-
manding. For example, Google increased its service level
objectives (SLOs) from 99% availability in 2013 to 99.99%
in 2018 [23,26]. This is because business-critical applications
are increasingly reliant on networks, and the cost of infras-
tructure downtime can now reach $7 million per hour [41].

Given its importance, substantial efforts have been devoted
to increasing network reliability [12, 21, 22, 27, 29–31, 33, 48,
52, 56]. A major advance to improve reliability is to use net-
work verification. Many verification methods [24, 29–31, 54]
model all possible forwarding behaviors and compute possible
violations of network requirements. Other approaches con-
vert network state and requirements into systems of boolean
constraints and utilize SAT or SMT solvers to compute cor-
rectness [12, 21]. Complementary to verification, active test-
ing [22, 56] or control plane emulation [37, 38] are used to
catch bugs after the deployment. On the other hand, network
synthesis [13, 18, 25, 47] tries to avoid problems by systemati-
cally generating configurations.

Despite considerable progress, existing approaches still
suffer major limitations. First, most verification tools rely on
a centralized verification server to collect snapshots of the
network states or configuration files from all of the network de-
vices, which requires reliable connections between the server

and network devices, resulting in a bottleneck and a single
point of failure. Azure [27] proposed to have devices ver-
ify its forwarding behaviors using local contracts. However,
they only support verifications of the shortest path reacha-
bility and fault tolerance property. Secondly, the attempt of
building a single, infallible control plane often results in over-
engineered, complex control plane. Third, existing work in
multiple control plane composition supports only a limited
number of properties (e.g., reachability, domain backup) and
fail to provide generic routing correctness guarantees (e.g.,
waypoint routing, subnet isolation) [34].

This paper systematically investigates and tackles the afore-
mentioned limitations of existing approaches to improve net-
work reliability, and presents Carbide, a novel system to
achieve high reliability in networks through distributed verifi-
cation and multiple control plane composition.

Specifically, the core of Carbide is CPCheck, a simple,
generic, efficient distributed verification framework that lets
ingress devices verify which packet space can be forwarded
by a given CP without violating requirements specified by the
operators. CPCheck has two key insights: (1) A generic veri-
fication problem (e.g., reachability, loop-free, waypoint and
fault-tolerance) on a generic network can be transformed to a
reachability verification problem on a directed acyclic graph
(DAG), and (2) the latter can be solved via a novel, efficient
distributed verification protocol (DV-protocol). By systemati-
cally decomposing computation to each device and pruning
unnecessary messaging between devices, CPCheck scales to
a production data center network. Rigorous analysis proves
the convergence and correctness of CPCheck. It also shows
that the previous published Azure local verification [27] can
be easily supported as a specialized case of verifying shortest-
path reachability and fault-tolerance requirement in CPCheck.

Next, to allow systematic multiple control plane composi-
tion, Carbide provides (1) CPSpec, a flexible grammar that
allows operators to specify correctness requirements for each
CP on different packet space, the preference relation between
CPs, and the desired consistency model, and (2) CPComposer,
a module that uses the verification results of CPCheck, select
different CPs to use for different packet spaces, and sched-
ules the hot-swapping of the corresponding data plane to
guarantee the consistency requirement specified in CPSpec.
Moreover, by constructing virtual CPs to pre-verified alterna-
tive next-hops, tunnels and the mix of different CPs, Carbide
provides the verified fast-reroute (V-FRR) capability to the
network, which substantially reduces the network downtime
while guaranteeing routing correctness.

A switch OS software suite called Multijet is implemented
to deploy Carbide on real white-box switches. Extensive ex-
periments show that (1) Carbide reduces downtime by over
an order of magnitude compared to SDN, and by up to 43%
when compared to OSPF. Even in the presence of network
partitions, Carbide correctly enforces network requirements
(e.g., on security, waypoint) on all packets, and (2) by sys-

1

tematically decomposing computation to devices and pruning
unnecessary messaging between devices during verification,
Carbide scales to a production data center network with little
overhead. This work does not raise any ethical issues.

2 Motivation

Problems with centralized verification. Always ensuring
the network functions as desired, even in face of failure, is
challenging. Existing verification [24,29–31,54] fails to meet
this requirement. Although differing in details, these work em-
ploy a common centralized architecture: a centralized server
is used to collect data from each network device and verify the
invariant compliance. This architecture has two major pitfalls
to satisfy the "always correct" requirement. First, it heavily re-
lies on the network connection between the verification server
and the devices. The network connection, however, is possibly
congested or broken during outage, especially catastrophic
failure. Second, the server becomes the bottleneck and single
point of failure. Fundamentally, it violates the fate sharing
principle [16]: the network control and data path should share
the same fate, they either fail together, or not at all.

The fate sharing principle naturally motivates the dis-
tributed verification design. Verification messages should flow
on the same path as traffic. The sender of the path shares the
same fate as its traffic, thus, the source/ingress device should
be responsible for verification rather than an off-path cen-
tralized server. A naive approach is for all devices to send
relevant information (e.g., FIB entries) to the source so that it
can run various verification on its own traffic. Yet, flooding
FIB to all devices certainly is not scalable nor necessary.

Our key idea is to distribute the verification and systemati-
cally prune the messages to eliminate most of the unnecessary
communications. Each device can make local verification and
propagates messages to source only when its local verification
results change. The communication is limited to the small set
of switches according to the data plane path and requirements.
Problems with a single control plane. While distributed ver-
ification provides better correctness guarantee during failure,
high availability is still not satisfied because of a single control
plane. One may argue that a single control plane can survive
failure by setting up multi-paths or fast reroute capabilities.
However, it often results in an over-engineered, complex con-
trol plane. More importantly, these data plane bandaids cannot
handle control plane bugs and misconfigurations.

High availability requirements call for multiple control
plane coexistence. Internet is a great example of running
multiple control plane to tolerate failure, rather than relying
on a single “never-failed" control plane. At the macro level,
each Autonomous System controls its own network indepen-
dently so that the failure’s impact can be constrained within
the domain. Within a single network, it is not uncommon
to have multiple control planes in production. For example,
multiple controllers are used to control different planes of a

Figure 1: Carbide architecture.

backbone [4, 26]. At the micro level, multiple routing proto-
cols (e.g., OpenR, BGP) can run together on each switch [15].
These designs use multi-control plane to ensure high avail-
ability.

Naively running multiple control planes simultaneously
does not work since different control plane may make con-
flicting decisions and result in violation of network policy.
Thus, we use distributed verification results to compose con-
trol planes to guarantee correctness and resilience.

3 Carbide Overview

Carbide is a thin layer between CP and switches (Figure 1).
Specifically, each network device runs (1) a control plane
layer, (2) a novel online composition layer, and (3) a unified
data plane layer.

3.1 Control Plane Layer
The control plane layer consists of a set of control plane
(CP) instances CP = {CPi}i, i = 1,2, . . ., running in parallel.
A control plane instance may be centralized (e.g., SDN) or
distributed (e.g., OSPF and BGP). For example, a device may
run three control plane instances: CP1 as an SDN control plane
receiving OpenFlow messages from a new release of an SDN
controller, CP2 as an SDN control plane receiving OpenFlow
messages from a stable release of an SDN controller, and
CP3 as a traditional distributed routing protocol such as OSPF.
Carbide treats every control plane instance as a black-box
and only depends on the output (e.g., forwarding information
base) of each control plane instance. This design decision
allows Carbide to use any existing implementation (open
source or commercial) for each control plane instance.

3.2 Online Composition Layer
This novel layer dynamically composes the information from
the control plane instances to satisfy the requirements. It

2

contains four components.
CPSpec. A global specification allows operators to spec-
ify correctness requirements for each CP of different traf-
fic types, and the preference order between control plane
instances. Specifically, a CPSpec is specified as a tuple of
(ps, {(reqi,CPi)}i, option). ps is the packet space of interests
expressed as a predicate of packet headers. Given a ps, a set
of packet ingestion points (ingress of packets in ps) will be
identified. A CP composer will be started at each such source.
{(reqi,CPi)}i is a sequence of (requirement, CP) pairs in

descending order of CP preference. Because different CPs
may have different desired behavior, CPSpec allows operators
to specify different requirements for each CP. As such, if a
CP cannot satisfy its desired requirement, it will not be used.
A requirement reqi is expressed as a predicate of regular
expressions, which describes a set of paths in the network
(e.g., reachability, waypoint, and loop-freeness). Section 4.2
gives the details of the requirement grammar.

option allows an operator to specify the consistency model
to enforce. Carbide guarantees the eventual consistency
by default, and can achieve a stronger consistency (e.g.,
transient-loop-free consistency) with a trade-off on perfor-
mance. (§ 5.1)
vFIB: Each switch running a CP is associated with a virtual
forwarding information base that collects and stores the for-
warding information computed by the CP (e.g., FIB and ACL).
vFIB does not need an internal forwarding state of a device
(e.g., counter). For the same packet, a CP may have multiple
next-hops in its forwarding information (e.g., load balancing,
robustness, and multicast). vFIB puts all these next-hops as
a group action, and does not need the underlying hardware
realization.
CPCheck (Section 4): Each device running CPi is associated
with CPCheck, a simple, efficient distributed verification com-
ponent. The goal of CPCheck is to let each source identified
by CPSpec to verify which packets can be forwarded by CPi
without violating related requirements specified by the CP-
Spec. The core idea of CPCheck consists of (1) transformation
of a generic requirement verification on a generic network to
a reachability verification on a DAG, and (2) a novel, efficient
DV-protocol to verify reachability on the DAG. The root of
the DAG is the source (see Section 4.4).
CP composer (Section 5): The CP composer takes as inputs
the forwarding rules from the vFIBs, the verification results
from the CPCheck modules, and the consistency model to
compute the CP assignments of packets to enforce at the
data plane layer. In the general case, when traffic in the same
packet space enters the network from multiple ingress points,
these devices run a consensus protocol to let one decide and
announce the CP assignments. See Section 4.4 for examples
of the complete workflow.
Resource control. To improve performance, Carbide devel-
ops a resource control component on each device to allo-
cate shared resources (e.g., CPU, memory and bandwidth)

S A

B

W

C

D

10.0.1.0/24 10.0.2.0/24

Figure 2: An example network.

among different running processes (e.g., control plane in-
stances, CPCheck modules, CP composer). Specifically, this
component proactively limits the resource consumption of
each process (e.g., CPU and bandwidth usage), to prevent a
process using up all of the resources on a device and starv-
ing all other process. It also adaptively adjusts the resources
allocated to different processes in response to the behaviors
of CPs. For example, a CP may oscillate between various
routes, Carbide develops a BGP-inspired damping mecha-
nism to control the resources allocated to the corresponding
CPCheck process, to go from passive verification to more
active filtering.

3.3 Data Plane Layer
Despite multiple CP instances running, each device in Car-
bide has a single unified data plane that processes data packets
at the line rate based on rules installed by the CP composer
in the device’s physical FIB (pFIB). Conceptually, the pFIB
at the data plane is comprised of the rules from different CPs.
A challenge is that different CPs may overlap and conflict,
but a packet should only match the rules from one CP. To this
end, Carbide leverages the multi-table structure in commod-
ity switches (e.g., [14, 20]) and stores forwarding rules from
different CPs in different tables. The CP composer generates
an extra CP selection table to safely direct the traffic in the
data plane using the corresponding rules.

4 CPCheck: A Distributed Verification Frame-
work

CPCheck is a core component of Carbide. At the same time,
it can be a generic distributed verification technique used sep-
arately in other settings (e.g., trouble shooting [22]). Assume
a stable data plane, CPCheck allows ingress devices to ver-
ify which packet space can be forwarded without violating
requirements specified by the operators. The key insight of
CPCheck is to transform a generic verification problem into
a simple DV-Network problem, and solve it with a novel, ef-
ficient DV-protocol. In the following, we first introduce the
data plane model, the language to define requirements and
present our detailed algorithm.

4.1 Data Plane Model
CPCheck uses a generic data plane model that abstracts dif-
ferent FIB heterogeneity, e.g., destination-based FIB, Open-
Flow table. Each entry in the table maps a disjoint packet
space [29] to an action. The action includes modification of
packet header as well as a group of next-hops [27]. If an ac-
tion sends a matched packet to all next-hops in this group,

3

h ∈ packet headers
f ∈ header fields
v ∈ header field values

label ∈ device labels
packet-space := (h.f [=, 6=] v)

| (packet-space [∩, ∪] packet-space)
RegExr := ... extended with: ‘[’ (ˆ)label ‘]’

path-set := RegExr
| (path-set [∩, ∪] path-set)

sources := ‘[’ (ˆ)label ‘]’
requirement := (sources:) packet-space → path-set

Figure 3: A simplified grammar of CPCheck
ReqLang.

it is annotated with a keyword ALL. If it sends to only one
next-hop of the group, it is annotated with a keyword ANY .

This representation allows modeling of different forward-
ing behaviors at a network device. For example, drop is mod-
eled by an empty next-hop group. Packet encapsulation and
decapsulation are modeled by modification functions. Mul-
ticast is modeled by an ALL next-hop group. Anycast, load-
balancing and fault-tolerance [27] is modeled by an ANY next-
hop group. Given an action, however, CPCheck is oblivious
of its hardware realization (e.g., how to select one next-hop
from an ANY next-hop group).

Another important concept at the data plane is path seg-
ments. The global data plane DPi for a given control plane
CPi is composed of a set of FIBs, {FIB j

i } j, i.e., the FIBs of all
network devices j. Each FIB indicating next-hop constructs
1-hop segments. Together, they construct path segments start-
ing from source devices or other devices. A path segments is
a sequence of network devices. When a device appears twice,
it forms a loop.

4.2 Verification Requirements Specification
Next, we define a grammar to specify global requirements. A
wide range of common, important verification requirements
(e.g., reachability, waypoint, loop free and fault tolerance)
can be expressed using grammar shown in Figure 3. At the
high level, a requirement is specified as a path-set for a pair
of sources and packet-space. The sources optionally refers
to devices responsible to verify the requirement. The packet-
space is defined by predicates of header fields, which is passed
by CPSpec. A pair of sources and packet-space specifies
packets within packet-space originated from sources. The
path-set is defined by (dis)conjunction of regular expressions
(Figure 3).

By default, CPCheck assumes loop-free and only considers
correctness requirement. The correctness is defined as path
segments starting from source should belong to the path-set.
For example, the data plane must construct path segments
ending with the destinations if the path-set consists of paths
reachable to the destination. More general requirements are
tackled in Section 4.5.

The grammar of regular expression is mostly standard, but
includes [label] as a syntax sugar. It refers to any device with

the label and [ˆlabel] refers to any device without that label.
A device can have multiple labels (e.g., identifier, ip address,
functionality) and can share a label with others.
Example. Consider a network in Figure 2. S, A and so on are
the identifier labels of network devices. S and D each has an IP
label 10.0.1.0/24 and 10.0.2.0/24, respectively, denoting to the
subnet each one is connected to. The following requirements
assigned to source device S. They require the traffic from
source IP 10.0.1.0/24 to destination IP 10.0.2.0/24 is always
delivered (i.e., reachability) after passing W (i.e., waypoint),
without any loop (i.e., loop-free).

1. packet-space = (srcIp = 10.0.1.0/24) ∩ (dstIp =
10.0.2.0/24)

2. loop-free =
⋂

device x (([ˆx]*) ∪ ([ˆx]*[x][ˆx]*))

3. reachability = [10.0.1.0/24].*[10.0.1.0/24]

4. waypoint = .*[W].*

5. path-set = reachability ∩ waypoint ∩ loop-free

6. requirement = ([S]: packet-space)→ path-set

Specifically, the first line defines packet-space to be the
space of packets with source IP 10.0.1.0/24 and destination
IP 10.0.2.0/24. Next, it uses regular expressions to define the
set of paths satisfying reachability, waypoint and loop-free
requirements, respectively. In line 5, the path-set takes inter-
section of those sets, which means satisfying all the require-
ments. At the end, the verification requirement is assigned to
the source device with identifier label S.

4.3 Distributed Verification for DV-Network
Given the preceding requirements, a straightforward approach
is to have every node send each FIB entry to the verifier
(source in this case). This, however, is unnecessary and unde-
sirable, as it leads to less distributed load. A key novelty of
CPCheck is its ability to distribute the verification.
DV-Network verification problem. Instead of starting with
generic network verification, we first study the DV-Network
(distributed verification network) verification problem. The
problem may look special, but it actually is not. We will show
in Section 4.4 how to convert a generic network verification
problem to this problem. But for now, we focus on this prob-
lem.

Specifically, a DV-Network is a directed-acyclic-graph
(DAG) with only a source and only destinations as sinks.
Each node in the network has an FIB to look up the next hop
for each packet. The FIB may return an outgoing edge in the
DAG from the node or off-path. The network is verified for a
destination if the FIBs construct a path from the source to the
destination.
Intuition-building example. To build intuition, consider an
example DV-Network verification problem shown in Figure 4.

4

Note that the example has only a single destination and hence
we just consider this destination. Observe that at a given
state, the FIBs of the nodes in the DV-Network form a set
of path segments. For example, there exists a path segment
src→ sw1→ sw3→ sw5→ dst. The FIBs also set up a path
segment from sw2→ sw4→ dst.

One might think that to verify dst, the source needs to know
each FIB state at all time. This, however, is unnecessary. To
appreciate it, consider some changes to FIBs and observe
whether the source needs to know about the change.

• Case1: sw2 updates its nexthop to somewhere outside the
network (shown in red line). From a purely local view, it is a
violation so sw2 attempts to report it to src. However, from
a global view, this change has no effect on the path segment
chosen by src and hence does not need to be reported. To
approximate the global view, sw2 should report the change
to its upstream sw1. Since sw1 is not using sw2 as next hop,
sw1 can locally decide that there is no need to propagate
this change further. This example shows one insight of
eliminating unnecessary propagation: if the node is not on
the current path from src to dst, its change does not need
to be propagated.

• Case2: sw5 updates its nexthop to point to sw4. This change
does not need to report to src either, because sw5’s new
change still satisfies the requirement. This illustrates our
second insight of reducing propagation: only propagate if
the local verification result changes.

Verification function. To ground the above intuitive exam-
ples, formally, we introduce a Boolean verification function
d(x): whether the requirement is satisfied at switch x, from
the global view. One can see that the goal of verification is to
compute verification function d(src), which can be computed
cumulatively from the d(x) along the path. Specifically, de-
note the next hop of switch x (searched using its FIB) as n(x).
If the next hop is off network, it is a special switch nil. We
have:

d(x) = d(n(x)). (1)

As the boundary, d(dst) = True and d(nil) = False.
One can compute Equation (1) using a distributed algo-

rithm, and a natural design is a push based design: each
switch x owns its value of d(x) and pushes the value up-
stream. One can see that it is sufficient for x to follow a
simple local update rule: switch x will propagate d(x) only
if its value changes. Let us go back to our example to illus-
trate the benefits of this rule. For Case1, initially, we have
d(src) = d(sw1) = d(sw3) = d(sw5) = d(dst) = True. Upon
sw2 making the change of its nexthop, d(sw2) = False. sw2
propagates its change to sw1, however, because d(sw1)’s com-
putation does not rely on sw2, d(sw1) remains True. Then sw1
will not propagate the change further. Similarly, for Case2,
d(sw5) = True before and after the change, so sw5 will not

src
sw1

sw3

sw5

sw4

sw2

dst(sink)

Case1

Case2

Figure 4: Two cases of update for DV-Network.

even trigger the propagation. Consider a general case of DV-
Network of an n-by-n grid, with the source at the upper left,
destination at the lower right, and each node can go only right
or down inside the grid. Assume that each node has computed
a next hop (right or down) to the destination. Consider any flip
between right and down, there will be no message generated.

At this point, one might make an observation that the al-
gorithm has a structure similar to traditional distance vector
routing. Observing this similarity can help understand our
design. One may consider verification as computing distances
in a domain with only two values: finite (reachable or verified)
and infinite (unreachable or unverified). Note that traditional
distance vector routing can have churns during convergence.
A DV-Network, on the other hand, is a DAG and the propaga-
tion follows the reverse links of the DAG; hence there are no
loops, and hence no churns.
Single destination to packet space. The above cases con-
sider an individual destination. Now consider a DV-Network
with multiple destinations. It is more efficient to consider all
destinations together than consider them one by one. With
multiple destinations, the FIB at node x may choose differ-
ent nexthops for different destinations (or more fine-grained
packet space determined by both destination and port number).
We extend n(x) function to np(x), representing the nexthop
for packet p in node x’s FIB. As a result, dp(x) is extended to
consider different destination space p.

dp(x) = dp(np(x)). (2)

From equation to DV protocol. While Equation (2) is a
compact model, it requires efficient implementation. Define
x.H = {p | dp(x) = False} as a header-space [30], com-
pact [29, 55] representation for dp(x). Protocol 1 gives the
basic protocol using header-space operations (∩,∪,−), for
immutable packet headers. One can extend the basic proto-
col to handle header modification (e.g., fields modification,
encapsulation).

Protocol 1: (DV protocol) at node x.
Data: Incoming message y.∆H indicating ∀p ∈ y.∆H,dp(y) changes
Result: dp(x) (stored as x.H)
/* Apply negation to local record of dp(y) */
y.H = (y.H− y.∆H)∪ (y.∆H− y.H);
Recompute x.H by local records {y.H}y;
if x.H 6= x.oldH then

Propagate the change to upstream;
end

5

Convergence and correctness. We give the following propo-
sition for the convergence and correctness of our DV protocol:

Proposition 1 (Convergence and Correctness of Protocol 1)
Assume that (1) DV-Network is at a stable state, (2) each
device executes Protocol 1, and (3) all messages are delivered
reliably. Protocol 1 always converges. After it converges, for
any packet p, dp(src) represents whether p can be delivered
to its destination in DV-Network.

Sketch. The convergence of Protocol 1 is guaranteed by
the fact that DV-Network is a DAG. For its correctness, first
consider the case that Protocol 1 executes in a blocking way,
i.e., each node x waits till all its downstream neighbors y to
send dp(y), and then computes dp(x). With the Equation (2),
it is easy to see that the protocol converges to a state where
dp(src) correctly indicates whether p can reach destinations.
Now consider an async model with out-of-order messages,
the key observation of correctness is a message of dp(y) al-
ways indicates dp(y) value has changed. So that x can apply
negation to the local record of dp(y) value. Therefore, the
computation is not affected by the order of messages.

4.4 Transform Generic Networks & Require-
ments to DV-Networks

Basic issue. The DV-Network verification problem appears
simple because each simple path in the DAG from the source
to the destination is a legitimate path (i.e., can be verified).
Such a simple path, however, may not satisfy more general
requirements. For example, given a waypoint requirement, a
simple path from the source to the destination may not go
through the given waypoint and hence is not legitimate; given
a shortest path requirement, a simple path may be longer than
the shortest path, and hence is not legitimate.
Automata requirements to DV-Network verification. As a
large gap as one might think between simple DV-Network
verification and generic verification, one class of general re-
quirements which can be converted to DV-Network verifica-
tion is those which can be handled by the systematic work
based on product graphs of automata (e.g., [13]). In particular,
Figure 5 (left) shows a general topology with requirements in-
cluding reachability, loop-free, and way-point. The right side
shows the constructed DV-Network. Note that the nodes in
DV-Network are not just 1-1 mapped to nodes in the physical
topology. For example, C is split to C1 and C2 because packets
can reach C via either B or W . Similarly, W is split to three
nodes. The construction is essentially based on a path prefix
technique and we refer readers to existing work (e.g., [13]),
as the key goal of our work is distributed verification and we
leverage existing work as much as possible. In such a setting,
a device in the real topology will simulate multiple nodes in
DV-Network, with a distributed protocol. We show the work-
flow of verification triggered at s and each node separately
compute their d values. Upon failures, d changes propagates
back to s.

S A

CB

W

D

Packet space: all packets from S to D
Requirement: simple path going through waypoint W

A1

S1 C2B1

W2

W1

C1

B2

W3

d(C2)

d(C1)

D1

Source

Destination

d(B2)

d(B1)

d(S) d(A1)

Start CPComposer at S
Compute and continuously update d(S)
Make decision using d(S)

Receive configuration to
simulate C1, C2

…

Figure 5: DV-Network for general topology and waypoint require-
ment.

S

Packet space: packets from S to all destinations
Requirement: Shortest path

S

Source Multiple destinations

Start CPComposer at S

…

d(S)

Figure 6: DV-Network for DC topology and shortest path require-
ment.

Optimization verification using duals. Product graphs are
not the only way for transformation. Optimizations which can
be verified by local dual variables may also be converted. Con-
sider (fixed-topology) shortest path, which is an optimization
problem which can be used to generate local verification, al-
lowing one to transform problems to DV-Network verification.
Figure 6 (left) shows a DC topology and the requirement of
using shortest paths. The source and destinations are marked.
The results of shortest-path optimization can be verified using
dual variables (distance to the destination in a fixed topology).
The right side of shows the DV-Network from source S to the
set of destinations.

4.5 Extensions

The DV protocol is highly extensible, and we present several
of them. To make them easier to understand, we try to present
the extensions using Equation (2) whenever possible.

It is important to note that despite the extensions below,
there can be global requirements that are too complex or may
not be able to be converted to DV-Network; for example,
multi-path consistency and disjoint-path [24, 29–31, 54] are
such requirements. These requirements will be delegated to
our FIB state distribution (FSD) protocol; see Appendix A.
Handling packet modification. An FIB entry can specify a
modification function f . It takes as input p and outputs a new
packet. All FIB entries at x compose a modification function
fx. The Equation (2) becomes:

dp(x) = d fx(p)(np(x)). (3)

Handling multicast and anycast. An FIB entry can specify
a group Np(x) of next-hops, in the scenario of anycast (load-
balancing) and multicast. For multicast, the dp(x) is True
only if all of the nexthops’ d functions are true. Therefore, it

6

can be simply specified using the
∧

(AND) function.

dp(x) =
∧

y∈Np(x)

dp(y). (4)

The handling of anycast depends on the requirement. If the
requirement is that any one of the next hop is acceptable, it
will be handled in the same way as multicast. Otherwise, if
one next-hop following requirements is enough, Equation (2)
is written as:

dp(x) =
∨

y∈Np(x)

dp(y). (5)

Link-state check. An FIB entry taking action to a next-hop
with no link available should be considered as a violation.
We denote the state of the link from x to np(x) as lx(np(x))
(True means available), then we can integrate this variable to
Equation (2):

dp(x) = lx(np(x))∧dp(np(x)). (6)

Note that if the link to np(x) fails, the node cannot receive
dp(np(x)). But the dp(x) is computed to be False since
lx(np(x)) = False.

Conditional requirement. The DV protocol can extend with
predicates on variables (like link-state) as conditional require-
ments. For example, at x, a backup path can be specified with a
next-hop b, it will only be used when the primal path (with the
next-hop t) is not available. The Equation (2) can be extended
with predicates:

dp(x) = dp(np(x))∧ (lx(t)⇒ (t = np(x)))

∧(¬lx(t)⇒ (b = np(x))).
(7)

Coverage requirement. The DV protocol can verify not only
whether a given path satisfies the requirements, but also the
coverage requirements (completeness). Consider the require-
ments that “Intent 3. All redundant shortest paths should be
available", specified for Azure in [27] using anycast. Let the
set of redundant nexthops be C(x). We have:

dp(x) = (
∧

y∈Np(x)

dp(y))∧ (C(x)⊆ Np(x)). (8)

Apply the condition to the Azure example, where C(x) is
all outgoing edges of x, notated as C(x) = Eout(x). Also, we
have dp(dst) = True and ∀y /∈ Eout(x), dp(y = nil) = False

by definition. Then, we have the following derivation:∧
y∈Np(x)

dp(y) = (Eout(x)⊇ Np(x))∧ (
∧

y∈Eout (x)

dp(y))

dp(x) = (
∧

y∈Eout (x)

dp(y))∧ (Np(x) = Eout(x))

dp(src) = (
∧

y∈Eout (src)

dp(y))∧ (Np(src) = Eout(src))

= (Np(src) = Eout(src))∧ (
∧

y∈Eout (src)

(Np(y) = Eout(y))

∧ (
∧

z∈Eout (y)

dp(z)))

= (
∧

y6=nil

(Np(y) = Eout(y)))∧dp(dst)

= (y 6= nil)⇒ (Np(y) =C(y)).
(9)

The above expansion of equation is a traversal on the DV-
Network, which always ends at dst. As a result, every node
y can detect violation using purely local contracts Np(y) =
C(y).
Controlling placement of verification. Although the default
deployment model of the DV protocol is to deploy it for
each source, following fate-sharing, the framework is flexible
to allow control of deployment. Fundamentally, each point
of the DV protocol can verify (computing d()) for only the
paths starting from the point. For example, Instead of having
individual server as the source, since all servers’ prefixes
within a rack are aggregated at ToR switches, a deployment
may deploy only at ToR switches, verifying the requirements
from those points on.

5 Distributed Packet Forwarding

After CPCheck verifies the FIBs from each control plane
efficiently, CP Composer makes the CP selection and decides
on how to route each individual packet using the results of
CPCheck. Assuming operators specify a rank among all CPs,
Carbide has the ingress node select the highest-ranked verified
CP, and announces it to other nodes. This is a simple yet
powerful composition, as there is a single decision maker and
it guarantees eventual consistency.

However, there are two challenges. First, consider a single
CP. When the source has verified that the CP has no violation
and hence chosen it for a packet, the CP of a switch may have
changed its FIB when the packet arrives at it. This changed
FIB may be invalid. We refer to this as the Carbide consis-
tency problem. Secondly, to guarantee correctness, operators
may require that only verified states of the data plane can
be used. When intermediate nodes modify their FIBs, they
have to wait for the verification results before being able to
forward the packets, potentially leading to increased delays.
We refer to this as the updating blocking problem. Third, a

7

CP may oscillate between various routes, causing CP Com-
poser to continuously recompute and update the CP selection
for the same updates. We refer to this as the Unstable CP
composition problem.

5.1 Carbide Forwarding Consistency

Carbide allows users to specify and satisfy different consis-
tency requirements (e.g., per-packet, eventual, loop-free) per
packet space. However, there exists a trade-off between the
level of complexity of the solution, and consistency require-
ments. By default, Carbide guarantees eventual consistency
by having the ingress node select the highest-ranked verified
CP, and announces it to other nodes. When traffic in the same
packet space enters the network from multiple nodes, these
ingress nodes run a consensus protocol to let one ingress
device decide the CP to use. Carbide can achieve stronger
consistency requirements. In particular, the verifier (source
in typical cases) can orchestrate the commitments of FIB
changes using consistent updates, solutions which have also
been developed to guarantee different types of consistency
while minimizing the disruption time (e.g., [28, 36]).

5.2 Update Blocking Problem

Link and node failures can incur delays to Carbide, as the
nodes must complete the verification procedure before pack-
ets can be forwarded along the newly computed paths. This
section introduces mechanisms to reduce disruption times.

Before presenting the mechanisms, we first describe the
issue in further detail. To illustrate the problem, we consider
a source S sending traffic using a CP along the path A-B-C-D.
The failure of the link B-C may cause B to select another node
as its next-hop, e.g., X . However, before committing to the
change, B has to notify S, S must complete the verification,
and B has to receive the notification from S even if the updated
path is correct. This blocking update might cause performance
degradation due to the incurred delay.

In order to mitigate the problem, Carbide introduces the
fast reroute (FRR) ability to each control plane. Specifically,
the backup paths are treated as virtual CPs, and pre-verified.
As such, immediately upon detecting a network event, an
intermediate node (e.g., B) may switch to the current CP’s
FRR. Backup paths have traditionally been implemented in
two ways: alternate next-hops and tunneling.

For alternate next-hops, a number of control planes support
it for local failure protection on the data plane. For example,
EIGRP and RIP provide loop-free alternates in the routing pro-
tocol [39, 45], and BGP maintains a list of policy-compliant
routes in the RIBs where the second-highest rank one can
be naturally considered as a backup route after being veri-
fied [43]. The backup next-hop can be verified by having
it injected into a virtual CP, and executing CPCheck before
the targeted failures. Another common way of implementing
FRRs for link protection is through tunnels [35, 53, 57], and

Network Type # nodes # links
Stanford [7] Backbone 16 14
AT&T [3] Backbone 25 56

Rocketfuel (AS 1755) [10] Backbone 172 381
3-layer k-ary fat tree Data center 5k2/4 k3/2

Table 1: Summary of network topologies we used.
requirements for the tunneled path (e.g., waypoint avoidance)
are also verified through a virtual CP.

In addition to these two common forms of implementa-
tion, Carbide takes advantage of the co-existence of multiple
control planes and allows one CP to be used as the FRR
mechanism for another CP. More specifically, let us assume a
device with two control planes: CP1, and CP2 with CP1 being
preferred CP. When the next-hop in CP2 is different from that
of CP1, the next-hop is treated as and injected into a virtual
CP of CP1. After successful verification, the next-hop can
then be used as a backup path for CP1.

5.3 Unstable CP Composition Problem

In some instances, a CP may oscillate between different routes
due to hardware, software or configuration errors, leading to
continuous repeated updates to the vFIB. Because CPCheck
eagerly recomputes correctness results in response to any
change in a control plane’s vFIB, this may lead to a packet’s
CP assignment oscillate excessively as well.

Inspired by route flap damping in BGP, we can deploy a CP
oscillation damping mechanism to address this issue. Each
packet space is assigned a penalty value which is increased
by a fixed parameter (e.g., 1000) every time the CP assign-
ment is updated. If the penalty value exceeds a suppress limit
(e.g., 3000), any subsequent CPCheck updates will not trigger
the CP composer. The penalty value also decays exponen-
tially according to a half-life time (e.g., 5 minutes) as long as
no CPCheck updates are triggered. If the penalty for a sup-
pressed packet space falls below a reuse limit, the composer
will resume responding to subsequent verification updates.
The suppress limit, half-life time, and reuse limit may all be
configurable. This mechanism reduces the impact of oscillat-
ing vFIB updates on the CP assignment without affecting the
reaction time and availability of stable routes.

6 Evaluation

A switch OS level verification software suite called MultiJet
is implemented to deploy Carbide on real white-box switches
(See Appendix B for details). This section illustrates the bene-
fits of Carbide, evaluates its overhead under different network
settings, and demonstrates its scalability and suitability even
for large-scale networks. To this end, Carbide is evaluated
extensively using both emulation and simulation on a variety
of networks described in Table 1. Details of the experiment
environments are described in Appendix C.

8

(a) (b) (c)

Figure 7: The percentage of packet space that violates the correctness requirement when migrating from CP1 to CP2. (a) The newly deployed
CP2 does not have any bugs, yet, the network encounters transient violations during the migration. (b) Centralized verification (i.e., NetPlumber)
can incorrectly detect data plane errors during CP convergence, resulting in a premature CP rollback. (c) CP2 has bugs, and the network
performs a global rollback to CP1, resulting in significant interruption.

6.1 Benefits of Carbide

The goal of this set of experiments is to demonstrate the ben-
efits of Carbide in ensuring correctness requirements under
either software bugs or network failures.

6.1.1 IGP Migration

This first experiment demonstrates how Carbide can ensure
that no policy requirements are violated even during opera-
tions that are highly susceptible to major disruptions. More
specifically, we consider an IGP migration, i.e., the replace-
ment of a network’s existing, or legacy, IGP with a different
version of IGP. Upgrading the IGP can result in performance
improvements and new service capabilities. However, the
process can also lead to periods of severe network disruption
(e.g., loops, congestion, blackholes). To mitigate the problems,
several approaches have been developed (e.g., [50, 51]).

We show how Carbide can ensure that the policy require-
ments are still satisfied during IGP migrations. In particular,
we assume that the administrator wants not only loop-free
forwarding paths, but also packets to be forwarded along the
shortest paths to reduce the risks of congestion. We compare
the performance of Carbide with the overlay method [15, 49],
a best current practice approach for IGP migration, enhanced
with a central verification server. In the overlay method, all
routers run not only the legacy IGP, but also the new IGP
concurrently, with routers initially preferring the legacy IGP.
Incrementally, the configurations of the routers are updated
for the new IGP to be preferred. During this period of tran-
sition where a number of routers prefer the legacy IGP, and
others prefer the new IGP, undesirable routing outcomes may
happen: packets may result in forwarding loops, blackholes,
or get forwarded along long convoluted paths.

We run the experiments on a network topology emulating
that of the AT&T backbone shown in Table 1. To measure
the number of policy violations, we deploy a server running
NetPlumber [29]. Whenever a FIB rule is added, it is immedi-
ately sent to the real-time centralized verification controller

SDN Carbide OSPF
Before partition 171/171 (100%) 171/171 (100%) 105/171 (61%)
After partition 72/122 (59%) 115/122 (94%) 69/122 (56%)

Table 2: Fraction of flows that can traverse the waypoint.
which can then identify and count the number of violations
of basic reachability, loop-freeness, and shortest path.
Results. Figure 7 (a) shows the percentage of packet space
that violates reachability, loop-freeness or shortest path during
the upgrading process, computed by NetPlumber. We observe
that up to 21% of the packet space may result in violations in
the network. In contrast, with Carbide, the percentage is 0%
throughout the process.

In response to detecting violations, a number of propos-
als (e.g., [4, 15, 26, 48, 52]) have advocated rolling back to
the legacy IGP version. In particular, the new version of the
software may contain errors (e.g., bugs). However, because
centralized verification can only verify a snapshot of a data
plane, the snapshot may represent a transient state, and the
server may unnecessarily rollback the software causing fur-
ther network disruptions. Figure 7 (b) illustrates the problem:
After deploying the new IGP, transient violations during the
upgrade trigger a software rollback to the previous version of
the IGP, resulting in a more severe violation.

As another variant of the setting, we consider the new IGP
software indeed has a bug. As shown in Figure 7 (c), there are
still 2% of the packet space that experience violations even
after the migration has been completed. Because of the bug,
the IGP at every router in the network has to be roll backed
to the previous version. The results demonstrate significant
disruption and violations during the process. In contrast, Car-
bide always guarantees 0-violation even with a faulty new
IGP since Carbide only allows the verified rules coming from
the new IGP to be deployed in the data plane. This set of
experiments demonstrates the difficulties in migrating IGP
and shows the benefits of Carbide in such process.

6.1.2 Waypoint Routing

This experiment continues to evaluate the effectiveness of
Carbide in ensuring correctness requirements, but we now

9

(a) (b)

Figure 8: Packet receiving rate for the fast recovery experiments.
The failure in (a) affects both the SDN and OSPF CPs, while that in
(b) affects only the current SDN.

consider other objectives. More specifically, we consider the
requirement of waypoint routing. Administrators commonly
want specific traffic to traverse different network functions.

We use the Rocketfuel topology in Table 3, and select one
node as the destination, another node as the waypoint to be
traversed, and consider the paths from all other nodes. We
compare three settings: First, switches run SDN only. Second,
switches run OSPF only. Finally, switches run SDN as the
preferred and primary CP, and OSPF as a backup CP. We
gradually fail random links, until a subset of nodes gets par-
titioned and loses connectivity with the SDN controller. For
each setting, we report the fraction of nodes that are in the
partition with the target destination and waypoint node and
that can satisfy the objective.
Results. Table 2 shows the fraction of paths that satisfy the
requirement. Before the network is partitioned, it has of 171
source nodes. Using SDN, all of the paths satisfy the require-
ment. Similarly, with Carbide, the requirement is satisfied
for all paths. In contrast, with OSPF, only 61% of paths tra-
verse the waypoint. After network partition, the component
disconnected from the SDN controller has of 122 nodes.

Using SDN, only 59% of the paths satisfy the requirement.
This is because the OpenFlow rules may be obsolete, and
may forward packets along invalid paths and into black holes.
Using OSPF, the fraction of paths that satisfy the require-
ment drops to 56%, and the remaining 44% would still allow
packets to reach the destination but without traversing the
waypoint, and would thus violate correctness. In contrast,
with Carbide, 94% of the paths satisfy the requirement, and
for the remaining 6%, their traffic would be dropped. As such,
Carbide guarantees correctness for all of the paths.

6.1.3 Failure Recovery

This experiment demonstrates the effectiveness of Carbide
in recovering from link failures. This experiment is under
the eventual consistency model as defined in Section 5.1, and
enables FRR across CPs, i.e., upon detecting a link failure, a
node can decide to switch to another CP which is not using
that link. We deploy a Rocketfuel topology in Table 3, and
two of the routers are replaced with the white-box switches.
Each of the rest network devices runs as a separate Docker
container, with two CPs: a Quagga OSPF, and an SDN.

We randomly select a pair of nodes and generate UDP traf-

SDN Carbide OSPF
Average downtime 112.861 ms 8.492 ms 22.572 ms

Table 3: Average downtime of using different systems.

fic between them by running iperf [8] at a rate of 100 Mbps.
We then randomly select links to fail on one of the paths used
by the UDP traffic. For the SDN CPs to recover from the
failures, we implement a reactive approach. That is, when
a failure happens, the device that detects it sends a control
message to the controller to recalculate alternative forwarding
paths and update the vFIB of the affected devices accord-
ingly [46]. For each run, we measure the downtime defined as
the amount of time between the moment the destination stops
receiving packets because of the failure to the moment the
receiver starts receiving packets again. We repeat this process
for 10 runs.
Results. Figure 8 illustrates the patterns we observed: First,
in Figure 8(a), the failure affected both SDN and OSPF CPs.
In other words, both CPs used the failed link for the next
hop. As such, at t1, no valid route can be used, leading to a
throughput of 0. Then, after OSPF discovers an alternate path,
Carbide uses OSPF to forward traffic, and the throughput
starts increasing at t2. Finally, after the SDN recovers the
route, the device uses the OpenFlow rules to forward traffic,
and the rate increases further starting from t3. In Figure 8(b),
the link failure affects only the SDN CP. The device can
immediately switch to OSPF using cross-CP FRR to continue
forward the packets.

Table 3 summarizes the average downtimes of the two CPs,
and that of Carbide across the runs. While the average down-
time of the SDN CP is 112.861 ms, the average downtime of
OSPF is 22.572 ms, and that of Carbide is even lower than
both of them with 8.492 ms. The results show that Carbide
can reduce the downtime of SDN by more than an order of
magnitude, and that of OSPF by 43%. While one may be sur-
prised that on average, Carbide can recover faster than OSPF,
the main reason is that in some runs, the SDN CP recovers
faster, whereas, in other runs, the OSPF CP recovers faster;
and in every case, Carbide running the two CPs switches to
the one that recovers the fastest.

6.2 Overhead and Scaling

A concern of Carbide is its overhead determining the cost and
the scaling ability of Carbide. Compared with a traditional
network with a single CP and no distributed verification,
Carbide has the following overhead: (1) the overhead of
running each additional CP instance at each switch; and
(2) the overhead in Carbide (especially from distributed
verification) in terms of memory, messaging and processing.
In this section, we first evaluate the feasible number of CPs
we can run on a real network. We then extensively evaluate
the overhead introduced by the Carbide using real backbone
and data center topologies.

10

1 2 4 8 16 32 50 80 150
of BGPs running

0

200

400

600
Co

nv
er

ge
nc

e
Ti

m
e

(s
)

Figure 9: Network convergence times of Carbide with different
numbers of BGP instances per device.
6.2.1 Control Plane Overhead

This set of experiments aims to demonstrate Carbide’s fea-
sibility by a stress test that runs 1 to 150 BGP instances in
each switch. For each experiment, we measure the network
convergence time as the time the last BGP instance converges.
Specifically, we emulate the Stanford backbone network [7]
on the VM having 32 vCPUs, and we limit each container to
2 vCPUs and 4 GB memory. 1 To have a similar number of
FIB entries in the Stanford network, we connect each node to
3K external routes, making an average of 48K FIB entries in
each node and 750K prefixes in total. We then run different
numbers of Quagga’s BGP instances to understand how many
CPs Carbide can support. We instantiate each BGP instance
on a node with a different port and a private AS number.
Results. Figure 9 shows the network convergence time with
different numbers of BGP instances running in the network.
We observe that running multiple CPs on a commercial switch
incurs a moderate overhead. Specifically, when the total num-
ber of BGP instances is less than 50, the network does not
experience a significant increase on convergence time (i.e., 50
seconds running one BGP vs. 100 seconds running 50 BGPs).
However, when the total number of BGP instances exceeds 50,
the convergence time increases non-linearly. We analyze the
memory, bandwidth and CPU usages for each experiment, and
conclude that the main bottleneck for running more than 50
BGPs in the experiment is insufficient CPU resource, causing
high scheduling delays.

6.2.2 Verification Overhead

In this set of experiments, we evaluate the DV protocol on
various backbone and data center networks. By gradually
scaling topology size and varying the number of FIB entries,
we demonstrate how well Carbide scales. For backbone net-
works, we select topologies of different sizes from [32] to run
OSPF, and control the number of external routes announced
by each router. After OSPF converges, we randomly pick an
FIB entry to modify and then measure the messaging and
processing overhead. For data center (DC) networks, we use
3-layer k-ary fat tree models with different k values (from 24
to 80). We simulate the protocol execution on involved nodes
and estimate the overall overhead. As for requirements, we

1Most of the modern switches have at least 2 GB of RAM and CPUs with
two cores. [2, 11].

10 20 30 40 50 60 70 80 90 100
Topology Size

0

50

100

150

200

M
em

or
y

pe
r N

od
e(

M
B)

Memory
Message

6
7
8
9
10
11
12

To
ta

l M
es

sa
ge

 (K
B)

0 2000 4000 6000
Topology Size

0

2

4

6

8

M
em

or
y

pe
r N

od
e(

M
B)

Memory
Message

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l M
es

sa
ge

 (M
B)

(a) (b)

Figure 10: Average memory consumption per device and total
message after a FIB update. (a) Backbone (b) Data center.

use reachability and loop-freeness for backbones, and shortest
path and reachability for data centers.
Memory overhead. Figure 10 shows how memory usage of
each node grows with topology size. We observe that the per-
device memory consumption of the DV-protocol in backbone
networks reaches 190 MB when the topology size becomes
100. In contrast, the DV protocol only consumes 13 MB of
memory on a DC network with 8K nodes. This is because
the shortest path requirement substantially reduces the size of
the DV-Network. With this requirement, DV-Network for a
single source contains the same number of nodes as the phys-
ical topology. Further, each device only needs to maintain
the information about its upstream and downstream devices,
requiring O(n3/2) memory for a topology of size n. Consider-
ing that modern switches normally have above 1 GB memory,
we draw the conclusion that the memory overhead of the DV-
protocol is is insignificant in DC networks, and is moderate
in backbone networks.
Messaging overhead. Figure 10 illustrates the amount of
message traffic incurred by the DV-protocol in the whole
network after one device updates its verification result. We
observe that the DV-protocol incurs a negligible message
overhead, which does not limit its scalability: the total traffic
does not exceed a few MBs even when the network has 8K
network devices. Both backbone and data center topologies,
moreover, have a linear growth of the message traffic with
the topology size. This is because the filtering nature of DV-
Network design substantially reduces redundant messages
while the message overhead of the naïve FIB flooding is
proportional to the number of links in the network.
Processing overhead. Figure 11 shows the total time re-
quired for a device’s verification function update to be propa-
gated to and get processed at the corresponding source.

Figure 11(a) shows that the processing time increases as the
topology size and the number of external routes announced by
each router on the backbone networks increase. The process-
ing time reaches 0.4 s on a topology with 100 nodes where
each node announces 100 external routes. Essentially, the hop
count and the average number of FIB entries determine the
total processing time of the DV-protocol.

Figure 11(b) plots the processing time of the DV-protocol
in DC networks collected using numeral simulation. In the
simulations, the number of external routes increases linearly

11

20 40 60 80 100
Topology Size

0.0

0.1

0.2

0.3

0.4

Ti
m

e(
s) N = 1

N = 10
N = 50
N = 100

0 2000 4000 6000 8000
Topology Size

0.05

0.10

0.15

0.20

Ti
m

e(
s)

(a) (b)

Figure 11: Processing time of Carbide for a single FIB update. (a)
Backbone (b) Data center. N is the average number of external routes
per device.

as k. We observe that although the processing time increases
with the size of the DC network, the increasing speed becomes
slower as the network size keeps increasing. As such, the DV
protocol has a small processing overhead.

To summarize, Carbide, with its light-weight design and
message pruning mechanism, can scale effectively to perform
distributed verification for large networks.

7 Related Work

Network verification. A number of methods and tools have
been proposed to verify network behaviors [12, 19, 21, 22, 24,
29–31, 54, 56]. These tools adopt a common design, which
is to use a centralized server to collect network forwarding
information or configurations from all network devices, and
analyze network forwarding behaviors. This design requires
reliable connections between the server and network devices,
and makes the server a performance bottleneck and a single
point of failure. Azure [27] allows devices to locally verify
its forwarding behavior using local contracts, but is limited to
only verify shortest path reachability and fault-tolerance. In
contrast, Carbide provides CPCheck, a simple, generic, effi-
cient distributed verification framework that can verify a wide
range of common requirements (e.g., reachability, waypoint,
subnet isolation, loop-freeness, and fault-tolerance).
Network configuration synthesis and emulation. Network
configuration synthesis [13, 17, 18, 25, 47] and emulation [15,
37, 38] are complementary to verification. Network synthe-
sis [13, 17, 18, 25, 47] lets operators specify high-level intent,
and generates corresponding configurations (e.g., routing pro-
tocol configurations and programmable data plane). Network
emulation [15,37,38] emulates the execution of these configu-
rations before they are deployed in the networks. They aim to
build a single infallible control plane, which often results in
an over-engineered, complex control plane or a control plane
with limited capability. Rather than relying on a single control
plane, Carbide resorts to an "Internet way" to run multiple
control planes and hot-swap among them to improve network
reliability. In CPCheck, one approach to transform a generic
network requirement verification to reachability verification
on DV-Network is to use the product graph [40], which is
also used in Merlin [47], Propane [13] and Contra [25] to

synthesis configurations.
Multiple control planes. Several designs have been pro-
posed for composing multiple control plane layers to improve
network reliability [4, 15, 26, 33, 34, 48, 52]. For example,
B4 [26] builds layered control architecture to run central TE
on top of the baseline routing protocols, and FBOSS [4, 15]
agents run specific control planes (i.e., OpenR [6] and BGP)
simultaneously to compose both protocols’ features. How-
ever, existing multiple control planes composition designs can
only guarantee a limited number of properties (e.g., reacha-
bility and domain backup), but fail to provide generic routing
correctness guarantees (e.g., waypoint routing, loop-freeness
and subnet isolation). In contrast, Carbide uses the verifica-
tion results of CPCheck to systematically compose multiple
control planes to guarantee generic routing correctness and
operator-specified consistency models.

8 Conclusions

This paper presents Carbide, a novel system to achieve high
reliability in networks through distributed verification and
multiple control plane composition. Carbide develops a sim-
ple, generic, distributed verification framework, and achieves
systematic composition of multiple control planes using the
verification results. Extensive experiments are conducted to
demonstrate the benefits, overhead, and scalability of Car-
bide.

12

References

[1] Amazon Web Services (AWS). https:
//aws.amazon.com/.

[2] ASR 1000 Series Route Processor Data
Sheet. https://www.cisco.com/c/en/us/
products/collateral/routers/asr-1000-
series-aggregation-services-routers/
data_sheet_c78-441072.html.

[3] At&t next-generation ip mpls backbone.
https://www.att.com/Common/merger/files/pdf/
wired-network/Domestic_0C-768_Network.pdf.

[4] Building Express Backbone: Facebook’s new long-
haul network. https://engineering.fb.com/
data-center-engineering/building-express-
backbone-facebook-s-new-long-haul-
network/.

[5] Docker container platform. https://www.docker.com.

[6] Facebook open routing group. https:
//www.facebook.com/groups/openr/about/.

[7] Header space library and netplumber.

[8] Iperf, a tool for active measurements of the maxi-
mum achievable bandwidth on ip networks. https:
//iperf.fr/.

[9] Redis: an open source in-memory data structure store.
http://redis.io.

[10] Rocketfuel: An isp topology mapping engine.
http://www.cs.washington.edu/research/
networking/rocketfuel.

[11] Routing Engine Specifications - TechLi-
brary - Juniper Networks. https://
www.juniper.net/documentation/en_US/
release-independent/junos/topics/reference/
specifications/routing-engine-m-mx-t-
series-specifications-by-model.html.

[12] BECKETT, R., GUPTA, A., MAHAJAN, R., AND
WALKER, D. A general approach to network configura-
tion verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication
(2017), ACM, pp. 155–168.

[13] BECKETT, R., MAHAJAN, R., MILLSTEIN, T., PAD-
HYE, J., AND WALKER, D. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), pp. 328–341.

[14] BROADCOM. Trident 4 ethernet switch.

[15] CHOI, S., BURKOV, B., ECKERT, A., FANG, T.,
KAZEMKHANI, S., SHERWOOD, R., ZHANG, Y., AND
ZENG, H. Fboss: building switch software at scale. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (2018), pp. 342–
356.

[16] CLARK, D. The design philosophy of the darpa internet
protocols. In Symposium proceedings on Communica-
tions architectures and protocols (1988), pp. 106–114.

[17] EL-HASSANY, A., TSANKOV, P., VANBEVER, L., AND
VECHEV, M. Network-wide configuration synthesis. In
International Conference on Computer Aided Verifica-
tion (2017), Springer, pp. 261–281.

[18] EL-HASSANY, A., TSANKOV, P., VANBEVER, L., AND
VECHEV, M. Netcomplete: Practical network-wide
configuration synthesis with autocompletion. In 15th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18) (2018), pp. 579–594.

[19] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-
SULLIVAN, M., GOVINDAN, R., MAHAJAN, R., AND
MILLSTEIN, T. A general approach to network configu-
ration analysis. In 12th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
15) (2015), pp. 469–483.

[20] FOUNDATION, O. N. Openflow switch specification
1.4.0. Open Networking Foundation (on-line), Oct.
2013.

[21] GEMBER-JACOBSON, A., AKELLA, A., MAHAJAN, R.,
AND LIU, H. H. Automatically repairing network con-
trol planes using an abstract representation. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (2017), ACM, pp. 359–373.

[22] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZ-
IÈRES, D., AND MCKEOWN, N. I know what your
packet did last hop: Using packet histories to trou-
bleshoot networks. In NSDI (2014), vol. 14, pp. 71–85.

[23] HONG, C.-Y., MANDAL, S., AL-FARES, M., ZHU, M.,
ALIMI, R., BHAGAT, C., JAIN, S., KAIMAL, J., LIANG,
S., MENDELEV, K., ET AL. B4 and after: managing
hierarchy, partitioning, and asymmetry for availability
and scale in google’s software-defined wan. In Pro-
ceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (2018), ACM,
pp. 74–87.

[24] HORN, A., KHERADMAND, A., AND PRASAD, M. R.
Delta-net: Real-time network verification using atoms.
In NSDI (2017), pp. 735–749.

13

https://aws.amazon.com/
https://aws.amazon.com/
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/data_sheet_c78-441072.html
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/data_sheet_c78-441072.html
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/data_sheet_c78-441072.html
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/data_sheet_c78-441072.html
https://www.att.com/Common/merger/files/pdf/wired-network/Domestic_0C-768_Network.pdf
https://www.att.com/Common/merger/files/pdf/wired-network/Domestic_0C-768_Network.pdf
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://www.docker.com
https://www.facebook.com/groups/openr/about/
https://www.facebook.com/groups/openr/about/
https://iperf.fr/
https://iperf.fr/
http://redis.io
http://www.cs.washington.edu/research/ networking/rocketfuel
http://www.cs.washington.edu/research/ networking/rocketfuel
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/specifications/routing-engine-m-mx-t-series-specifications-by-model.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/specifications/routing-engine-m-mx-t-series-specifications-by-model.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/specifications/routing-engine-m-mx-t-series-specifications-by-model.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/specifications/routing-engine-m-mx-t-series-specifications-by-model.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/specifications/routing-engine-m-mx-t-series-specifications-by-model.html

[25] HSU, K.-F., BECKETT, R., CHEN, A., REXFORD, J.,
TAMMANA, P., AND WALKER, D. Contra: A pro-
grammable system for performance-aware routing. to
apper at NSDI’20 (2020).

[26] JAIN, S., KUMAR, A., MANDAL, S., ONG, J.,
POUTIEVSKI, L., SINGH, A., VENKATA, S., WAN-
DERER, J., ZHOU, J., ZHU, M., ET AL. B4: Experience
with a globally-deployed software defined wan. In ACM
SIGCOMM Computer Communication Review (2013),
vol. 43, ACM, pp. 3–14.

[27] JAYARAMAN, K., BJØRNER, N., PADHYE, J.,
AGRAWAL, A., BHARGAVA, A., BISSONNETTE,
P.-A. C., FOSTER, S., HELWER, A., KASTEN, M.,
LEE, I., ET AL. Validating datacenters at scale. In
Proceedings of the ACM Special Interest Group on
Data Communication. 2019, pp. 200–213.

[28] JIN, X., LIU, H. H., GANDHI, R., KANDULA, S., MA-
HAJAN, R., ZHANG, M., REXFORD, J., AND WATTEN-
HOFER, R. Dynamic scheduling of network updates.
ACM SIGCOMM Computer Communication Review 44,
4 (2014), 539–550.

[29] KAZEMIAN, P., CHAN, M., ZENG, H., VARGHESE, G.,
MCKEOWN, N., AND WHYTE, S. Real time network
policy checking using header space analysis. In NSDI
(2013), pp. 99–111.

[30] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N.
Header space analysis: Static checking for networks. In
NSDI (2012), vol. 12, pp. 113–126.

[31] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M.,
AND GODFREY, P. B. Veriflow: Verifying network-wide
invariants in real time. In Presented as part of the 10th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 13) (2013), pp. 15–27.

[32] KNIGHT, S., NGUYEN, H. X., FALKNER, N., BOW-
DEN, R., AND ROUGHAN, M. The internet topology
zoo. IEEE Journal on Selected Areas in Communica-
tions 29, 9 (2011), 1765–1775.

[33] KVALBEIN, A., HANSEN, A. F., GJESSING, S., AND
LYSNE, O. Fast ip network recovery using multiple
routing configurations. In in INFOCOM 2006. 25th
IEEE International Conference on Computer Communi-
cations. Proceedings (2006), Citeseer.

[34] LE, F., XIE, G. G., AND ZHANG, H. Theory and
new primitives for safely connecting routing protocol
instances. ACM SIGCOMM Computer Communication
Review 40, 4 (2010), 219–230.

[35] LIU, H. H., KANDULA, S., MAHAJAN, R., ZHANG,
M., AND GELERNTER, D. Traffic engineering with
forward fault correction. In Proceedings of the 2014
ACM conference on SIGCOMM (2014), pp. 527–538.

[36] LIU, H. H., WU, X., ZHANG, M., YUAN, L., WAT-
TENHOFER, R., AND MALTZ, D. zupdate: Updating
data center networks with zero loss. In Proceedings of
the ACM SIGCOMM 2013 conference on SIGCOMM
(2013), pp. 411–422.

[37] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRA-
GADA, S., LOPES, N. P., RYBALCHENKO, A., LU, G.,
AND YUAN, L. Crystalnet: Faithfully emulating large
production networks. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (2017), pp. 599–
613.

[38] LOPES, N. P., AND RYBALCHENKO, A. Fast bgp simu-
lation of large datacenters. In International Conference
on Verification, Model Checking, and Abstract Interpre-
tation (2019), Springer, pp. 386–408.

[39] MALKIN, G. Rfc2453: Rip version 2, 1998.

[40] MENDELZON, A. O., AND WOOD, P. T. Finding regu-
lar simple paths in graph databases. SIAM Journal on
Computing 24, 6 (1995), 1235–1258.

[41] 2016 Cost of Data Center Outages Report.
https://datacenterfrontier.com/cost-of-
data-center-outages/.

[42] QUAGGA. https://www.quagga.net.

[43] REKHTER, Y., HARES, S., AND LI, D. T. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, Jan. 2006.

[44] RYU. Component-based software defined networking
framework. https://osrg.github.io/ryu/.

[45] SAVAGE, D., SLICE, D., WHITE, R., NG, J., PALUCH,
P., AND MOORE, S. Rfc 7868, cisco’s enhanced interior
gateway routing protocol (eigrp), 2016.

[46] SHARMA, S., STAESSENS, D., COLLE, D., PICKAVET,
M., AND DEMEESTER, P. A demonstration of fast
failure recovery in software defined networking. In
International Conference on Testbeds and Research In-
frastructures (2012), Springer, pp. 411–414.

[47] SOULÉ, R., BASU, S., MARANDI, P. J., PEDONE, F.,
KLEINBERG, R., SIRER, E. G., AND FOSTER, N. Mer-
lin: A language for provisioning network resources. In
Proceedings of the 10th ACM International on Confer-
ence on emerging Networking Experiments and Tech-
nologies (2014), pp. 213–226.

14

https://datacenterfrontier.com/cost-of-data-center-outages/
https://datacenterfrontier.com/cost-of-data-center-outages/
https://www.quagga.net
https://osrg.github.io/ryu/

[48] TILMANS, O., AND VISSICCHIO, S. Igp-as-a-backup
for robust sdn networks. In Network and Service Man-
agement (CNSM), 2014 10th International Conference
on (2014), IEEE, pp. 127–135.

[49] VANBEVER, L. Methods and techniques for disruption-
free network reconfiguration. PhD thesis, Ph. D. disser-
tation, Université catholique de Louvain, 2012.

[50] VANBEVER, L., VISSICCHIO, S., PELSSER, C., FRAN-
COIS, P., AND BONAVENTURE, O. Seamless network-
wide igp migrations. In Proceedings of the ACM SIG-
COMM 2011 conference (2011), pp. 314–325.

[51] VANBEVER, L., VISSICCHIO, S., PELSSER, C., FRAN-
COIS, P., AND BONAVENTURE, O. Lossless migrations
of link-state igps. IEEE/ACM Transactions on Network-
ing 20, 6 (2012), 1842–1855.

[52] VISSICCHIO, S., CITTADINI, L., BONAVENTURE, O.,
XIE, G. G., AND VANBEVER, L. On the co-existence
of distributed and centralized routing control-planes. In
Computer Communications (INFOCOM), 2015 IEEE
Conference on (2015), IEEE, pp. 469–477.

[53] WANG, Y., WANG, H., MAHIMKAR, A., ALIMI, R.,
ZHANG, Y., QIU, L., AND YANG, Y. R. R3: resilient
routing reconfiguration. In Proceedings of the ACM
SIGCOMM 2010 conference (2010), pp. 291–302.

[54] YANG, H., AND LAM, S. S. Real-time verification of
network properties using atomic predicates. IEEE/ACM
Transactions on Networking 24, 2 (2015), 887–900.

[55] YANG, H., AND LAM, S. S. Scalable verification of
networks with packet transformers using atomic pred-
icates. IEEE/ACM Transactions on Networking 25, 5
(2017), 2900–2915.

[56] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCK-
EOWN, N. Automatic test packet generation. In Proceed-
ings of the 8th international conference on Emerging
networking experiments and technologies (2012), ACM,
pp. 241–252.

[57] ZHENG, J., XU, H., ZHU, X., CHEN, G., AND GENG,
Y. We’ve got you covered: Failure recovery with backup
tunnels in traffic engineering. In 2016 IEEE 24th In-
ternational Conference on Network Protocols (ICNP)
(2016), IEEE, pp. 1–10.

15

Appendices
Appendix A A Generic FIB State Distribution

Protocol

This appendix presents FSD, a novel FIB state distribution
protocol that allows ingress devices to verify complex global
requirements.

The benefits of FSD are twofold: (1) by allowing for purely
distributed verification, FSD allows Carbide to enforce con-
trol plane requirements in spite of network partitions and fail-
ures, and (2) real-time verification allows Carbide to quickly
assign control planes to incoming packets in response to net-
work events. To achieve (1), we design lightweight data struc-
tures and novel algorithms to initialize and update them. To
achieve (2), we utilize two key observations: (a) most data
plane events only affect small subsets of the packet space,
and (b) most data plane events only affect small subsets of
network devices.

FSD consists of two major components:

• A lightweight Local Equivalence Class Table (LEC table)
at each device to store relevant local forwarding informa-
tion (§A.1).

• An efficient distributed update protocol to update the infor-
mation at relevant devices in response to data plane updates
(e.g., failures, configuration changes) (§A.2).

As each CP is associated with an independent FSD instance,
we focus on one single CP and its associated FSD for the rest
of this section.

A.1 LEC Tables
At each device, FSD consists of local data structures known
as Local Equivalence Class Tables (LEC Tables) which store
the relevant forwarding behavior for outgoing flows at each
device. To motivate this design, we first consider a naive dis-
tributed implementation of existing centralized verification
systems (e.g., VeriFlow [31], NetPlumber [29]) by replicat-
ing the global data structures on each device. Devices would
maintain the data structures by broadcasting any local flow
rule updates across the network, and each device would indi-
vidually compute correctness as specified by the centralized
verification system. However, this approach has two major
limitations: (1) the memory requirements of these global data
structures generally scale with the total forwarding rule space
of the entire network, which does not scale well in larger
networks, and (2) network devices often have much less com-
puting power than a typical controller, which may hurt verifi-
cation time.

To avoid these limitations, we observe that each device only
needs to be aware of forwarding rules at subsequent devices
that affect its outgoing flows. We can then trim the stored data

Figure 12: An example with two flows using ABCD and ABEFD.

by only considering the subset of network devices reachable
by downstream flows. To illustrate these insights, consider
Figure 12. Any forwarding rules at device E or device F will
not affect outgoing flows from device C, so device C need not
be aware of such forwarding rules. To take advantage of this,
we will introduce the notion of Local Equivalence Classes.

Definition 1 (Local Path) The local path of packet p at de-
vice n (l pn

i (p)) for a given control plane CPi is the down-
stream path of p beginning at n when CPi is stable.

Definition 2 (Local Equivalence Class) At each device n,
the control plane CPi partitions the packet space into local
equivalence classes LEC n

i = {LECn
j}, such that only packets

whose headers are in the same LEC use the same unique
downstream forwarding path. Formally, for two arbitrary
packets p1 and p2,

• ∀ j, p1, p2 ∈ LECn
j , then l pn

i (p1) = l pn
i (p2); and

• ∀ j,k, p1 ∈ LECn
j , p2 ∈ LECn

k , then l pn
i (p1) 6= l pn

i (p2).

At each device, FSD partitions the packet packet space
into LECs, and by definition, each LEC will have a unique
downstream forwarding path. This associative map between
LECs and forwarding paths will form LEC tables, the core
data structures at each device, and this data will provide a
complete local context on which FSD can fully determine a
given packet’s forwarding behavior and thus allow us to query
for general correctness requirements. Figure 12 shows the
initial LEC table stored at device A.

To initialize the data structures, we utilize a vector-based
algorithm, shown in Algorithm 2. Each device initially only
has access to local forwarding information, which may only
consist of next-hops (e.g., EIGRP). The initialization algo-
rithm allows FSD to aggregate next-hop information across
devices in order to generate the LEC paths at each device.

A.2 Distributed Real-time Updates
In this section, we will describe a novel distributed algorithm
to verify correctness in response to real-time data plane up-
dates. We will first introduce the three types of message uti-
lized in FSD, then demonstrate an example workflow in re-

1

Protocol 2: LEC Table Initialization
Data: Local forwarding rules at each device
Initialize associative map T
/* First we initiate messages for LECs for

which we are the end of the route */
foreach flow rule f do

if f.nexthop == f.dst then
send LEC Path announcement (n, f .match, n) to all

neighbors
T .insert(f .match, n)

on event incoming LEC path announcement ni, PSi, Pi
foreach local flow rule f do

if f.nexthop == ni then
LECn

i ← f .match∩PSi
T .insert(LECn

i , Pi)
send LEC Path announcement (n, PSend , n∪Pi)

to all neighbors

sponse to forwarding rules being added, modified, or deleted,
and to other network events (e.g., link failures).
LEC path update. The goal of this message is to announce
changes in a device’s local forwarding state, as the changes
may affect other devices’ LEC paths. Two types of network
events can trigger local forwarding state change: (1) forward-
ing rule update, and (2) topology change (e.g., link failure).
When detecting such changes, FSD first updates its local
LEC table, and then generates an LEC path update message,
(n,PSa f f ,P), where n is the device at which the network event
was detected, PSa f f is the packet subspace whose behavior
is affected by the update, and P is the new local path taken
by PSa f f starting at device n. If there is no longer a local
path, P is set as NULL. This announcement is broadcast to all
devices in the network. Then, when receiving this announce-
ment, each device performs a local search to identify affected
LECs and updates its path information. To achieve this, the
device checks for all LECs with a path dependency on n, or
in other words, all LECs whose forwarding paths contain n.
In addition, the device checks for LECs with a packet space
dependency on PSa f f , or in other words, LECs that overlap
with PSa f f . For each LEC that has both path and packet space
dependencies on the incoming announcement, the device then
updates its path according to the new segment P. The up-
date may also partition an LEC into multiple ones, or even
generate new LECs based on the intersection results.
LEC request. The goal of this message is for a device to re-
trieve LEC forwarding information from other devices. More
precisely, in some instances such as when a forwarding rule
is added or modified, a device may not have the needed local
path P stored in its LEC table. In such case, the device n sends
an LEC request message, (n′,PSreq), to the next-hop n′ of the
new rule to request the relevant path of the match PSreq of the
new rule.

LEC reply. In response to the LEC request message, de-
vice n′ will search for the local path of PSreq by finding the
intersection in its own LEC table. Based on the LEC inter-
section results, PSreq maybe split into multiple packet spaces
{PSi

reply}, and the union of all PSi
reply should equal to PSreq,

i.e.,
⋃

i PSi
reply = PSreq. The LEC reply message follows the

format as (n′,PSi
reply,P

i) for each PSi
reply, where Pi is the lo-

cal path of PSi
reply at device n′. Again, if there is no local path,

Pi = NULL. After receiving the reply messages, n will update
its LEC table and broadcast the updated LEC messages.

We will now describe a realistic example to illustrate the
behavior of FSD in response to various network events as
below.
E1: modification of a forwarding rule at B. As shown in
Figure 13(a), when device B receives its new forwarding rule
< 101∗∗∗∗∗, Next-hop: E >, B does not have the downstream
routing information for 101∗∗∗∗∗. As such, B first sends an
LEC request to the rule’s specified next-hop, i.e., E. In re-
sponse, E returns the reply message for 101∗∗∗∗∗, and the
local path is EFD. Upon receiving the reply message, B cal-
culates the new path segment for 101∗∗∗∗∗ and broadcasts the
LEC path update (B,101∗∗∗∗∗,BEFD) to all devices in the
network. Upon receiving this update, A notes that 101∗∗∗∗∗

has intersection with its LECA1 and the device (i.e., B) speci-
fied in the incoming update message is contained in the local
path of LECA1, so A updates its LEC table with the entry
(101∗∗∗∗∗,ABEFD) based on the new segment. LECA1 and
LECA2 will further be joined as one LEC. Nevertheless, C,
E and F do not update their LEC tables because they do not
have any path dependency on B. Adding a forwarding rule
follows the same workflow.
E2: deletion of a forwarding rule at C. Figure 13(b) shows
the deletion of a flow rule at C. On detecting the flow rule dele-
tion, C updates its local path in the LEC table, and broadcasts
a LEC path update (C,10∗∗∗∗∗∗,NULL) across the network.
Since A and B have dependencies on both 10∗∗∗∗∗∗ and C,
they update the segments after C in their affected LEC en-
tries (101∗∗∗∗∗). In contrast, other devices do not update their
LEC entries because although they may have packet space
dependencies, they do not have any path dependency.

The first two event examples mainly illustrate the work
flow of the distributed verification protocol upon a forwarding
state change. From the example we can see, the protocol can
converge quickly because (1) it utilizes a link-state-based up-
date algorithm allowing devices (e.g., A and B) to update their
LEC tables in parallel after receiving the broadcast (e.g., from
C), and (2) given a forwarding rule modification, only one
broadcast is needed: e.g., after C broadcasts the changes, even
though B updates its LEC table, B need not to broadcast its
update. As a result, in a single update, network devices (e.g.,
A) will not receive and need to process multiple broadcasts.
The third example below will focus on the LEC computation
illustration.

2

(a) (b)

(c) (d)

Figure 13: FSD behavior in response to (a) E1: a forwarding rule is modified at B, (b) E2: a deleted forwarding rule at C, (c) E3: a forwarding
rule is modified at E, and (d) E4: a network partition by two link failures.

E3: modification of a forwarding rule at E. Figure 13(c)
shows a forwarding rule modification at E. Following the
same workflow as E1, E first sends request to F , but after
doing the intersection at F , the packet space 1∗00∗∗∗∗ is par-
titioned into two parts 1000∗∗∗∗ and 1100∗∗∗∗ with different
local paths, which are returned to E separately. After receiv-
ing them, E creates the two new LECs in its table, and more
importantly, generates and broadcasts three update messages:
two for the new LECs and one for the complement of them in
10∗∗∗∗∗∗, where the last has no local path. Each device then
will process with all of the three packet spaces, and updates
its LEC table accordingly. For example, LECB2 at B has path
dependecy with E, and after intersection, it becomes LECB3
and LECB4 with different local paths.

E4: network partition by two link failures at BC and EF .
On the event of a network partition, two portions of the net-
work may be completely separated from each other. Further-
more, in the case of an SDN control plane, some devices may
be unable to communicate with the SDN controller and there-
fore be unable to respond to the link failures. FSD allows
these devices to quickly detect which devices are still reach-
able even in the absence of communication with the control
plane. In Figure 13(d), device C detects the link failure of
CE and notes that this affects both of its forwarding rules. C
broadcasts an LEC path update message for the match sets
of each forwarding rule, as depicted, and device A updates

its LEC table accordingly. Device A also detects the AB link
failure, but none of its forwarding rules depend on that link,
so it sends no updates. Thus device A can quickly detect its
partition from D and E while recognizing reachability to C.
Concurrency of multiple network events. Previous exam-
ples only considered network events separately. In reality,
multiple updates (e.g., E1 and E2) may – and often will –
occur nearly simultaneously due to the controller sending
independent updates in parallel, or a distributed CP running.
In such instances, our distributed verification protocol will
always converge independently of the order of the events.
The protocol guarantees eventual consistency as a link-state
protocol because eventually all devices can receive a consis-
tent forwarding state, as long as the CP itself has converged.
Depending on the order of the updates being processed, un-
necessary verification steps may be executed before reaching
the final stable state.

Appendix B Implementation

We develop MultiJet, a switch OS level verification software
suite and an evaluation framework which supports hybrid
control planes, to implement Carbide described in Section 3.
MultiJet is mostly written in Python 3.6. MultiJet is designed
in a data driven model by realizing a single in-memory data
store to decouple modules. A regular switch in MultiJet is

3

Figure 14: The Architecture of MultiJet.

mainly composed of 5 components:

• In-memory datastore. A key-value datastore (i.e., Re-
dis [9]) that stores local forwarding rules and ver-
ification results for all control planes, and exposes
Get/Put/Delete/Listen APIs for manipulating data and lis-
tening events.

• Verification thread pool. A thread pool that executes
CPCheck for each control plane. It listens to forwarding
rule change events from the in-memory datastore to trig-
ger verification updates. We use a thread pool here for 2
main reasons: (1) there might be multiple messages re-
ceived from neighbors that we need to handle concurrently.
Threadpool reduces the overhead for starting a new thread,
(2) the thread pool size can be adjusted at any time to con-
trol the performance and resource usage of verification
(e.g., one could reduce the thread pool size to limit the re-
source usage). Finally, the verification result will be sent to
the in-memory datastore.

• Verification result composer. A component that listens

and reads the verification results in in-memory datastore
and performs the composition of CPs based on the verifica-
tion results.

• Verification message dispatcher. A local Openflow con-
troller application built on top of the Ryu framework [44]
that collects and dispatches messages for the Verification
Thread Pool. It uses Openflow v1.3 to communicate with
the Openflow datapath. Verification messages are encapsu-
lated into IPv4 packets with IP protocol number 143.

• Consistent update. We implement the consistent update
framework from [28] at each node to guarantee strong
consistency (e.g., loop-freedom) when applying data plane
updates.

Appendix C Experiment Settings

We evaluate Carbide in a virtualized environment + real white-
box switches. We run both emulation and simulation on a
variety of networks described in Table 1. In emulation ex-
periments, each switch is modeled as a separate container
using Docker [5], and runs CPs provided by Quagga [42],
OpenFlow-based SDN and MultiJet. We run the Rocketfuel
topology on a dedicated server with 2 Intel Xeon 8168 CPU
(2.70GHz) having 48 cores and 384 GB memory, and we
connect it with two real Openflow white-box switches Pica8
P-5401 and Dell Z9100-ON. We run Stanford and AT&T
backbone topologies on a virtual machine with AMD EPYC
7571 (2.1 GHz) CPU having 32 vCPUs and 128 GB memory
on Amazon Web Services (AWS) [1].

4

	Introduction
	Motivation
	Carbide Overview
	Control Plane Layer
	Online Composition Layer
	Data Plane Layer

	CPCheck: A Distributed Verification Framework
	Data Plane Model
	Verification Requirements Specification
	Distributed Verification for DV-Network
	Transform Generic Networks & Requirements to DV-Networks
	Extensions

	Distributed Packet Forwarding
	Carbide Forwarding Consistency
	Update Blocking Problem
	Unstable CP Composition Problem

	Evaluation
	Benefits of Carbide
	IGP Migration
	Waypoint Routing
	Failure Recovery

	Overhead and Scaling
	Control Plane Overhead
	Verification Overhead

	Related Work
	Conclusions
	Appendices
	Appendix A Generic FIB State Distribution Protocol
	LEC Tables
	Distributed Real-time Updates

	Appendix Implementation
	Appendix Experiment Settings

