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Abstract

We present concurrent algorithms for the solution of narrow banded systems on ensemble ar-
chitectures, and analyze the communication and arithmetic complexities of the algorithms. The
algorithms consist of three phases. In phase 1 a block tridiagonal system of reduced size is pro-
duced through largely local operations. Diagonal dominance is preserved. If the original system is
positive, definite and symmetric, so is the reduced system. It is solved in a second phase, and the
remaining variables are obtained through local backsubstitution in a third phase. With sufficiently
many processing elements, there is no first and third phase. We investigate the arithmetic and
communication complexity of Gaussian elimination and block cyclic reduction for the solution of
the reduced system on boolean cubes, perfect shuffle and shuffle-exchange networks, binary trees
and linear arrays.

With an optimum number of processors the minimum solution time on a linear array is of an
order that ranges from O(m?y/Nm) to O(m® + m3logs(N/m)) depending on the bandwidth, the
dimension of the problem, and the times for communication and arithmetic. For boolean cubes,
cube-connected cycles, perfect shuffle and shuffle-exchange networks, and binary trees the minimum
time is O(m3 4+ m3logy(N/m)) including the communication complexity.

1. Introduction.

The architectural model used for the complexity analysis is one in which there are no shared
resources. Each processor has its own storage and executes its own instruction stream. Hence,
the architecture is of the MIMD type in Flynn’s classification, [2]. We refer to such architectures
as ensemble architectures, a term introduced many years ago (e.g., in the PEPE, Parallel Element
Processing Ensemble). The processor interconnections considered here are linear arrays, boolean
cubes, perfect shuffle and shuffle-exchange networks, and binary trees. These configurations offer
different trade-offs between communication capabilities and interconnection cost. For computations
distributed throughout the ensemble, and requiring global communication, such as the solution of
irreducible systems of linear equations, the complexity of computation contains a term proportional
to the diameter of the ensemble, at best [3]. Contention for communication resources or sequential
dependencies in the algorithm can considerably increase this lower bound on the communication
complexity. The lowest communication complexity of the algorithms presented in this paper is
proportional to the diameter of the ensemble.

The banded irreducible system AX =Y is assumed to be of order N and bandwidth 2m + 1,
where a;; = O for | { — j |< m. The number of processing elements relative to the bandwidth of
the matrix and the interconnection of the processing elements are important factors in choosing
an algorithm for the solution of a banded system of equations. Here we present and analyze the
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- arithmetic and communication complexities of some algorithms for systems of a narrow bandwidth,
m/N < 1. No advantage is taken of any particular structure within the band. Algorithms for the
solution of tridiagonal systems of equations on a variety of ensemble architectures are described
and analyzed in [8]. In [10] we present and analyze algorithms for banded systems with a large
bandwidth.

Parallel algorithms for the solution of a system of linear eqautions are often devised through
partitioning of the set of equations into subsets, substructures, for which computations to a certain
extent can be performed independently and concurrently. The substructuring technique employed
for the algorithms presented here is inspired by that of [14], [11] for banded systems, and [15]
for tridiagonal systems. It is closely related to nested dissection [5], [4], [12], which would yield
P substructures not being bisectors for P — 1 bisectors. An algorithm based on substructuring
techniques for banded systems have also been proposed by Reiter and Rodrigue [13] who analyze
some of the numerical properties of their algorithm.

Our algorithm proceeds in 3 phases (as do the algorithms of Sameh et. al., and Wang). In
phase 1 computations are performed within the substructures and with limited communication
between adjacent substructures so that the banded system is transformed into a form from which a
block tridiagonal system of order P and block size m by m can be separated out and solved in phase
2. If nested dissection is applied to the graph corresponding to a banded matrix with dense band of
width 2m + 1, then the reduced system would correspond to the P — 1 bisectors, each of which is of
size m (and the reduced system be of order (P — 1)m). In the graph corresponding to the N by N
matrix A, there are N vertices labeled with a distinct index ¢ = {1,2,...,N}, and a directed edge
from node ¢ to node j if a;; # 0. In phase 3 the variables internal to the substructures are computed
through backsubstitution. Lawrie and Sameh [11] transform the system of equations in their first
phase such that a block pentadiagonal system of order 2(P - 1) with blocks of order m by m can
be separated out and solved in a second phase. The number of arithmetic operations required to
deduce the block tridiagonal system is the same as the number of operations required to deduce
the pentadiagonal system. If the original matrix is symmetric and positive definite, then so is the
block tridiagonal system. This is not necessarily true for the pentadiagonal system of Lawrie and
Sameh’s algorithm. The pentadiagonal system can be permuted into a block tridiagonal system by
pairwise column permutations, but this system is no longer diagonally dominant.

Lawrie and Sameh investigate the solution of the pentadiagonal system by Gaussian elimination
on a linear array. The solution of the block tridiagonal system by 2-way Gaussian elimination yields
an arithmetic complexity with the highest order terms equal to (7/3m3 + 3m?2) P for phase 2 of
our algorithm compared to (9m3 + 12m2)P for Lawrie and Sameh’s algorithm, a reduction by
approximately a factor of 4. If the banded system is symmetric and positive definite then an
additional reduction in the arithmetic complexity of our method is possible. In [1] the solution
of the reduced system by block-Jacobi iterations, and by the preconditioned conjugate gradient
method on a linear array is studied. We show that block cyclic reduction (BCR) is of a lower total
complexity than 2-way Gaussian elimination (2GE) on a linear array, if o = £, [ta < 28m/9 for one
right hand side, and & < 4NR if NR 3» m, where NR is the number of right hand sides. The
time for communicating one floating-point number is denoted ¢, and the time for an arithmetic
operation f5. Some detailed optimizations of the algorithm, that are not carried out here, change



the constants in these relations only to a minor extent. Depending on the relative values of m, N,
tq and £, the minimum complexity of BCR is O(m?V/N + m3loga N) or O(m3 + m®logs(N/m)).

Block cyclic reduction is particularly well suited for ensemble architectures configured as
boolean cubes, cube-connected cycles, perfect shuffie and shuffle-exchange networks, and binary
trees. With one processor per block row and O(NN/m) processing elements the banded system can
be solved with a computational complexity of O(m® + m3logs(N/m)) on those ensemble configu-
rations compared to a minimum complexity of O(mZ\/W) for Gaussian elimination on a linear
array of O(\/N/m) processing elements.

For the algorithms analysed here N/P consecutive equations are allocated to a processor
that computes N/P unknowns. P is constrained by the relation P < [N/m], in order that the
partitioned system be block tridiagonal. If substructuring through nested dissection is made, then
each substructure will have (N +m)/P—m equations for local variables, and with an entire bisector
. assigned to a substructure not being a bisector all but 1 of those will have an additional m equations
and variables. Since the bisectors for a matrix with dense band of width 2m + 1 is of size m it
follows that the number of bisectors and other substructures must be less than N/m.

The number of processors can be larger than P. Multiple processors can be used per partition.
With clusters of m? suitably configured processors assigned to each partition, a solution can be
obtained in a time of order O(m +mlogs(N/m)) [10], including the time for communication. Those
algorithms combine the algorithms presented here with an algorithm obtained from a transforma-
tion of the concurrent Gaussian elimination algorithm in [7]. In a boolean cube lower dimensional
subcubes can be considered as clusters. .

In section 2 we define the submatrices that follow from the partitioning of the banded system
and introduce the notation used in describing the algorithm and performing the analysis. In section
3 the computations and communication of phases 1 and 3 are defined and analysed. An algorithm
implementing a version of Gauss-Jordan elimination for the substructures is described first. Then a
parallel Cholesky factorization algorithm is given for symmetric, positive definite matrices. Section
4 deals with the solution of the reduced system, phase 2, by Gaussian elimination and block cyclic
reduction on a variety of ensemble architectures. The complexity results for the solution of the
banded system are summarized in section 5. Section 6 contains the conclusions of the analysis.




2. Preliminaries.

The banded system AX =Y is partitioned into P partitions, with each partition consisting
of consecutively indexed equations. The partitioned matrix is block tridiagonal for N /P > m. For
m < N/P the off diagonal blocks contain a large fraction of zeroes. Advantage can be taken of this
property, and a reduced system derived with dense matrices of order m by m. For ¢ = N/P not an
integer, N— P[N/P] partitions are assigned | N/ P| equations (and the remaining partitions [ N/P]
equations). We ignore this possible difference in partition size in the description and analysis of the
algorithms. The reduced system is always of size mP by mP for the substructuring employed here

((P = 1)m by (P — 1)m for nested dissection). The partitioned banded system has the following
block form:

( A B . Xi h \
C; A, B Xa Y;
Cs A3z B3 X3 Y3
C; A B; X; Y;

\ Cn AN XN YNJ

The blocks have an additional structure as illustrated in Figure 1 for P « N/m and P~ N/m.
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Figure 1: Partitioning of a banded matrix.

In the following we use the notation:

o E;, E;, o 0 0 _ {0 G;, o U; - H;
A"(E.-, g,) B=\r, r,) %=\0 ¢.) %=\v.) ¥=\&u

The matrices E;,, F;,, and G;, are m by m matrices, and H;, and U;, are m by N R matrices.
The matrices Gy,, E;,, F;,, and H;, form a block row of the reduced block tridiagonal system, the
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solution of which is denoted U;,, i = {1,2,..., P}, or X3. The matrix E;, sag—m by ¢g—m
matrix, E;, and G;, are ¢ — m by m matrices, H;,, and Ui, are ¢ — m by NR matrices. E;, and
F;, are m by ¢ — m matrices.

With the notation in Figure 1 the initial assignments are:

E;, = Aiyy» Ei, = Ay, Eiy = Aiyys Eiy= Az (FuFlz) = (Bizxo) ,and (g:l) = (C:)m)
2

For a symmetric matrix A Bj,, =Cf, ., A, = Al

A, = AT

111?

and A;,, = AT

122°

3. Local eliminations.

The complete algorithm for the solution of narrow banded systems proceeds in 5 steps as
follows:

1. Locally solve in each partition a banded system with system matrix E;, and the right hand
side G;, E;, H;,. |

2. Locally eliminate the matrix E;,.

. Through communication with adjacent partitions eliminate Fj,.

4. Solve the reduced system of equations to obtain Uj,,¢ = {1,2,..., P}. (Requires global com-
munication).

5. Solve for the remaining variables U;,,i = {1,2,.., P}, Xj, through communication with adja-
cent partitions.

w

The first 3 steps constitute phase 1, step 4 phase 2, and step 5 phase 3.

In this section we define the algorithm for phase 1, in which a banded system is transformed into
a system of equations from which a block tridiagonal system of order P and block size m by m can
be separated out and solved independently. We also give an algorithm for the computation of the
remaining variables, phase 3. The arithmetic and communication complexity of the computations
are derived. Preservation of diagonal dominance, symmetry, and positive definiteness in phase 1 is
proved.

3.1. An algorithm for phases 1 and 3.
Below we specify the computations of each of the steps 1 - 3 and 5 in some detail.

Step 1.
Factor the blocks E;, and solve the first ¢ — m equations in each partition.

E;, « L;,U;,, or for A symmetric E;, « L;,D; LT, i={1,2,...,P}

31°

Gi, — E;'Gi,, Ei,+— E;'E,, H,«—E'H,, i={12,..,P}

The system of equations now have the form shown in Figure 2.
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Figure 2: The system of equations after a local solve on the
first N/P — m equations.

Step 2.
Eliminate the matrix E;, by multiplying the first ¢ — m rows in partition 7 by E;, and sub-
tracting the result from the last m rows of the partition. The computations are:

Gi, ~ Gi, - E;,G;,, E;,«— E;,—E;E;,, and H;,+ H;,—-E, H;, i={12,.,P}

Note that if ¢ > 2m, then G, is initially 0, and the first ¢ — 2m columns of E;, are 0, while
the last m columns contain an upper triangular matrix. Hence, effectively the last min(qg — m,m)
rows of G;,, E;,, and H;, are used for the elimination.

Step 3.

Eliminate the matrix F;, by multiplying the first ¢ — m rows of partition ¢ + 1 by Fj, and
subtracting the product from the last m rows of partition i, ¢ = {1,2,.., P — 1}. This step requires
communication between adjacent partitions. The computations are:

Ei4 -~ Ei4"’17i1Gi+l1a F'iz - F'iz _F'ilEi-i-lz’ and Hig - Hiz _Fl'l Hi-l—l;’ 1= {1,27""P— 1}

Note that if ¢ > 2m, then F}, is initially O, and the last ¢ — 2m columns of F;, are 0, while
the first m columns contain a lower triangular matrix. Effectively the first min(g — m,m) rows of
Git1,,Eit1,, and H;y,, are used for the elimination.

At this point the form of the system of equations is as shown in Figure 3.

The last m equations of each partition together form a block tridiagonal system of equations
of P block rows. Before discussing step 4, the solution of the reduced block tridiagonal system, we
consider step 5, the step in which ¢ — m variables for each right hand side are solved for in each
partition.



Figure 8: The system of equations after steps 1 - 3.

Step 5.
Having solved the block tridiagonal system, step 4, X; is known and X; can be computed.

Ul; — Hll - E12U12, and Ui, — H;, - E',‘zU,'2 - G;lUg_lz, 1= {2,3, ...,P}

Complexities of steps 1 - 8 and 5.

Each of the four arithmetic operations (+,—,*, and /) requires time ¢,. Partitions ¢ and
t+1,17={1,2,..,P — 1}, are assumed to be in adjacent processing elements. This assumption
is important for the communication in step 3. The time to communicate a floating-point number
is t;. The following complexity estimates can be derived assuming that A is symmetric, and that
adjacent partitions are mapped to neighboring processors.

Arithmetic: ((7m?+8mNR+3m+ 2NR+ 1)(N/P — 2m) + m((m + 1)(4m + (2m + 1)/3) +
NR(8m + 2) + 3) — 2)t,.

Communication: (min(g — m,m)(2m + NR) + mNR)t,.

The arithmetic complexity is increased by a term m2(N/P — 2m)t, if A is not symmetric.
The communication complexity can be reduced by min(g — m m) (min(g — m,m) — 1)/2t, if the
elimination of F;, is made in partition ¢ + 1.

For ensembles configured as boolean cubes and cube-connected cycles networks and linear
arrays mapping adjacent partitions into neighboring processing elements is feasible also with respect
to the solution of the reduced block tridiagonal system. For a binary tree configured ensemble an
inorder mapping of partitions to processing elements is feasible with respect to phase 2. The inorder
mapping increases the communication complexity by a factor of logs P — 1.

8.2. Symmetric positive definite matrices.

If A is symmetric and positive definite it is desirable to exploit this property in solving the
system of equations. Next we will show that our substructuring technique allows for the use
of Cholesky factorization instead of Gauss-Jordan elimination if the matrix A is symmetric and
positive definite. Moreover, the Cholesky factorization is parallelizable in the same way as the

7



Gauss-Jordan elimination. It follows from the use of Cholesky’s method that, at the end of phase
1, the partially factored matrix A is symmetric positive definite and the reduced system can also
be solved taking advantage of symmetry and positive definiteness. The reduced system obtained
by Sameh et. al. [11] is not necessarily symmetric and positive definite.

We will aslo show that diagonal dominance is preserved.

3.2.1. Preservation of symmetry and positive definiteness.

To show that parallel Cholesky factorization can be performed on A (if it is symmetric and
positive definite) both in phases 1 and 2 we perform a permutation on rows and columns such that
the first ¢ — m rows and columns of all partitions are ordered before the last m rows and columns
of any partition. The order of rows and columns within the subpartitions is preserved, and so is
the order of the subpartitions. The permutation matrix R is:

. ( Iq—m Oq—mm Oq-m Oqum Oq—m Oq-mm \
Oq—m oq—mm Iq-—m oq—mm oq—m Oq—mm
Oq—m Oq—mm Oq-m Oq—mm Iq-m Oq—mm

0mq—m Im qu—m Om O'nq.—m Om
\  Omg-m Omn Omg-m Om Omgm Im ... |

The subscript denotes the dimension of the matrix. For a square matrix one subscript is given,
for a rectangular matrix the number of rows are given before the number of columns. Clearly
RRT =1, and RART = A is also symmetric positive definite. The matrix 4 is of the form:

( Elx Elz \
E,, Gz, Ej,
Es, G, Ej,
.i= EPI GP: EPz
E,, F, E,, F,
B Py, Gz, E3, Fy,
\ EPa FPI GPz EP4 }

The matrix A has a symmetric factorization LL7. Any positive definite symmetric N by N
matrix M can be factored as (Cholesky):

_dlv{_\/glo-lgﬁl"r
M= (vl Ml)_(—}h Iv-1J\0 M J\ o I,—‘{;z

1 0
M=LML =1, (0 Ml) LT

v vT

where M; = M, — —=. M, is clearly symmetric, and it is also positive definite, and the
process can be repeated for M;.




1 0 0 1 0 o 10 o\(1 O Qq
M1=(0 ds v{)=(0 Vi, 0 )(o 1 o)(o Vd; 7"3—)
0 w M 0 & Iv,/\0 o0 M)\o o Iy,
M, = L2M2Lg' and M = L1L2M2L§'Lf. Ly L, is also lower triangular.
For the matrix A the factorization with respect to any column (g—m)j+k,k={1,2,..,9—m}
is independent of the factorization with respect to any column (g — m)i + k,k = {1,2,...,¢ — m},
t# 7,4,5 = {1,2,...,,P}. Hence, the factorization with respect to the different blocks of ¢ — m
columns can be performed concurrently. Communication between adjacent partitions is needed due
to the blocks F;, and each E;,, ¢ = {1,2,...,P — 1} is updated by partition + and « + 1. After
factorization with respect to the first (¢ — m)P columns the matrix A is factored as:

- Ig-mp O
A=1 q—m) ~)LT
( 0 Az

where A, is symmetric, positive definite and of order mP by mP. It defines the reduced system
to be solved in phase 2. It is readily verified to be block tridiagonal with block size m by m. The
matrix L is of the form:

(L \
1 Lo,
L3,
L= LPl
L, L, I,
L23 L22 Im
\ Lp, In )

The solution to the banded system can be obtained as follows:

(2)-G) G 2)@E)-3) ~(R)-6E)
Zs Y2 0 A Sy Z2 X2 52

It follows that S; = Z;, 125'2 = Z3 and X, = S;. Hence, after the forward substitution the
set of variables U;,,i = {1,2,..., P} are obtained from the solution of the reduced system.

The reduced block tridiagonal system can be solved through continued symmetric factoriza-
tion. But, the factorization with respect to any column in parition ¢, (— m)P+m(i — 1) + k, k =
{1,2,...,m} affect all the columns in partition {+1, i.e., columns (§—m)P+mi+k,k = {1,2,...,m}.
However, a permutation of the last P block row and columns can be performed to yield the elimina-
tion order of block cyclic reduction. Then, approximately P/2 blocks can be factored concurrently,
then P/4, etc.

The permutation of the last row and columns corresponding to block cyclic reduction is the
same as if nested dissection is applied to the graph corresponding to the banded matrix, and the
first bisector labeled last and the last set of bisectors labeled first.
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3.2.2. Diagonal dominance.

We will now show that diagonal dominance in a certain sense is preserved during phase 1 of
the algorithm.

Theorem 8.1. Let the matrix A satisfy the following diagonal dominance conditions:

|EL Evll < 1, |ED)Ey || + | EQ R + BT R < 1

NE;'Gill+ |E] Byl =ai+b; <1,  i={2,3,..,P}

"E.':lGl'zu + "E.‘:IEl's” + "E’.:lFu " + "E.:le" =ci+di+e+fi<l, t= {2a3a ey P = 1}
|Ep, Gr,ll + | ER, Ep,|| < 1 ’

4

~

Then the nonzero submatrices of A, E‘,-“ F;,, and G;, satisfy the relations:
"Eﬂlfh" <l, "E.:létz” + "E;li'sz" <1, &= {2’ 3., P— 1} 'IE~'541G~P2" <1

Proof.
We will prove that the dominance conditions hold for ¢ = {2,3,...,P—1}. The cases ¢ = 1 and
t = P are proved similarly.

E“ = E“ - E;GEE;IE& - 'F' E‘:-lleH‘ll’ 1= {1’2’"-,P - 1}
Gi, = Gi, - E,E;'G;,, i={2,3,..,P}

Fi,=F, - F,EZ} Eip,, i={1,2,.,P-1}
We need to show that:

|I(Et'4 - El'sEi-llEiz - FilE'_l Gl'+11)-l(Gl'2 - EiaE.'—lth'x)""'

s+1;
+"(Eu - E‘sE,'_llEiz - F;'IE.'-.:]‘GI'-!-ll)—l(Ez - F't'lE;;-lllEt‘+12)" <1
or "(I - Eg‘:lEl'sE.'_llEiz - Ei:lﬂlEi—-i-lllG"'Hx)_lEi:l(sz - EiaE;;IGil)”"'
+"(I - Ei:lEisEi—llEl'z - Ei_;lFflEi:-thHlx)_lEi:l (Fiz - F}xE;—-l-lllE"‘i'lz)“ <1

or with the shorthand notation introduced above:

(I = dib; — ejaiqa) ™" (ci = diai)|| + [|(1 = dib; — €ai41) 72 (fi — eibisa) || = g

1 1
—d:b: — esa:i ) < <
But, [[(Z-dibi - eiais1) || < 1 — ||dib; + €iaisa]] = 1 — dib; — eiaisr

1
1—d;b; — €;aiy1

and ¢; <

(ci + dia; + fi + €ibit1)
From the diagonal dominance assumptions it follows that:
dib; + eiait1 +¢i + diai + fi + eibit1 = ci + di(ai + b)) + €i(aiv1 + biv1) + i <ci+di+ e+ fi< 1

or ci+dia;+ fi+ebiy1 < 1—dib; + €jai4
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4. Solution of the block tridiagonal system, step 4.

The feasibility of different methods for solving the block tridiagonal system depends on nu-
merical aspects, and the configuration of the ensemble of processing elements. We will compare the
complexities of 2GE and BCR on linear arrays, boolean cubes, perfect shuffie and shuffie-exchange
networks and binary trees. )

4.1. Linear Array.

4.1.1. 2-way Gaussian Elimination.

The blocks are treated as dense blocks. We assume that P = 2P — 1 in order to simplify the
comparison between 2GE and BCR. In 2GE the elimination process proceeds towards the middle
from both ends, followed by backsubstitution from the middle towards the ends. Since P is odd,
the elimination phase terminates with one block system to be solved. For P = 3 2GE and BCR
are identical. Assuming that:

1. There is one block row per processing element;

2. The solve operation on a block row with the off-diagonal blocks appended to the right hand
sides is carried out in the processing element storing the row;

3. The matrix multiplication and addition required for the elimination of an off diagonal block is
performed in the processing element storing the block to be eliminated;

We derive the following complexity estimates:
Arithmetic: (m(7m?/3+3mNR—(9m+6N R+1)/12)(P—1)+m(2mN R+ (4m?+3m—1)/6))t,.
Communication: (number of elements) x (distance) (m(m + 2NR)(P — 1)/2 + m?)t..

The minimum number of interprocessor communications is P — 1.

4.1.2. BCR.
For BCR we base the complexity estimates on the following assumptions:

1. There is one block row per processing element.

2. The solve operation on a block row with the off-diagonal blocks appended to the right hand
sides is carried out in the processing element storing the row.

3. The matrix multiplication and addition required for the elimination of an off diagonal block is
performed in the processing element storing the block row used for the elimination.

4. The elimination is performed in the block row storing the blocks to be eliminated.

The first two assumptions are the same as for the Gaussian elimination algorithm. The third
assumption allows concurrent operations on the two rows used for the elimination of the two off-
diagonal blocks to be eliminated in a row. This assumption implies that m? elements need to
be communicated between the processors storing the blocks to be eliminated and the processors
storing the rows used for the elimination. This communication is not necessary in the Gaussian
elimination algorithm above, and is the price paid for operating concurrently on the two rows used
for the elimination of the two off-diagonal blocks in a row. Elimination of the off diagonal blocks is
then accomplished in the processing element storing the block row in which elimination is to take
place by adding block rows received in communication with the appropriate processing elements.
In the backsubstitution phase two vectors of dimension m of previously computed unknowns are
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needed. The vectors can be communicated over different paths. Cyclic reduction on a linear array
can be carried out by explicitly implementing shuffle operations, or sn-place. In such an algorithm
partitions reside in a given processor until needed in the reduction process by another processor.
In [8] we proved that the in-place algorithm is more efficient on a linear array than a shuffle based
algorithm. Our complexity estimates are as follows:

Arithmetic: (m(26m?/3+8mN R—3m—2/3)(logoP—2)+m((16m?—1)/3—m+NR(8m—1)))t,.

Communication: (number of elements) x (distance) ((m(5m + 4NR)(P + 1)/4 — m(3m +
2NR))t,.

The minimum number of interprocessor communications is P — 1.

4.1.3. Comparing the complexities of 2GE and BCR on a linear array.

The parallel arithmetic complexities of both Gaussian elimination and BCR as given above
can be reduced somewhat by distributing the computations over additional processing elements at
the expense of additional communication.

Theorem 4.1. The parallel arithmetic complexity of BCR is at most the same as that of 2GE for
P>3.

Proof. The proof is by induction. The arithmetic complexities are the same for p = 2, i.e., P =3,
and the proposition is true. Assume it is true for p = n, n > 2. Then the increment in arithmetic
complexity is easily shown to be less for BCR than for 2GE, and the proposition is true.

If the number of interprocessor communications is considered, then 2GE and BCR are equiv-
alent, and if the communication bandwidth requirement is measured by the number of elements
communicated times the distance, then 2GE is the most efficient. The communication bandwidth
requirement is quadratic in the matrix bandwidth, whereas the arithmetic complexity is cubic. If
the architecture allows concurrent computation and communication the time for arithmetic will
dominate if the communication bandwidth is high. If the bandwidth is small the sequential depen-
dences are such that it is necessary to add at least the time for communicating one floating-point
number. If the architecure does not allow concurrent communication and computation — a pes-
simistic assumption — then, considering only highest order terms, BCR may still be preferable.

Theorem 4.2. Considering only highest order terms, there exists some Py such that for P > Py
BCR is of a lower total complexity (arithmetic + communication) than 2GE on a linear array, if
a=1t.[ty < 28m/9 and NR <« m, and a < 4NR for NR > m.
Proof. Follows directly from the complexity estimates.

|

Corollary 4.1. BCR is of a lower total complexity than 2GE on any linear array for which a <
1,P>3.

Proof. It is true for m = 1, [8]. The complexity of BCR increases at a lower rate with the matrix
bandwidth than 2GE on a linear array.

|
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Hence, BCR is of a lower complexity than Gaussian elimination even under more pessimistic
assumptions than those in [11]. Figure 4 shows the boundary between the regions in which each
method is preferable with respect to total complexity. The curves are computed from the complexity
estimates given above and with the assumption that communication and computation do not take
place concurrently. The region in which BCR is of lower complexity increases with NR, and
decreases with a.

Note, that with communication and computations actually occuring concurrently the region
i which BCR is of a lower complexity than 2GE is increased.

¢
m1\ " :
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35— 2GE BCR

30— X=0;NR=1 :
251
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15+ BCR
yo- 2GE
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~
-
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10 1 © (1082P)

Figure 4: Regions of lowest total complexity for 2GE and
BCR on a linear array.

4.2. Boolean cube and Perfect Shuffle Networks.

We choose to perform the elimination of off diagonal blocks in the same manner as on a linear
array. Hence, the arithmetic complexity is the same for a linear array, a boolean cube and a perfect
shuffle network with the same number of processing elements. The communication complexities of
BCR on boolean cube and perfect shuffie networks are the same - namely:

Communication: (number of elements) x (distance) (m (3m+2N R)(logaP—2)+2m(m+ NR))t,

The minimum number of interprocessor communications is 4(log2 P — 2) + 2.

BCR is always of a lower total complexity than 2-way Gaussian elimination on these networks.

4.3. Binary Trees and Shuffle-Exchange Networks.

For a binary tree of processors we assume an inorder mapping of partitions to processors,
following [8]. A binary tree is a natural computation structure for partitioning by nested dissection,
in which case the first bisector is mapped into the root, and successive levels of bisectors are mapped
on to successive levels of the tree. The last set of bisectors are mapped to the leaves of the tree.

Substructures not being bisectors are also mapped to the leaf nodes (except 1 such substructure
that is mapped to a parent node of a leaf node).
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For the binary tree we make the same assumptions regarding the distribution of computations
for the elimination of a row as for Gaussian elimination on a linear array. The distribution used
for BCR on linear arrays, boolean cubes and perfect shuffie networks requires communication in
both directions, which prevents effective pipelining of operations on a binary tree with an inorder
mapping of equations. The following complexity estimates can be derived:

Arithmetic: 2(m(38m?/3+8mN R—2m—2/3)(logoP—2)+m((16m?—1)/3—-m+NR(8m—1)))t,
The minimum number of interprocessor communications is 3loge P — 4.

BCR on a shuffle-exchange network can be performed by simulating a binary tree. An effective
embedding is obtained by labeling the root of the tree 1, label the left descendant of any node labeled
p by 2p and the right descendant 2p + 1. The distance from a parent node to its right child is 2,
and the communication complexity is somewhat higher than for the tree.

5. Summary of computational complexities for narrow banded systems.

Adding the complexities for all 5 steps, and assuming that the communication and arithmetic
complexities are additive, the highest order terms for 2GE are Tm?N/P + (7/3m3 + m2a/2) P for 1
right hand side. The optimum value of Pop is \/3N/(m + 3a/14), which is approximately \/3N/m
for large matrix bandwidths, or communciation of a speed comparable to the time for arithmetic.
The minimum time Tp,in is approximately 14m2\/m. For block cyclic reduction on a linear
array the highest order terms are Tm2N/P + 26/3m3log, P + 5/4m2aP, and the optimum value
of P, Popt ~ 52m/(15a)(1/28N/(5a(15a/52m)2) + 1— 1), is obtained as the solution to a second
order equation. For m? « Na/2 Popt = 1/28N/(5c) and Tpmin ~ 6m?/Na + 14/3m3loga N/a. For
m? & Na/2 Py = B/28N/(52), and Tpmin ~ (8 + 1/8)6m2\/Na + 14/3m3log, N/a. Finally, for
m? > No/2 Popy = 21N/26m, and Tpin ~ 26/3m3(1 + logz(N/m)).

For a boolean cube and a perfect shuffie network the highest order terms are 7m?N/P +
(26/3m3+3m?a)log P, and Popy = 21N/(26m+9a), and Tmin & (26/3m*+3m2a)(1+logs(N/m)).
For the binary tree the highest order terms are Tm2N/P + (76/3m2 + 2m2a)logo P. The value of
Popt for a binary tree is approximately 21N/(76m + 6a), which for m/a large is approximately
1/3 of the value for a boolean cube or perfect shuffle network, and for m/a small 1.5 times larger
than for the two other networks. Note that the partitioning method as used here is only valid if
P < N/m. Table 1 summarizes the results for 1 right hand side.

For a large number of right hand sides, NR > m, the highest order terms for 2GE are
8mNRN/P+3miNRP+ mN RaP, and for BCR on a linear array 8nNRN /P +8m?N Rlog, P+
mN RaP, on a perfect shuffle or boolean cube 8mNRN/P + (8m2N R + 2mN Ra)logz P, and on a
tree SnNRN/P + (16m2N R + 2mN Ra)log, P, respectively. Optimization with respect to highest
order terms yields Ppyy = /8N / (3m + 2a) with T, &~ 4mN Rﬁﬁm for 2GE. For BCR
on a linear array and m? < Na/2 Pyt = \/8N/a, and Tpin ~ 4mNR\/2Na + 4m?N Rlogy(N/a).
For m? & Na/2 Py = B1/8N/a, and Tpin ~ (8 + 1/8)4mNRV2Na + 4m2N Rlogy(N/a). For
m? > Na/2 Py = N/m, and Tpin ~ 8m2NR(1 + loga(N/m)). For boolean cubes and perfect
shuffle networks Popt = 8N/(8m + 2a), and Tnin ~ (8m2NR + 2mN Ra)(1 + log2(N/(m + a/4))).
For a binary tree finally P,,; = 8N/(16m + 2a) with a corresponding difference in Tp;n. Table 2
summarizes the results for multiple right hand sides.
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Configuration Optimum Number Minimum time
of Processors
Linear array
2GE V3N/(m + 3a/14) 14m?\/N(m/3 + a/14)
BCR m? < Na/2 V28N /(50) 6m2/Na + 14/3m3loga N/
m? ~ Na/2 B\/28N/(5q) (B +1/B)6m?/Na + 14/3m%og2N/a
m? > Na/2 21N/26m 26/3m3(1 + loga(N/m))
Boolean cube
Perfect Shuffle 21N/(26m + 9a) (26/3m3 + 3m2a) (1 + loga(N/(m + a/3)))
Binary tree 21N(76m + 6a) (76/3m® + 3m?a)(1 + logz(N/(m + a/13)))
Table 1: Estimates of optimum number of processors and
solution time, one problem.
Configuration Optimum Number Minimum time
Processors
Linear array
2GE V8N/(3m + 2a) 4mNR\/2N(3m + 20)

BCR m? <« Na/2 V8N/a 4mNR\/2Na + 4m?N Rlogy(N/a)
m?~ Na/f2 B8N/ (B+1/B)4mNR\2Na + 4m?NRlog,(N/a)
m? > Nao/2 N/m 8m2NR(1 + logs(N/m)) ]

Boolean cube
Perfect shuffle 8N/(8m + 2a) (8m2N R + 2mN Ra)(1 + logs(N/(m + a/4)))
Binary tree 8N (16m + 2a) (16m2NR + 2mNRc)(1 + log2(N/(m + «/8)))

Table 2: Estimates of optimum number of processors and
solution time, multiple problems. -

Comparing the estimates in the two tables we conclude that the value of P, only changes to
a small extent with the number of right hand sides.

The estimates in Table 2 are based on the assumption that the entire ensemble is used for the
solution of each problem. Alternatively the ensemble can be partitioned such that a partition solves
a subset of the problems. The optimum partitioning depends on the values of m, NR, t5, and t..
For « — 00 NEP,;; — P, where NEP is the number of ensemble partitions, i.e., for sufficently
slow communication the optimum ensemble partitioning is obtained by dividing the set of problems
among the processors and solving each set locally. However, if ¢, and £, are of the same order, then

NEP,,; # P. The optimum value is found as the solution of a higher order equation, even if only
the arithmetic terms are considered.
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6. Summary and Conclusions.

We described concurrent algorithms suitable for the solution of narrow banded systems. In
such systems the indepedence of the operations in the elimination of different variables from the
system of equations is the main source of concurrency, whereas relatively few operations are required
for the elimination of a single variable. The potential concurrency in such an operation is low.

The algorithms are based on partitioning the sets of equations into subsets, substructures.
The substructuring used for the algorithm is closely related to nested dissection. Similarities
and differences between the different substructuring techniques are discussed. A block tridiagonal
subsystem is the result of concurrent Gauss-Jordan elimination or Cholesky factorization in a first
phase in which most operations are local to a substructure. Some communication with adjacent
substructures is required.

For symmetric positive definite matrices it is shown that Cholesky factorization can be per-
formed concurrently in all substructures in phase 1 of the algorithm. The reduced system can also
be factored by Cholesky factorization in a sequence of steps with successively decreasing concur-
rency by using a cyclic reduction procedure. In the context of nested dissection this procedure
corresponds to factoring the last set of bisectors first, and the first bisector last.

We proved that the algorithm preserves diagonal dominance.

We showed that for ensembles configured as linear arrays the computational complexity, in-
cluding communication, is lower for block cyclic reduction than 2-way Gaussian elimination for
P > Py, and t./t; < 28m/9 if NR < mor t.[t, =4NR if NR> m. If t./t, < 1thenPy = 1, i.e,,
block cyclic reduction is always preferable.

We showed that block cyclic reduction on boolean cubes, perfect shuffle and shuffle-exchange
networks, and binary trees is of a lower complexity (because of lower communication complexity),
than on a linear array. The optimum number of partitions is increased from O(y/N/m) for Gaussian
elimination on a linear array to O(N/m) (assuming one processor per partition) for block cyclic
reduction on the networks of diameter logo P. The minimum time is O(m2 + m3logs(N/m)).

The complexity advantage of block cyclic reduction increases if the reduced block tridiagonal
system is sufficiently diagonally dominant to allow for a truncation of the reduction process, [6]. In
a fully parallel implementation of (block) cyclic reduction the solution time is proportional to the
number of reduction steps. The benefit of truncating the reduction process is substantially greater
than in a sequential implementation, since half the number of arithmetic operations are performed
in the first reduction step.

With increasing values of t./ts = a the value of P,y decreases and Tpin increases. The
dependence is by a factor of \/a for a linear array, and by a factor of a for boolean cubes, perfect
shuffle and shuffle-exchange networks, and binary trees.

For multiple right hand sides partitioning of the set of problems into subsets and the processing
ensemble into subensembles is always benefitial with respect to computational complexity if m = 1
[8]. For m > 1 this is not true, in general, since the computations required for the factorization of
the system matrix may be dominating the operations involving the right hand sides to the extent
that the reduced communication needs do not make up for the increased amount of arithmetic per
processor.

The boolean cube, perfect shuffie and shuffle-exchange networks, and the binary tree configu-
rations offer a high speed-up for small values of m/N for the substructuring technique used for the
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algorithms. For large values of m/N the speed-up is poor. The substructuring technique applied
above exploit the independence of the operations required for the elimination of different variables
from the system of equations. For banded systems with m/N = 1 there are only a few variables
that can be eliminated concurrently, but the amount of work required for the elimination of each
is of order O(N?). The independence of the operations in the elimination of a single variable is the
main source of concurrency [9].
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