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Abstract

In a multiprocessor with distributed storage the data structures have a significant impact on
the communication complexity. In this paper we present a few algorithms for performing matrix
transposition on a Boolean n-cube that to a varying degree use the communication bandwidth
of the cube. One algorithm performs the transpose in a time proportional to the lower bound
both with respect to communication start-ups and element transfer tirnes. We present algorithms
for transposing a matrix embedded in the cube by a binary encoding, a binary-reflected Gray code
encoding of rows and columns, or combinations thereof. The transposition of a matrix when several
matrix elements are identified to a node by consecutive or cyclic partitioning is also considered and
lower bound algorithms given. Finally, experimental data are provided for the Intel iPSC and the
Connection Machine.

1. Introduction

Matrix transposition is one of the basic operations frequently performed in linear algebra com-
putations. Matrix transposition is useful in the solution of systems of linear equations by a variety
‘of techniques. For instance, we have shown [7] that for the solution of tridiagonal systems of equa-
tions on Boolean n-cube configured architectures it may be beneficial with respect to performance
to move all equations of a tridiagonal system to one processor and solve it locally instead of ex-
ploiting the maximum degree of concurrency using cyclic reduction with one equation per node.
In the case of multiple tridiagonal systems the equations belonging to different systems are moved
to distinct nodes. This data movement is equivalent to a matrix transpose operation. Multiple
tridiagonal systems occur in the Alternating Direction Implicit (ADI) method and in the solution
of Poisson’s problem by the Fourier Analysis Cyclic Reduction (FACR) method.

In this paper we focus on the matrix transpose operation on Boolean n-cube architectures.
The transpose can be formed recursively as described in for instance [10, 1, 5, 8]. Stone describes a
mapping on to shuffle-exchange networks. Stone assumes that there is only one matrix element per
node. We consider the case with multiple matrix elements per node and focus on the pipelining of
communication operations as well as optimally using the communication bandwidth of the Boolean
n-cube. In [5, 6] we described and analysed the complexity of a transpose algorithm for a two-
dimensional mesh as well as a few algorithms for the transpose operation of matrices embedded
in the cube by binary or Gray code encoding of the row and column indices. In this paper we
present a transpose algorithm that is of lower complexity in the case of concurrent communication
on multiple ports, and present experimental data for the Intel iPSC/d7 for the transpose of matrices
partitioned one- or two-dimensionally, and for the Connection Machine [2] for two-dimensionally
partitioned matrices.

The outline of the paper is as follows. In the next section we introduce the notation and
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data structures used in this study. Then we present algorithms and carry out an analysis of the
transpose operation for a one-dimensional partitioning of matrices, followed by a similar analysis
of two-dimensional partitioning. We then describe some of the implementation issues that are
somewhat particular for the actual machines used, but important for the interpretation of the
- experimental results which we present. A summary and conclusions follows.

2. Notatipn and Definition

In the case of an N = 2" processors Boolean n-cube and a P x Q matrix such that P = 27,
Q = 2% and p + ¢ = n, matrix elements can be assigned to distinct processors without any waste.
One obvious assignment is to embed the matrix by encoding the row and column indices of matrix
elements in binary code. Such an embedding does not preserve proximity. A binary-reflected Gray
code [9] encoding of row and column indices preserves adjacency. This code is referred to as Gray
code in the following and the encoding of ¢ is G(i). Depending on what other operations are
being performed on the matrix data one or the other encoding may be preferable. The conversion
from one kind of encoding to the other can be accomplished in log N — 1 routing steps [5], where
a pipelinable routing is given for the case where the processors can support communication on
- multiple ports (the routing paths can be made edge-disjoint). In the case of PX Q > N multiple
matrix elements must be assigned to the same node in the Boolean cube. For N < max(P, Q) there
is a choice between one-dimensional partitioning (strip) and two-dimensional partitioning (block).
For either kind of partitioning there is the additional choice of cyclic or consecutive assignment
[5, 6] of matrix elements to partitions. In addition, there is the choice of binary or Gray code
encoding. In [5, 6] we present algorithms and derive the communication complexities for both par-
titionings, element assignments, and encodings. Experimental data and some improved algorithms
are presented here.
In a one-dimensional cyclic partitioning column (or row) j is assigned to partition § mod N and
ina one-dlmensmnal consecutive partitioning column j is assigned to partition —é—] with partitions

labeled 0,1,..., N — 1. In a cube with V = 2" nodes the n lowest order bits of the binary encoded
column (row) mdex determines the partition to which a column (row) is assigned in the cyclic
partitioning, and analogously, the n highest order bits determines the partition assignment in the
consecutive partitioning. The partitions are assigned to cube nodes through encoding in binary or
Gray code. Figure 1 illustrates the two forms of one-dimensional partitioning.

In the two-dimensional partitioning we let N, denote the number of partitions in the row
direction and N, the number of partitions in the column direction. The total number of partitions
is Ny x N = N. In the two-dimensional cyclic partitioning matrix element (¢, ) is assigned to
partition (¢ mod N,,j mod N,). In the two-dimensional consecutive partitioning the matrix element
(1,7) is assigned to partition (lf;é’-TJ’ lT#ﬁ“ For a P x Q matrix partitioned by the consecutive

strategy the highest order log N, bits of the matrix row index determines the partition row index.
Analogously, the log N, highest order bits of the matrix column index determines the partition
column index. We assume for simplicity that N, = 2" and that N, = 2°. In cyclic storage, it is
instead the last several bits of the matrix row and column indices that determines the assignment
to a partition. The partitions can then be assigned to nodes in the cube by encoding the row and
column indices of a partition in binary code or Gray code. Figure 2 illustrates the two forms of
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Figure 2: Cyclic and Consecutive two-dimensional partition-

ing.

two-dimensional partitioning.

- We have now. defined the different data structures and encodings that we consider. For the
architecture we assume that it has packet oriented communication with a communications overhead,
start-up time 7, and that the transmission time per element is f, and a maximum packet size
of B elements. The communication time is proportional to the number of communication links
that is traversed. This model is applicable for the Intel iPSC. For a bit-serial machine, as the
Connection Machine, pipelining can be used to make the overhead an additive factor. With the
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current operating system for the Intel iPSC 7 ~ 5ms, t, ~ lusec/byte and By, = 1k bytes.
For the algorithm description and analysis we consider two cases with respect to communication
capabilities: communication restricted to one port at a time, and concurrent communication on all
ports. The former is a good approximation of the capabilities of the Intel iPSC.

For the two-dimensional partitioning we assume that n = r + ¢ and write the processor
address as (ra,-17a,-2...7@0CAc-1C0c—2 . ..cag) or (ra||ca), where ra = (ra,—1ra,—z...rap), ca =
(cac-1€a.-2...cap) and ‘||’ is the concatenation operator of two binary numbers.

3. One-dimensional Matrix Partitioning

3.1. Consecutive and Cyclic Storage

The transpose of a matrix from consecutive row to consecutive column partitioning has the
same communication pattern as transpose from cyclic row to cyclic column partitioning. If P,Q >
N then each node needs to send data to all other nodes. For P < N or Q < N a subset of the
nodes are either recipients or senders of data. Conversion between consecutive row and cyclic row
(or column) partitioning also implies that all nodes send unique information to all other nodes,
if @ > N? for column partitioning and P > N? for row partitioning. Consecutive partitioning is
made on the log N highest order bits, cyclic partitioning on the log N lowest order bits of the row
or column indices. Clearly, if less than 2log N bits are required for the encoding of row or column
indices there is not sufficient data to require data to be sent from each node to every other node
in the conversion. The amount of data that is sent from any node to any other node is fﬁ?ﬁ in
either of the two matrix transpose operations, or the cychc/consecutxve partitioning conversion.
We formulate this observation as a proposition.

Proposition 3.1. Conversion between any two of the following six embeddings all falls in the same
class as all-to-all personalized communication [8), if P'> N? for row partitioning or Q > N2 for
column partitioning, in that each processor sends the same amount' of personalized messages to all
other processors.?

1. consecutive row storage.
consecutive column storage.
cyclic row storage.
cyclic column storage.

combination of consecutive row and cyclic row storage.

S ¢N o

. combination of consecutive column and cyclic column storage.

For the transpose of a matrix partitioned consecutively by columns the partition assignment is
changed from the log V highest order bits of the column index encoding to the log N highest order
bits of the row index encoding. For cyclic partitioning it is instead the lowest order log N bits of
the row and column indices that are of interest. For conversions between cyclic and consecutive
partitioning only one index (row or column) is involved. It follows that if either the maximum
row or column index requires less than log N bits for its encoding (or both), then the matrix

lor at most differs by 1 1f P (or Q) is not multiple of N2,
2Conversions between 1 and 5, ‘3 and 5, 2 and 6, 4 and 6, must have the encoded indices disjoint.

<
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Consecutive Combined Cyclic
Binary, Row (rap-17ap—2...rap_n) (rap—iTap—i_1...7Gp—i—nt1) (ran_1ran—s...rag) .
Binary, Column (cag-1cag_s...cag—y) - (cag_icag_i—1...ca5—i—pnt1) (can—ycan—s...cap)
Gray, Row (G(rap—1rap—s...rap_p)) (G(rap—irap—i—1...18p—i—p+1)) (G(ran-1rapn—z...rap))
Gray, Column (G(cag—1caq_3...caq—n)) (G(cag—_jcag—i—y...cag—i—p+1)) (G(can-1can—z...cap))

Table 1: The processor address for matrix element (ra,_1rap—s...rag, cag-1cag_s...cap).

transpose operation corresponds to a few distinct single source-to-all (or sinks-from-all) personalized
communications[3]. In the conversion case each processor communicates with a few others. With
a relevant index field of at least 2log N bits the only difference for any two operations defined in
Proposition 3.1 is the data structures internal to a node. Some of these issues will be discussed in
the implementation section.

3.2. Binary and Gray Code Embeddings

The six partitionings in proposition 3.1 can be used in connection with either Gray code en-
coding or binary code encoding. There is a total of 12 kinds of matrix embeddings obtainable
through the combination of one-dimensional partitioning strategies and encodings in the Boolean
cube; namely, consecutive or cyclic partitioning or a combination of the two, row or column par-
titioning, binary or Gray code encoding. Most conversions between any two of the 12 kinds of
storage methods are equivalent in terms of the global communication.? Table 1 shows the address
of the processor to which the matrix element (ra,_irap_s...ra0, cag-1ca,-9...cag) belongs for the 12
encodings. ‘

3.3. Generic Algorithms

In the case that there are data elements for every processing node both before and after the
data rearrangement, the communication is all-to-all personalized communicaton. In the case where
only a few processing nodes contain data before or after the transformation it is of the form many-
to-all or all-to-many personalized communication. In the extreme case it is of the type one-to-all
personalized communication. These forms of communication are studied in detail in [3].

3.3.1. One-to-all personalized communication
The main result for one-to-all personalized communication is that such communication can
be performed in lower bound time by routing according to a Spanning Binomial Tree (SBT) with
communication restricted to one port at a time. Before the communication, only one processor, i.e.
the source node, holds all PQ data elements. After the communication, every processor holds f)?
data elements. The communication time is Ty, = (1 — 7},)PQ16+7([£%] + min(n, log[—ng’i]) -1),
which is minimized for B,, > %ov-. Topt = (1 - ﬁ)Pth + n7. The number of elements to be
communicated from a node to each of the N — 1 other nodes is —’;@.
With concurrent communication on all n ports routing according to a SBT is no longer optimal.
The lower bound for concurrent communication is T = 1(1 — &)PQt, + nr, but due to the fact
~that half of the nodes of a SBT are in one subtree the SBT routing requires a transmission time
of at least %Pth. One nearly optimal (truly optimal for n prime) routing strategy is to use a
Balanced Spanning Tree (BST). The routing time is T ~ Y., (2 (',.')f;gtc + [%(")B?;—"QW]T) =T~

i=1\p !

b

8except the conversions between binary code and Gray code encoding in which both use the same partitioning scheme in
the same direction.




L1 - H)PQt. + T ([E(D) B%%v]r, which has a minimum of Topr = 1(1 = %)PQtc + nr for
Bp 2 \/-g%. The speed-up of the transmission time of BST routing over SBT routing is a factor

of n/2. Moreover, the maximum packet size is reduced approximately by a factor of n.

The BST routing divides the node set into approximately n equal subsets. An alternative
routing for the case of concurrent communication on n ports, is to divide the data set (4&) for
each node into n equal parts (if fﬁ mod n = 0) and route the parts differently. For instance,
the parts can be routed according to SBT’s rotated with respect to each other, or a combination
of rotation and reflection. The minimum time for one-to-all personalized communication using n
distinctly rotated spanning binomial trees is T = 1(1 — §)PQt. + nr, i.e., the same complexity
as that of the lower bound. In a level-by-level algorithm the root has to send 3 7, ("7/) 152
elements over any port during step n — 1. The lower bound is achieved for a maximum packet size

Bp > ma.x(?)-};%@m %:,Qz, 1<i<n.
For ENQ = k < n the BST routing has a lower time complexity for element transfers. For k

SBT’s the transfer time for optimally rotated spanning binomial trees is (2" - 1):—%—%%?& and for

optimally reflected and rotated spanning binomial trees the minimum transfer time with concurrent
. -‘ . . .
communication on all ports is (2" — 1)22’? +12Q;  For k = 2 reflection yields a maximum of
2% -1

3N + 1 element transfers over any edge (and a minimum of v/2N). Rotation yields a maximum of
%N + %N element transfers over any edge. For k = 2 the optimum rotation is by -lin steps. In

general, the optimum rotation is by % steps for f};? =k <nt

3.3.2. All-to-all personalized communication

For all-to-all personalized communication a simple exchange algorithm scanning through the
dimensions of the cube attains the lower bound, T}, = 2n(§§tc + 7), with communication re-
stricted to one port at a time [3]. In each transfer é;ﬁ elements are transfered. The exchange
algorithm effectively routes elements from a node to all other nodes according to a SBT. The
spanning binomial trees rooted at different nodes are translated versions of each other. With con-
current communication on all n ports pipelining can be employed in the exchange algorithm, but
the algorithm so modified is suboptimal. However, as in the case of a single source, routing based
on balanced spanning trees attains the lower bound, Thin = %(1 - ﬁ)%@tc + nr, ignoring lower
order terms [3]. The maximum number of elements transfered across an edge during any cycle is
approximately (1 — 7{,)51@ It is also possible to achieve the lower bound by employing rotated
spanning binomial trees for ’7';,% mod n = 0, and rotated/reflected SBT’s otherwise.

The exchange algorithm [6] presented next performs the matrix transpose operation for one-
dimensional partitionings embedded by binary encoding of the partition index. Assume that the
matrix to be transposed is partitioned consecutively by rows and that processor 7 initially holds
the elements of the 7** block row. After the transpose operation it shall hold the elements of the i*?
block column. Note that the number of rows in a block row is different from the number of columns

“in a block column, unless P = Q. However, the number of elements in a block row and a block
column are the same. For the transpose operation the block row of each processor is partitioned
by columns into NV equally sized blocks. The transpose is formed by processor ¢ exchanging its 5"

41If n is a multiple of k.




block with the #*# block of processor j. The data array in each processor holding the elements of
a block row is two-dimensional, unless the number of rows is equal to the number of processors,
and the local data array after the transpose is also two-dimensional, unless the number of columns
is less than or equal to the number of processors. To complete the transpose operation after the
interprocessor communication is completed, this two-dimensional data array can be transposed
further locally, either explicitly or implicitly by indirect addressing.

An Ezchange Algorithm
for j := n—1 downto O do
if (bit j of my-addr = 0) then
exchange blocks %N to N —1 of my blocked array
with my neighbor in dimension j
else
exchange blocks 0 to %N——l of my blocked array
with my neighbor in dimension j
endif;
shuffle my blocked array;
enddo

The loop can also be performed with the loop index running in the opposite order, but then
the first operation in the loop shall be an unshuffle operation, which replaces the shuffle operation

at the end of the loop.

A BST Algorithm
/* Let the format of msg be <source-addr, relative-addr, data>. */
for all j # myaddr do
form msg for processor j = <myaddr, myaddr @ j @ 00..01;0..0, data> and
append to output-buf [b] where b is the base of myaddr @ ;.
loop n times
send concurrently for all n output ports.
receive concurrently for all n input ports.
for each j do, 0<j<n
for each msg of input-buf [j] do
if relative-addr = 0 then
put the data into the source-addr'” block of the target array
else
form relative-addr := relative-addr @ (0..01,0..0) in the msg
and append to output-buf [p], where p is the bit position
of relative-addr which is the nearest 1-bit to the left of
the j'* bit cyclically.
/* Note: j'® bit is always O here. =/
endif
enddo
enddo
endloop




For both the SBT and BST algorithms presented above it is assumed that the partitions are
embedded in the cube by a binary encoding. For Gray code encoding of partitions and binary
encoding locally, we can first perform a transformation locally such that block ¢ is moved to block
location G(7), then carry out the above algorithms. The two operations can also be combined as
described in the next section for two-dimensional partitioning.

- 4. Two-dimensional Partitioning

4.1. Relationships between different data structures and their encodings

As with one-dimensional partitioning there is a multitude of cases. If there is no particular
reason for identifying a particular processor with a particular partition, then renaming of the
processors suffices to realize the transpose. The processors that were assigned to column partitions
will be assigned to row partitions after such a relabelling.

With the same number of partitions in the row and column directions, the transpose oper-
ation of a matrix partitioned by the consecutive strategy in both dimensions implies the same
interprocessor communication as if the partitioning is made cyclicly in both dimensions (or by the
same combination in both dimensions). An exchange of data takes place between distinct pairs of
partitions. What matrix elements are exchanged depends on the partitioning strategy as is easily
seen if the concatenated bitfield of the matrix row and column indices is partitioned with the first
(or last) log N, = log N, bits of the row and column halves of the index field making up the par-
tition address. In [5, 6] we show that performing a matrix transpose on a matrix with partitions
embedded in the cube by a binary code or Gray code encoding implies the same communication.

To transpose a matrix stored consecutively with respect to both row and columns to a form
stored cyclically with respect to both row and columns, there exist a few alternatives, if the local
data (submatrix) is stored row by row as a one dimensional array. We first state the complexity
result as lemma.

Lemma 4.1. A matrix stored consecutively (cyclicly) can be transposed and the storage form
changed to cyclic (consecutive) in 2n communication steps for a 2" x 2" matrix stored with one
matrix element per node in an 2n-cube.

Let ezchange-row(i) denote the sequence of exchange operations between rows as defined by
the exchange algorithm described in pseudo code above with 1 being the block size for the first step.
Hence, ezchange-row(:) operates within each column subcube. Each subsequent step reduces the
block size by a factor of 2 and doubles the number of blocks. In the exchange algorithm presented
earlier, i = PQ/2N. Ezchange-column(?) is similar. The optimal buffering technique can be applied
in the exchange algorithm used for the consecutive/cyclic conversion. For the matrix transposition
with different data structures we consider the following alternatives

1. Convert from consecutive-row partitioning to cyclic-row partitioning, i.e., ezchange-row (Q/N,);
then convert from consecutive-column partitioning to cyclic-column partitioning, i.e., ezchange-
column(1); then (globally) transpose the matrix. ‘

2. Transpose each partitioned matrix locally; then convert from consecutive-row partitioning,
i.e., exchange-row (Q/N.); then convert from consecutive-column partitioning to cyclic-column
partitioning, i.e., ezchange-column(1).



3. Convert from consecutive-column to cyclic-column partitioning, i.e., ezchange-column(Q/N,);
then convert from consecutive-row to cyclic-row partitioning, i.e., ezchange-row(1).

The first method requires 2log N communication steps. The second method needs only log N
steps. However a local matrix tranpose has to be performed first. The third method, while still
requiring log N communication steps, does not require a local matrix transpose. It is eliminated by
viewing the row as the column and vice versa when carrying out the consecutive/cyclic conversions.
Note that the order between exchange-row and exchange-column can be reversed.

If the number of row and column partitions are different, then the transpose operation is no
longer a pure exchange operation between a pair of processors. Some one-to-many and many-to-
one communications are necessary. For example, assume that there are two row partitions and
four column partltxons Then some partitions exchange data with one other partition, and some
partitions with two other partitions. If virtual partitions are introduced in the row direction such
that there are equally many row partitions, then the transpose operation becomes equivalent to
the canonical case having as many row as column partitions. The number of virtual partltlons is
2llog Nr=log Ne| . With virtual partitions one dimension is “collapsed” to a certain degree.

Conversion between cyclic storage and consecutive storage in the row or column direction is
equivalent to a number (N, or N,) of independent one-dimensional conversions. Conversion in
both dimensions is equivalent to all-to-all personalized communication if Q>N2and P>N? In
the two-dimensional conversion the assignment of matrix rows to partitions is changed from being
determined by the last log NV, bits of the matrix row index to the first log N, bits, or vice versa, and
the column assignment is changed similarly according to the last and first log N, bits of the matrix
column index. The source cube node address is defined by the concatenated last log N, bits of the
row index and log N bits of the column index, and the destination address by the concatenated
first log N, bits of the matrix row index and log N, bits of the column index. Clearly, by a suitable
permutation of the bits in the concatenated row and column index encoding the two-dimensional
conversion is equivalent to a one-dimensional conversion on a cube with log N, + log No = log N
dimensions.

4.2. Algorithms .

We consider the transposition operation for binary encoding first. Define tr(i) to be the
function which maps the address of partition ¢ = (ral|ca) to the address of the transposed partition,
i.e., tr(¢) = (cal|ra). Let D(i) = |ra® cal, i.e., the value of D(:) is equal to the number of bits that
differ in ra and ca. The distance between 7 and tr(i) is 2D(i). We assume that there are equally
many row and column partitions.

The Single path Recursive Transpose(SRT) algorithm [6] uses one path from node 7 to tr(s).
Paths for different ¢ are edge-disjoint, and pipelining of communications can be employed to reduce
the communication complexity. The Dual paths Recursive Transpose(DRT) algorithm is a straight-
forward improvment of the SRT algorithm in that two directed edge-disjoint paths are established
from each source node to its corresponding destination node. In the Multiple paths Recursive Trans-
pose(MRT) algorithm, we partition all the nodes into sets having equivalent properties with respect
to an operator (defined later). We show that the paths of any two nodes belonging to different sets
are edge-disjoint. We then prove that all the nodes in the same set share the same set of edges,
but use them during different cycles.




4.3. The Single path Recursive Transpose(SRT) Algorithm

The Single path Recursive Transpose(SRT) algorithm [6] for a two-dimensional consecutively
partitioned matrix exchanges data between the upper right P/2 x Q/2 submatrix (rag_l = 0,
cag_y = 1) and the lower left submatrix (ra_;._l =1,cag_; = 0) in two steps. The transpose
operation is completed by recursively applying the operation to each of the four submatrices.
The implied routing corresponds to directed edge-disjoint paths from each node i to tr(¢). For
each source-destination pair there is a single path. This path only goes through the appropriate
dimensions of the cube corresponding to the bits of the source node address i that need to be
complemented to become the destination node address tr(7). The routing order for the dimensions
that need to be routed is the same for all nodes, for instance highest to lowest order for both row
and column encoding, i.e., T@2-1,€a2_1,7@3_9,€a2_9,...,Ta0,cao. The length of the path of node
i is 2D(7). The first packet for each node on the anti-diagonal arrives after n routing steps and
additional packets every cycle thereafter. The total number of routing steps is [FP'%] +n—1. The
‘nodes which are not on the anti-diagonal can either finish the transposition early in a “greedy”
manner, or synchronize with the anti-diagonal nodes, i.e., the packet with the same ordinal number
of all the nodes uses the same dimension (or idles) during the same step. The total transposition

time T is (EE"% +n — 1)(Bmt. + 7). The optimal packet size, Byp, is \/m—f-:%m and the minimum
time, Trin = (\/ }—;vottc +/(n - 1)7)%

4.4. The Dual paths Recursive Transpose(DRT) Algorithm

The SRT algorithm can be improved by establishing two directed edge-disjoint paths between
¢ and ¢r(¢) for all ¢. In addition to the paths used in the SRT algorithm, a second path is de-
fined by permuting row and column dimensions pairwise to yield a routing order selected from
cag-1,7a21,€02 9,72 _9,...,€ap,rag. The two directed paths for a particular ¢ are edge-disjoint
(as observed in [4] for the solution of tridiagonal systems on Boolean cubes). Moreover, the two
directed paths for any ¢ are edge-disjoint with respect to all paths for other i. This second path
can be used to reduce the time for data transfer by splitting the set of data %? into two equal
parts. The path lengths are already minimal in the SRT algorithm. The communication com-

~ plexity is ([i%] + n — 1)(Bmtc + 7), which is minimized for B = B,, = m}%ﬁ: and

Tmin = ( %?rtc + /(n — 1)7)2. The speedup is approximately 2 for %@tc > nr, i.e., for Boolean
cubes small relative to the problem size. Note that for the SRT algorithm it suffices that each
node supports a total of n concurrent send or receive operations, whereas for the DRT algorithm n
send operations concurrently with n receive operations are required for each node. Uni-directional
communication suffices for the SRT algorithm, but bidirectional communication is required for the
DRT algorithm.

4.5. The Multiple paths Recursive Transpose(MRT) Algorithm
For the Multiple paths Recursive Transpose(MRT) algorithm we define 2D (i) paths, labeled
0,1,... ,2D(7) — 1, between nodes 7 and ¢r(¢). The paths differ in the order in which the dimensions
are routed. All paths have the same length. Let ap(;)-1, @p(i)-2, +++s @0, BD(i)~1,BD(i)-25 - Po be
the sequence of dimensions that need to be routed in descending order. We describe a pair of paths
as a sequence of dimensions.
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&(p+D(i)-1)mod D) B(p+ D(i)~1)mod D(s)> X(p+D(5)~2) mod D(i) B(p+D (i) =2)mod D(s)» > Xp» Bp-
0 < p< D(z);

IB(j+D(i)—-l)modD(i)’ (4 D(i)~1)mod D(i)> ﬁ(j+D(i)-—2)modD(i)7 Qi +D(i)=2)mod D(i)> *+» ,B]', Q.
3= p- D), Di} < p <3D().
For example, if 1 = (1001[|0100), then ra = 1001,ca = 0100, D(¢) = 3 and tr(¢) = (cal|ra) =

(0100|[1001). The distance between 7 and tr(:) is 6. The 6 paths are defined as follows.

path p =

path 0=17,3,6,2,4,0. path 3=3,7,2,6,0,4.
path 1=4,0,7,3,6,2. path 4 =0,4,3,7,2,6.
path 2 =6,2,4,0,7,3. path 5=2,6,0,4,3,7.

Path 0 starts from the source node (10010100) and goes through nodes (00010100), (00011100),
(01011100), (01011000), (01001000) and reaches the destination node (01001001). Path p can be
derived by a right rotation of two steps of path (p— 1) mod D(i),if 0 < p < D(i). For D(i)<p<
2D(z), path p can be derived by a right rotation of two steps of path ((p = 1) mod D()) + D(i)
and also by permuting row and column dimensions pairwise of path (p = 1) mod D(i). Note that
path O is the same as the path defined in the SRT algorithm. Paths 0 and D(7) are the two paths
defined for node 7 in the DRT algorithm.

Definition 4.1. Let ¢,5 be two nodes with i = (ra'||ca’) and j = (ra"[|ca”). Define a relationship
~ad between 7 and j such that i ~qq j iff ra’ + ca’ = ra" + ca”, i.e., ¢ and j are on the same
anti-diagonal. Note that if 1 ~54 7 and j ~aq k then ¢ ~gq k.

Definition 4.2. Define edge(i,p, ) to be the function which returns the e!® directed edge of path p
of node ¢ (starting 1* edge). We also define Edges, OddEdges, EvenEdges and Paths as follows.

Edges(i,e) = {edge(i,p,e)|¥ 0 < p < 2D(:)}.

OddEdges(i) = | ] Edges(i,e)
vodd e
EvenEdges(i) = U Edges(i,¢e)
Vv even e
Paths(i) = OddEdges(i) UEvenEdges(i).
Definition 4.3. Define Nodes(i,€) to be the function which returns the set of nodes upon which the
directed edges in Edges(i,e) terminate. Define Odd Nodes(i) and EvenNodes(7) to be the set of
nodes on which the set of directed edges OddEdges(i) and EvenEdges(i) terminate, respectively.
OddNodes(i) = U Nodes(i,¢€)
v odd e
EvenNodes(i) = U Nodes(i,e)
VvV even e
Definition 4.4. Let 7,5 be two nodes. Define a relationship operator ~, such that ¢ ~, 7 iff 1 ~gq J
and 1@ tr(t) = 7@ tr(5). If i ~, j and j ~, k then 1 ~, k.
Note that 1@ ¢r(i) = j@tr(j) implies D(i) = D(j), but D() = D(5) does not imply i®1tr(z) =
J @ tr(j). There exists ¢,7 such that i ~gq j and 1 & tr(i) # j & tr(7). Also there exists ¢, such
that @ #4457 and i @ tr(i) = j & tr(y).
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~ Definition 4.5. The set of paths defined for a set of nodes is said to be (u,n)-disjoint if each node
in the set can send out a packet of fixed length through all the paths originating from it during
cycles1+i*n,24+1*n,...,u+17*n,Vi>0, without routing conflicts, i.e., messages originating
from different nodes will not be routed over the same edge during the same cycle.’

_ " To desctibe the algorithm we first prove the following properties.

1. Path p; and p; of node ¢ are edge-disjoint, V 0 < py,ps < 2D(7),p; # p2.

2. If i £, j then Paths(i) N Paths(j) = 6.

3. The set of all paths for the nodes in the set induced by the relationship ~, is (2,2D(i))-disjoint.
Lemma 4.2. Path p; and p; of node i are edge-disjoint, V 0 < p1,p2 < 2D(i), p1 # p2.

Proof. It follows from the facts that all the paths are pointing away from the source node and no
two paths traverse the same dimension during the same step.

Lemma 4.3. If D(¢) > O, then the set of nodes OddNodes(i) and EvenNodes(i) have the following
" properties :

o i edj, D(j) = D(i) - 1,V j € OddNodes(i),
®inr~gaJ, 1 ®tr(i) =75 @tr(j) (which implies D(j) = D(i)),V j € EvenNodes(t).

Proof.

In traversing an edge in OddEdges(i), we complement one of the D(:) bits of the 2 high
(low) order bits which differ from the corresponding low (high) order bit. In traversing an edge in
EvenEdges(i), we complement the low (high) order bit of the corresponding high (low) order bit
that was complemented in traversing the preceding odd edge. Let v; = Nodes(i,2h) = (ral|ca),
v2 = Nodes(i,2h + 1) = (ra'||ca’) and vs = Nodes(i,2h + 2) = (ra"||ca”), 0 < h < D(i). From
the definition of paths either ra’ = ra + 2%,ca’ = ca or ra’ = ra,ca’ = ca — 2% for some z
satisfying ra; = 0, ca; = 1; or ra' = ra — 2%,ca’ = ca or ra' = ra,ca’ = ca + 2% for some
z satisfying ra; = 1,ca; = 0. These conditions imply ra + ca # ra’ + ca',i.e., v; %44 v2, and
|ra’||ca’| = |ral|ca] — 1, i.e., D(v2) = D(v1) — 1. Furthermore, ra” = ra + 2%,ca” = ca — 2°
for some z satisfying ra; = 0,ca; = 1 or ra" = ra — 2%,ca” = ca + 2%, for some z satisfying
ra; = l,ca; = 0. Hence, ra + ca = ra" + ca”, i.e., v} ~4q v3. Also, ra @ ca = ra" @ ca”, i.e.,
(ral|ca) & (cal|ra) = (ra"||ca”) & (ca”||ra") which implies v) @ tr(v;) = v3 & tr(v).

Corollary 4.1. i1 ~, |, V| € EvenNodes().
Lemma 4.4. If ¢ 44 7, then Paths(i) N Paths(j) = ¢.

Proof. 1t is sufficient to prove Paths(i)NPaths(j) = ¢ by proving EvenNodes(i)NEvenNodes(j) =
¢ and EvenNodes(i)NOddNodes(j) = ¢. From lemma 4.3, EvenNodes(i) ~aq t, EvenNodes(j) ~aq
J. Since i 44 j, we have EvenNodes(i) 44 EvenNodes(j), which implies EvenNode(i) N
EvenNode(j) = ¢.

$Note that the (u,n)-disjoint definition does not imply that the paths from the different source nodes are edge-disjoint.
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To prove EvenNodes(i) N OddNodes(j) = ¢, we consider three cases.

1.If D(i) = D(j), then by lemma 4.3 D(v;) = D(vz) + 1 where v; € EvenNodes(i), vy €
OddNodes(j). So, EvenNodes(i) N OddNodes(j) = é.

2.1If D(i) > D(j), then D(v;) > D(vy) where v; € EvenNodes(i), v € Oddnodes(;). So,
EvenNodes(i) NOddNodes(j) = ¢.

3. If D(2) < D(y), we show EvenNodes(j) N OddNodes(i) = ¢ instead by a similar argument as
" in case 2.

Lemma 4.5. If ¢ ~4q 5 and i £, j, then Paths(i) N Paths(j) = ¢.

Proof. Assume EvenNodes(i) N EvenNodes(j) = ¢, then there exists one node v such that v €
EvenNodes(t) and v € EvenNodes(7). By corollary 4.1, v ~, {,v ~, 7, i.e., i ~, j which is
a contradiction. So, EvenNodes(i) N EvenNodes(j) = ¢. Also by lemma 4.3, EvenNodes(i) N
OddNodes(j) = ¢. Hence, Paths(i) N Paths(j) = ¢.

Lemma 4.6. Ifi £, j then Paths(i) N Paths(j) = ¢.

Proof. It follows from lemmas 4.4 and 4.5.
]

Lemma 4.7. The set of paths defined for the nodes in the same set induced by the relationship ~,
is (2,2D(1))-disjoint.

Proof. We first prove that the paths of the nodes defined by the ~, relationship are (1,2D(¢))-
disjoint. The proof is by induction on the routing cycles. During cycles 1 and 2, the routed edges
are clearly disjoint by Lemma 4.3. Assume that during cycles 2n — 1 and 2n, n > 0, the routing
is also edge-disjoint. If n = D(z), then all the routing is complete. During the next two cycles the
routing is restarted and there is no edge conflict. If n # D(7), then consider the 2D () edges directed
into some node ! at distance 2n from 7 as well as the 2D(7) edges directed out from node [. Let
QAD(i)=15 XD(i)=25 s @05 BD(i)~15 BD(i) =25 ---» Bo be the corresponding 2D(7) dimensions in descending
order. If an edge used during cycle 2n— 1 is in dimension a; (i.e., the edge used during cycle 2n is in
dimension (;) then the edges used during the following two cycles are in dimensions Q(z—1)mod D(i)
and B(z-1)moaD(s) Tespectively. If the edge used during cycle 2n—1 is in dimension 3, then the edges
used during the following two cycles are in dimensions B(z-1)modD(i) aRd &(z—1)mod D(i) TeSpPectively.
Hence, the edges used during the following two cycles are all distinct and it follows that the paths
are (1,2D(7)) disjoint.

To show that the paths are (2,2D(7))-disjoint it suffices to show that the set of edges used
during odd cycles (odd edges) are disjoint from the set of edges used during even cycles (even
edges). Let ! be any node in the set defined by the relation ~,. That the set of edges used during
odd cycles are disjoint from the set of edges used during even cycles follows from the property that
odd edges are directed from node v; to node v, and even edges directed from node v3 to node vy
where 7 ~, v ~, V4, T %, v2 and 1 £, va.
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For the routing, the data from node ¢ is split into 4D(:) packets of size [Uv}igm.l each. The
packets are sent during the first two cycles. The first 2D(7) packets will arrive at the destination
node, tr(7), after 2D(i) cycles, and the second set during the next cycle. The total transpose time
is

{(n+ )7+ (55 Bt ‘f">871

3r+ 3 —NQ—tc otherwise.

The transpose time decreases as a function of D(t) for 1 < D(i) < %er‘& &nd increases

for \/£% < D(i). The transpose time for D(i) = 1 and D(: POl are the same. The
8Nt 8Nt

maximal packet size is —% The maximal packet size can be reduced either without affecting the
total transpose time (if § > %%f or the total transpose time reduced by splitting the data into
[75"(-)-‘[ *4D(t) packets. In fact, the data sent from node ¢ can be split into 4k D(7) packets instead
of 4D(:) packets. The whole routing completes in 2kD(i) + 1 cycles. Hence, T = (2kD(2) + 1)(r +

TW&)—)’ < D(7) < 2. The optimal k is \/fz%r‘c‘zﬂl'{y and Thmin = (V7 + \/52%7‘—5)2. Notice that
Tnin is valid only when k£ > 1, which implies %—%ﬁ >n

Theorem 4.1. The total matrix transpose time by the MRT algorithm is

(n + 1)r+ —)%tc ifn> \/fﬁﬁ approximately;

J (5 +3)r+ -22',5&%—1\? if KQ‘L <n< 295 approximately and § is even;

(3+2)r+ nﬁ,”% if -N-PQ‘ <n< PQ'n

WieVER? s IR
\

and the maximal packet size is

P P!
[WI%T] for even 3 and n > \/ 5%,
P PQ!t
[Nagay] for odd § and n > \/ 2%

PQr1

PQt
3T, forn < —%—ﬁ

Proposition 4.1. The matrix transposition time is at least nt + gﬁtc.

N+ approximately and % is odd;

[T

Proof. The minimum number of start-ups is determined by the largest distance which is n. Nodes
on the main anti-diagonal are at distance n. For a lower bound on the required time for data
transfer consider the upper right v/N/2 x v/N/2 submatrix. There are N /4 nodes. Each node has
to send -ﬁ- data to some node outside the submatrix. There are two dimensions per node that
connects to nodes outside of the submatrix, i.e., a total of 2N /4 links. Hence, the data transfer
requires a time of at least —%tc

For Gray code encoding on both row and column indices, we can apply exactly the same
transpose algorithm. For a P by Q matrix stored in N = PQ (P by Q) processors by binary
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encoding of row and column indices, matrix element (z,7) is stored in processor i||5 and matrix
element (7,7) is stored in processor j|[i. The two dimensional transpose algorithms described
above can be viewed as a permutation between processor ral|ca and processor cal|ra, YO < ra <
P,ca < Q. For Gray code encoding of row and column indices, matrix element (¢, 5) is stored in
processor G()||G(7) and matrix element (j,¢) is stored in processor G(5)||G(:). It follows that the
permutation will transpose the matrix. In general, if row and column indices are encoded in the
same way, the transpose algorithm only depends on the processor addresses, not on the row and
column indices of the matrix elements in the processors. For N < PQ, the argument applies to
matrix blocks instead of matrix elements.

4.6. Combining Transpose and Gray code/binary code conversion

For the transpose of a matrix with the row index encoded in binary code and the column
index in Gray code, a binary-to-Gray code conversion can first be done for each column subcube
concurrently in § — 1 steps [6], then the Gray-to-binary code conversion for each row subcube
concurrently in another § — 1 steps followed by the n-step transpose algorithm.® The total number

~of routing steps is 2n — 2. However, the number of routing steps can be reduced to n by combining
the transpose’ and the conversion operations. Pipelining still can be applied. For simplicity,
we describe the non-pipelined version. Similar to the SRT algorithm, the combined algorithm is
composed of n/2 iterations. Each iteration contains two routing steps. In iteration 7, 0 < i < n/2,
bit § — 7 — 1 of the row and column indices is changed by sending data through the corresponding
dimensions. With the rows encoded in binary code and the columns in Gray code, matrix block
(¢,7) is stored in processor i||G(j) and matrix block (7,¢) is stored in processor j||G(i). The
direct transpose permutation is defined by exchanging data between processor r||c and processor
G=HIG(r).

During the first iteration, the upper right block (0zz..z||lzz..z) and the lower left block
(1zz..z||0zz..z) are exchanged in two steps. Neither the row or column conversions for the two
encodings affect iteration O, because the Gray and binary codes have identical most significant
bits. During the second iteration, the Gray code encoding of the column indices forces a horizontal
exchange within the blocks for the second half of the block rows. The binary code encoding of
the row indices forces a vertical exchange for the second half of the block columns. The transpose
operation requires an anti-diagonal exchange within all four blocks. The combined permutation
pattern is shown in figure 3.

In general, the Gray code encoding of the columns causes a horizontal exchange within all
the odd block rows with block rows numbered from 0. The binary code encoding causes a vertical
exchange within all ¢*» block columns such that the parity of the binary encoding of 7 is odd.
This can be proved from the conversion from binary code to Gray code proceeding from the most
significant bit to the least significant bit (instead of a “low order to high order bit” conversion
sequence[6]). Figure 4 shows the four iterations with n = 8, in which ¢ means clockwise rotation
and cc means counterclockwise rotation. The algorithm is presented below.

/* Note: my-addr is of the form (ral|ca). */
/* The second argument of °'send’ and 'recv’ represent the cube dimension */

€ The two conversions can also be performed after the transpose.
7j.e., the SRT algorithm
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Figure 3: Transpose of a matrix stored by binary code encod-
ing of row index and Gray code encoding of column index.

/* and 'buf’ contains the data to be transposed initially. =*/
even-block-row := {rue;
A -even-parity-block-column := true;
for j := 5 — 1 downto O do
case (even-block-row, even-parity-block-column, bit 7+ 2, bit j) of
(TT00), (TT11), (FFO1), (FF10):
recv (tmp, j+ 5); send (tmp, j);
(TTO1), (TT10), (FFOO0), (FF11), (TFO1), (TF10), (FT00), (FT11):
send (buf, j+ 5); recv (buf, j); '
(TF00), (TF11), (FTO1), (FT10):
send (buf, j); recv (buf, j+ §);
endcase
even-block-row := (bit j+ § = 0);
if (bit ;7 = 1) then
even-parity-block-column := not even-parity-block-column;
endif
enndo

Figure 5 shows the measured time to transpose a matrix by mixed encoding of rows and
columns by using the 2n — 2 steps naive algorithm and the n steps combined algorithm on the Intel
iPSC.

To transpose a matrix stored by binary encoding of row and column indices into a transposed
matrix with row and columns encoded in Gray code, a combined conversion-transpose algorithm
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Gray code Gray code
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Gray code Gray code
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..;?!-.‘{-.*.-t}j ’?’ LN EILNEI AN
- H | .} Hlele |l <7 ¢
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st .:." | ce [ ™ e ™ ee | ee | ™
! : e ) / (4 (4 / Cc // C
-&%--\:i--.ﬁiﬂ_&'- cc \ \ cc \ cc | cc \

(d)

Figure 4: Transpose of a matrix stored by mixed encoding of
rows and columns in an 8-cube.

similar to the one above can be applied to accomplish the task in n routing steps. The algorithm
above needs only be modified such that the column operations are controlled by even-block-columns
(instead of even-parity-block-columns). Similarly, to transpose a matrix with both row and columns
‘encoded in Gray code into a transposed matrix with rows and columns encoded in binary code, the
control of the row operations is changed from even block rows to even-parity block rows.
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Matrix Transpose (mixed encoding)
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solid line = combined loﬁN steps transpose.
dashed line = naive 2logN-2 steps transpose.
plus for dim = 4, circle for dim = 8.

Figure 5: Measured times of transposing a matrix stored by
mixed encoding of rows and columns by the naive and com-
bined algorithms on the Intel iPSC.

5. Experiments and Implementation issues

5.1. One-dimensional partitioning

The Intel iPSC effectively allows communication on only one port at a time. Hence, we
choose to implement the one-dimensional transpose using the exchange algorithm. However, our
implementation deviates from the above description in that we do not perform the shuffle op-
erations explicitly, since the copying time on the Intel iPSC is significant. Copying 1024 single
precision floating-point numbers (4k bytes) takes about 37 milliseconds according to our measure-
ments(Figure 6). Instead, we logically partition the local array into 2/ same-sized blocks during
step j. The odd or even blocks can either be sent directly to minimize the copy time, or copied into
a buffer to reduce the number of start-ups. Figure 7 presents the measurements for unbuffered and
buffered communication for rearrangment of cyclic to consecutive partitioning (one-dimensional
local arrays).

The complexity of the unbuffered communication is easily found to be T = angtc + (N +
fy%]min(n, logf_,[P}:%,]) - B—’;—%V)%. With buffered communication, messages may intially be
larger than the buffer size, in which case they are sent directly. Small messages are buffered
and the time for communication is T = nf@¢, + (min(n,log[{ﬁv])[%] + min(N, E%Qy_l\’) -
min(N, £9%) + [ 7291 max(0,n - lo 7o2x1))2r + £R max(0, n — log 523 1)tcopy, Where By,
is th(e a.’rrpa_'}qzzze LZ;T,?I}:'J whicg it is prff[er;at’;fe VRZh res;fct to IEerforman[ce cggysel)c'l wpixjchout copyirf;
into a buffer. The complexity of the unbuffered communication grows linearly in the number
of processors, i.e., exponentially in the number of cube dimensions, as shown in Figure 7. The
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Figure 6: Measured times for copy of various data types on
the Intel iPSC.
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Figure 7: Measured times on the Intel iPSC for the transpose
of a matrix, one-dimensional partitioning (or for conversion of
consecutive to cyclic one-dimensional partitioning), encoded
in binary code.
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it is important to have a large buffer, to reduce the number of start-ups, and fast copy. With the
times for copy of floating-point numbers and communication start-ups on the Intel iPSC the copy
of 64 single-precision floating-point numbers (256 bytes) takes approximately the same time as
one communication start-up. Hence, it is beneficial with respect to performance to send blocks of
length at lea§t 64 floating-point numbers without buffering. Figure 8 illustrates the sensitivity of the
performance to the choice of minimum unbuffered message size. Figure 9 shows the improvement
in performance with optimum buffering compared to the unbuffered communication. Note that for
sufficiently small cubes (or large data sets) the time required by the two schemes coincide.

Optimal buffer size measurement
T l T I T l T I T

o2}

o

o
I

l

N

o

o
]

|

Time for send (in ms)

200 —

Log, (Buffer size)
PQ/N = 1024, cube dimension = 8
Measured optimal buffering length = 64

Figure 8: Performance measurements for optimum buffer size
on the Intel iPSC.

5.2. Two-dimensional partitioning

5.2.1. The Intel iPSC

We have implemented algorithm SRT as a step by step procedure. Pipelining is not possible.
- Moreover, on the Intel iPSC it is necessary to rearrange two-dimensional arrays into one-dimensional
arrays before sending. Since the copy time is significant we arrive at an estimate for the time of
a block transpose of T = (-}?ﬁtc + I'F};"%V]T)n + 2%%,,,,. The growth rate is proportional to the
number of matrix elements. There is an exponential decay as well as a linear increase in the number
of cube dimensions. Figure 10 shows measured values for the copy time, the communication time
and the total time for a 2-cube and a 6-cube. As expected, the copy time for the 6-cube is lower
than that for the 2-cube. Also, the communication time is essentially determined by the number
of start-ups, which for the 6-cube remains the same for PQ < 64K Bytes.

Figure 11(a) shows the total transpose time as a function of the number of cube dimensions and
matrix size. For small matrices the number of communication start-ups dominates and the total
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Figure 9: The effect of optimum buffering on performance
for matrix transpose on the Intel iPSC.
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Figure 10: Performance measurements for matrix block trans-
pose on the Intel iPSC.

time increases with the number of cube dimensions, but as the matrix size increases the transpose
time decreases with increased cube size.
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Figure 11: Measured times for block matrix transpose on the
Intel iPSC using the SRT algorithm without pipelining (a)
and using routing logic (b).

On the Intel iPSC it is also possible to carry out the transpose operation by a direct send to
the final destination. Figure 11(b) gives the times measured for matrix transpose using the routing
logic alone. As the cube size increases the recursive block transpose algorithm yields a significantly
better performance than the transpose time offered by the routing logic.

5.2.2. The Connection Machine

We have also implemented the matrix transpose operation on the Connection Machine. It
has a bit-serial, pipelined communication system. The recursive algorithm does not exploit this
feature, but the routing logic does. Figure 12 shows the transpose time using the routing logic.
Each processor holds one matrix element (32-bits). Figure 13 shows the transpose times for various
number of matrix elements per processor, and for various number of processors. Figure 14 shows
the transpose times for two fixed sized matrices on various sizes of the Connection Machine.
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Figure 12: Matrix transpose on the Connection Machine.
One element per processor.
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'Figure 13: Matrix transpose on the Connection Machine.
Multiple elements per processor.

6. Comparison and Conclusion

It is of interest to compare the times for matrix transpose based on a one-dimensional parti-
tioning and a two-dimensional partitioning. We now compare the complexity estimate for the block
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5 Matrix transpose on the Connection Machine
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Figure 14: Matrix transpose on the Connection Machine as

a function of the machine size.

transpose
_(FPQ PQ PQ
T = ( & te+ f-———-BmN]r)n + 2 Leopy
with that for the strip transpose
s PQ PQ . PQ . PQ
T —(mxn(n,log[BmN])szmN] + min(N, BcopyN) min(N, BmN)

PQ PQ
+ [——N] max(0,n — log[BcopyN]))ZT

PQ PQ PQ

For logB——%v > n and logﬁ—ﬁ 2 n there is no buffering of communication for the strip
transpose. This implies no copy for the strip transpose and a lower communication complexit:
than for the block transpose. The block transpose always needs an initial and final copy. If the
local data structures for the strip transpose are two-dimensional arrays, the same copy operation-
may be required for both strip and block transpose. But the conclusion remains that for problems
which are large relative to the size of the cube the one-dimensional partitioning is most efficien:
with respect to performance.

For a cube with a size approaching the size of the matrix the copy time for the one-dimensiona
partitioning grows, and so does the number of start-ups. Both eventually may be higher than tha:
for the two-dimensional transpose. We conclude that for sufficiently large cubes the block transpos:
is preferable for the Intel iPSC. Figure 15 gives the experimental evidence for this conclusion.
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Figure 15: Comparison of the matrix transpose operation of
one- and two-dimensional partitioned matrices on the Intel
iPSC.

Note that if the copy time can be ignored, then the one-dimensional partitioning always yields
a better performance than a two-dimensional partitioning if communication is restricted to one
port at a time.

With concurrent communication on multiple ports the transfer time for the two-dimensional
partitioning decreases exponentially in the number of cube dimensions, but for the optimum packet
size the number of start-ups is higher than for the one-dimensional partitioning. From the com-
plexity estimates (one-dimensional partitioning)

Thin = %(1 - -N)};\?t + nr
and

( (n+1)r+ 28 —}%tc ifn> \/% approximately;

(3+3)r+ %%%th if % <n< EI% approximately and § is even;
< .
(F+2)r+ 2’:&%& if %% < n < /5§ approximately and 2 is odd;

| W7+ ) it n < /5%
and the maximal packet size is
. : E [m}:—?_—‘,ﬂ for even § and n > !;%l;;
[m};—i—gﬂ for odd § and n > \/—_g%tf;
%VQ,T; for n < T%Lf
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For n > f-]%'i, the one-dimensional partitioning always yields a lower complexity than the

small. For \/%%Ef <n<y/ P ,“, the break even point (ignoring copy) can be computed to be

r

N~ clog2 T
~ where % <c<landr= E!;&. For n < \/%%'T—‘, the one-dimensional partitioning always
yields a lower complexity than the two-dimensional partitioning.

In summary, if the copy time is ignored and communication is restricted to one port at a time,
then the one-dimensional partitioning always yields a lower complexity than the two-dimensional
partitioning. If the copy time is included then the two-dimensional partitioning yields a lower
complexity for a sufficiently large cube. With concurrent communication on all ports the Balanced
Spanning Tree(BST) routing can be used for the one-dimensional partitioning, and the copy times
for one and two-dimensional partitioning should be comparable. The one-dimensional partitioning

yields a lower complexity for a cube dimension n satisfying n > \/ %%i‘- orn< \/%%.

In comparing the Intel iPSC with the Connection Machine we conclude that the latter performs
a transpose about two orders of magnitude faster.
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