Yale University
Department of Computer Science

A Greedy Approximation Algorithm
for the Partial-Order Search Problem

Philip Laird

YALEU/DCS/TR-547
June, 1987

Research funded in part by the National Science Foundation, IRI-8404226.

A Greedy Approximation Algorithm for the
Partial-Order Search Problem

Philip Laird*

Yale University
Department of Computer Science
New Haven, CT. 06520

Abstract

The problem of devising an optimal strategy for finding elements of
a partially ordered set has been previously shown to be NP-complete.
Here we present a greedy approximation algorithm that runs in poly-
nomial time and questions at most O(logn) times as many elements
as the optimal. This bound is asymptotically tight for the algorithm:
there are arbitrarily large instances for which the algorithm questions
at least H(n) — o(1/n) times as many elements as necessary, where
H(n) is the n’th harmonic number.

Introduction

The Partial-Order Search (POS) problem ([4]) is defined as follows:

Given a finite, partially-ordered set (£,>), an integer k such
that 1 < k < |€|, and an oracle (to be described), to decide
whether there is a strategy that identifies an arbitrary target
element vg of £ by asking the oracle at most k questions.

Research funded in part by the National Science Foundation, IRI-8404226.
*Current address: NASA Ames Research Center, MS 244-17, Moffett Field, CA. 97035.

The oracle, when asked a question of the form v? (with e €
), answers “>7, “<”, “=", “%” according to whether the target
element is greater than, less than, equal to, or incomparable to
v.

This problem generalizes the familiar binary-search problem, for which the
ordering is total. When the set being searched has n elements, the binary-search
strategy identifies an arbitrary element in at most [logn] + 1 queries. We would
like to extend this result to an efficient algorithm for finding an optimal search
strategy with an arbitrary partial order.

The POS problem has been shown to be NP-Complete with respect to polynomial-
time reductions ([4]). Here we exhibit a “Greedy” algorithm that finds in polyno-
mial time a correct strategy requiring O (log|€]) times as many questions as the
optimal strategy.

The Approximation Algorithm

A search strategy for a partially ordered set is conveniently represented by a de-
cision tree whose internal nodes are questions and whose leaves are the elements
identified by the questions on its ancestors. Such a tree is a valid search strategy
if every element in the order appears on some leaf, and for each leaf element the
questions occurring on the path from it to the root are sufficient to identify the
element uniquely.

Let N = |€], which by assumption is finite. Let T be any decision tree (not
necessarily optimal) for the POS problem; we may assume, without loss of gen-
erality, that T has exactly N leaf nodes. The height of T (maximum length of
any path from the root to a leaf) is denoted ht(T). For any positive integer i, let

H(i) = T, (1/7).

Let v be any node in £. The strength of v — written S(v) - is the minimal
number of nodes that may be eliminated by asking the oracle about v. For exam-
ple, suppose that v has 4 nodes below (<) it, 6 above (>) it, and 5 incomparable
(#) to it; then asking the oracle about v will eliminate 12 nodes if the answer is
“<”,0r 10 if “>”, or 11 if “2£”, or 15 if “=",s0 S(v) = 10.

More generally, let £; be a subset of £ containing the target (unknown) ele-
ment. The strength of v for €, is the the minimum number of nodes in £; that

2

may be eliminated by asking the oracle about v. This generalization is useful
because the search algorithm may ask the oracle about an element v, even if the
algorithm can already deduce the fact that v is not the target element, in order
to find out whether the target is among the elements greater than, less than, or
incomparable to v. So if £ is the set of nodes in € not yet ruled out by questions,
the strength of v € £ will be measured according to how many elements of £ it
has the potential to eliminate.

To approximate the solution to an instance of POS, we construct a decision
tree Tj in the following “greedy” manner:

1. Initialize: U = € (the set of possible target nodes not yet eliminated
by queries).

2. The recusive procedure Greedy(U) returns T;.

The procedure Greedy(X) is as follows:

If X consists of a single element, return the tree consisting of a single leaf node
for X. Otherwise,

1. For every node v € £, compute the strength S(v) of v for X. Let vy,
be a node of maximum strength.

2. Let Xe = {' € X | V' < vw}. Compute T« = Greedy(Xc), the
decision subtree for the nodes below vyy,.

3. Let X5 = {' € X | V' > vp}. Compute Ts = Greedy(X>), the
decision subtree for the nodes above vy,.

4. Let X, = {v' € X | V' o vm}. Compute T, = Greedy(X,), the
decision subtree for the nodes incomparable to vy,.

5. Return the decision tree whose root is the question vp,? and whose
subtrees for the answers “=", “<” “>” and “¢” are, respectively,
Vm, T<, T>, and T,L.

Briefly, this procedure chooses a node which eliminates the largest number
of remaining nodes in the worst case, and makes this node the root. It then
recursively constructs the greedy decision tree for the remaining elements below,

3

above, and incomparable to this root. The first step requires O(N?) time, and

without any concerns for efficiency the entire procedure can be implemented in
O (N3) time.

Upper Bound

The following theorem shows that the height of the greedy decision tree T) is
greater than that of the optimal decision tree by a factor of at most H (N). (Note
that H(N) < InN + 1.) The proof uses techniques originally devised to obtain
approximations to set cover problems ([2],[3]).

Theorem 1 Let T} be the decision tree returned by the Greedy approximation to
a POS problem, and T an optimal decision tree for the same problem instance.
Then ht(T1) < ht(Tp) - H(N), where N = |€|.

PROOF: Let T be any decision tree for an instance of the POS problem, and let
v? be an internal node of T'. Define Elim(v, T) to be the minimum number of leaf
nodes of T having v? as an ancestor that are eliminated by the question “v?” in
the tree - i.e., , the strength of v relative to the leaves of the subtree of T rooted
at v. For a leaf node v, Elim(v,T) is defined to be 0.

We shall prove the following, stronger, statement: for any decision tree Tp,
there exists a path P = (1,7,157,...,1,?, vy) in Top from the root 14? to a leaf v,
such that

ht(Ty) <) H(Elim(v,Tp)). (1)
veEP
The theorem then follows directly: when T} is optimal, and P is the promised
path, we have

ht (T])

IA

)" H(Elim(v,Tp))
VEP
< |PlH(N)
< ht(To) H(N).

The proof is by induction on K = max{Elim(v,Tp) | v € To). For the base
case K =0, N = 1 (there is only one node in the partial order) and ht(Ty) = 0.
By letting P be the “path” of zero length in Tp, the condition (1) holds trivially.

4

Figure 1: The path P;.

For the induction step, we assume that (1) holds for K < k, and consider a tree
To such that max{Elm(v,Tp) | v € To} = k. Let P, = (¢:17,92,.-.,q17,qn+1) be
a path of maximum length in T}. (See Fig. 1.) Consider the sequence of integers
Elim(q1,Th),. .., Elim(gn,T)) along P,. Because T} is a greedy decision tree, this
sequence is non-increasing. Let r be the smallest integer such that

Elim(¢,,T1) < k, (2)

or h if no such integer exists. Let T] be the subtree of T rooted at ¢,. The strategy
is to apply the inductive hypothesis to Tj.

Note that
h=(r - 1)+ ht(T}). (3)
By (2) we know that the total number of nodes,
r—1
Z ‘Ehm(QH Tl)s
=1

eliminated by questions ¢;,...,¢r1 is at least k(r — 1). Thus from (3), we have

r—1 ; ,
p T B Tl) gy, (4)

Now we apply the inductive hypothesis to T}, as follows. First, it is a greedy
decision tree, and Elim(v,T{) < k for all v € T}. Next, consider the decision tree
T} obtained from Ty by removing all leaves not in 7] and recursively deleting all

internal nodes with no descendents. (T} is Tp reduced by the partial information
contained in the answers to the questions ¢i,...,¢,-1.) Note that paths from the
root to the remaining leaves in Tp are not affected by this pruning, so ht(T3) =
ht(To).

Next we observe that, for all internal nodes v? in T¢, Elim(v,T}) < k. To see
this, suppose Elim(v,Tg) > k — 1 for some node v € Tj. Since T} and T! have
the same set of leaves, T] (being greedy) would also be able to eliminate at least
k leaves by placing the question v? at its root. But this contradicts the fact that
Elim(v,T{) < k for all nodes v € T}.

Thus the inductive hypothesis applies to T} vis ¢ vis T}, and there exists a
path Pj in T} such that

h(T{) < Y H(Elim(v,T}))

VEP,
=) H(Elim(v,To)) - Y [H(Elim(v,To)) - H(Elim(v,T2))]. (5)
veP| VEF,

Note that Fj is also a path in Ty, and that H(Elm(v,Tp)) > H(Elim(v,T})) for
all v € By. And since Elim(v,To) < k by hypothesis, we have:
. R .
> [H(Blim(v,To)) - H(Blim(v,13))] > Z2m(:To) - Elim(v, T§)
VEP]

Thus (5) becomes

W(T)) < S H(Blim(v,To)) —% Y [Blim(v, To) - Elim(v,T)]. (6)
VEP VEP§

But 3_,¢p: [Elim (v, To) — Elim(v, T{)] is the number of leaves eliminated by the
questions qi,...,gr_1, which is the same as 3°/Z] Elim(g;, T;). Thus (6) becomes:

Xili Blim(g:,Th)
. :

W(T)) < Y H(Elim(v,To)) -
VEP]

Substituting this into (4), we obtain, finally,

h = ht(T1) < Y H(Elim(v,Tp)).
vEP]

Thus Py is the required path in Tj. . O

Lower Bound

We now show that there exist partial orders with arbitrarily large cardinality N
for which the height ht(T;) of the greedy decision tree is larger than the height
ht(To) of the optimal decision tree by a factor which can be made arbitrarily close
to H(N). Thus the ratio ht(T})/ht(To) ~ log N is asymptotically optimal for this
algorithm.

As proof, we exhibit a sequence of partial orderings £ (k > 3) for which the
greedy tree is of height Q(N!H(N)), and yet another decision tree can be found
with height O (N!).

The poset £} is the union of four disjoint subsets:

e A, with k- k! elements;
e U, with k!H (k) elements;
o V, with k! elements;

e X, with k!(H(k) + 1) — 1 elements.

To simplify the description, initially we ignore X altogether and assume that
the target element is known to be among the members of A. Later we add the
set X to the ordering and show that the decision trees for the entire partial order
(including U, V, and X) increase in height only by an additive constant, for
sufficiently large k.

The elements of A are the maximal elements in the ordering and are viewed
as k collections of k! nodes, which we name A;,...,A;. The elements of A; are
labeled a;1,...,a;1. All elements of A are mutually incomparable.

The k! elements of U are labeled u;,...,u;. In the ordering each u; is below
(i.e., <) k elements of the set A: u; is below each of ay;,ay;,...,a.

The elements of V are viewed as k collections Vi,...,V; of different sizes. \ %]
has k! members, V; has 1k! members, ..., and V; has (1/k)k! members, for a total
of k!H (k) elements. The elements of V; (labeled v;;, v;g, .. .) are below ¢ elements
of A;: vi1 < @j1,8i2,...,84i; Vi2 < Gijig1,iit42,---,0i2i; €tc. .

The sets A, U, and V are illustrated in Fig. 2 for k = 3.

f
| | ! / .
- Y RS
\ R ¢ AT | i
; ? \ ' / 1‘{\ : // \ "/" | : /
! . \ "),": ly,[' " 4 . \ \51 . ‘&'
Vi é o o o . N Y \ ¢ .
\./-—-—\/'_/\/ / e — V] - . \ v v
K f ’ Py . (/
Vl N '/!’ ks :.,/: e, 4 N '\\’\\ . ‘// V3
u: < VY YV W
U ou, --. U,

Figure 2: The ordering of sets A, U, and V.

Assume our decision tree need only identify elements of A. A greedy decision
tree T first asks about each of the k! elements of Vi. An answer of “>” to any
of these is followed by a decision subtree of height to identify the target among
the k elements of A;;. If “£” is the answer to all of these, the elements of V};_,
are queried next, and so on. It is easy to check that this is a greedy tree, since
a node of maximum strength for the uneliminated elements is always tested next.
The resulting tree has height equal to |V|, or k!H (k).

Another decision tree Ty queries each of the elements of U in turn, up to ug-;.
An answer of “>” to any of these is followed by a decision subtree of height &
to identify the target among the k larger elements. If “%” is the answer to all of
these, the target element must be among the k elements of A greater than uy,

and a decision subtree of height k suffices to locate it. In all, the resulting tree has
height k! + k — 1.

We note that ht(T1)/ht(To) = k'H (k)/(k!+ k — 1), which approaches H(k) for
large k.

To complete the argument, we need to be able to identify the elements of U and
V in the ordering. To this end, we introduce the set X which, together with U and
V, form a tree-structured ordering for which the elements of U/ and V comprise

the leaves (the minimal elements):

’ [\ X

'l \\ ‘.I \\
‘ \
A)\ A /\ — U vV
The elements of A are incomparable to those of X, and are above those of U and
V as already described.

The reader can easily convince himself that the elements of U UV U X can be
identifed by a decision tree of height O(log|U UV|) = O(klogk). If we modify
both T} and Tp by making the first (root) question a query about the maximum
element of X, then the subtree corresponding to an answer of “<” is a tree of
height O (k log k) for identifying elements of U, V', and X, while the subtree for an
answer of “£” is the tree T} or Ty described above for identifying elements of A.
Thus for sufficiently large k, the heights of the trees increase by one.

Open Questions

It should be possible to extend the POS problem to the Weighted POS problem, by
assigning integer costs to each node of the partial order. In applications this cost
would represent the difficulty in answering the query for that node. Accounting
techniques akin to those of Chvatal ([2]) probably can be applied.

The most significant challenge is to discover why this problem and others have
a reducibility and approximation structure so close to that of the set covering
problem. Recently interest in set covering approximations has grown as a result
of results in the theory of learnability (e.g., [1]). Evidently there is an interest-
ing general combinatorial property underlying these problems that deserves to be
identified.

Acknowledgement

I'am grateful to Sandeep Bhatt for a helpful discussion this work.

10

References

(1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying
learnable geometric concepts with the Vapnik-Chervonenkis dimension.
In Proc. 18th Symposium on Theory of Computing, pages 273-282, ACM,
1986. (To appear in J.ACM.

[2] V. Chvatal. A greedy heuristic for the set-covering problem. Math. of
Operations Research, 4:233-235, 1979.

[3] D. S. Johnson. Approximation algorithms for combinatorial problems.
J. Comput. Sys. Sci., 9:256-278, 1974.

[4] P. D. Laird and L. B. Pitt. Finding an optimal search strategy for a par-
tial order ¥s NP-complete. Technical Report, Yale University Computer
Science Dept., No. 493, 1986.

11

