ALFL Reference Manual
and Programmer’s Guide

Paul Hudak

Technical Report YALEU/DCS/TR-322
Second Edition — October 1884

Yale University
Department of Computer Science
New Haven, CT

This research was supported in part by NSF Grant MCS-8106177.

Table of Contents

1 Introduction e e e e e e e e e e e e e e e e e e
D OVEIVIEW . . . v vt e
3Data Types. & v i v i e

3.1 Primitive TYPes. v v i i e e e e e e e e e e e e e e e e e
32Equalityin ALFL oo

G LiISts e

4.1 Mapping FunctionsforLists
4.2 Other List Utilities e e e e e e e e e e e e e

5 The Pattern-Matcher« « i i i i e e e e e e e

5.1 Destructuring. v v v v e e e e e e e e e e e e e e e
5.2Pattern Expressions 000 e e e e e e e e e
53 Anonymous Functions

6O0rdered Bags. L e e e e e e e e e e e e

6.1 0rderedBags.o
6.2 ANoteon SCopiRg . - . . . ¢ .ttt e e e e e e e e e e

7 ARthmetic e

T OPperators. o ot e e e e e e e e e e e e
7.2 Arithmetic Functionso oo
7.3 Trigonometric Functions.
7.4 Bitvector Functions

8 Logical Operators v v v v e e e e e e
OSHDES . . - . .« .t e

1

1
1

1

0I/O . . o o e e e e e e
10.1 Forcing Sequential Execution
10.2 Terminal Qutput.o
10.3 File I/O and Terminal Input

1 Miscellancous Features 0oL

2 The Alpha-Tau Implementation.
12.1 Starting Up Alpha-Tau.
12.2 More on the Interactive ALFL Environment
12.3 Compiling ALFL Programs
12.4 Future additions to Alpha-Tau

3 Acknowledgements. Lo

Appendix I L L. Lo e e
Appendix Il Syntax of ALFL. oo oo

Syntax of ALFL

..

© © 0000 1O U O b W=

16

18
18
19
20

ALFL Reference Manual and Programmer’s Guide

Second Edition

Paul Hudak
Yale Department of Computer Science
October 1984

1. Introduction

ALFL is a functional language developed at Yale that historically grew out of a toy language
called Mini-FPL used in CS-521, a compiler course taught at Yale. It is essentially a blend of the
better ideas from David Turner's SASL [8] and Robert Keller's FEL [5], although a few
significant new features have been added, including a more powerful pattern-matcher, the
distinction between “list generators” and “ordered set gemerators”, and the inclusion of a fail
semantics for equations. The language's semantics tries to be as “lazy as possible” (i.e., a
function is strict in as few of its arguments as semantically makes sense), and the base language
has (of course) no assignment statement or “impure” functions (i.e., those that produce side-
effects). However, since ALFL will undoubtedly be implemented on conventional computers with
conventional file servers and device handlers, there exists ways to force an evaluation and
produce side-effects in the implementation environment. Our goal is to provide a practical
programming language based on the functional style, by allowing “controlled” use of side-effects
in that great big side-effect pit known as the real world.

This manual is intended to describe ALFL's syntax and semantics, together with the
pragmatics of its primary implementation to date, a system built upon T [8] called Alpha-Tau
that runs on Apollo Aegis, Vax Unix, and Vax VMS. This manual is not intended to be a
tutorial on functional programming, although enough examples are given that the experienced
programmer may find it adequate. The reader interested in learning more about functional
programming is encouraged to read Peter Henderson's- book, Functional Programming:
Application and Implementation (3], as well as the collection of papers in [2].

Comment on Preliminary Version of this manual:

This is the first-ever attempt at documenting ALFL and Alpha-Tau - there are guaranteed to
be errors and omissions -- BEWARE! The auther welcomes all comments, criticisms, suggestions,
and bug reports on either the language, its implementation, or this document.

2. Overview

A detailed BNF-style syntax for ALFL may be found in the Appendix. A denotational
description of its semantics is forthcoming. In this section we attempt to give an informal
overview of the language, after which we will treat each semantic feature in more detail.

An identifier in ALFL is represented by any non-empty sequence of alpha-numeric characters
plus the symbol “_". There are many pre-defined identifiers such as add, or, and others, but
they may all be redefined at will — the only reserved word in the language is result, whose
purpose is explained in the next paragraph. ALFL also has many infix operators, all represented
by symbols (i.e., non-alphabetic characters). Each operator also has an equivalent “curried”
function (assigned to a speciﬁc identifier), and when introducing an infix operator we will always
include its curried version in parentheses, as in “+ (add)” and “| (or)”. A summary of these
operator/function equivalences is given in the appendix.

ALFL is block-structured, and lexically-scoped. Its largest sy:ztactic object is an equation
group, which is delimited by curly brackets (“{...}"). Within an equation-group is a collection
of equations that map identifiers to particular values (which may be any of the allowable types
described in the next section), together with a single result clause that expresses the value to
which the equation-group will evaluate. A double equal-sign (“==") is used for equations to
distinguish it from the infix operator for equality. An equation-group is a special case of an
ezpression, and is thus valid wherever an expression is allowed. A conditional expression has the
form “pred -> cons, alt” and is equivalent to the more conventional “if pred then cons else
alt”. Here is a simple example:

{ fac n == n=0 -> 1, n*fac(n-1); % Definition of factorial
x == 10;
result fac x }

Note that comments are preceded by “§” and continue till the end of the line.

ALFL scoping rules are similar to those for most block-structured languages, in that
expressions may reference any identifier defined locally in the current equation-group or in any
surrounding equation-group. However, local references are allowed to be mutually recursive.
Indeed, equations may appear in any order, consistent with ALFL's lazy evaluation semantics in
which expressions are evaluated “by demand”. Thus in the above example, the two equations
plus the result clause may appear in any of six different orders. Of course, it is illegal to define
an identifier more than once within the same scope -- the equations should be thought of as a
naming discipline that maps identifiers to values, and not as an assignment operation.

All function applications are “curried”. That is, all functions are assumed to take just one
argument, which is no restriction since that function may return another function that takes one
argument, etc. If we define function application to associate to the left, curried functions
facilitate the use of higher-order functions, as in:

(]

{ twice f x == f (f x);
twofacs == twice fac;
result twofacs 10 }

which is precisely equivalent to:
{ twice f == { result g:
gx=1(fx)};

twofacs == twice fac;
result twofacs 10 }

Since it is useful at times to perform right-associative function application, ALFL provides the
infix binary operator “:” (spply), which is defined to have higher precedence than normal (left-
associative) application (thus in the above example we may write twice f x == f:f:x or even
twice f x == f f:x). This convention turns out to be visually pleasing, since expressions such
as f hd:x tl:y group together in the way they appear; i.e., as f (hd) (¢l y).

One final note on function application: “.” (compose) is the infix operator for function
composition, and thus “f.g" denotes the composition of f with g; “h == f.g" is equivalent to “h

x == f:g:x".

3. Data Types

Types do not exist explicitly in ALFL; rather, an object’s type may be inferred from the
behavior of one of several type predicates when passed the object as an argument. This weak
characterization of type is consistent to that used in most Lisp dialects.

3.1. Primitive Types
There are six primitive data types in ALFL, together with a predicate that characterizes each
by returning true when given an argument of that type, false otherwise:
e Boolean, containing values true and false, and with predicate boo!p.

o Integer, the set of positive and negative integers with an implementation-
dependendent range, and with predicate intp.

e Floating-point, the set of floating-point numbers whose range is also implementation-
dependent, and with predicate flostp. A floating-point number may be created
explicitly by including a decimal point in its representation; e.g., 2., 1.23, etc.

e String, the set of arbitrary-length strings, with predicate stringp. Strings are
represented in the standard way, using a pair of double-quotes surrounding an
arbitrary sequence of characters (including carriage returns). A double-quote may be
included in the string by juxtaposing two double quotes, as in: "this is s string
with a double-quote ** in it®. The null string is denoted by **.

e Function, the set of primitive functions plus any user-defined functions, with
predicate functionp.

wan

e Pasr, the set of composite objects usually formed by the infix pairing operator
(fby). The predicate for this type is pairp. (Pairs and lists are discussed in much
more detail in the next section.)

In addition, there is a composite type number, which is essentially the join of integer and
floating-point, and has predicate nump. The sub-type list contains the primitive value [] (the
empty. or null list) together with all pairs whose second component is either {] or a puir: the
predicate for lists is listp. Finally, the special value | (read “bottom”) is the undefined value,
used in this manual to describe undefined behavior, which is an implementation-depcndent
concept that on most systems will result in either an “error-break” or non-termination.

3.2. Equality in ALFL

The binary infix operators = (equal) and <> (notequal) are used to establish
equivalence between objects in ALFL. Equality is in general a surprisingly difficult concept to
define semantically and then get implementationally correct; we have tried (as usual) to take the
most functional approach, resulting in the following recursive equality semantics. Two objects
are equal if:

1. They are identically the same object, or

. They are integers and represent the same number, or
. They are floating-point numbers and represent the same number, or
. They are strings and have the same character sequence, or
They are booleans and have the same truth value, or
They are both the empty list [], or

I~ S~ B N X R)

. They are pairs and each of their corresponding elements are equal.

Two objects are notequal if they are not equal.

The subtle aspect of the above definition is the statement that two objects are equal if they are
“identically the same object” — this is unfortunately an implementation-dependent concept. For
example, can one compare two identical infinite lists? As in:

{ ones =='1 “ ones;
more_ones == ones;
result ones = more_ones }
One would like this result to be true (and indeed it is in Alpha-Tau), but it is conceivable that
some implementation might copy the expression for ones when assigning it to more_ones, so that
the objects are not identical; argument passing in funciton calls provides further complication.
Or consider:
{ ones =='1 “ ones;
more_ones == 1 “ more_ones
result ones = more_ones }
A clever implcmentation might recognize common-subexpressions and collapse ones and
more_ones into one (pardon the pun), thus yielding true for the result. An implementation not
doing this will try to compare the lists element-by-element, and thus not terminate.

Infinite lists are mot the only place where “identical objects” can cause implementation-

()

dependent behavior - consider the comparison of functions. The correct solution to this problem
is to eliminate the clause defining equality on “identical objects”, but the utility of that clause
has so far dominated, and the current semantics has prevailed. The author welcomes opinions on
this matter.

4. Lists

Finite lists may be constructed explicity using square brackets surrounding the elements
separated by commas, as in “[x,y,z]", which is the list of three elements, x, y, and z. The
empty list is denoted by []. There is also an infix pairing operator * (fby); x"y is read “x
followed by y”. fby is more primitive than the the list expression just described, in that
[x1,x2,...,xn] is equivalent to x1°x2°...%[] (the operator ~ is right-associative).
Semantically, lists are constructed “lazily” in that the pairing function is not strict in either of its
arguments. That is, both x* | and | “x are well-defined.

A list's components (or, more correctly, a pair's components) are selected by the primitive
functions hd (read “head”) and t! (read “tail”), defined by:
hd (x“y) — «x
hd [] - 1

th (x%y) — y
t! [] - 1

This implies, of course, that:

hd [x1,x2,...,xn] — x1
tl [x1,x2,...,xn] — [x2,x3,...,12n]

“Infinite lists” may be defined in the obvious way. For example, the infinite stream of
numbers starting at n may be defined by “numsfrom n == n“numsfrom(n+l)”. As a more
interesting example, consider this definition of the Fibonacci sequence:

{ fib == 1"1%sddstreams[fib,t! fib];
addstreams[x“S1,y"S2] == (x+y)“sddstreams[S1,S2]; ... }
Of course, elements of an infinite list are not computed until they are selected (“demanded”) for
evaluation. The infix operator “* (sappend) is used to append lists together, and it too is lazy.
Thus one can even append infinite lists together, as in “fib““fib”; the second infinite stream of
Fibonacci numbers is simply never reached!

4.1. Mapping Functions for Lists
There are four useful mapping functions for lists, essentially borrowed from FEL. They are
best explained by examples.

Reduction, similar to that in APL, has the form: [fn,init)//list, where fn is (the curried
version of) any binary associative function, init is the “default” value for empty lists, and ist
is the list to be reduced. For example:

(add,0]//(] -0
(add.0]//[1,2,3] — 6
[add,1]//[1,2,3] — 7

The curried version of // is reduce.

Layered application has the form fn\\!list, where fn is (the curried version of) any n-ary
function, and |ist has length n, each element being another list. This mapping function
essentially “strips off” layers of |ist, applying fn to each layer, and returning the result in
another list. For example:

edd\\[[1,2,3],.[4,5.6]] — [5.7,9]
2dd\\[(]. (1] = 0]

If the sub-lists are of unequal length, the list returned is as long as the first sub-list, as long as
the others are at least that long. Remember that because of lazy evaluation, infinite lists work
equally well. For example:

9dd\\ [numsfrom 1, numsfrom 2] — [3,5,7, ...]

The curried version of \\ is layered_apply.

Nested map has the form fn||list, where fn is a unary function and |ist is an arbitrailiy-
nested list. This operation returns a list having the same structure as |ist, except that fn has
been applied to each of the atomic elements. For example:

succl|l(1,[2,3),4] — [2,[3.4],5)
succll[] = 0]

The curried version of || is nested_map.

Structured application has the form list::x where list is an arbitrary list of unary
functions (and thus any curried function is allowed), and x is any object. This operation returns
a list having the same structure as |ist, except that each function has been replaced by that
function applied to x. For example:

(succ,pred]::3 — [4,2]
(0::3 =1

Note that since all functions in ALFL are curried, one can do things like:
([edd,sub)::8)::2 — [5,1]

The curried version of : : is structured_spply.

4.2. Other List Utilities

As mentioned earlier, the predicate for lists is |istp, and for pairs is pairp. There is also a
predicate for atoms, stomp, which answers true to anything that is not a pair. The predicate
nul 1 p answers true only to the empty list [].

The remaining functions on lists are:

-3

e pre int |ist returns the first int elements of |ist.

e suf int |ist removes the first int elements from |ist, and returns what's left.

e nth int |ist returns the int'th element from list (nth 1 list = hd list).

e length |ist returns the number of top-level elements in 1ist. (Guess what happens
if 1ist is infinite?)

e reverse |ist reverses the top-level structure of |ist.

e member x |ist returns true if x is equal to any of the top-level elements in 1ist, false
otherwise. mem is a synonym for member.

e For convenience, the 12 combinations of 2 or 3 hd's and t!'s juxtaposed together are
provided as built-in functions. They are: hhd, htl, thd, ttl, hhhd, hhtl, hthd,
htt!, thhd, thtl, tthd, snd ttti. For example, tht! x is the same as
ti:hd:tl:x.

5. The Pattern-Matcher

An interesting aspect of ALFL in its own right is its pattern-matcher, a feature that has
become rather popular in several functional languages, including FEL, SASL, HOPE [1], and
others. The idea is to provide a way for the programmer to define a function by writing patterns
for its formal parameters on the left-hand side of an equation - if the actual parameters in a
function call match a particular pattern, then the expression on the right-hand side is evaluated.
This gives a functional program very much of a “logical” style similar to Prolog. In ALFL we
have attempted to carry the concept of pattern-matching as far as possible, including a fail
semantics that provides a primitive level of back-tracking that is useful in search-oriented
algorithms.

As a simple example, factorial can be defined by:

{ fac 0 == 1;
fac n == n*fac(n-1); ...}
Here the first equation tries matching against a constant, namely 0. If that fails the second
equation is tried. which always succeeds since the formal parameter n matches anything. The
pattern-matcher also tests for the equivalence of multiple instances of the same formal parameter,
as in:
{ eq x x == true;
eq x y == false; ... }

which essentially defines eq as equal.

It should be noted that when using the pattern-matcher, the number of arguments in each
equation defining the same function must be the same. Also, the equations must all be
juxtaposed, and their order is important -- the left-hand-sides are tested sequentially for a match.
Since this style of defining functions is very common, a shert-hand is allowed for the equations
following the first:

{ fac 0 == 1;
' n == n*fac(n-1); ...}

This is very convenient when defining functions whose identifier is rather long.

5.1. Destructuring
The pattern-matcher is even more useful when used with lists. For example, the function
member may be defined by:
{ member x [] == false;
’ x (x°L) == true;
' x (y°L) == member x L;
result member 2 [1,2,3] }
This style of “destructuring” may be carried to an arbitrary depth. It may also be useful in
performing “multiple assignments” such as [x,y] == [1,2].

5.2. Pattern Expressions

Sometimes it is convenient to match against some value that is unknown at compile-time; this
may be accomplished by preceding the pattern with a # sign, denoting that the pattern is to be
cvaluated before the match is attempted -~ such a pattern is called a pattern ezpression. For .
example:

{ one_less x #(x+1) == true;
' x y == false; ...}

Here the # sign indicates that the expression is to be evaluated rather than be interpreted as a
pattern -- since x is also a formal parameter, its value in the pattern expression is gotten from the
argument that will eventually match the formal parameter instance of x. Hence this function
returns true if its first argument is one less than its second. The free variables in a pattern-
expression reference values by observing the standard lexical-scoping rules. Thus in:

{ x==5;
equal_to_six #(x+1) == true;
' y == false; ... }

x is not a formal-parameter to equa!_to_six, so its value (5) is gotten from the surrounding
environment.

As a final example of the use of the pattern-matcher, suppose one wishes to create one’s own
“type abstraction”. For example, one might wish to have a type trec representing binary trees
containing leaves and interior nodes. A possible implementation in ALFL might look like:

mk_tree Ist rst == ["tree",Ist, rst]; % creates a binary tree
treep ["tree",!,r] == true; % predicate for tree
S == false;

Ist ["tree®,l,r]
' ox

I % get left subtree
error "Can’t tske left subtree of non-tree";

rst ["tree®,!,r] r; % get right subtree

'ox error "Can’t take right subtree of non-tree®;
f ["tree",l,r] == ... ; % way to define a function
% only defined on trees
("tree®,!,r] == ...body... % way to do "multiple assignment®

% that will cause an error if the
% object is not 8 tree

5.3. Anonymous Functions

It is often convenient to define “anonymous functions” (i.e., a function that does not have a
name), especially when they are small and in general not worth cluttering up the name-space.
ALFL provides a convenient way to do this that looks almost exactly like a normal equation,
except that the identifier has been replaced by the symbol 8. The general form is: “¢ args ==
body”. As a simple example, (8 x == x+1) 2 evaluates to 3.

The pattern matcher may also be used as usual when defining nameless functions, except that
only one equation is allowed. For example, (8 [x.y] == x+y-2) [3,4] — &.

6. Ordered Bags

A useful attribute of ALFL is the ability to generate ordered bags in a convenient way. These
objects are really just standard ALFL lists, but we provide a special syntax to generate them in
a way that looks very much like Zermelo-Skolen-Frankel set notation. Despite this similarity,
they are not true sets or bags, since they are represented as lists and are thus ordered. They are
very useful nonetheless.

An ordered set is simply a list of objects with no duplicates, whereas an ordered bag is a list of
objects possibly with duplicates. To create ordered bags we use generators to generate elements
from other lists, and filters to restrict the values thus generated. An odered set may be
generated from an ordered bag simply by writing a function that removes duplicates.

10

6.1. Ordered Bags
The form of an ordered bag in ALFL is:

(* exp ! gen ; gen,; ... gen ! fil; fily, ... fil #]
The square brackets are used to emphasize that what is actually generated is a standard ALFL
list. The symbol ! is read “such that”. The form of exp is arbitrary — any valid expression is

allowed (we discuss this further shortly). Each of the gen, is a generator of the form pattern
<- exp, where <- is read “is an element of". Each of the fil, is a filter. A simple example is:

[* [a.b] ! 8<-L1; b<-L2 *]

This example creates a list of pairs representing the Cartesian product of lists (presumable
ordered sets) L1 and L2. As this example shows, a filter is not always necessary (but at least one
generator is). The order of the generators determines the order in which the elements of the
result are computed: the generators are “nested” such that the first (left-most) one is at the
outer-most level, and the others are nested from left to right within the preceding one. In the
above example, b<-L2 is nested within s<-L1. Thus if L1 is [1,2] and L2 is [3,4], then the

example generates the ordered bag [[1,3], [1.4], [2.3]. [2.4]]. |

The pattern-matcher may be used (yet again!) with generators, as in:
[* ["bush®,x] ! ["tree",x] <- L %]

Here only those two-element lists whose head is the string "tree® are taken from the list L. Note
that although ["tree®,x] is a pattern, *bush®, x is not - it is simply an ezpression that denotes

the form of the elements to be added to the ordered bag.

A filter is an arbitrary boolean expression, any number of which are allowed. Each filter fil,
must evaluate to true if the currently created element is to be added to the ordered bag. For
example, in:

[*a ! a<-L! hda>0; length s =3 *]
an ordered bag is generated of 3-element lists each of whose first element is positive. Note that
the generator creates a “binding” for s whose scope includes both the filters and the result
expression.

As a final example, consider this perspicuous definition of quicksort:

gs (1 == 1[];

" (a"s) == qs [* b ! b<-s ! b<a *]"“[a]“"qs [* b ! b<-s ! b>=3 #];

6.2. A Note on Scoping

If the reader keeps in mind the fact that lexical, mutually recursive scoping is used consistently
throughout ALFL, and that the patterns in the set of generators introduce a lexical contour that
surrounds the ordered set/bag being created (just as the patterns in a function call create a
lexical contour for the body of the definition), then little confusion will result. For clarification,
in this contrived example:

11

ob == [* [a.d] ! [#(b+1),8) <- L1; [b,#c] <- L2 ! f a =d *]

g == 1; == 2;
c == 3, d == 4;
f == succ;

¢, d, and f are free in the ordered bag, and thus the following bindings hold:
1. In [a.d], a is bound to the s in [#(b+1),s], and d is bound to 4.
2. In [#(b+1),9], b is bound to the b in [b,#c], and 3 is a formal parameter.
3.In [b.#c], b is a formal parameter, and ¢ is bound to 3.

4.Inf a = d, @ is bound to the s in [#(b+1),2], and f and d are bound to succ and
4, respectively.

7. Arithmetic

ALFL provides a reasonably rich set of arithmetic operators and functions for integer and
floating-point arithmetic. As mentioned earlier, the type predicates are intp, flostp, and nump,
for integers, floats, and numbers, respectively.

7.1. Operators

There are several binary infix operators for standard arithmetic: + (3dd) for addition, - (sub)
for subtraction, * (mult) for multiplication, and / (div) for division. All of these operators are
defined for integers and floating-point numbers — if at least one of the operands is floating-point,
the result is floating-point, otherwise the result is integer.

There is also the standard set of relational operators, namely < (!t), for “less-than”; > (gt), for
“greater-than”; <= (le), for “less-than-or-equal-to”; and >= (ge), for “greater-than-or-equal-to.”
Equality and inequality are established by = and <>, respectively, as discussed earlier.

In addition, there are two other operators, - (negate) for unary negation (context distinguishes
this from the binary version), and \ (rem) for remainder (which requires that both operands be
integers).

7.2. Arithmetic Functions
Many standard arithemtic functions are provided:
e Exponentiation: expt <num> <int> — <num>; so that expt x y — .
e Absolute value: abs <num> — <num>.
e Greatest common divisor: ged <int> <int> — <int>.
e Minimum: min <list-of-numbers> — <num>; returns smallest element in the list.
e Maximum: max <list-of-numbers> — <num>; returns greatest element in the list.
e Factorial: fac <pos-int> — pos-int; standard factorial.

e Coercion: int_to_float <int> — <float>; float_to_int <float> — <int>.
float_to_int rounds the number down.

12

e Successor: succ <num> — <num>; adds one to a number.
e Predecessor: pred <num> — <num>; subtracts one from a number.

7.3. Trigonometric Functions

The following trigonometric functions are provided, defined only on floating-point numbers:
exp (exponential function), log (natural logarithm), sqrt (square root), cos (cosine), sin (sine),
tan (tangent), acos (arccosine), and ssin (arcsine).

7.4. Bitvector Functions

The following functions are defined on integers treated as bitvectors: logand (the logical and
of the bits), logior (the logical inclusive-or of the bits), logxor (the logical exclusive-or of the
bits), and lognot (the logical complement of the bits). In addition, shift intl int2 shifts intl
by the number of places specified by int2 — left if positive, right if negative -- filling in zeros as
it goes. bit_field int pos size (all arguments integers) extracts a bit-field of length size from
int starting in position pos. '

8. Logical Operators

The conditional expression was described earlier; but note that the value of p in “p --> cons,
alt” must be of type boolean. The right arrow may either be -> or -->. The predicate for
boolean values is bool p.

There are three logical functions provided as infix operators in ALFL: & (and), | (or), and ~
(not), which perform the logical and, or, and complement of their operands, respectively. & and
| are binary, ~ is unary. The order of precedence, from highest to lowest, is 7, &, |.

Semantically, the binary logical operators & and | are sequential -- that is, their operands are
evaluated from left to right. This means that they realize the truth tables shown below:

y
| true | false | | |<non-bool> |
true | true | false | | | error |
x false | false | false | false | false |
1 4 [4 (N I
<non-bool> | error | error | error | error |

13

y
| true | false | | |<non-bool!> |
true | true | true | true | true |
x false | true | false | | | error |
1 (R [(N I L I
<non-bool> | error | error | error | error |
x|y

The reader may question why we have chosen the “sequential” versions of these operators instead
of the more pleasing “parallel” versions which have symmetry with respect to their operands.
This would allow truly “lazy” semantics in that, for example, | | true could be defined as
true. The problem here is unfortunately again implementation related — to implement the lazy
semantics implied by the parallel operators requires either a true parallel machine (that we don’t
have), or the simulation of a non-deterministic Turing machine (which we just don’t want to do).
Future implementations of ALFL on parallel machines will have curried versions of the parallel
operators.

9. Strings

As mentioned earlier, the predicate for strings is stringp. There are also two other predicates,
alphap which returns true if the first character in its string argument is one of the 26 upper- or
lower-case letters, and digitp which returns true if the first character in its string argument is
one of the digits O through 9.

Other operations on strings include:
e str_asppend strl str2 returns the concatenation of strings strl and str2.
e str_hd str returns the first character in str as a string of length one.
e str_t! str returns str with the first character removed.

e str_nth int str returns the int'th character in str as a string of length one
(str_nth 1 s = str_hd s).

e str_length str returns the number of characters in str.
e str_to_ascii str returns the ascii integer corresponding to the first character in str.

e ascii_to_str int returns the character (as a string of length one) corresponding to
the ascii integer int.

e format_string str list is like format in T; it returns a string formed by splicing in
the values of the elements of |ist in their successive positions in str. according to
the following convention: Whenever a ~ (tilde) is encountered in str it is replaced by
the next element in |ist in a way specified by the character following the ~:

» ~a lnsert the next element in the list in its standard representation.

14

» ~b If the next element is an integer, insert it in binary.
» “o If the next element is an integer, insert it in octal.

» ~p If the next element, which must be a number, is not equal to one, insert an s
(useful for plurals).

» “nr If the next element is an integer, insert it in radix n.

» “nt Move to a position n characters from the beginning of the string, inserting
spaces in between (“tab”).

» ~x If the next element is an integer, insert it in hexidecimal.
» % Insert a line-feed/carriage-return (newline).

» -8 Insert a line-feed/carriage-return if not already at the beginning of a line
(freshline).
» ~_ Insert a space.
» "~ Insert a ~.
A tilde followed by any whitespace is ignored, along with all following whitespace.
Here are some simple examples:
format_string "Hi “a; I have ~b apple”p.® ["Cristy®, 3, 3] —
*Hi Cristy, I have 11 apples.®
format_string "To break up s long line, ~
do this®* [] —
*To break up @ long line, do this"
format_string "Here's what a list looks like: "a® [[1,2,8]]; —
"Here's what 3 list looks like: (1 2 3)"

e str_explode str returns a list of the characters in str, each represented as a string
of length one.

e str_implode |ist concatenates all of the top-level elements of |ist, which should be
strings (str_implode [strl,str2] = str_sppend strl str2).

e gen_str str returns a unique string everytime it is called, and is thus an impure
function. The string returned begins with the characters in str and ends with an
implementation-dependent sequence of characters. Care should be taken when using
this function: “everytime it is called” is itself an implementation-dependent concept
since, for example, common-subexpression elimination may fold several calls into one!

10.1/0

Because most file systems and interfaces to the real world are very side-cffect oriented, we fclt
it necessary to introduce similar features into ALFL. The set of impure functions described in
this section have been implemented in Alpha-Tau, although a different set may be mere
appropriate for some other system -- indeed, perhaps a future “applicative architecture™ wiil
make all this unneccessary.

‘ A}
Despite the “impurity” of the I/O operations that we have introduced, we have attempted to
make them as consistent with the functional style as possible; for example. all operations on files
are done through streams (i.e., a list, not a stream in the T sense). The judicicus programmer

may still write purely functional programs with these functions.

15

10.1. Forcing Sequential Execution

One of the primary complications of side-effects is that one must be able to order thesr
ezecution. In conventional languages the flow of control explicit in the semantics accomplishes
this ordering. In ALFL, however, there is no explicit flow of control (a feature!), and so it is
necessary to introduce a special operator to do this if we are to admit any form of side-effects.
The simple function force accomplishes this by taking a list argument and sequentially
evaluating each top-level element in turn, returning the last element in the list. For example,
force[print "foo®", print ®* on®", print * you®] will guarantee that the message appears as
intended, and will return the string ® you® (since print functionally mimics the identity
function).

10.2. Terminal Output

When an ALFL program is executed (in Alpha-Tau), the result is printed on the terminal.
This is the simplest form of 1/O, and is the recommended way to output to the terminal.
However, together with force, the following two functions may provide an alternative technique:
First, print ob causes the value of ob to be printed on the terminal; a “freshline” preceeds the
value, and a “newline” follows it. The value of ob is returned. Second, format str |ist causes
the values of the top-level elements in |ist to be inserted in the successively specified locations in
the string str, according to the same conventions used by format_string as described in the last
section. The list list is returned. Thus format str |ist prints the same as print
(format_string str list), except that the latter call will print a leading freshline acd a trailing

newline.

In addition to print and format, there is an error function that behaves very much like format
except that execution of the program is interrupted, and the printed output is preceeded by an
error flag. The form of the call is error str |ist.

10.3. File I/O and Terminal Input
A file may be opened for input in two ways:

e char_in_stream file will open the file identified by the string file and return a list
(stream) that contains the successive characters (represented as single-length strings)
found in the file. This list is lazily evaluated just as any other in ALFL; the
successive elements are not evaluated (and are therefore not read from the file) until
they are selected (“demanded™) from the list. When the end of the file is rcached
(i.e., when the end of the stream is reached) then the file is automatically closcd.

eob_in_stream file is just like char_in_stresm except that the elements in the
returned stream are objects, not characters; that is, numbers are parsed properly. lists
are read intact, and successive words separated by blanks are returned as succe:sive
strings. For example, if the file *foo® looks like:

12.3 hello (1 harumph 2) there

16

then ob_in_stream ®"foo® returns the list [12.3, ®helio®, [1, ®hsrumph®, 2],
"there®]. Note that lists as represented in the file have s-expression format - this is
because Alpha-Tau is built upon T. A future version of Alpha-Tau should fix this.

| If the file specification in either of the above two function calls is the null string, then the

terminal is opened for input. The end-of-file character is what will cause the terminal stream to
be closed.

A stream (list) may be output to a file by the call out_stream file list, where file is the
name (a string) of the file to be output to, and Iist is the stream of elements to be output. The
value of the list is returned. For example, the call out_stream ®"foo® [12.3, ®"helio®, [1,
"harumph®, 2], "there®] will create the file foo described earlier. The value true is returned
from a successful call.

It should be noted that all output is done “eagerly”; that is, we assume that some daemon is
demanding all of the elements of the list to be output. This is true even of terminal output.

It shouldn't be necessary, but if the user ever needs to explicitly close a file it may done via
close file. One place this may be useful is at the ALFL read-eval-print-loop after an error has
~ ocurred (see Section 12).

11. Miscellaneous Features
hash ob returns a unique hash-number (an integer) for the value of ob. unhash int has the
property that unhash hash:ob = ob.

12. The Alpha-Tau Implementation

The Alpha-Tau implementation of ALFL is built upon the Tau implementation of T [7]. It is
available on Apollo Aegis, Vax Unix, and Vax VMS. The system takes advantage of T's
functionality and lexical scoping by translating the ALFL source program into an equivalent T
program. The resultant code (which is not fit for human consumption) may then be loaded into
a special environment in which it is interpreted, or it may be compiled first and loaded into the
same environment. Thus the user may mix compiled code (which may include libraries of
commonly-used functions) with interpreted code (which is typically the program being
developed). An interactive “read-eval-print-loop” using standard ALFL syntax interfaces to the
ALFL environment to allow the convenience afforded by most Lisp systems. This section
assumes some familiarity with T.

12.1. Starting Up Alpha-Tau
To run Alpha-Tau, simply start up T and load the file alf | from tke appropriate dircctory:

(load "alifi")

17

Once Alpha-Tau is loaded, the REPL prompt will change to ALFL>. This is primarily a
cosmetic change, since the REPL environment is still what it was at the time ALFL was loaded.
However, a mew environment has been created, *ALFL-env*, along with several functions that
interface to it:

o (alfi-parse "filensme®) will parse and translate the file 1’il1mauu,~ writing the
result to the file filename.t.

e (alfi-load *filename®) will load the translated file filensme into the ALFL
environment, execute it, and print the result to the terminal.

e (alfl "filename®) essentially has the effect of doing both of the above; the ALFL
program found in the file filename is parsed, translated, loaded, and executed in the
ALFL environment. The file filename.t containing the translation to T is written
out as well.

e (3!f1) will enter the user into a read-eval-print-loop in the ALFL environment. The
session may be terminated with an end-of-file character, which on Aegis and VMS is
control-Z, and on Unix is control-D.

12.2. More on the Interactive ALFL Environment
The interactive ALFL environment invoked by (aifl) is especially useful for program
development, and requires further explanation. Once invoked, the user may type arbitrary
expressions, including equation groups, and have their results computed immediately. For
example:
{ fac 0 == 1;
' n == n*fac(n-1);
result fac 5 };

Result: 120

Note that it is necessary to delimit the end of the expression to be evaluated with a semicolon
since, for example, the result of the expression may be a function which is to be applied to u yet-
to-be-typed argument.

In addition, functions may be defined at the “top-level” of the ALFL read-eval-print-loop using
the normal syntax for equations, except that (again for delimiting purposes) the set of equations
must begin with the key-word let and end with a (extra) semicolon. For example:

let fac 0 == 1;
* n == n*fac(n-1);;
Defining FAC

Note the extra semicolon after the last equation. The function fac is now defincd (and muy
subsequently be redefined):

fac 5;

Resuit: 120

18

There is one other useful feature of the ALFL interactive environment: If the “pragma”
$library is placed at the beginning of a file containing an arbitrary number of equations, then
those equations are simply translated and loaded into the ALFL environment, just as if they had
been typed in using the let syntax just described. For example, if the file ®*foo® contains:

$iibrary
fac 0 == 1;

' n == n*fac(n-1);
x == §;

then after it is loaded into the ALFL environment by (a!f! ®foo"), fasc and x will be defined
just as if they were defined using the interactive let syntax.

If the user wishes to start a “new” ALFL environment — that is, devoid of all definitions
caused by the let or $1ibrary features — then simply type (sif |-reset) to the ALFL> prompt.

12.3. Compiling ALFL Programs

As discussed earlier, an ALFL program in the file filename gets translated into a T program
written out to the file filename.t. This program may then be loaded into the ALFL
environment for execution (interpretation). Alternatively, one may compile the program first,
using the optimizing T compiler (TC), and then load the resulting object file. As with most T
programs, this can result :a a speedup of ten-fold or more.

To compile the translated ALFL program, simply start up TC, and then load the support file
a!fl_sup.t. The file containing the translated ALFL program may then be compiled in the
standard way. Once compiled, it may be loaded into the ALFL environment by using a!f|-load
to load the object file. $library files may be compiled in the same way.

12.4. Future additions to Alpha-Tau

1. Functicnal vectors and arrays (with an implementation technique that avoids the
overhead of copying).

2. Fail semantics for equations; a primitive form of back-tracking (is this really
necessary?).

3. More pragmas such as $include to automatically load libaray files, and
$expose_top_level to load an ALFL program in such a way that the outermest
definitions are exposed at the top-level of the ALFL environmrnot (essentially
“stripping away~ the outermost curly-brackets).

4. A much fancier interactive environment that exploits the graphical capabilitics of a
bit-mapped display (this will most likely be a successor to Alpha-Tau: perhaps Beta-
Tau?).

5. Conversion of normal-order to applicative-order evaluation where possilile, as done in

[4).

19

13. Acknowledgements

Many people have contributed to the development of ALFL and Alpha-Tau, either directly or
indirectly. The work of David Turner and Robert Keller has of course been instrumental in
formulating many of the ideas in the language. Alan Perlis provided implicit guidance and
forewarnings in designing “yet another programming language.” David Kranz helped me build
the first implementation of ALFL, a combinator-based version described in [4]. Since that first
implementation, several people have contributed to Alpha-Tau, especially Fred Douglis, Jonathan
Young, and Lauren Smith. David McDonald helped me formulate ideas about how 1/O should be
done. Work is continuing with Jonathan Young, Lauren Smith, and Adrienne Bloss, and should
account for further improvements to the language and implementation.

Special thanks are extended to Lauren Smith, who provided helpful comments on an earlier
draft of this-manuscript and helped formulate the concepts of ordered sets and ordered bags,
including building an implementation of the latter in Alpha-Tau and giving assistance in writing
Section 6.

AV AV " -

~
N onn

Appendix I

Curried Equivalences of Infix Operators

fby - (unary) negate
sppend - (binary) sub
apply , + (unary) plus (not implemented)
compose + (binary) sdd
equal * mult
notequal / div

gt \ rem

It 8 and

ge | or

le - not
reduce

layered_apply

nested_map

structured_apply

Operator Precedence

/7NN T
(function composition)
<space> (function spplication)
+ - (the unary versions)
*/\
+ - (the binary versions)

->, (conditional)
== (infix lambda)

20

21

Appendix II
Syntax of ALFL
In the following, literal characters (in the terminal alphabet) are enclosed by quotes. Token
names are enclosed in angle brackets (“<...>"). Parentheses are used to group a set of terminals
and/or non-terminals together. An object or group of objects followed by a * means zero or
more occurrences of that object; use of a + denotes one or more occurrences. A vertical bar
denotes alteration. Finally, @ denotes the empty string.

Lexical Definitions

Comments are represented by a percent sign ("%") followed by the comment text followed by
an end-of-line character (carriage return or line-feed). Comments are treated as ~white-space”
and thus do not qualify as a token.

In general upper- and lower-case are equivalent. The only exception to this is that character
case is preserved in strings.

The lexer recognizes the following tokens:
There is one reserved word; viz: result.

Some are infix or prefix operators, like:

S /NI e =%/ \=><cd=c=o "0 <

and some are delimiters, such as:
P {Y[) () ;. ,=={xx}[++]0

There are also three “structured” tokens:

<number> --> <integer> |-<float>
<id> --> <|etter><alpha>*
<string> --> *®%(<gny-char> | <blank>)*"*®

where:

<integer> --> <digit>+
<float> --> <digit>*.<digit>+ | <digit>+.<digit>*
<«digit> --> %0 | *1* | ... | "9*
<letter> --> "g® | *b® | ... | ®z* | *A* | *B* | ... | "Z"
<glpha> --> <letter> | <digit> | *_*
<any-char> --> <alpha> | <special-symbo!> | **** (two double-quotes,
interpreted ss one)
<special-symbol> --> any other printable character except *®

Examples of single tokens:

this_is_right 27938 .5 5. 0 foo
"He said, ""foo on you!"®* >= result 27.938

Non-examples of single tokens:

this-is-wrong "this isn®t right" Oresult 1.2.3

Tokens are separated by “white-space”; that is, anything that appropriately disambiguates
successive tokens. For example, 9result is really two tokens, 9 and result, separated by the

white space 8 (the symbol for epsilon, the null string). Of course, the null string is not always

sufficient.

A Context-Free Grammar for ALFL

In the following productions, non-terminals are represented by an identifier reflecting its

intuitive meaning (for example, “expression”). Terminals are tokens as defined cbove, znd are
represented in one of three ways; structured tokens are enclosed in angle brackets (as in <id>),

reserved words are represented by all caps (as in RESULT), and operators and dclimiters are

enclosed in quotes (as in ">=").

program
equation-group

equation
Ihs
patterns
pattern

pat-ex
expression
. el
el

e2

e3

e4

e5

eb

e7

e8

e9

el
ell
el?2
el3
eld
el

constant

-->
-->

equation-group
s{" (equation ";")=

RESULT expression

(";% equation)*

(el *:*)
I}H
Ihs "==" expression
(<id> | *'") patterns | pattern
pattern patterns | pattern
constant | "#" el15 | <id> | "(* pat-ex *)*
[pat-ex ("," pat-ex)* *]*
pattern | pat-ex *°® pat-ex
"¢" patterns "==" e0 | e0
el *->" ¢0 "," e0 | el "->" e0 | el
e2 """ el | e2
e3 *“°v e2 | €3
e4 *|* e3 | o4
e5 "2" e4 | e4

"8 o5 | @b
07 (= ' agn I ays ' ag=" l Sy=0 ' [X6 1]) 07 I e7
e8 ("+® | "-%) o7 | 8
@9 ("x* | ®/® | "\") 8 | €9
(®+" | ®-*) el0 | €10
ell e10 | ell
el2 *":* ell | el2
el3 ".* e12 | e13
eld ("::® | ®[|® | "* | *//") el3 | ol4
[(expression ",")* expression *]* | el5
<id> | constant | equation-group |
"(» expression *)" | setnot
<number> | <string> | ®[]*

23

setnot --> [* expression | quals *] | {* expression ! quals *}
quals -->gens (8 | *!* fils)
gens --> generator (";" generator)* (0 | *;*)
fils =--> filter (";" filter)* (& | ;")
filter --> expression
generator --> pat-ex "<-" expression

All infix operators associate to the right, except for “blank” (function application), which
associates to the left. The “dangling else” is disambiguated in the mormal way. Opcrator
precedence is as follows, from highest to lowest:

/1 \\ e
(function composition)
<space> (function spplication)
+ - (the unary versions)
* /\
+ - (the binary versions)

->, (conditional)
== (infix lambda)

[2]

(3]

[4]

8]

References

Burstall, R.M., MacQueen, D.B., and Sannella, D.T.

HOPE: An experimental Applicative Language.

In Davis, R.E., and Allen, J.R. (editors), The 1980 LISP Con ference, pages 136-143.
Stanford University, August 1980.

Darlington. J., Henderson, P., and Turner, D.A. (editor).
Functional Programming and its Applications.
Cambridge University Press, Cambridge, England, 1982.

Henderson, P.
Functional Programming: Application and Implementation.
Prentice-Hall, Englewood Cliffs, NJ, 1980.

Hudak, P. and Kranz, D.
A combinator-based compiler for a functional language.
In 11th ACM Sym. on Prin. of Prog. Lang., pages 121-132. acm, January 1984.

Keller, R.M.
FEL programmer’s guide.
AMPS TR 7, University of Utah, March 1982.

Rees, J.A., and Adams, N.I.

T: a dialect of LISP or, Lambda: the ultimate software tool.

In Park et al. (editors), Sym. on Lisp and Functional Prog., pages 114-122. ACM, August
1982.

Rees, J.A.. Adams, N.I., and Meehan, J.R.
The T Manual.
Technical Report 4th edition, Yale University, January 1984.

Turner, D.A.
SASL language manual.
Technical Report, University of St. Andrews, 1976.

Index

$library 18

(alf ..) 17
{(alfl-load ...) 17
(alft-parse ...) 17
(alfl-reset) 18

ABS 11

ACOS 12

ADD 11

Alpha Tau 16
ALPHAP 13

AND 12
Anonymous functions 9
APPEND 5
Arithmetic 11
ASCII_TO_STR 13
ASIN 12

ATOMP 6

" BIT_FIELD 12

Bitvectors 12
BNF syntax 21
Booleans 3
BOOLP 3
Bottom 4

CHAR_IN_STREAM 15
CLOSE 16

Comments 2

Compilation 18
COMPOSE 3

Conditional expressions 2, 12
COS 12

Curried functions 2

Data types 3
Destructuring 8
DIGITP 13
DIV 11

EQUAL 4
Equality 4
Equation group 2
Equations 2
ERROR 15
EXP 12

EXPT 11

FAC 11

FALSE 3

FBY 3.5

Files 14,15
FLOAT_TO_INT 11
Floating-point numbers 3
FLOATP 3

25

FORCE 15
FORMAT 15
FORMAT_STR 13
Function application 3
FUNCTIONP 3
Functions 3

GCD 11
GE 11
GEN_STR 14
GT 11

HASH 186
HD §

Identifiers 2

Infinite lists §

Infix operators 2
Input/output 14
INT_TO_FLOAT 11
Integers 3

Interactive environment 17
INTP 3

LAYERED _APPLY 6
LE 11

LENGTH 7

LET 17

LISTP 4

Lists 4,5

LOG 12
LOGAND 12
Logical operators 12
LOGIOR 12
LOGNOT 12
LOGXOR 12

LT 1

Mapping functions §
MAX 11

MEM 7

MEMBER 7

MIN 11

MULT 11

NEGATE 11
NESTED _MAP 6
NOT 12
NOTEQUAL ¢
NTH 7

NULLP &6
Numbers 4
NUMP 4

OB_IN_STREAM 15
OR 12

Ordered bags 9
Ordered sets 9
OUT_STREAM 186

26

PAIRP 3

Pairs 3

Pattern expressions 8
Pattern-matcher 7
PRE 7

Precedence 23
PRED 12

PRINT 15

REDUCE 6
Relational operators 11
REM 11

Reserved words 2
Result clause 2
REVERSE 7

Scoping rules 2
SHIFT 12
Side-effects 15

SIN 12

SQRT 12
STR_APPEND 13
STR_EXPLODE 14
STR_HD 13
STR_IMPLODE 14
STR_LENGTH 13
STR_NTH 13
STR_TL 13
STR_TO_ASCO 13
Streams 14
STRINGP 3,13
Strings 3, 13
STRUCTURED _ APPLY
SUB 11

SUCC 12

SUF 7

TAN 12
Terminal /O 15
TL 5

TRUE 3

UNHASH 16

27

