Computers are a pain to use. How is information stored, arranged and re-
trieved? How are programs executed? Today’s widely used systems answer
these questions in ways that are unclear and unintuitive to many people. Users
who aren’t software developers or computer enthusiasts, who rely on their com-
puters for document-management, communication and canned applications, are
least likely to be happy with the current state of things. Microsoft acknowledged
that fact when it released a widely-discussed system called “Bob,” in which a
collection of cartoon characters in a series of rooms guide users through the in-
tricate capabilities of the underlying system. A dog appears, for example, with
an attached speech balloon: “Bow-Wow! Add this event... Add this event to
which of these calendars?” A list of names follows, and the user checks the right

-+ ones.

We might dismiss Bob as a goofy sideshow, but we would be wrong not to
take it seriously. “The idea of a social interface as pioneered here will become
pervasive” says Microsoft Chairman Bill Gates, who knows a thing or two about
pervasiveness. Apple is said to be working on its own Bob-like product for release
next year. Pondering Bob yields two inferences. First, the software industry
understands that a problem exists. Second, the industry believes that, if you
can’t figure out how today’s operating system environments work all by yourself,
you must be a moron and ought to be treated like a child.

We believe on the other hand that people are right to be confused by today’s
systems; they aren’t well suited to the needs of most users. They are built on
ideas (like named files in hierarchical directories) that were brilliant when they
were new but have long since become obsolete.

We’ve developed “Lifestreams” in an attempt to do better. The prototype
‘that exists today realizes only some of the system’s defining features, but it’s
up and running and has allowed us to experiment with many of the system’s
key ideas. In this article we describe the idea, its context, our current imple-
mentation and the direction our system is headed.

What is it?

Under the constraints imposed by our current implementation and (more im-
portant) by the state of the world generally, a Lifestream as of today is a way
of organizing all of a user’s dealings with computers, and all his computer-
mediated dealings with other people. But the information world is changing
fast. Lifestreams are intended ultimately to serve as comprehensive electronic
diaries, and to hasten the transition from a paper-centered world to an electronic
one. In the electronic world-to-come software handles a good deal of the over-
head that comes with managing chunks of information, and paper is reserved

for applications (books for example) where it’s a good fit and not merely the
only alternative.

A Lifestream, today and always, is a stream of information chunks, typically
intended to include every information chunk of interest to its owner. Chunks are
stored in the stream chronologically by the date and time at which they were
created (for chunks created by the owner) or added to the stream (for chunks
arriving from the outside world). Users can display portions of the stream
arranged in some other way than chronologically, but time is a Lifestream’s
master-criterion. We designed it this way because time is a natural guide to
experience. Memories aren’t arranged or recalled by chronology exclusively,
and some memories lack a time component altogether; but time is the attribute
that seems to come closest to a universal skeleton key to stored experience.

A “chunk” is any chunk of data that would ordinarily be treated as a unit:
a document, email message, calendar item, software Rolodex card or fax image,
for example, or the transcript or screen image created by an executing appli-
cation. Lifestreams are also designed to contain chunks that don’t ordinarily
exist in electronic form today but will in the near future: bills, receipts, busi-
ness cards, owner’s manuals, snapshots, videos, licenses... If you are a student,
your transcripts, graded assignments, bulletins and schedules are stored on your
stream. If you are a patient, your medical history is stored as a series of dis-
crete chunks (lab reports, prescriptions, doctors’ notes). Whoever you are, item
number one in your Lifestream-of-the-future is probably your birth certificate.

The system we’ve built deals only with today’s “conventional” electronic
chunks. But it’s designed to generalize smoothly into a comprehensive electronic
diary.

How does it work? (And what’s the point?)

The system is based on five observations.

1. “Names” and “directories” should be junked as organizing devices for
infochunks. Virtually all current systems require users to make up a new name
whenever they create a new document. But names should be required only when
users feel like inventing them. When you grab a piece of paper and start writing,
no-one demands that you bestow a name on the sheet of paper. Too frequently,
computer users find themselves inventing names like “Letter to Schwartz no.
177 or “New Report”; a new document is often merely the latest in a continuing
series, and to name it individually is a waste of time. Such names tend not only
to be pointless but ‘useless for retrieval purposes.

Directories are one important symptom of a different but wide-ranging prob-
lem. In some cases, software fails to match the flexibility of paper systems; more
often, software is too faithful to the paper world of the past. In most current
systems, file directories are a strait-jacket metaphor. Paper can’t be in more
than one place at a time, but infochunks can be (or can appear to be). Further-
more, it’s time-consuming to organize papers into folders and folders into bigger
folders, but infochunks can be organized fast. Current systems treat infochunks
as if the creation of a folder were a big deal to be approached with care and
deliberation. Directories should be created on the fly when they are needed, and
infochunks should belong to as many of them as seems reasonable, or to none.

Imagine the papers in your office in a single heap (assuming they aren’t ina
single heap already); we want it to be possible for you to say “hand me a folder
holding everything that deals with toaster ovens,” and to have the specified
folder materialize instantaneously—despite the fact that you may never have
organized your chunks by relevance-to-toaster-ovens before, and may never do
it again.

2. The system should provide sophisticated logic for finding a chunk or group
of chunks. This point is the logical continuation of the previous one. 1 don’t
want to be forced to make up pointless names; I do want to be able to ask for “my
last letter to Pinsky,” “the letter to Pinsky about toaster ovens,” “everything
about toaster ovens,” “the report I co-authored with Pinsky” and so on. If I ask
for “everything about toaster ovens,” ideally the system would be sophisticated
enough to include, also, chunks dealing with small appliances, ordinary toasters
and so on (but it should indicate that such chunks are less-close fits to my

query).

3. The system should provide sophisticated logic for summarizing or com-
pressing (and where appropriate, for picturing or animating) a large group of
related chunks of which the user wants a concise overview.

No matter how many chunks fall into a given category, the system should
be capable of summarizing the whole lot on a single screen. For some types of
chunk, pictures or animations will be good vehicles for summaries.

4. “Compatibility” should be automatic. Computers are ordinarily under-
stood to be devices for storing and managing information. We prefer a different
metaphor: a computer is a viewing device for tuning in Lifestreams—and other
types of information landscape as well; but your Lifestreams® is home base. In
this view of the world, the character of a computer and its native software are
irrelevant to the computer user. You can tune in your Lifestream from a Unix
machine at work, a Mac at home or a PC. at the supermarket or in a phone
booth. Laptops become unusual devices for special tastes and circumstances;
you won’t ordinarily carry a computer when you travel, any more than you’d

carry a TV today. It’s safe to assume that, en route, you’ll find a TV in your
hotel room that will be capable of tuning in exactly the same things your own
personal TV could have managed. So you might just as well leave your own per-
sonal TV home. Ditto the computer, once the Age of Lifestreams is underway.
In the Lifestreams world, you find computers installed in most places where you
might want to deal with your infochunks, and you grab whatever unit is free.

5. Ezplicit file-storage management should be junked. Longer-term storage
management is another area in which current systems fail to deliver the power
of which software is capable. I own a collection of paper documents, and I
might be willing to pay someone to make sure that they are stored safely and
that I'll be able to find each one quickly when I look for it; but unless I rent a
safe-deposit box, there’s no convenient way in which a company could provide
such a service. It would have to show up regularly at my home and office, copy
important papers and truck them off somewhere. I also own a collection of
software objects, and once again I might be willing to pay someone to make
sure they are stored securely and reliably. The Lifestreams systems is intended
‘to provide such a service. It accepts responsibility for keeping your objects safe
and available, and you can throw away your diskettes.

Our current system realizes a fair part of goals 1 and 2, some of 3 and 5 and
very little of 4. But all these goal are central to the project.

The Lifestreams System

We’ve sketched the idea of a Lifestream and the system’s goals. Here we describe
how the system works, explaining in the process our current prototype and
future plans. '

The Stream

A lifestream can be accessed from any available “viewport.” (A viewport is any
computer running the necessary software.) When a user logs on from a viewport,
he sees the master chunk list of the stream he’s just attached to—the master
chunk list being a scrollable list of all chunks on the stream. In our current
system, the chunk list takes the form of a text table; each entry describes one
chunk in terms of a subset of the chunk’s attributes. The most-recent chunk is
at the top of the list. As new chunks are created or arrive from the outside, the
chunk list is updated.

We are in the process of developing a new viewport that displays the master
chunk list as a 3D stream receding from the present into the past. 3D is helpful

because it allows us to use visual cues to communicate important information
about chunks—namely, their relative ages; what’s old and what’s new.

A viewport presents buttons for managing Lifestreams. Two buttons, new
and clone, create new chunks. Clone can duplicate a chunk on the stream, or a
template from a pre-arranged collection of commonly-used types—for example,
email. (A template is actually just a chunk on the stream. Users can add
templates, or use any pre-existing chunk as a template.) A third button, copy,
allows the user to copy a chunk from his stream to someone else’s. Sending
email represents one use of copy—to send email to Ginger, you copy a chunk to
Ginger’s stream.

- The viewport also allows the user to examine a chunk’s attributes more
closely, and to grant other users’ selective access to his chunks. The find button
creates a substream: it prompts the user to specify a set of attributes or query
words and then creates a substream to order, as we discuss below. The viewport
can then be focused on the new substream—or it can be tuned to any existing
substream.

Attributes and substreams

Each chunk in the stream has a collection of associated attributes. Some are
supplied by the system when a chunk is created or copied; others are supplied
explicitly by the user. (When you make a copy of a chunk, the copy inherits
the original’s attributes, except for creation time.) The system uses attributes
to locate chunks. If a user feels the urge to name a chunk, he supplies the
name as one attribute; the system can then retrieve the chunk under its name.
The date and time at which a chunk is created or appended are attributes;
a chunk’s origin or destination (if it is copied among streams) are attributes.
When a chunk follows the outline that is associated with letters (beginning with
an address, date and salutation, ending with a closing), the system can infer
that “letter to Ginger” should be one of its attributes, where “Ginger” is copied
out of the address or salutation. When a chunk consists only of a name and
address (or phone or email information), it can infer that “Rolodex card for
Ginger” should be an attribute, and so on.

The system has a “find” button whose function (as we have said) is to cre-
ate a substream. A substream is a list of all chunks that satisfy some search
criterion; it may include information on “closeness of fit” if the criterion (e.g.
“find everything dealing with toaster ovens”) can be “approximately” satisfied.
(The system’s find button is powered by an expert database called the “FGP
system” developed at Yale in a separate research project.) Chunks on the sub-
stream remain part of the main stream. Ordinarily, the list of substream chunks

is ordered just like the stream itself and its associated list. But under some cir-
cumstances the order will be different: it will display the “closest” chunk first,
or use some other ordering criterion specified by the user—it might be ordered
by size, alphabetically and so on.

A substream lives until it is killed. If you’ve created a toaster-oven substream
and a new chunk chock-full of information on toaster ovens arrives subsequently,
it is added to the toaster-oven substream in the process of being appended to the
main stream. Finding a unique chunk is a special case of creating a substream. If
you’ve named some chunk “Audrey,” then “find Audrey” locates that particular
chunk. (Operations like “find my last letter to Schwartz” would also return a
unique chunk, as would many others.) Note that attributes and substreams
allow users to create traditional hierarchical directory structures if they like.
A file that would be named “/usr/local/schwartz/frog” in Unix corresponds to
a chunk with the attribute “/usr/local/schwartz/frog.” The “find” command
can assemble substreams corresponding to particular directories by intelligent
scanning of file-structured attributes structured as file names.

“Hide” is the inverse operation: it assembles a substream and then sup-
presses it. Chunks on a “suppressed substream” remain invisible (they don’t
appear on the master chunk list) until the hidden substream is dissolved. Sup-
pressed substreams are important, because Lifestreams are all-inclusive elec-
tronic diaries and may include all sorts of chunks that a user wouldn’t ordinarily
refer to. Of course a user may if he chooses remove a chunk from his stream,
and thereby throw it out. In the near term, chunk-removal is an operation users
will perform regularly. Over the long term, though, cost per bit for long-term
storage will be so low (remember, storage facilities will be provided by a local
information utility—you won’t have stacks of diskettes cluttering up your desk)
that chunk-removal will most likely be rare. Even in the case of a chunk that is
mere electronic scratch paper, the possibility (however small) that you will have
reason to refer to it again, plus the inconvenience (however small) of pushing
the “delete” button, will outweigh the negligible cost of storage.

(When a user dies, however, the heirs might neaten up the deceased’s stream
a bit before forwarding it to a local museum or appending it to their own.)

Past, Present and Future

When a new chunk is created, the system assumes that the user will actively
work on it for awhile—although presumably it will soon be superseded at the
end of the stream by new chunks (e.g. by arriving email). After a chunk hasn’t
been worked on for “awhile” (“awhile” is a resettable system parameter), it
freezes into “history”—that is, it’s marked read-only.

The system treats the past, present and future uniformly, insofar as that
makes sense. By default the system clock tells current time. Dialing the clock
into the past allows you to explore past regions of the stream. You can dial the
clock into the future too. Suppose you’ve scheduled a meeting for next Tuesday
afternoon and want to remind yourself of the fact on Tuesday morning. You
can dial the clock to next Tuesday morning and create a chunk to serve as a
reminder notice; then you return to the present. Next Tuesday morning the
chunk you created will be “received” and you will be alerted in the same way
as if this chunk were newly-appended email. By dialing into the future you can
examine such reminders as they sit around waiting for their time to come.

Agents

Every chunk in a Lifestream has at least one agent attached. An agent is tied
onto each infochunk the way a helium balloon might be tied down to a chunk
of plastic—sort of. If the chunk represents a document, its agent is the “helper
application” by means of which it is manipulated. You view and edit documents
using the applications you are familiar with; if you like emacs, the documents
on your stream will all have emacs as their attached helper applications.

Torun an application (say “Crazy Space Artichokes”) under Lifestreams, you
create a new, empty chunk and make Crazy Space Artichokes serve as an agent.
(In practice, Crazy Space Artichokes becomes a template, like “email”; clicking
on the template creates a new chunk with the application attached.) When you
- are done with this particular Crazy Artichokes session, you snip the agent loose
and it disappears, leaving its final screen image behind as a permanent record
in the stream—unless you choose to delete it. The helper agent that serves as
your default chunk-viewer (presumably your favorite editor) is attached instead.

A chunk might have two agents attached simultaneously—an “executive as-
sistant,” for example, designed to shepherd it through the system from stream
to stream, in addition to the editor. If a chunk is to be forwarded to a list
of users in sequence, the chunk’s originator attaches such an executive assis-
tant agent and hands it the list of stream destinations. (“Chunk with attached
executive assistant” is, once again, a template.)

Agents may also be assigned to scan publicly-accessible streams, finding
interesting chunks and returning them. Such stream-scanning agents can be
used for subscriptions, for example—you can attach a subscription agent to the
Lifestream representing some electronic magazine, and have the agent append
each month’s issue to your stream. (Or you might have the agent check, first,
whether the new issue has anything to do with toaster ovens, and forward it
only if it does.) '

Agents can act together. A “meeting maker” application, for example, com-
bines stream and chunk-based agents. A stream-scanning calendar agent keeps
track of each user’s availability by monitoring the appointment chunks that
accumulate in the “future” part of the Lifestream. When a meeting needs to
be scheduled, chunk-based agents are dispatched to a meeting’s intended par-
ticipants, where they interact with the calendar agents and possibly with the
participants themselves.

The Implementation

Our current prototype manages Lifestreams through servers running on Unix
workstations. FEach server stores the documents, attributes and substreams
of a number of users. The chunks in a Lifestream are represented using a
machine-independent external data representation (XDR), so that a stream can
be accessed from many different platforms.

So far we’ve implemented only one viewport; it runs on Unix workstations
and presents an X Windows Motif interface to users (see screen snapshot at
the end of this document). (In principle, of course, many different viewports,
running on different machines and with different user interfaces, can coexist.)

When you select a chunk from the master chunk list, ordinarily it is displayed
in its own window; if you select several chunks, each appears in a separate
window. But you can also create a “shared window” —whatever chunk you
point to in the master list appears in the shared window. A shared window
allows fast switching with minimal fuss, bother and screen redecorating among
several contexts—for example, the document you’re working on and new email
arriving on the end of the stream.

When you use “find” to build a substream, the new substream’s chunk list
replaces the master list. In general, the user can focus the viewport on whatever
substream he chooses, or on the entire stream; the appropriate chunk list is
displayed. '

We have taken a general approach to handling documents—rather than com-
mitting to a fixed document standard, such as Microsoft Word or Adobe PDF,
we allow documents to be typed with MIME-types, which makes it possible to
support a large range of document types.

A Macintosh-based viewport is under development (it displays the master
chunk list as a 3D image, as described above); we plan to develop a PDA-based
viewport as well.

Other systems’ relations to Lifestreams

Lifestreams overlaps many existing systems in many ways. But the two systems
with the closest and most interesting relationship to ours are Lotus Notes and
Xerox’s Tapestry system.

Lotus Notes provides databases for storing document collections, and allows
custom-designed viewing and filtering of particular databases by means of a
“view.” (A view specifies which documents within a particular database should
be displayed, and how.) In Notes as in Lifestreams, email and documents are
treated uniformly.

Notes doesn’t provide Lifestreams-style nameless documents, nor does it
provide Lifestreams-style dynamic substreams, nor is it designed to provide
Lifestream-style substream summaries, nor does it have the synchronization
characteristics of a Lifestream. These aren’t flaws in Notes; Notes and Lifestreams
are targeted at different problems. Notes is intended mainly not for individual
electronic diaries but for corporate documents and information. Thus, Notes
databases are statically configured and database filters (“views”) aren’t typically
created by end users but rather by system administrators.

Another system with significant similarities to Lifestreams is Xerox PARC’s
Tapestry. Tapestry is intended to manage incoming articles (for example from
netnews or mailing lists) for a workgroup. As new articles arrive in Tapestry
they are collected and archived within a global database. Users don’t access
the collection of documents directly; instead, they supply content-based filters
which forward to each user documents that might interest him. At the user
mailboxes, “appraisers” may sort mail into folders or assign it priorities before
presenting the user with a list of new documents. Like Lifestreams, Tapestry can
infer mail-related attributes for each document, which can be used in filtering.

Tapestry folders correspond roughly but not in detail to substreams. More
important, the two systems are intended for somewhat different niches. Tapestry
isintended to be an interface between a user and the world of documents stream-
ing in from outside, not a replacement for a user’s own filespace.

Disk catalogers and indexers are related to Lifestreams in a general way. Ei-
ther statically or incrementally these programs index the documents of an entire
file system, and support efficient searches based on a file’s contents. Users of
these systems tend to abandon, for the most part, the hierarchical organization
of their native file systems in favor of the quick searching and filtering supported
by the catalogers. The functionality provided by these programs is subsumed
by Lifestreams (and is being incorporated into new versions of conventional
operating systems as well).

Many other systems are related to Lifestreams one way or another: meeting
makers, document management systems, to-do lists and reminders, enabled-mail
(which inspired our instantiation of agents), semantic file systems, archival/
retrieval systems and a large number groupware applications.

Conclusions

Current systems don’t begin to exploit the power of modern software and net-
worked computers. In a few years, information management is bound to look
dramatically different. We can’t tell exactly how it will look, but do know this:
the future won’t be based on cartoon characters trying desperately to convince
us that our current systems make sense.

The modest goal of the Lifestreams project is to change the world, computa-
tionally speaking. We have developed utilities that translate pre-existing mail
files and Unix file systems into Lifestreams, and provide an interface between
Lifestreams users and users of conventional systems. On this basis a number
of people at Yale have already migrated to Lifestreams (although the current
system is just a prototype and only for the venturesome); more will be joining
soon. Lifestreams may or may not develop a large user community eventually.
One thing that’s almost certain, though, is that the system will develop some
sort of user community; and over the near term, that community is likely to
grow.

10

Documents are displayed in receding
chronological order. Each document
entry is made up of a configurable set
of document attributes. Clicking on an
entry disrlays key attributes above,

double-clicking calls the helper
application and loads in the document

The more interesti
attributes of the la
selected documen
displayed here

The document bu
new documents, ¢
freeze documents
writable, transfer
and view the doct
(including attache

The STREAM dialog allows the.
user to connect the viewport to a
stream, create and destroy
substreams, and perform other
stream related functions.

 buttons allow users to create

5, clone existing documents, B

nts so that they are no longer '
ter documents to other users, The TIME dialog allows
jocument attributes in detail the user to dial to the

iched agents). ‘ future and the past.

Through helper applications,
based on MIME types, users can
iew and edit virtually any
ocument type such as text,
sound, and images

Corputers are 2 pain to use, Hov is inforaation storad, srranged and
~etriaved? Hos ars progranms executed? Today"s widely used systess
ansuer these questions ir ways that are unclezar and unintuitive to
nary ceople, isers vho aren’t softuare davelopers or computer
enthusiasts, whc rely on their compuiers for docurent-sanagenent ,
corpunicaiion and axecuting canned applicaticrs, are least liksly to
be hacpy with the current state of thirgs. Microsoft acknowledged
that fsct when it releassd a widaly-discussed systens called ““Eob,””
N s col lection of cartoon cha~acters in a series of rooxs guide
M Eh the intricate capabilities of the underluing systex, A
for exarpis, with an attached speech ballcon: *~Bow o
32110 dd this event to which of these calendars? - A
Poinzer: 0:04.6 3 3 -d abe user checks the rtight ones.

R S,

izs Bob as & _

deshou, but we would be wrorg not to
I | — 3 Ys “*Ths idea of} Meeadndmnionann

=

3 i pervasive”” says Muc

DODOCDODODON SODEDODO e A e S A L 9IS I AT AD

fjUnder the constraints imposed
fj{xore ikportant) by the staze
ggouri_i.f‘estreas is a wvay of org
#

8

~

With computers, and aii vou~ cor

”

‘00

e

32 PC st th= sucernarket cr ir a

SO

