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Using Genetic Algorithms to Achieve Better Performance with Feed

Forward Networks and Backpropagration'

Charles Coglianese
Yale University, Department of Computer Science
New Haven, CT 06520

Abstract

The power of training feed forward nets with backpropagation has been shown in
many applications since its invention. However, there are still problems with this
approach, including the local nature of the gradient computed and used in the weight-
updating scheme. Genetic algorithms (GAs) have also been shown to be extremely
useful for searching difficult spaces where little may be known except for an objective
function to tell how good a potential solution is. As a result of the genetic operators and
selection methods used in GAs, the search performed is .global in the space of the
objective function and thus does not Suffer from the local minima that backpropagation
training does. However, GAs tend to search many unnecessary spaces and thus can take
a long time to converge due to the less directed nature of the search. The intuition,

_therefore, is to combine the local accuracy of backpropagation with the global ability of
GAs to escape local minima to create neural nets that can produce more accurate
answers, through less training. Thus, we use a modified GA with an extra step of training
via backpropagation. Also novel to this study was the use of neurogenesis as a type of
mutation, though this proved to have less of an impact than desired. The hypothesis turns
out to be correct and is shown in the results of training nets on two different problems
with two different siopping criteria.

Keywords — neural networks, genetics algorithms, backpropagation, neurogenesis



1 Introduction
1.1 Neural Networks and Training with Béckpropagation
A neural network is a graph of connected nodes that interact through the weights between
them to produce output useful in a particular domain. The difficulty in producing neural
nets to solve different problems has to do with the difficulty of training the weights of the
net to perform the desired task and also of designing the architecture of the net to have
the right characteristics for the problem in question. One method for training the weights
of a neural net is backpropagation, which performs a gradient descent to minimize the
error between the output produced by the net and the desired output for the exemplar
presented. One of the drawbacks of backprop is that it performs a local search and is thus

susceptible to finding local minima that do not turn out to be the global minimum.

1.2 Genetic Algorithms and Their Application to Neural Networks

Another paradigm for searching function spaces for optimal solutions is genetic
algorithms. Genetic algorithms are so-called because they are based on the principals of
Darwinian evolution. The basic search algorithm is to create a population of random
individuals (genotypes) and to evolve that population using genetic operators on certain
members chosen due to their fitness as determined by an objective function. Once nice
property of GAs is that the combination of genetic operators and selection methods
allows the search performed to be global over the set of possible genotypes as opposed to
the local weight updates calculated in backpropagation. Thus, the intuition behind this
study is that by combining these two approaches in some way we can generate neural
nets that find the global optimum of the search space in a shorter amount of time due to
the population-based approach of GAs. A good introduction to the interactions between
GAs and neural nets is provided in [3].

1.3 Testing Domains and Methodology

We tested this hypothesis on two different problems with two different stopping criteria.
The first problem tested was the XOR problem. This problem was used to see how the
algorithm would perform on a relatively simple task. The two different stopping criteria

used here were two different tolerances for how good a net had to be to stop the search



and declare success. The difference between the two tests was how accurate the results
produced by the net were in relation to the desired outputs from the problem. Thus, a less
accurate stopping criteria would tell us how fast the algorithm was able to get decent
results whereas a more accurate stopping criteria would show the performance of the
algorithm in getting close to the actual global minimum as opposed to only finding a
local minimum. The second problem tested was the Letter Classifier problem. For this
problem I created a set of 8x8 bitmaps for each of the letters A through J. The task for
the net to learn was to be able to fire one of ten outputs corresponding to the letter
provided as input. Ialso took these trained nets and then tested their generalization
capabilities on perturbed sets of the input to see how well the nets developed were able to
generalize beyond the exemplars. |
The algorithm presented here was tested against the exact same algorithm with the
genetic operators removed. Thus, we used a population of nets and trained each with
backprop until one of them met the required stopping criteria. Although this may seem
unnecessary at first, it turned out to be necessary as a result of backprop’s sensitivity to
initial conditions. I will present a fuller explanation with experimental data later in the
- paper, but suffice it to say that a population’s worth of nets was necessary to guarantee

finding one that would reach the termination criteria.

2 Specifics of the algorithm
The basic format of the algorithm used in this study is provided in Figure 1. The idea is ‘
to combine the basic format of a general GA with some added training using backprop.
Thus, the algorithm inserts a step of training the new population with backprop in
between applying the genetic operators and calculating the fitness.

One of the hardest parts about designing a GA is figuring out what to use as a
fitness function. Since the fitness function is what makes the algorithm goata
fundamental level, it is very important to pick a fitness function that correctly assess how
good a particular member of the population is. For this study, I chose a very simple
function. The fitness function takes the difference between the output produced for each
exemplar and the desired output for that exemplar and sums them up, normalized over the

number of exemplars. In other words, the fitness is just the error signal from the output



Start generate a random population of nets

Fitness evaluate the fitness of each net (sum of error values — smaller is better)

Selection preserve the top few fitness values using elitism, then run rank selection
to select a set of nets for the next generation based on their fitnesses

Crossover with some probability, run double point crossover on a selected pair of
parents by crossing over at a random level of each net

Mutation with some probability, mutate one weight in a selected net by a random
factor at a random index value

Neurogenesis with some probability, replace one node of a selected net with a
new node with all random weights

Backpropagation update the weights of the net using the backprop algorithm

Test if we have a net whose fitness is within some tolerance (or we’ve reached

the max number of iterations), then stop, else go back to fitness stage

Figure 1: The algorithm used in this study.

layer of the neural net. Thus, in this representation we are trying to minimize fitness
(error) as opposed to maximizing it, though it is somewhat irrelevant to the performance
of the GA.

One key aspect of the algorithm here is the number of iterations through the

“backprop training algorithm we do during each iteration of the GA. The reason is that |

there is a balance between time and effectiveness with the training. If we use too many
iterations, then the cost of computing the gradient for all the nets that don’t get selected
into the next round is too high and thus we can only run fewer iterations of the overall
algorithm with the GA. However, if the number of iterations is too few, then the weights
will not be sufficiently updated to cause a positive change in fitness and thus the
backprop training will be ineffective.

Another key aspect of the algorithm has to do with the termination criteria used.
In the tests for this algorithm, two different criteria were used of varying tolerance for
error. The idea behind this was to test either how fast the algorithm could evolve nets of
some acceptable fitness or to test if the algorithm could evolve nets of very high fitness.

These two different stopping criteria produce very telling results about the effectiveness



of the algorithm. The next few sections discuss specific parts of the implementation in
more detail.

2.1 Representations of Genotypes and Problems

One important choice in designing a genetic algorithm is the representation of the
genotype. The genotype is the encoding of a potential solution to a problem. This
genotype can then be evaluated for its fitness in the particular environment. In this case,
the genotype is a specification of a neural net. More specifically, the genotype specifies
how many layers there are in the net, how many nodes are in each layer, and what the
weights are between each of the nodes. In the representation used, each node in one layer
is connected to all nodes in the previous layer. In reality, many of these weights may be
very close to zero and thus may be equivalent to there being no connection at all between
two nodes. The representation is limited in the kinds of nets it can generate, however, in
that nodes may only be connected to nodes in the following level.

Another interesting thing to note about the representations used here is that the
characteristics of a particular problem domain determine how many input and output
nodes there are in each net and thus the randomness is entirely in the characteristics of the
hidden levels and the weights. This is a nice encapsulation of a problem since all we
have to provide is the set of exemplars with the inputs and their desired outputs and we
can use this algorithm to solve the problem. The reason is that the fitness, or objective,
function is calculated simply by summing the distance from the desired output over all
outputs. Thus, in this representation a low fitness value really means a better “fitness.”
This distinction is important to note when looking at the values produced by the
algorithm, but makes no difference for the effectiveness of the algorithm versus using

high fitness values as better “fitness.”

2.2 Design Choices for the Genetic Algorithm
There are several other design choices that must be made in order to implement a GA that
I'have yet to discuss. Table 1 gives an idea of just how many customizable parameters

there are in such an algorithm, let alone the actual design of the genetic algorithm.



Number of generations 200
Population size 100
Number of iterations over the exemplars of backprop training 10
Number of elite genotypes 10
Probability of mutation . 0.25
Probability of a mutated node undergoing neurogenesis 0.2
Probability of crossover 0.1
[Coefficient of the sigmoid function 1|
_earning rate 4
in number of hidden layers 4|
Max number of hidden layers 3
Fitness tolerance for "good enough" answers 0.1
Fitness tolerance for "perfect" answers 0.01|

Table 1: Parameters of the algorithm.

use a combined approach of using rank selection with elitism. After each the application
of the genetic operators of crossover, mutation, neurogenesis (and in this case
backpropagation training) the fitness of each net is computed and they are sorted
according to their fitness. The rank of each net is just the position of the net in that sorted
array, or, in other words, the rank a net is just the number of nets with better fitness than
it. Rank selection means that each genotype has a probability of being selected in
proportion to its rank, or:

N-—i
Nx(N+1)/2

where i is the rank of the genotype in question and N is the total number of nets in the
population. Thus, nets with the lowest rank (highest fitness) have the best chance of
being selected, while nets with lower fitness have a good chance of being selected due to
the linear decrease in probability with decreasing rank. Elitism means that we take a
fixed number, 10 in this case, of the best genotypes from each generation and copy them
untouched into the next generation. These genotypes are still available to be selected by
the rank selection method so that they may also be operated on by the various genetic
operators. The combination between elitism and rank selection is a good one because
elitism favors the current best genotypes whereas rank selection allows some of the lower

ranked genotypes to be carried on into future generations. Thus, we keep around some



interesting genotypes that have low fitness while still keeping the current best from
~ disappearing.

The other major part of the genetic algorithm is the genetic operators that we use.
In this algorithm, we use the familiar operators of mutation and crossover and add a new
operator modeled on another natural phenomenon, neurogenesis. For mutation, we
choose a random node in the network and petmute one of its weights by a random value.
This value may be positive or negative and may make the weight either greater or smaller
in magnitude. For crossover, we attempt to create new and different interesting
architectures by crossing over two nets by choosing a random index into the vector of
levels for each net and crossing over on either side of those two indices. I have used
neurogenesis in this algorithm as a form of mutation as it is a fundamentally similar,
though more drastic, operation. Neurogenesis is thus defined as taking the random node

picked during mutation and replacing all of its weights with new random weights.

3 Results
The goal of this experiment was to test two basic hypotheses about cdmbining GAs with
backprop. The first is that doing this would allow us to produce nets within an acceptable
tolerance faster. This is shown through tests with a higher error tolerance on the XOR
problem and by looking at the convergence properties of each on the Letter Classifier
problem. The second hypothesis is that using GAs together with backprop would allow
us to produce nets of better fitness. This is shown through tests of the XOR problem with

lower error tolerance and through tests of the Letter Classifier problem.

3.1 Getting Good Enough Results Faster

The results of trying to get reasonably good answers quickly are decidedly in favor of
using GAs with backprop as opposed to just using backprop on its own. Table 2 shows
the average results over 100 trials of the algorithm that uses the GA versus the algorithm
that uses just backprop on the XOR problem when looking for fitness values under .1.
The important thing to notice is that the number of iterations through the algorithm is
much less for the algorithm using GAs as opposed to backprop alone. Thus, we are able

to come to an acceptable solution in a much shorter period of time than if we had only



GA and Backprop Backprop alone
lterations | Fitness | lterations | Fitness
verage 848  0.072 2361  0.097
tandard Deviation ~ 20.38 0.01 3.95 0.002
ariance 415, 3.79E 1662 5.02E
in 53 0.02 17 0.08
ax 20 0.14 50 0.10

Table 2: Good enough results for XOR (tolerance of .1 for fitness). The method that uses both GAs
and backprop outperforms backprop alone, both in terms of the umber of iterations (time) to
converge as well as in terms of fitness achieved. Notice the huge variance (i.e. unreliability) for the
method using the GA, a result of the unpredictability added by the GA.

used backprop. Moreover, the average value is deceiving as evidenced by the high
standard deviation. In fact, most solutions were found in 3 to 5 iterations with the GA
versus 21 to 25 iterations for backprop alone (Figure 2 and Figure 3.) Another important
thing to notice is that the average fitness produced is better when using GAs. Thus, in
addition to finding solutions in fewer iterations, the algorithm also found nets with better
fitness. Something else to notice about these results is the huge variance for the method
that uses GAs. This is a result of the randomness added by the genetic operators and is
worth noting as a downside to using GAs in that there are no guarantees about
performance except for the average case.

It is important to make a note here about the method of comparing these
algorithms. Even in the case where we were testing backpropagation alone, we used a
population of nets. This is contrary to the usual use of backpropagation, however,
without designing the architecture there was no other way to guarantee that we would
generate a net that would find a solution at all. For example, we tested backpropagation
training on an individual randomly generated net for 200 different trials and in only 20%
of the cases did the net actually converge in under 50,000 iterations. Thus, the
comparison here is between training a population of, say, 100 nets with either the GA and
backprop or with just backprop. Each iteration, we sort the nets accordihg to their fitness
and stop if the best meets the stopping criteria (has good enough fitness.) Thus, although,
the algorithm has more overhead than just using regular backprop on one net, we need to
use it anyway since backprop with one net doesn’t necessarily find a soiution at all. This
is thus the price of having a general algorithm that can take arbitrary problem

descriptions.



Good Enough Results with XOR
GA and Backprop
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Figure 2: With both GA and Backprop, most trials converged in just a few iterations. The average
number of trials needed is thus a bit deceiving since there are a handful of outliers that skew the

result. These outliers are not to be overlooked, however, since they are evidence of the randomness
introduced by using a GA.

Good Enough Results with XOR
Backprop alone
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Percent of
trials

1 5 9 13 17 21 25 29 33
Number of iterations

Figure 3: With just Backprop, most trials took much longer than with using the GA and the average
is a good measure of performance given the simall standard deviation.

Another interesting set of data to look at is a plot of how fast the two algorithms
converged to their final answers on the Letter Classifier problem. In this case, the GA
éonverged to within 1% of its final solution in only 20 iterations, whereas with backprop
alone it took 200 iterations (Figure 4.) This shows that the GA is much more powerful in
achieving good results fast than the algorithm that uses backprop alone.

3.2 Getting Better Results
The basic ideas for how to test to see which algorithm could get better results was to test
on a simple problem with a low etror tolerance and on a harder problem. The results

again were conclusive in favor of the algorithm that used GAs in addition to backprop.



Convergence speeds of GA and Backprop
vs. Backprop alone on the Letter Classifier
problem '
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Figure 4: The convergence speeds of the two different algorithms on a difficult problem like the letter
classifier problem. Itis clear from the graph that the GA allows the algorithm not only to evolve nets
of better fitness, but also to do so in many fewer iterations.

The first test was on the XOR problem with a tolerance of .01 for fitness. The results in
Table 3 show that, while the algorithm using both GA and backprop is able to produce
nets at this very low error tolerance in relatively few iterations, the backprop algorithm is-
unable to achieve this good of a fitness value at all in 200 iterations (except for on one
occasion where it reached this fitness value on the 200% iteration.) Thus, the GA here
helps us to find better solutions than backprop alone is even capable of finding, while at
the same time doing it in relatively few iterations. This can be at least partly explained
due to the fact that backprop is susceptible to getting stuck in local minima whereas this
is not true for GAs as much due to the randomness of the genetic operators. The next test
was on the Letter Classifier problem and again displays the power of the GA in finding
better solutions. In this case, the algorithm using GAs and backprop was able to produce
nets that were on avérage of significantly better fitness than those produced by backprop
alone (Table 4.) This again shows the advantage of using GAs to help design neural nets,

even on more complex problems.

3.3  Unexpected Results
One interesting result that I did not predict from the beginning was that GAs would be
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GA and Backprop Backprop alone
iterations | Fitness | lterations | Fitness
verage 28.02 0.004 200 0.0160
tandard Deviation 11.28] 0.000 0 0.0027
ariance 127.14 2.53E-0 0 7.38E-06
in 1" 0.002 200 0.007.
ax 66} 0.005 200 0.026

Table 3: Perfect results for XOR (tolerance of .01 for fitness). The method that uses both GA and
Backprop outperforms Backprop alone by a huge amount when our goal is to produce nets with
better accuracy. The results here show that using the GA allowed the nets to be evolved to the
desired accuracy in a small number of iterations as compared to just using Backprop, which could
only evolve one net out of 100 that could produce answers to the desired accuracy,

GA and Backprop Backprop alone
lterations | Fitness | lterations | Fitness
verage 200 0. 200 0.47
tandard Deviation 0 0.1 0 0.11
ariance 0 0.01 o 0.012
in 200 0.2 200 . 0.26
ax 200 0.5 200 0.66)

Table 4: Results for Letter Classifier (tolerance of .1 for fitness). The method that uses both GA and
Backprop outperforms Backprop alone with significantly better average fitness when our goal is to
produce nets with better accuracy. The results here show that using the GA allowed the nets to be
evolved to the desired accuracy in a small number of iterations as compared to just using Backprop,
which could only evolve one net out of 100 that could produce answers to the desired accuracy.

hélp‘ful not only in allowing the algorithm to perform a global versus local search, but
that they would also be helpful in fine-tuning the results produced by backprop. This is
of course due to the ability of the mutation operator to “tweak” the weights towards better
and better fitnesses. Thus, the fact that the GA helped in both aspects is one explanation
for why it helped the overall algorithm so much. In the same vein, some testing showed
that using neurogenesis as a form of mutation did not help the overall algorithm at all.
This can be explained by the fact that the result of neurogenesis could be achieved by

* several mutations and thus it would not really be necessary or terribly hélpful in
achieving better nets. ,

Another interesting result came from testing nets produced by both algorithms on
perturbed inputs from the letter classifier problem. The fitness of these nets on the inputs
that had 10 or 20% of their bits flipped minus the original fitness was used as a measure
of how well the nets generalize to noisy inputs. After several tests, it turned out that the
nets produced by backprop alone had slightly better generalization ability when measured

in this way. However, the fitness of nets produced by the GA and backprop on these
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noisy inputs was still significantly better than the fitness of nets produced by backprop
alone. Thus, the nets produced by GAs and backprop are still better, even with this as a
metric.

The most interesting and unexpected result was that the crossover operator was
not helpful in producing better nets faster. As it turns out this is a well-documented
problem in the literature. In [4], the authors conclude that this may be the result of small
population size. This doesn’t seem to be the case here and it may be more as [1] suggests
which is that crossover only works when there are basic building blocks to cross over.
The location or even presence of these blocks with neural nets is unclear and thus fmding
a crossover operator that helps is extremely difficult. Recently, some have suggested the
use of more complex schemes for determining which parts of two nets to cross over and it
seems apparent from this study that this is worthwhile research. Another direction
suggested in [2] is using a variety of mutation operators instead of using crossover at all.
These operators change both connection weights and architectures and thus are an

interesting choice as opposed to using crossover.

4 Conclusions

The best conclusion to be drawn from this is that using genetic algorithms to add
a randomized, population-based approach to evolving and training neural nets is very
beneficial. When combined with backpropagation, we get a high quality algorithm for
evolving neural nets. This algorithm was shown here to evolve neural nets that produce
better answers in a shorter period of time than by using just the backprop algorithm alone:
The other main conclusion to take away from this work is that there are a huge number of
design choices and parameters to deal with and so it can be difficult and time consuming

to turn these ideas into a working implementation.
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Pattern Searching and Labeling Using Self Organized Maps

Dan Andrei Iancu
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract

We design a program that is capable of searching for certain small patterns embedded in a
very large search space. This could be done with a classical search algorithm, but with
enormous cost of computation. Neural Networks are very good at searching huge-sized
spaces. Out of the many paradigms available, we have chosen to implement an auxiliary
version of the Kohonen algorithm for self-organized maps. This choice has lead to an

efficiency of about 70% in searching and labeling.
Key words: Self Organized Map, Kohonen Algorithm, pattern, search space

1. INTRODUCTION

Searching for small entities embedded in a huge space has applications in fields such
as biology, genetics, and even astronomy. Decoding the DNA sequence of the human genome
involves a continuous search for recurring patterns; a true breakthrough in this field would
favorably impact diagnosis of Down’s Syndrome, kidney disease, prostate and colorectal
cancer, leukemia, hypertension, diabetes and atherosclerosis. ..

Such a search can help us understand how the human brain works. Discovering
“maps” of the human brain (i.e. the way information is represented and where different
stimuli are mapped in the brain) can inform the fields of Cognitive Science and Artificial
Intelligence.

The task is to seek a proper way of implementing a search algorithm with Neural
Networks, so as to avoid a computationally expensive classical search. We have adapted the

powerful Kohonen Algorithm for self-organized maps to this particular search problem.
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2. SELF ORGANIZED MAPS

The principle behind Self Organized Maps (SOM) is competitiveAleaming the output
neurons of the network compete among themselves in order to fire, with the result that only
one output neuron is on at a time.

In a SOM, the neurons are placed as the nodes of a latfice that is usually one- or two-
dimensional. The neurons become selectively tuned to various input patterns (stimuli) or
classes of input patterns in the course of a competitive learning process. The locations of the
neurons so tuned become structured with respect to each other in such a way that a
meaningful coordinate system for different input features is created over the lattice. [Haykin
1999] |

Therefore, a SOM is characterized by the formation of a topographic map of the input
patterns, in which special locations of the neurons in the lattice are indicative of intrinsic
statistical features contained in the input patterns.

There are several possible models of SOM. The Kohonen model emerged as the most

adequate and adaptable one for our applications. [Haykin 1999]

2.1 The Kohonen Model

Figure 1 Kohonen Self Organized feature map

As can be seen in Figure 1, the output neurons are arranged in a two-dimensional
lattice. This kind of topology specifies a set of neighbors for each neuron, with which it will
later compete.

Each neuron in the lattice is fully connected to all the source nodes in the input layer

(in the figure, only one node from the input layer is represented).
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3. THE KOHONEN ALGORITHM

The Kohonen algorithm is specified by the following five steps:

1) Initialization

Choose random values for the weight vectorsw (0). The only restriction is that
w(0) be different for j =1,2,...,/, where / is the number of neurons in the lattice.

2) Sampling
v Present the network with a sample vector x from the input space. The dimension of x
is equal to m (which is also the dimension of each of the weight vectors for the neurons in the
lattice).

3) Similarity matching

Find the best-matching (winning) neuron i(x) at time step »# by using the minimum-
distance Euclidean criterion (see figure 2):

i(x)= al’gmjin “x(n) —wj", j=12.1

4) Updating

Adjust the synaptic weight vectors of all the neurons according to the formula:

w (n+)=w (n)+nmh,,,, (n)[x(n) W, (n)]

where:

n

nn)=ne ™ is the learning-rate parameter

2
~d)

h o) =e¥'™ , n=012. 1is the neighborhood function centered

around the winning neuron i(x)

—n

ocn)=c,e™ , n=012.., is the width of the (topological
neighborhood function h, t,, t, are time constants

5) Continuation
Repeat starting with step 2 until no noticeable changes in the feature map are

observed

17



il
Figure 2 Plot of neuronal response, showing the winning neuron and its “neighborhood”
The Kohonen algorithm delivers a feature map, associating each input pattern with

the weight vector of the firing neuron corresponding to that pattern (see Figure 3).

® o0 0 0 0 0 0 0o
® ¢ 0 0 0 0 0 0 o
e 28 0 0 0 0 0 0

® ¢ 0o 0 0 0 0 0
® 060 00 0 0 0 o

Figure 3 The feature map (each weight vector in the lattice
is the image of an input vector)

a) The feature map represented by the set of synaptic weight vectors {w;}
provides a good approximation of the input space

b) It is topologically ordered (i.e. the spatial location of a neuron in the
lattice corresponds to a particular domain or feature of input patterns)

c) Feature selection — the SOM is able to select a set of best features for
approximating the underlying distribution of the inputs

We can sum up the algorithm as follows:
Represent the input space by the synaptic weight vectors w;, in such a way that the
map provides a faithful representation of the features that characterize the input vectors x in

terms of certain criteria.
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4. THE TASK

However, this algorithm does not match our search task a priori. We shall first
formulate the task and describe the shortcomings and how they can be overcome in order to
be able to implement the Kohonen algorithm.

The idea behind the program is to be able to search for small patterns embedded in
bigger entities. The inputs are — however — of different sizes. First, we must specify the
patterns that are to be searched — and those patterns are taken to be small matrices of 0’s and
1’s. Afterwards, we have to specify a search space, which is also a matrix of 0’s and 1°s, but
of greater dimension. To make things clear, we give a simple example:

Suppose we want to look for a pattern like a square in the search space in Figure 4:

1]1
11
1111110
Tttt 0|00 |1]l0
1ot {10 ]|1]l0
i{o|1[1]0]1]]0
1|{o|olo o]|1]lo
1|11 [1]1]1][o
ojo[oJolo[o]o

Figure 4 The square pattern and the search space

The pattern can obviously be found in the upper left corner and in the middle. But if
we look more carefully, we notice that these are not the only squares in the space — there is a
bigger square (of dimension 6). Therefore, we must match patterns the size of our given one,
but also what we call zoomed versions of the pattern.

This is the main obstacle in matching this problem to the Kohonen algorithm: the
inputs for the latter have to be of the same size (equal to the length of each weight vector in
the lattice).

Therefore, the main ldea in the program is the next one:

1)  Usinga form of heuristic, augment the input pattern space by scalmg all
small input patterns, and train the network with the augmented set
(Kohonen algorithm)

2) Using the trained net, input a new search space (big pattern), and find a

positive match to one of the small patterns
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To find out where the pattern was found, we must examine the weight vector of the
winning neuron — it contains the most relevant information about the findings. To perform
repetitive searching on the same space, we can eliminate the pattern just-found, and repeat the

whole procedure from the beginning. This may not be the best choice. (see Section 6). -

S. THE EXPERIMENT

We train the net to recognize three distinct, basic shapes — square, triangle, and
thombus. The three shapes have been provided in three distinct files (see figure 9 in
Appendix B). The heuristic part of the program transformed a particular pattern into a file
that was an adequate input for the training of the Kohonen SOM.*

There are four experiments. The first three involve a 10x10 search space, with a

10x10 1attice. The fourth experiment involves a 20x20 search space, with a 10x10 lattice.

Experiment # 1

The network has been trained to recognize all three patterns — squares, triangles and
rhombuses™. The parameters used in training are displayed in Table 1.

Parameters held constant:
Search Space = 10x10; Lattice = 10x10; Lowest weight = 0.0; Highest weight 1.0,
Learning rate (no) = 0.3; Initial neighborhood size (60) = 4; Shrink rate (1/t) = 0.2
Minimum to win = 0.0; Maximum for others =1.0 '

Number Types of tests performed and number of results right (R) or wéhg w)
of

training Pure square Pure triangle - Pure rhombus Custom
epochs | R | W% R| R [ W [%R]| R | W ]%R| R | W | %R
500 195 90 [684] 145 ] 140 | 508] 13 | 107 [108] 8 17 | 32
750 157 1 128 {550} 182 | 103 | 63.8] 35 | 85 |29.1| 4 21 16
1000 121 | 124 14931235 | 50 | 824} 3 117 | 2.5 9 16 36
1500 § 162 | 123 | 568} 205 | 80 {71.9] 40 | 80 13334f 10 | 15 | 40
2500 | 116 | 169 407|243 | 42 | 852 13 | 107 {108} 8 17 | 32
5000 1139 ] 146 |48.71 175|110 | 614} 61 | 59 {508 11 14 | 44
7500 112 { 173 {392]200| 8 |70.1] 68 | 52 {566}] 10 | 15 | 40
10000 |} 111 | 174 |389] 203 | 82 | 71.2] 66 54 55 11 14 44
20000 | 112 § 173 {392]203 | 82 | 712} 66 | 54 | 55 11 14 | 44
30000 | 112 | 173 {392]1203 | 82 | 712} 66 | 54 | 55 11 14 | 44

Table 1 —Results from Experiment 1

! For more information, refer to Appendix A — Technical Specification

% Refer to the final pages in Appendix B for the contents of the pattern files and of the files used in the custom
tests
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Interpretation:

We employed a 10x10 search space, and a 10x10 lattice of neurons. Each neuron in
the lattice has a weight vector the size of the input space, that is 10x10 = 100,

We trained the network to recognize all squares, triangles and rhombuses. After
doing that, we have run certain tests, and the results are displayed in Table 1.
The network was requested to detect the patterns in several types of search spaces:
files that contained only squares (column entitled “pure square™)
files that contained only triangles (column entitled “pure triangle”)
files that contained only rhombuses (column entitled “pure rhombus”)
custom files (contain none / one / two / three of the patterns)

We counted the correct/wrong answers in matching for different numbers of training
epochs (column 1 in Table 2). The number of correct answers is stored in the columns
labeled R, whereas the number of wrong guesses is in the W columns. The %R columns store
the percent of guesses. The results delivered by the net are plotted in Figure 5.
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Figure 5 — Plotted results from Experiment 1
As can be seen from Figure 5, the network “liked” triangles — the efficiency was quite

high, reaching 85% at about 2500 epochs, and saturating at about 70%. However, the
saturation efficiency of the network for the other cases was approximately 50%.
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Percent Correct

Experiment #2

Parameters held constant:
Search Space = 10x10; Lattice = 10x10; Lowest weight = 0.0; Highest weight 1.0;
Learning rate (o) = 0.2; Initial neighborhood size (6o) = 5; Shrink rate (1/1) = 0.2
Minimum to win = 0.0; Maximum for others =1.0

Number Types of tests performed and number of results right (R) or wrong (W)

training Pure square Pure triangle Pure rhombus Custom
epochs | R | W [%R| R | W[{%R| R [ W]%R| R | W | %R

of

300 179 1 106 | 62.8 | 154 | 131 [ 540] 29 | 91 {241} 7 18 | 28

750 136 | 149 14771225 | 60 |789] 14 | 106 | 11.6] 10 | 15 | 40

1000 ] 155 | 130 | 5431222 | 63 |778]| 14 | 106 {116] 7 18 | 28

1500 | 166 | 119 [ 582 184 | 101 {645] 42 | 78 | 35 9 16 | 36

2500 | 131 | 154 (4591217 | 68 17611 26 | 94 |216] 10 | 15 | 40

5000 | 128 | 157 14491202 | 83 | 708 47 | 73 |39.1] 11 14 | 44

7500 1116 | 169 [40.71 209 76 |733] 54 | 66 | 45 11 14 | 44

10000 | 127 | 158 4451205 ] 80 [719] 56 | 64 |46.6]| 11 14 | 44

20000 | 134 ) 151 147.0} 199 | 8 |698] 57 | 63 |475] 12 | 13 | 48

30000 | 134 | 151 {47.0]1 199 | 8 (698§ 57 | 63 [475]| 12 | 13 | 48

10

Table 2 - Results from Experiment 2
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Figure 6 — Plotted results from Experiment 2
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Experiment # 3

Parameters held constant:
Search Space = 10x10; Lattice = 10x10; Lowest weight = 0.0; Highest weight 1.0;

Learning rate (1)0) = 0.2; Initial neighborhood size (o) = 5; Shrink rate (1/7) = 0.1

Minimum to win = 0.0; Maximum for others= 1.0

Figure 7 — Plotted results from Experiment 3
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Number Types of tests performed and number of results right (R) or wrong (W)
of
training Pure square Pure triangle Pure rhombus Custom
epochs T R | W | %R| R | W |%R| R | W |%R| R | W | %R
500 150 | 135 15261 13511351670} 24 96 20 9 16 36
750 144 | 141 | 5051141 ] 141 | 70.8 | 50 70 | 416} 7 18 28
1000 106 | 79 {5721 79 79 182414 21 99 | 17.5 7 18 28
1500 163 | 122 | 57.1}1122 | 122 | 56.1] 44 76 1366} 17 18 28 |
2500 119 ] 166 | 41.71 166 | 166 | 81.0] 23 97 {19.1 8 17 32
5000 151 | 134 15291 134 | 134 | 652 59 61 |49.1 9 | 16 36
7500 120 | 165 | 421 ] 165 | 165 | 726 ]| 60 60 50 7 18 28
10000 | 125 | 160 {438 ] 160 | 160 | 70.1 ] 62 58 | 51.6 7 18 28
20000 f 129 | 156 | 452 ] 156 | 156 | 68.7] 60 60 50 8 17 32
30000 | 129 | 156 {452 ] 156 | 156 | 687} 60 60 50 8 17 32
Table 3 — Results from Experiment 3
%
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For experiment 3, we changed the learning rate to 0.1. The small initial learning rate
has had a negative influence on the performance of the SOM. The average efficiency of all
cases was 47.14%.

Experiment # 4

The final experiment involved a 20x20 search space.

Parameters held constant:
Search Space = 20x20; Lattice = 10x10; Lowest weight = 0.0; Highest weight 1.0;
Learning rate (1)) = 0.3; Initial neighborhood size (co) = 4; Shrink rate (1/7) =0.1
Minimum to win = 0.0; Maximum for others =1.0

Nun}ber Types of tests performed and number of results right (R) or wrong (W)
o
training
epochs Pure square Pure triangle Pure rhombus . Custom
R W I%R | R W | %R | R W | %R ] R W | %R
500 728 | 1742294 | 1895 | 575 | 76.7 ] 113 | 1027 | 9.9 8 17 | 32
1000 | 917 | 1553 137.1 11862 608 | 753 | 8 |1132)1 0.7 | 6 19 | 24
5000 {2184 | 286 | 88.4 | 381 {2089 154 ] 223 | 917 | 195 7 18 28
10000 1973 | 497 | 79.8 | 925 | 1545|374 | 36 | 1104} 3.1 7 18 28
20000 ] 1148 | 1322 | 46.4 | 1597 | 873 | 64.6 | 97 {1043 | 8.5 -6 19 24
30000 §1763 | 707 | 713 | 974 | 1496 | 394 | 359 | 781 | 314 | 4 21 16
40000 |1298 4 1172|525 {1713 | 757 | 693 | S3 | 1087 | 4.6 5 20 20
50000 | 1368 1102 ] 55.3 | 1435 1035 | 58.0 } 593 | 547 | 52.0 8 17 32
60000 | 725 | 17451293 {2174} 296 | 88.0 | 319 | 821 | 279 8 17 32
70000 | 1065 | 1405 | 43.1 | 1973 | 497 | 79.8 | 399 | 741 35 7 18 | 28
80000 | 753 | 17171304 12176 294 | 88.0 | 431 | 709 { 378} 6 19 | 24
90000 | 918 | 1552 | 37.1 2020 | 450 | 81.7 | 317 | 823 | 278 6 191 24
100000 | 1093 | 1377 | 44.2 1 1890 | 580 | 76.5 § 310 | 830 | 27.1 8 17 32
110000 | 1209 { 1261 | 489 | 1720 | 750 | 69.6 | 323 | 817 | 28.3 7 18 28
120000 | 1093 | 1377 | 442 | 1890 | 580 | 76.5 | 310 | 830 {2711 8 17 | 32
130000 | 1209 | 1261 | 48.9 | 1720 | 750 | 69.6 | 323 | 817 {283 | 7 18 | 28
140000 § 1222 | 1248 | 494 | 1716 | 754 | 694 | 327 | 813 | 286} 7 18 | 28
150000 | 1139 | 1331 | 46.1 | 1857 | 613 | 75.1 | 276 | 864 | 24.2 7 18 28
160000 | 1137 | 1333 | 46.0 | 1857 | 613 | 75.1 | 277 | 863 [ 242} 7 18 | 28
180000 | 1187 | 1283 | 48.0 1746 | 724 | 70.6 | 340 | 800 | 298 | 7 18 | 28
200000 | 1182 | 1288 | 47.8 | 1804 | 666 | 73.0 | 281 | 859 [ 246 | 7 18 | 28
220000 | 1183 | 1287 | 47.8 | 1802 | 668 | 729 | 281 | 859 246 | 7 18 | 28
240000 | 1183 | 1287 | 47.8 | 1804 | 666 | 73.0 | 282 | 858 | 24.7 7 18 28
260000 | 1183 | 1287 | 47.8 | 1804 | 666 | 73.0 | 282 | 858 | 24.7 | 7 18 | 28

Table 4 — Results from Experiment 4
This test turned out to be the most interesting and most computationally expensive. In
the end, the network’s average proficiency was of about 42.17% - the lowest of all the tests.
Below, we have included a plot of the data and some explanations for the very low efficiency.
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Figure 8 — Plotted results from Experiment 4

First of all, the search space was much larger, and hence the possibility of error was
also larger.

However — if we look at the data — we notice that the differences in performance for
the three shapes were radically different. In all other tests, the differences were of about 10 to
20% (with small deviations), with the network somewhat better at triangles than at rhombuses
or squares. The early stages of Experiment 4 provided the biggest difference so far — when
trained for 1000 cycles, the network managed to pass only 8 tests for rhombuses out of the
1140 total tests! That meant an efficiency of 0.701%! In fact, throughout all tests for
thombuses, the efficiency never surpassed 32%! There seems to be something else here that
the network is unable to learn. We deter this question to future study, using this SOM
approach.

It is now clear why despite the 65-85% efficiency in triangles, the average turned out
to be only 40%! The problem was with rhombuses! An explanation for this deviation is
provided in Section 6.
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6. CONCLUSIONS

General conclusions:

o The Kohonen algorithm is a very powerful tool for implementing a Self Organized
Map. It is remarkable how such an algorithm works — maps organize on their own,
without exogenous guidance. An interesting aspect of the Kohonen Algorithm is that it
can be considered a generalization of Hebb’s rule — a winning neuron also affects its
neighborhood, meaning that the neurons close to it have their synaptic strengths
enhanced

e The network tends to reduce differences between efficiency in matching different
patterns. If a pattern was found very easily in the beginning, more training leads to
lower efficiencies. Similarly, a hard-to-find pattern gets easier to find, as the training
proceeds. A key conclusion is that if we are satisfied with the efficiency for a certain
pattern in the early stages, we should stop the training, because the matching efficiency
tends to drop.

e More training meant more computational cost. But once the training was complete, the
SOM was able to identify patterns very quickly.

e Changing the parameters for the net did not seem to have a significant influence on the
final outcome. The overall differences in efficiency did not vary by more than 10%.
However, it has become clearer that starting with too small a learning rate is not
favorable for the final outcome (compare experiments 1 and 2).

e The network has behaved better when it had to recognize patterns in “pure”

’ environments (meaning only one type of patterns in the environment).
Specific conclusions:

e The lattice handles some shapes more easily than others. In all tests, there has been a
clear preference for the triangle, which can be explained in many ways. As we have
already noted, an SOM has the ability to retain certain “features” or “characteristics” of
the input space. So to get some answers, we should also examine the topology of our
patterns. One of the things that a square and a rhombus share in common (but our
triangle lacks) is point symmetry. Hence, it is possible that the net has a propensity for
lack of symmetry, disorder. However, this is only a speculation, based on a rather
limited test case. It merits further consideration, perhaps by extending the use of the
program to detect other different patterns (some symmetrical, some not).

e Perhaps another explanation involves the choice of the initial patterns. The square and
the triangle were both 2 by 2 matrices (as patterns).®> Therefore, in all the tests for
squares, the network could have found a small triangle (in the upper right corner of the
square!). This is why in many cases good squares could have been confused with
triangles!*

e Although this might go against common belief, some test cases have demonstrated that
“more teaching does not necessarily lead to better learning”. Especially when learning
to distinguish squares, the network initially exhibits a high efficiency (in some tests,

~ even 90%!). However — almost paradoxically — as the training proceeds, the efficiency
decreases (in some cases quite drastically. It could be that a forgetting factor is needed,
to correct this problem.

3 Refer to the last page of Appendix B — Data to see the initial patterns
“ This is yet another indicator of just how good the SOM is (detecting squares despite this confusion)
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7. FUTURE WORK

The first and most important change is the replacement of the initial patterns. As
pointed out in Section 6, any valid square (at any point in the experiment) could have been
interpreted as a valid small triangle (the upper right corner). This can be easily
accommodated, by placing as initial patterns 3 by 3 matrices (instead of 2 by 2) and simply
ignoring all the 2 by 2 patterns.

If this is not satisfactory, we can simply train the net to recognize the patterns
separately, and then search the same space twice (obviously, a more costly one also).

Appendix B contains a list of all the different parameters that can be individually set in
the experiments. We have narrowed our study to variations with the number of epochs, and
influences of certain parameters. We can imagine experiments in which we can study the
variation related to the learning rate, or to the size of the initial neighborhood (with much
larger test cases than the ones used here).

In addition to modifying the given parameters, we could insert a forgetting factor; by
doing so, we might obtain better final results in the cases in which training decreases
efficiency (as with triangles).

There is another change we could make — in the script file (scripf), which counts the
erroneous identifications by the network. In some cases, the network does not find any match,
and is simply “undecided”. According to the current script, this is taken to be a mistake as
significant as detecting the wrong pattern. However, we could adjust the “label-counting”
into 3 categories: wrong decisions, right decisions and undecided (as do, in fact, most polls).
We could also redesign the heuristics part of the algorithm, which might lead to better overall
results.
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Abstract _
Identification of genetic markers is important in increasing the accuracy of tumor classification
that separates a population of patients into two or more diagnostic groups. Here we report on the
successful application of feature selection method to a classification problem in biomedical
science involving colon tumor DNA microarray data with only 62 data points in a 2000
dimensional space. Our approach is a distinct two-step feature selection approach. This approach
incorporated the random forest method as the first step to reduce the high dimensional space of
2000 genes to less than 100 genes, and a genetic algorithm with different fitness functions such
as decision tree and support vector machine to find a core subset of genes as the second step.
-Based on the above dataset, 3 to 5 features obtained in this combined method were good enough
to achieve high colon tumor classification accuracy by using a multilayer feed forward neural net
as the classifier. This small feature subset is thus called core feature subset, which might be

regarded as the basic set of genetic markers effective for discrimination between colon cancer

- and normal tissue.

Keywords — genetic algorithms, tumor classification, feature selection, neural network
1. INTRODUCTION

Among the most powerful and versatile tools for functional genomic studies are high-density
DNA microarrays. One of the most important applications of such a microarray is tumor

classification [1], which distinguishes morphologically similar human cancers by the differences
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between their expression profiles. The main advantage of microarray data is that it allows
biologists to simultaneously monitor the expression of thousands of genes. However, a large
number of genes increases the dimensionality, computational complexity and cost of data
analysis, and introduces some undesired noise [2]. In the clinical setting of testing or
implementing a set of prognostic markers, it would not be feasible to accurately measure and
standardize measurement of an entire set in large numbers of patients [3]. So, the goal of this
project is to identify an effective subset of markers from a large pool of potential markers. The
selected subset will provide an optimal separation of a population of patients into two or more
classes. Feature selection is a process of selecting an optimal subset of features from a possibly
enormous set of potentially useful features, for use in classifiers. Using a smaller number of
features may in fact improve accuracy in some contexts. A small feature set should generalize
better beyond the whole data set, and may reflect the actual dominance of some key genes in
cancer development, which may be potential drug targets.

Based on a genetic algorithm (GA) guided search (genetic search), we investigated and
optimized several parameters (especially the fitness function, also called the evaluation function)
of the GA for finding a core subset of genes (attributes or features) from DNA microarray data.
We employ different types of evaluation functions. These functions include not only the popular
evaluation function arising in the probabilistic approach[4], or the correlation approach (based on
information gain, information gain ratio or chi squared test)[5], but also more sophisticated,
advanced machine learning schemes, such as a neural network, a decision tree and a support
vector machine[6-7]. Finally, the cancer classification performance of the selected features is
assessed by a multilayer neural network as a classifier. We found that a set as small as 4 or 5
selected genes can achieve a higher cancer classification accuracy than the original 2000 genes,

and therefore can be regarded as genetic markers of cancer tissues.
2. PROCEDURE

2.1. Data Set and Software Package

The data with expression profiles of 2,000 genes in 22 normal and 40 colon tumor cell lines is

retrieved from the website www.sph.uth.tmc.edu/hgc.

The software we are exploring is the weka machine learning package:

www.cs.waikato.ac.nz/weka
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2.2, Microarray Data Representﬁtion

Suppose we have a DNA microarray dataset with n instances (n = ny + nr, where ny is the number
of normal samples and nr is the number of tumor samples. Each sample (also called instance)
consists of m genes (features) with a certain expression value (or activity). Thus for tissue

sample 7, we have the vector Y; = [Yi1, Yo, ...... , Yim]". The Y;’s for normal (N) and tumor (T)
samples constitute the following data matrix,

YN=[YNL YN2, ovs YNy ] 0m x 1)

Yo=Yz, Y2, oooos Yo, I  mx )
The total dataset is the matrix Y = [Yy Y]

Then our goal is to select a small subset of k features (genes) from m features (k <<m) achlevmg

high tumor classification accuracy.

2.3. Two-Steps Feature Selection
We propose to apply a genetic algorithm that uses crossover and mutation to find the subset of
features. However, it is not very helpful to use a genetic algorithm from ab initio, because the
initial dataset contains a large number of features. We propose a two-step feature selection
method. The algorithm operates as follows:
TwoStepsFS(dataset data, FSRmethod fsr, evaluator eval )

1. FeatureSpaceReduction(data, fsr) |

2. GeneticSearchForRefinement (data from 1, eval)

- 3. PerformanceEvaluation.

Principal Component Analysis (PCA) is probably the most popular method for feature space
reduction. However, because PCA is an unsupervised learning technique, some researchers
found that PCA does not take into account the class labels of the training set from microarray
data, it is not reliable and does not generalize well [8]. Therefore, we employ the random forests
as feature space reduction method. The algorithm is:
Random_forest(dataset data, evaluator decisionTreeAlgorithm)
Repeat n times:

Resampling the total instances from the data set with replacement

reorder the columns(features) randomly
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Build a decision tree
Check the classification accuracy of the decision tree

Create new data set with only the features collected from above trees

The schema of this method is shown as follows:

Initial y| Resample | Decision Tree > G » GO=GGE-1)UG
Data Set Si Process
T Iterate ntimes,1=1,2, ...,n
Here G(0) =0Q.

After performing the function FeatureSpaceDeduction, we apply the genetic algorithm to further

refine the selected features. The simple genetic algorithm is as follows: '

initialize population;

evaluate population;

while TerminationCriteriaNotSatisfied {
select parents for reproduction;
perform recombination and mutation;
evaluate population;

}

Genetic algorithms have been used in many problem domains. The detailed steps in our approach

are elaborated in Appendix D. There are many parameters to be explored for the particular

problem domain at hand. We are interested in using the parameters in feature selection. The
parameters include:

1. fitness function (evaluation function: using probabilistic approach such as Consistency
Attribute Subset Evaluation(CSE)[4], or Correlation-based Feature Subset Selection such as
CFSJ5], or popular supervised machine schemes such as decision tree(Can be traced back to
the information based evaluation), naive Bayes, SVM and neural networks[6-7].

2. number of generations

3. probability of crossover and mutation
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2.4, Evaluation of the selected features performance for classification
We created a feed forward multilayer neural net that used back-propagation learning algorithm
[6] for performing classification based on the selected features. A commonly used statistical

approach, 10-fold cross-validation [7] is used to evaluate the classification accuracy.
3. EXPERIMENT

3.1. Feature space reduction _
After performing the random forest algorithm for feature space reduction, 20 out of 2000

features were returned (see Table 1). These attributes were collected from about twenty trees.

Gene No.| 11 201 249 251 377 491 493 1513 576 682
Gene ID | T72863 | Z24727 | M63391| U37012{ 250753 | H4411 | R87126 | M22382] D14812 T51849
Gene No.| 765 780 783 964 980 1042 1153 1423 1473 1671
Gene ID | M76378 | H40095 | R01755| T86473 | U06698 | R36977| R84411 | 702854 | R54097 | M26383

Table 1. Features returned from the first step of feature reduction using the gene expression
profile of 2,000 genes in 22 normal and 40 colon tumor cell lines. The data set is retrieved from

the websvite www.sph.uth.tmc.eduw/hec.

3.2. Using different evaluation functions in the genetic algorithm

We tried different evaluation functions. A neural net (multilayer peceptron) is too computational
intensive to be chosen as the evaluation function. For the small dataset with only 20 features
(genes), genetic search employing 5000 generations with a neural net as the evaluation function
had no indication to terminate after 24 hours. Even a small number of generations require hours
to complete. Therefore, it is not feasible or practical to use this sophisticated computation model
as the evaluation function. However, we shall use it as performance evaluator to assess the
selected features, and also apply it to classify the tumor tissues based on the selected features. As
shown in figure 1, for the CFS and CSE as the evaluation functions, the feature selection
process employing 5000 generations terminates within 1 minute, while the process with a
decision tree or SVM as evaluation function takes hours to complete. Interestingly, the

classification accuracy doesn’t increase with the number of generations for all the evaluation
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Fig.1. Time complexity with using different evaluation functions in genetic search

functions; instead, we found that all the evaluation functions converge very quickly and achieve
the highest'classiﬁcati'on accuracy when the generation number is 20. More importantly, we
found the decision tree achieves an accuracy of 87.1% with 4 selected genes (682, 765, 964,
1671) and SVM achieves a highest accuracy of 88.7% with 5 selected genes (377, 576, 682, 765,
| 1423). Therefore, we can conclude that the GA performs very well since it selects a small subset

of genes and achieves high classification accuracy successfully. (Appendix A)

3.3. Different evaluation functions with different crossover and mutation rates

We fix the number of generations at 20. The probability of crossover ranges from 0.1 to 0.9 with
a mutation probability of 0.06. (Fig.2 and Appendix B) In this experiment, high classification
accuracy can be achieved when the crossover rate is as low as 0.1 with CFS selected as the
evaluation function, and if CSE or decision tree is selected as the evaluation function, the highest
accuracy is obtained when the crossover rate is 0.2 although the accuracy fluctuate when the
crossover rate is higher than 0.3. Therefore, we conclude that in our approach the genetic

- algorithm tends to perform better at low rather than at high crossover rate.
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We fix the number of generations at 20. The mutation rate ranges from 0.02 to 0.18 with a
crossover probability of 0.6. (Fig.3 and Appendix C). In this experiment, we can clearly observe
that genetic algorithm performs best when the mutation rate is less than 0.05 if decision tree is
selected as evaluation function. If CFS or CSE is selected as the evaluation function, although
we couldn’t discern a clear correlation between the classification accuracy and the probability of

mutation, the highest accuracy is achieved at a mutation rate of 0.04 and 0.02, respectively.
4. CONCLUSION

Genetic algorithms are heuristic search algorithms that use a population of possible problem
solution methods and a performance criterion to evaluate those solution methods, to search for a
global optimum solution method. The advantage of GA is it can achieve parallelism and avoid
local eptimization. Here, the genetic algorithm is applied with several different evaluation
functions to perform gene selection. Applying this approach on expression data from 2000 genes
in 22 normal and 40 colon cancer samples, we found that 4 or 5 genes are enough to classify
colon tissue samples with decision tree or SVM selected as the evaluation function, and we can
achieve 89% classification accuracy. With the increase of the number of genes in the set, the
classification accuracy does not increase. It is likely that the information obtained in a large
number of genes can be captured by a small subset without significant loss of information.
Among the selected genes, gene 1671(M26383) that encodes protein IL-8 was found
constitutively over expressed by some human tumor lines [9]. Therefore, the results are
appealing and may have profound implication for clinical applications to maximize the

therapeutic efficacy and minimize toxicity.
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Appendix A. Time complexity and classification accuracy with different evaluation functions

Evolution Function Cfs Consistency |Decision Tree SVM
SubsetEval
Time 1 sec 1 sec 1 min 54 min
10 Features Selected 10 genes 4 genes 4 genes 6 genes
Generations (249,377, 493, | (201, 576, | (201, 682, | (377,491, 576,
576, 682,765, | 682,1671) | 1423,1671) 682, 765, 1423)
780, 1042,
1153, 1671)
Classification Accuracy | 85.5% 80.7% 80.5% 87.1%
Time 1 sec 1 sec 2 min 105 min
20 | Features Selected 12 genes 5 genes 4 genes 5 genes
Generations (249, 377, 493, | (201,249, | (682,765, (377, 576, 682,
576, 682, 765, | 513,576, |964,1671) 765, 1423)
780, 1042, 682)
1153, 1423,
1473, 1671)
Classification Accuracy | 87.1% 80.6% 87.1% 88.7%
Time 1 sec 2 sec 4 min 214 min
50 Features Selected 10 genes 5 genes 3 genes 5 genes
Generations | (249, 377, 576, | (201,249, | (682, 765, (377,576, 682, -
682, 765,780, | 513,576, |1671) 765, 1423)
1042, 1153, 682)
1423, 1671)
Classification Accuracy | 87.1% 80.6% 85.5% 88.7%
Time 1 sec 2 sec | 9 min 331 min

100

Generations
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Features Selected 10 genes 5 genes 3 genes 5 genes
(249, 377, 576, (201,249, | (682, 765, (377, 576, 682,
682, 765, 780, | 513,576, |1671) 765, 1423)
1042, 1153, 682)
1423, 1671)
Classification Accuracy | 87.1% 80.6% 85.5% 88.7%
Time 1 sec 4 sec 19 min 483 min
200 Features Selected 8 genes 4 genes 3 genes 5 genes
. Generations (3717, 576, 682, | (201, 576, | (682, 765, (377,576, 682,
765, 1042, 682, 1671) | 1671) 765, 1423)
1153, 1423, |
1671)
Classification Accuracy | 82.3% 79.0% 85.5% 88.7%
Time 2 sec 7 sec 163 min 652 min
500 Features Selected 8 genes 4 genes 3 genes 5 genes
Generations (377,576, 682, | (201, 576, | (682,765, (377, 576, 682,
765, 1042, 682, 1671) | 1671) 765, 1423)
1153, 1423,
1671)
| Classification Accuracy | 82.3% 79.0% 85.5% 88.7%
Time 3 sec 7 sec 306 min
1000 Features Selected 8 genes 4 genes 3 genes
Generations (377,576, 682, (20>1, 576, | (682,765,
765, 1042, 682, 1671) | 1671)
1153, 1423,
1671)
Classification Accuracy | 82.3% 79.0% 85.5%
Time 4 sec 23 sec
2000
Generations
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Features Selected 8 genes T4 genes
(377, 576, 682, | (201, 576,
765, 1042, 682, 1671)
1153, 1423,
1671)
Classification Accuracy | 82.3% 79.0%
Time 8 sec 49 sec
5000 Features Selected 8 genes 4 genes
Generations | (377, 576, 682, | (201, 576,
765, 1042, 682, 1671)
1153, 1423,
1671)
Classification Accuracy | 82.3% 79.0%

Appendix B. The effect of crossover rate on selected features and classification accuracy

(20 generations, mutation rate = 0.06)

Evolution Function Cfs Consistency SubsetEval | Decision Tree
Features Selected 10 genes 4 genes 4 genes
0.1 (249, 377, 576, 682, | (576, 682, 765, 1671) | (682, 765, 1042,
765, 780, 1042, 1671)
1153, 1423, 1671)
Classification Accuracy | 87.1% 87.1% 87.1%
Features Selected 8 genes 5 genes 5 genes
0.2 (377,576, 682, 765, | (513, 576, 682, 765, (249, 251,377,
1042, 1153, 1423, | 1423) 576, 765)
1671)
Classification Accuracy | 82.3% 90.3% 90.4%
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Features Selected 8 genes 5 genes 7 genes
03 (377, 576, 682, 765, | (513, 576, 682, 765, (201, 491, 493,
1042, 1153, 1423, | 1423) 682, 980, 1153,
1671) 1671)
Classification Accuracy | 82.3% 90.3% 85.5%
Features Selected 10 genes 4 genes 6 genes
(249,371, 513, 576, | (201, 576, 682, 1671) | (251,491, 576,
04 682, 765, 1042, 682, 765, 1153)
1153, 1423, 1671)
Classification Accuracy | 85.5% 79.0% 87.1%
Features Selected 8 genes 5 genes 8 genes
0.5 (377, 576, 682, 765, | (201, 249, 576, 682, (251, 491, 493,
1042, 1153, 1423, | 1671) 682, 780, 980,
1671) 1157, 1671)
Classification Accuracy | 82.3% 85.5% 83.9%
Features Selected 10 genes 5 genes 4 genes
0.6 | ' (249, 377, 576, 682, | (201, 249, 513, 576, (682, 765, 964,
765, 780, 1042, 682) 1671)
1153, 1423, 1671)
Classification Accuracy | 87.1% 80.6% 87.1%
Features Selected 11 genes 5 genes 6 genes
0.7 (249, 377, 576, 682, | (576, 682, 765, 780, (201, 491, 493,
765, 780, 1042, 1423) 682, 980, 1671)
1153, 1423, 1473,
1671)
Classification Accuracy | 87.1% 85.5% 83.9%
Features Selected 8 genes 5 genes 7 genes
0.8 (377, 576, 682, 765, | (201, 576, 682, 765, (201, 491, 493,
1042, 1153, 1423, | 780) 513, 682, 980,
1671) 1671)
Classification Accuracy | 82.3% 83.9% 82.3%
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0.9

Features Selected 8 genes 5 genes 7 genes
(377, 576, 682, 765, | (249, 493, 576, 682, (201, 491, 493,
1042, 1153, 1423, | 1153) 682, 780, 980,
1671) 1671)
Classification Accuracy | 82.3% 83.9% 85.5%

Appendix C. The effect of mutation rate on selected features and classification accuracy

(20 generations, crossover rate = 0.6)

Evolution Function Cfs Consistency Decision Tree
SubsetEval
Features Selected 10 genes , S5 genes 5 genes
0.02 (249, 371, 576, 682, | (201,377, 576, 682, | (249, 377, 576, 76*
765, 964, 1042, 765) 780)
1153, 1423, 1671)
Classification Accuracy { 83.9% 88.7% 87.1%
Features Selected 11 genes 6 genes 6 genes
0.04 (249, 377, 493, 576, | (201, 251, 493, 576, | (249, 377, 513, 57¢
682, 765, 1042, 682, 765) 765, 783)
1153, 1423, 1473,
| 1671)
Classification Accuracy | 88.7% 83.9% 87.1%
Féatures Selected 12 genes 5 genes 4 genes
0.06 (249, 377, 493, 576, | (201, 249, 513, 576, | (682, 765, 964,
682, 765, 780, 682) 1671)
1042, 1153, 1423,
1473, 1671)
Classification Accuracy | 87.1% 80.6% 87.1%
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Features Selected 14 genes 5 genes 6 genes
(201, 249, 377, 493, | (249, 513, 576, 682, (201, 251,493, 682
0.08 513, 576, 682, 765, | 765) 980, 1671)
780, 1042, 1153,
1423, 1473, 1671)
Classification Accuracy | 82.3% 83.9% 79.0%
Features Selected 10 genes 5 genes 6 genes
0.10 (249, 377, 513, 576, | (201, 513, 576, 682, (249, 377,491, 57¢
682, 765, 1042, 765) 765, 783)
1153, 1423, 1671)
| Classification Accuracy | 82.3% 85.5% 88.7%
Features Selected 9 genes 6 genes 9 genes
0.12 (249,377, 576, 682, | (201, 249, 576, 682,- (201, 251,377, 491
765, 1042, 1153, 780, 980) 493, 682, 964, 980
1423, 1671) 1671)
Classification Acouracy | 83.9% 82.3% 82.3%
TF eatures Selected 12 genes 5 genes 5 genes
014 | (201,249, 377,493, | (201, 576, 682, 765, | (249, 682, 1042,
576, 682, 765, 780, | 980) 1423, 1671)
1042, 1153, 1423,
1671)
Classification Accuracy | 83.9% 82.3% 87.1%
Features Selected 10 genes 5 genés 5 genes
0.16 (249, 377, 493, 576, | (201, 576, 682, 765,

682, 765, 1042,
1153, 1423, 1671)

964)

(251, 513, 682, 76*
1671)

Classification Accuracy

85.5%

85.5%

85.5%
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Features Selected 12 genes 7 genes 7 genes .
(201, 249, 377, 576, | (201, 251, 576, 682, .| (251, 491, 513, 08:

682, 765, 780, 765, 783, 1 153) 765, 980, 1671)
0.18 1042, 1153, 1423,
1473, 1671)
Classification Accuracy | 85.5% 83.9% 83.9%

Appendix D.

The detail steps in our approach.

1.
2.
3.

Define a genetic representation of the problem

Create an initial population P={g;, ..., gn}

evaluate the fitness, F(Xj) for each of the individuals in the population with an evaluation
function such as a decision tree

Compute the average fitness for the population, Fyy,

5. Assign each individual the normalized fitness F(g;)/ Favg,

7.
8.
9.

Assign each individual g; a probability p; proportional to its normalized fitness. Using this
distribution, select N vectors from P to construct a subset S.

Pair all of the vectors in S at random forming N/2 pairs as parents.

Apply crossover with probability perss to each pair in S

Apply mutation with probability pmutation t0 SOme pairs in S

10. Check termination conditions. Terminate if solution achieved.

11. Otherwise, goto Step 3.
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Using Neural Networks to Implement Selective Search

. Tomislav Nad
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract

Since the beginning of AT research, most game-playing computer programs have been
using full-width search to probe all possible moves ilp to some maximum depth. In doing
50, they also search a huge number of unpromising moves. Humans use a more ‘
sophisticated search strategy. They use selective-search to probe only a small number of
promising moves, while pruning all uninteresting moves. Althougﬁ humans cannot come
“ even close to the number of moves searched by the computer, this selective-search
stfategy allows us to search to greater depths than most computers. We attempt to use an
artificial neural network to i'mplenient selective-search for the game of 3-dimensional
-Tic-Tac-Toe. Our results make a'strong case that in the future of computer game playing,

- selective-search strategies will surpass performance of full-width search.

Keywords - neural networks, temporal difference learning, TD(lamba), selective search,
tic-tac-toe, beam search

1. INTRODUCTION

In his original paper on comﬁuter chess, Claude Shannon described two possible
strategies for searching for the best move — full-width search and selective search (quoted
| in Tesauro, 1995). Most computer programs use a full-width approach to game playing,
in which all possibilities up to a fixed depth are searched — this is also called Shannon-A
strategy. In selective search — also called Shannon-B strategy — most of the possibilities
are pruned and only promising ones are considered. This allows searching to much |
greater depths. Shannon thought that this approach is more efficacious because it mimics
human behavior. Howe-ver, it is extremely hard to decide which nodes in a search tree to
prune and which to search - an apparently bad move might actually be a brilliant sacrifice
that leads to a win later in the game.
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Key to selective-search is designing a function that specifies what to search and
what to prune (we will call this the selector function). We address this problem by using
a neural network that will learn the selector function. '

Notice that since we only want to search moves that will lead to a win for us,
deciding which moves to search is same as projecting which moves will lead to a win.

- Therefore, an evaluation function, which evaluates how good some move is, can also be
used as the selector function. Much work has been done on training neural networks as
évaluation functions (Scott, 2002). We will use Temporal Diﬂ‘efence learning to train our
neural network. '

‘We use three-dimensional 4x4x4 Tic-Tac-Toe (TTT) to test our method of
searching. TTT is a good candidate for this, because it is straightforward to program an
opponent that uses a classic full-width search, and because 4x4x4 TTT is complicated
enough (average branching factor of 32) to engender interesting results.

2. NETWORK

2.1 Temporal Difference Learning

When using reinforcement learning, the learning agent observes an input state,
produces an output signal, and then receives a reinforcement feedback signal from the
environment. The goal of learning is to generate actions that will lead to a maximal
reward. However, when playing games, the reward is delayed and given at the end of a
long sequence of actions. Thus the agent that uses reinforcement learning to learn how to
.play games must solve a “temporal credit assignment” problem (Tesauro, 1995). In other
words, it must determine how to partition the reward among each of the movés made by a
player. Methods for solving the temporal credit assignment problem are known as
“Temporal Difference” learning methods, and the basic idea behind these methods is that
léarning is based on the difference betweén»temporally successive predictions (chance of
winning). The goal of Temporal Difference learning is to make the learner’s prediction at
~ the current time step match his predictioﬁ at the next time step. In the neural network
domain, prediction at each time step is represented by the output of the network at that
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time step. Therefore our goal is to train the neural network so that its current output
would match its output at the next time step.

TD(lambdla) is a temporal difference algorithm for training a multilayer neural
network (MNN). The formula for weight change in a MNN using TD(lambda) is:

AW = me _W t+l Y)Z’?'t—kv Y
. . k=1

(Tesauro, 1995) where 1 is a small constant (commonly known as the “learning rate”), W
is a vector of synaptic weights, Y, is the output of the network at time stepz,and V 7, is

gradient of the network output with respect to the weights. Output of the network Yiisa
measure of probability that the current board position will lead to a win. The quantity X is
a discount factor controlling how an error detected at the given time step feeds back to
the previous estimates. When A = 0, no feedback occurs, and when A = 1, errors feed back
without discounting, arbitrarily far in time (but not beyond the start of the current game)
(Tesauro, 1995).

' At end of each game, the same equation is used except that (Y1 - Yy is replaced
thh (0-Yy), where O i is expected output of the network. In case of win, 0=0. 9, in case of
loss, 0=0.1, and in case of draw, 0=0.5.

As can be seen from the equation, TD(lambda) calculates the measure of error at
each time step (namely, Yi.1 - Yy), and this quantity drives the learning (the changing of
the synaptic weights).

It is known that changing the learning rate during training can speed up the
training, so we modified the TD(lambda) equation by including a momentum term”
‘(Haykin, 1999, p. 170):

AW, = eV, 4T, ~E)Y A, 3,
k=1

where @ is the momentum constant and AW, is weight change at the previous time step.

When AW has the same algebralc sign on consecutive iterations, momentum causes the
acceleration of descent (Tesauro, 1995, p. 170), and when AW has opposite algebraic

signs on consecutive iterations, momentum causes a “stabilizing effect” (Tesauro, 1995,
p. 171).
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22 Network Design
We experimented with several network designs, using Java to implement our
‘networks. Our first network design had 192 input nodes. 64 inputs for representing
friendly pieces on the board, 64 inputs for opponent pieces, and 64 inputs for empty
spaces on the board. The choice to represent the TTT board with 192 binary inputs rather
than with 64 level inputs was based on the suggestion in (Skapura, 1996, p. 73)". We used
three different networks, with 50, 150, or 300 neurons in a hidden layer. There was one
output neuron. The output of the network indicated an assessment of the current position
for the player. Unfortunately, even after 1,000,000 training epochs, our networks failed to
reach a satisfactory level of play. We believe this was due to the high complé)dty of
4x4x4 Tic-Tac-Toe, and that this could be solved with an addition of a second hidden
layer or with larger hidden layers. However, this new network would require even more
time to.converge, so we decided to use a hybrid approach. B
Our second network design had 200 inputs,.40 neurons in the hidden layer, and

one output neuron. In this network, the 192 inpuf neurons were the same as in the first
network, but we added 8 hard-coded features. The first 4 features represented the number
of lines in the TTT board filled with 1, 2, 3, and 4 friendly piebes, and the othef 4 features
represented number of lines filled with 1, 2, 3, and 4 enemy pieces. Those 8 features
come from the heuristic that a human player focuses on these lines as he decides his
move. We experimented with different sizes for the hidden layer, and decided on 40

hidden neurons. There was one output neuron, as in the first design.

2.3 Measuring performance
We used the win/loss ratio to measure the performance of each search method and
network. We feel that the number of wins is by far the most important measure of

performance, so we avoided more complicated measures such as the number of moves to

reach the end of the game.

* Skapura claims that a significant benefit of this representation is that it insists that different input vectors
are orthogonal to each other, He further claims that this is a benefit for neural networks that must 48
discriminate between similar patterns because orthogonal vectors are easily detected by the network.



2.4 Training

We trained the neural network using TD(lambda) learning with a momentum
term, and with the following parameters: a=0.5, n=0.015, A=0.7. Parameters o and 1 were
chosen arbitrarily, and A was set high enough to facilitate sufficient feed-back of error.

We programmed an AT opponent that used classical depth-first search and a hard-
coded evaluation function. During training, the network played against this Al opponent.
The strength of this opponent was gradually increased during the training, .

At the beginning of each training game, up to 5 moves were randomly placed on
the board in order to avoid the same starting posifcion all the time. The latter circumstance
would cause both the neural network and its hard-coded AT opponent to always select the
same sequence of moves. This randomization led to 8,303,632 possible starting positions.
To prevent the NN from gettihg trapped in the local minima, we added a 10% chance that
the NN will select a random move at each time step. The purpose of these random moves
was to give the network a chance to explore a sequence of moves that it would otherwise
- .ignore, and in particular, to give it a chance to jump out of a local minimum’s basin of
attraction.

Training lasted for 900,000 epochs (games), upon which the network’s weights
converged. At the end of the training, we measured the network’s performahce by letting
it play 1,000 games against the hard-coded Al opponent. The strength of the hard-coded.
Al opponent was set to the maximum. The network’s win/loss ratio againist this opponent
was 1.17 demonstrating that our.network learned to play better than the hard-coded AI

we created.

3. EXPERIMENT

3.1 Hypothesis .
Our hypothesis is that given a good evaluation (selector) function, it is possible to
reach a better level of play using selective-search than using a full-width search. A good

evaluation function is crucial, because otherwise we will prune moves that lead to a win.
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3.2 First experiment :
In the first experiment we implemented selective-search by setting an artificial
- maximum branching factor (number of states each state can be expanded to) at each node
of the search tree. If the number of a node’s children was greater than artificially set
maximum branching factor, all children were evaluated using the evaluation function,
and children with the lowest value were pruned. This lowered the branching factor of the
entire search tree, and allowed us to search to a greater depth.
We ran measurements with the maximum branching factor set to $, 10, and 20.
We wanted to see how the performance of evaluation function effects overall results, so
we ran measurements on our neural network in three different stages of training — after
100,000 epochs, after 300,000 epochs, and after 900,000 epochs. At each test run, two
identical neural networks played against each other; however, one NN used selective-
search and other used ﬁJll-width'search. Each player had a maximum of 10 seconds to
.choose a move. The length of time constraint was chosen arbitrarily. During this time
both players searched until they run out of time; and-because of lower branching factor of
selective-search, it was able to search deeper than full-width search.

Flgure 1: Performance of selectlve search against full-wldth search

-
o

Win/loss ratio of selective-search against full
width search

. ——

5 0 ’ 2
Branching factor of selective-search

l—o— NN after 100,00 epochs -&- NN after 300,000 epochs -4~ NN after 900,000 epochs]

As can be seen from Figure 1, a branching factor of 10 was the best choice.
Surprisingly, as the network progressed in training, the utility of using a selective-search

instead of a full-width search shrunk. We believe this is the case because the evaluation 50



function the network represented before it was fully trained had such a low fitness that
even a full-width search failed to find the winning move.

- Performance of the fully trained network (approximately 900,000 training epochs)
using selective-search was lower than when using full-width search. We believe that this
is due to fact that even this network does not represent an evaluation function that is good
enough to be used for pruning in the selective-search.

3.2 Second experiment

In our second experiment we used beam-search as our selective-search method.
Beam-search examines the search-tree by searching only Athe n best nodes at each level of
the search tree. Since beam-search only searches a fixed number of nodes at each level,
the time-complexity of beam-search is polynomial. This allows beam-search to probe
much deeper than full-width searches, which have exponential time-complexity.

-+~ Again, we measured the performance of our neural network during different
stages of training. Two identical neural networks played against each other, one using
beam-search and other using full-width search. The constant » for beam-search (width of

the beam) was set to 700. As in the first experiment, each player was given 10 seconds to
select a move.

Figure 2: Performance of beam-search against full-width search
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When using beam-search, performance was lower then when using full-width
search, but we can see that the win/loss ratio increases as the evaluation function gets

better. This strongly suggests that, given a better evaluation function, beam-search would
surpass the performance of full-width search.

4. CONCLUSION

Although our approach of using a neural network to implement selective-search
engendered some interesting results, our fully trained network could not surpass
petformance of a classical full-width search. We believe this was mainly due to
unsatisfactory performance of our neural network which acted as an evaluation function.
Increasing pefformance of this network would require increasing the size of the hidden
layer, and perhaps even adding a second hidden layer. However, training such a network
would surpass the abilities of most modern computers, so we could not test this
hypothesis. '

We were able to significantly increase performaﬁce of our network by using a
hybrid approach, and other researchers reported similar results (Tesauro, 1995; Scott,
2002). One possible expansion of our work is to try to increase the performance of our
network by adding more hard-coded features.

Unexpected results in the first experiment suggest that a selective-search may be
beneficial if we have a relatively poor evaluation function. When using full-width search,
it is known that searching deeper with a poor evaluation function generally achieves
better performance than using a better evaluation function and searching to lesser depths
(Scott, 2002). Our experiment suggests that this is true even if we prune most of the |
search-tree during our deeper search, and this result could be useful in problems in which
it is hard to create a good evaluation function. |

| The second experiment showed that performance of beam-search approaches the
performance of full-width search as the evaluation function improves. We expect that, at

some point the performance of beam-search would surpass performance of full-width
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searéh. ﬁowever, as noted above, due to time constraints we were unable to construct and
train the neural network that could reach such a level of performance.

Although research in artificial neural networks has come a long way, our inability
to implement larger neural networks remains a significant problem. Although there are
possnblhtles such as using neural networks that are not fully connected, and using batch
learning try to overcome this problem, ultimately, a final solution must come in the form

of more compufing power or true parallel computing,
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License Plate Detection and Comprehension Using Image
Processing and Neural Networks

Leonid Shklovskii
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Abstract _ _

We describe an algorithm and its implementation to locate and read a license plate in a
photo of a vehicle. Several image processing techniques combined with an innovative
fast Hough transform allow the program to simplify the original complex and busy
images into a set of potential candidate plate locations. Once this is done a relatively
simple character recognition neural network then allows the program to identify the
characters as well as resolve the actual location of the license plate in the photo.

Keywords: Hough transform, edge detection, cars, license plate, neural network,
annealing,

1. INTRODUCTION

The problem of machine vision has existed for well over fifty years. At the very
beginnings it seemed like a relatively easy task and one that was initially assigned to an
undergraduate student as a summer project. As that poor student quickly realized,
however, there is a tremendous variety of different factors that affect how the image is
perceived. Effects such as lighting conditions, occluded parts of the- image,
inconsistencies in materials, and shadows can all create tremendous problems for any
kind of vision analysis system. Because of this complexity, the general vision problem
must be broken down into smaller, task-oriented pieces. The specific problem addressed
here is locating and reading a license plate on a photo of a vehicle. '

Because the zoom on the exemplar photos varies from shot to shot, and the individual
license plates come in several different style s not clear how to define the license
plate in terms that the computer can use an. .. arch for, Previous approaches have side-
stepped this difficulty by focusing on detecting the letters in the image directly[3]. The
letters used on license plates are all of one font and are all one solid color. They also have
the advantage of being largely unaffected by the lighting of the photo. Looking directly
for the letters trades off the benefit of knowing the location of the license plate (and thus
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restricting the search location for reading the actual letters) for a simpler and more easily
defined search for the letters, By ignoring the license plate, these approaches require

extensive supporting steps to deal with numbers and letters appearing in other sections of
the image,

Because all license plates (of a particular state) have a roughly similar design, once the
license plate is located, it is relatively easy to identify the letters that make up the license
- plate and read them. The raw amount of information in the photo from which the license
plate must be detected and read is tremendous. A pixel consists of three 8-bit color values
and there are more than 300,000 pixels in the image. Running a neural network on this
kind of scale would incur an incredible time cost in training, and a prohibitive memory
cost®. This program attempts to reduce that number to a much more manageable set of
inputs. In order to reduce this huge amount of data a variety of choices, such as mask
selection, were made on the basis of general principles of image processing and
experimentation. ' ' '

2.DATA

The data used for this project were photos of the backs of cars in the York Square parking
lot in downtown New Haven, CT. They were taken early in the afternoon with a Canon
PowerShot 5200 digital camera. A resolution of 640x480 at the SuperFine level of JPEG
compression provided adequate information without making the images too large. The
images were then converted from TrueColor (24 bit) images to 256 color indexed PNG
(portable network graphics) files for ease of use.

A majority of the photos were the standard Connecticut plates that were instituted in 2000
(Table 1). '

109  Shots of the rear of vehicles 96 Standard CT plates (### - Z27)
11 Shot of the front of a vehicle - 11 Combination CT plates (772???)
2 Fancy CT plates (A ## - 277)
1 Standard Minnesota plate
(the A on the fancy CT plates is a lighthouse)

Table 1. Breakdown of the photos taken

The license plates on the photos range in size from 100 pixels to 400 pixels wide.
Lighting conditions are roughly similar, but several different light balances were used on
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the camera. The locations’ of the license plates in the photos also vaned from bemg
exactly in the middle to being within 50 p1xe1s of the edges of the photo (F1gure 1)

Photos #51 — 100 were used to train the neural network and to ﬁne tune the 1mage

processing and the Hough transform modules. Photos #1 ~ 50 were used as new
exemplars for the whole program o

Figure 1. Example photos

3. IMPLEMENTATION

In order to solve this problem, a program was written in ANSI C and executed on Dual
- Xeon 1.4 GhZ Dell computers running Red Hat Linux. With the exception of the graphics

library GD (versions 2.0.8 and 2.0.9) no external code was used. The GD library

provided the image handling tools, such as loading, resizing, cropping and saving,

The outline of the program is as follows:

3.0 Preparatory _
Before the program can be run, it needs to be given a definition of a license plate. This is
done through an image that is a composite of the license plates from images #51-100. The
license plate is cropped out by hand, rescaled to the same size and each active pixel is
assigned an alpha of 1/50', Then, all of these i images are merged and thresholded to
create a generic license plate. This license plate is at a resolution of 100x50 pixels and
will be later scaled in the Hough transform to fill the whole 100-400 pixel width range in
15 pixel increments (leading to 20 different possible sizes)

3.1 Initialization

The program loads the image to be processed as well as the generic license plate
sample(s). More than one sample at a time can be used however, as will be explained,
multiple saxhples can dramatically slow down the performance of the application. This is
due to the computational complexity of the Hough transform and will be discussed in
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section 3.3. The initialization also creates the
accumulator matrix for the Hough transform.
Because of the scale of the problem
approximately 32MB of memory is required to
hold the relevant variables in memory. The
whole process will be demonstrated on photo

2o #90 Figwe2)

32 Image Pre-processing I edge detection

RPN LRI A LT

L
EERA PSS FHSN

Figure 3. Edge detection of photo #90 Flgure 4 Edge detecuon of: photo #90
using the expanded Sobel matrix using Robert’s Cross matrix
The image is converted to grayscale and a Sobel-hke convolution matrix (Table 2) is
applied to it. The matrix is applied in both the vertical and horizontal: -alignments and the
two resulting images are combined and their brightness is normalized to preserve the
brightness of the original photograph. There are a variety of different methods for
detecting edges in an image and nearly all of them exploit the

:i :: g : i same idea. A pixel that is on an edge is close to a(pixel of a
212101212 different intensity (assuming a grayscale image). Doing pixel

operations such as with these matrices makes these differences
dyrjojtie more prominent. The expanded version of the Sobel matrix that
sl RERNE was used in the program accentuates vertical edges in its normal

Table 2. Vertical version  State, and horizontal edges in its transposed state. Since these are
of expanded Sobel matrix  the edges that define a license plate, it’s an efficacious choice
(Figure 3). Other matrices that are often used for edge detection

tend to be more distracted by noise in the images. Because of the conversion of the
photos to indexed color and the lighting differences, many areas that should be uniform

showed up as false edges when other matrices, such as Robert’s Cross were used (Figure
4).
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3.3 Hough Tansform

- Once the edge detection is complete, a Fast Generalized
Hough transform is performed on the image. This function
maps out the possible locations in feature space from 20
(one for each of the different possible sizes of the license
plate) maps in feature space of license plates based on a
template. The general Hough transform takes a line or
another pattern and converts an image into a feature space.
In this feature space the value of each point is the
probability that the license plate is actually in that spot?,
Figare 5. A Linear Hough The accumulator array that was created at initialization
transform of figure 2 - time stores this information. Hough transforms have been
used in previous research to reduce the complexity of an image®. The initial plan was to
use the Hough transform to identify the vertical and horizontal lines in the photo and then
use those lines to find the license plate. The number of pixels that were classified as
edges by the detection algorithm created an extremely busy feature space graph. The
sheer number of edges detected made it impractical to use a neural network directly on
the Hough transform (Figure 5). Fortunately, the same principle is just as applicable to
circlés, and any other siiape that can be defined in feature space. The Hough transform is
extremely good at detecting shapes even with large amounts of noise or missing points. A
major limitation of the general Hough transform is
thatit can be extremely slow. One general Hough
transform requires the whole template image to be ;
scanned for each pixel in the image that’s being
transformed. Because the license plate sample image
can not be defined as a function parametrically,
differently scaled samples that could match license
plates of different dimensions must be used. This
grows even more computationally expensive as the Figure 6. A Hough transform of
sample images get larger and have more pixels that ie lli’h°t° in Figure 2, based on
must be compared. Another difficulty that exists is 0 plato sample graphic

that each size must have its darkness normalized. A license plate sample that is twice as
large as another can contain up to four times the number of pixels, which means that
without normalization it will have more pixels voting for it. When the size of the license
plate to be detected in the photo was specified and the appropriately scaled sample was
specified manually, the success rate of correctly identifying the plate location was 78%.
Figure 6 shows an example, where the darkest pixel in the transform (roughly in the

middle of the fuzzy rectangle) is the most likely location for the upper left comer of the
license plate.
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In order to identify the arbitrarily sized license plate in a reasonable amount of
computation time, the program uses only one sample image and scales the image’s
-individual pixels inserting empty space in between the now spread out pixels. Figure 7
demonstrates this on a set of pixels. This drastically reduces computational cost of doing
the Hough transform and allows only one sample image to be used in order to find a
license plate of any size. The program automatically performs the scaling and the larger
versions of the license plate sample are essentially as effective as the original. This ‘Fast

General Hough Transform’ (FGHT) is cruclal in keeping the running time of the program
reasonable (w1thm a mmute) -

HGHIEE oS00k
Figure 7. Fast Hough Transform example

Running the Hough transform with each of these scaled samples yields 20 different maps,
each with a best location for the license plate if a license plate of that size existed in the
image. Unfortunately a side effect of the scaling is that the accuracy of the Hough
transform is reduced so that it is not possible to algorithmically determine which size
(and corresponding candidate location) is the correct one. If the correct size can be
identified, then the certainty is very high that the Hough transform of that size has
correctly located the actual license plate. Discovering which of the license plate
candidates is the real one is done by sending all 20 of them to the neural network in an
attempt to figure out which one has more recognizable letters. Ideally, the size that’s the
best match will generate the best post-processed image and thus have more recognizable
letters.

3.4 Post-processing

Each of the rectangles that were identified through the FGHT is |
rescaled and cropped to a standard size of 240x66 pixels
(Figure 8). A dynamic threshold is then performed on the
license plate candidates to make the letters on the license plates

Figure 8. Automaticalls’0
cropped license plate
candidate from figure 2



stand out. The thresholding is done on the assumption that the darker letters cover less
than half of the area of the license plate and as such will be darker than the average pixel
in the license plate. In practice setting the threshold value to 1.2 times the average
brightness gave excellent results for most of the training license plates. Individual letters
are then separated out, cropped to a size of 34x66 pixels and sent through the character
recognition system. There are several methods to find the letters in the cropped license
plate, each with its associated tradeoffs. Because of time constraints an extremely simple
algorithm that converted the candidate to black and white, and then performed a scan by
columns to find the first column that had pixels in it. This would identify the leftimost
letter and the rest of the letters can be extrapolated since the license plate font is
monospaced and un-kerned. Unfortunately many license plates had noise on the edges
that caused problems for this algorithm. Other successful approaches have included -
creating a histogram of the license plate candidate but require much more time to
implement and tune'. Even if no characters are detected in the image, it is still cut up into
character size pieces and passed on to the recognizer, but each of these will generate very
low confidence scores from the neural network. That in turn will result in a low certainty
- score for that license plate candidate. This can be seen in the results table.

3.5 Letter recognition using a neural network

The letter recognition system is a 3 layer feed forward network. The input layer consists
of 2244 elements, each of which is connected to a pixel of the character block are the
-.individual pixels of the cropped characters. They connect to the hidden layer of half that
size which leads to the output layer of 37 neurons. Those 37 neurons correspond to the
letters of the alphabet, the digits 0-9 and the symbol « which is used in between the halves
of the license number. Because of the rather simple : g« cooz v oo
character detection routine in this version, the  is not £
ever sent to the recognition system. The neural net gain o
function used is linear and the weights are randomly Yy
initialized in the range: [-1, 1]. A linear gain function is
used because it is important to know how well the letter !
was actually matched relative to the other letters. If the SR ;
match is poor, we may expect that the 34x66 block of . - ‘ e
pixels probably comes from a rectangle that is not a 3 R . u
license plate and does not actually contain a valid Flgure 9 Examples of 1et£éfs
character. The output neuron with the highest value that were used to train the -
(along with its value) is reported back to the program. neural net

The neural net was trained by a secondary program that took in as the input the letters
that were found by the main program in photos 51 through 100. These were picked out
from the rather large amount of non-letter containing blocks that the program identified
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and saved to disk as an intermediate step before running the neural network. Because the
50 license plates used were insufficient to provide all of the letters in the alphabet and the
digits 0-9, several additional sample letters were created in Photoshop. A total of 226
letters were available for the training and figure 9 shows examples of some of these, The
network was then trained by running 5,000,000 iterations using the following relaxation
technique: For each iteration a test letter was selected and run through the neural net. 500
weights were selected at random and perturbed by a random amount between -1 and %.
If these perturbations improved the value of the correct output neuron, or lowered the
average value of the others, they were kept. If not, the perturbation was reversed.

The first approach that was used in this neural network was to train it with a back-
propagation algorithm. Unfortunately, the back propagation algorithm had problems
dealing with character inputs that were not perfectly framed. Within the 34x66 block of
pixels, the characters could be several pixels off of the training stimuli resulting in a
confidence scores that were indistinguishable from random noise, which in turn made
choosing the correct license plate size impossible. The relaxation technique that was used
could identify letters that were horizontally shifted much more effectively.

3.6 Output

Once letter recognition has been attempted on each of the potentlal rectangles, the
- -rectangle which generated the best confidence results is.identified as are the associated
-letters that were recognized by the neural network.

4. RESULTS

The pi‘ogram was run on images 1-50 with the following results.

Photo Actual plate Characters identified correctly Plate found?
1 774 PCP 774 ‘ Yes
2 193-AGL None No
3 846 PZW 86 Yes
4 26C-691 | No
5 890-KOL None No
6 212-BDJ 212 BDJ Yes
7 505-MBU SO Yes
8 797-REA T97R A Yes
9 986-PGV None No
10 398-FSA 39FSA Yes
11 132:°NZW w No
12 (A) 7195 LAV None No
13 619-MPN 619 Yes
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14 359-POY. 389 Yes
15 253-PUZ None No
16 AW-827 AW 827 Yes
17 478-RDE 478 RDE Yes
18 617°RFU 617 RF Yes
19 406-DFR 4R Yes
20 387-RTS RS Yes
21 655-GVL 65S L Yes
22 879'RH_W 879 RH Yes
23 - T24NZS 724 Yes
24 CXB-079 CXB 079 Yes
25 803-HVP 80H Yes
26 387:KHN 387N " Yes
27 3CA-995 - None No
28 992-NMN 9 No
29 377'NJIR None " No
30 176 HWO 176 HWO Yes
31 672-NSJ 672 Yes
32 407-PHL None No
"33+ 503-RUL None No
34 503-RUL 503 RUL Yes
35 824-RVF 824 RVF Yes
36 6C-3795 None No
37 . 559-PBM None No
38 520-PMZ 520 PM2 Yes
39 335-RNK None No
41 556 NMG None No
42 891-RRE 8IR Yes
43 355-GGP None No
44 ‘668-NPG None No
45 WN-9504 WN 504 Yes
46 410-PSE 4]0 PSE Yes
47 .124-NOF None No
48 178-JKZ None No
49 (A) 298-LCT LC Yes
50 616 HAW HAW Yes
Total Average characters: 2.48 % Yes: 58

5. OBSERVATIONS AND CONCLUSIONS

Table 3. Data from program

Az can be seen from the data in Table 3, the program was generally successful in
identifying the location of the license plate. The character recognition, however, failed to
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read most of the license plate. The reason for this is the character selection function: (once
the potential license plate rectangle is selected and cropped) is extremely crude. A visual
inspection of the intermediate files that the program produces revealed that a majority of
the correct license plate candidates were cropped and thresholded correctly (see Section
3.4), and did indeed show the value with the correct dimensions. This implies that the
character selection operation simply didn’t pick them out correctly. When they were
manually extracted and fed to the neural network, they produced high confidence

answers. The following figure demonstrates the plate from photo #48 and the breakdown
of the license plate cropping.

ma | 708 § G

Figure 10, Character detection failure

The use of the neural network to select the appropriate rectangle, however, is justified by
the fact that only in three (#4, #11, and #28) of the trials in which a rectangle that
contained letters that had been correctly identified was not reported as the location of the
license plate. The other candidate rectangles which did not contain pixels that resembled
letters scored much lower confidence levels in all cases but these three. A next step might
be to require a minimum confidence level for the program to respond with an answer.
The neural net was also in many cases incapable of distinguishing between letters and
similar numbers, common mistakes included: 1 = I,'2 =2Z,0=0and5=8.

Both of these limitations motivate future work. The basic proof of concept has been
demonstrated, and with improvements to the individual modules of the progtam the
recognition and detection rates should be improved considerably. The neural network
could potentially be made smaller without sacrificing accuracy. The letter detection

algorithm needs to be redone and a variety of other performance tweaks can be
performed.

7. REFERENCES

1. Draghici, S., (1996). A neural network based artificial vision system for license
plate recognition. http://www.cs.wayne.edu/~sod/ijns1997.pdf

2. Haykin, S., (1999) Neural Networks: A comprehensive foundation, Prentice Hall,
Upper Saddle River, New Jersey

64



. Marzuki, K., Tahir, A, Tay, Y.H., Yap, K.M., (1998) Vehicle license plate

recognition by fuzzy artmap neural network.

http://www.cairo.utm.my/publications/ksyap_wec99.pdf

. McDonald, J., (1998) The Hough Transform: Explained and Extended,

http://www.cs.may.ie/~johnmcd/SNHT/

. Ran, B., Liu, Henry X., (1999) Development of A Vision-Based Vehicle

Detection and Recognition System For Intelligent Vehicles.

http://www.its.uci.edu/~hliu/’I‘RR__99__Vehicle.pdf

. Skapura, D.M., (2002) Building Neural Networks, ACM Press, New York, New
York. '

65



66



* Olfaction with Neural Networks

Boting Zhang
Yale University, Department of Computer Science
New Haven, CT 06520

ABSTRACT

The nonlinearity of neural networks suits them well for categorization tasks. One particular application is olfaction,
which, in its one-dimensionality, pethaps lends itself more immediately to the use of networks than does image pro-
cessing. Below, I'll be discussing the procedures I used to train a neural network to distinguish among the vapors
of 14 beverages. Two chemical sensors were used — one for organic solvents and another for combustible gases.
In its simplest form, the network is a basic feed-forward network with a single hidden layer, but the network can be
expanded to less basic variants to allow for memory of previously sensed data. Backpropogation was used to train the

network; a successful network was able to correctly classify the scent.

1 INTRODUCTION

1.1 Data Acquisition

Three sensors were used in this experiment: (1) a carbon monoxide sensor, taken from a home carbon monoxide
detector; (2) a sensor from Figaro Electronics for combustible gases, including hydrogen; and (3) another Figaro
Electronics sensor, this one detecting food vapors like ethanol. The maximum voltage output of each of these sensors
was set to SV for reasons to be discussed later. A high sensor oiuput voltage indicated a greater concentration of the
vapors it detected. Details about the three sensors are given in Table 1(a).

Nonalcoholic beverages were chosen because they differed quite subtly in sensor readings, making the experiment
more intereéﬁng. Since these samples emit relatively low concentrations of the vapor, calibrating the sensors to 5V
resulted in a voltage output of no more than 1V in the presence of a beverage. Table 1(b) lists the beverages chosen;

sensor data with no beverages present was also recorded.
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To keep the measurements controlled, all three sensors were attached to a common frame. When the frame was
. propped atop a tripod of three capped film canisters, this aﬂoWed a beverage-filled open film canister to be slid directly
underneath, with about 3mm of space between the top of the canister and the sensors. Such exact conditions ensured

| reproducible éensor readings.
The sensor readings were interfaced to a computer through a data acquisition card, which read the output voltages
once every 100ms and wrote the data to a file. Regular 100ms samples of the output for each beverage were taken

for periods of 15-25 seconds, resulting in 150-250 sensor readings per beverage type. The range of these chemical

sensor readings for each beverage is graphed in Figure 4; further sampling produced no information, for the readings

remained within the ranges depicted.

1.2 Objectives

- The nature of the vapors made the carbon monoxide sensor of little use; in fact, its irrelevant data produced inaccurately
good results, because it recorded mostly extraneous environmental information, which unfairly helped the network
due to the limited sample size. For thjs reason, carbon monoxide sensor data was left out for the latter part of this
experiment, reducing the number of sensors to two. What makes the subsequent findings most interesting is the
capability of neural networks to identify different substances, given only these two sensors.

The tasks for the networks fell under three different categories: identifying the beverage, identifying its brand, and
categorizing the fiavor of the beverage. For each type of task, categories were assigned unique numbers. So a network
that successfully distinguished among beverages would output the beverage’s unique identification number upon being

given as input a sample of the beverage’s sensor data. Further detail on this is given in Table 1(b) and the next section.

2 OLFACTION WITH A BASIC FEED-FORWARD NETWORK

2.1 Setup

The current applications of neural networks in olfaction [1] are simple feed-forward networks with as many output
nodes as there are different vapors. The perfect output, which the network trains itself towards, indicates the presence

of a vapor in category ¢ (where i is as listed in Table 1(b)) with a value of 1 at output node {. If vapor ¢ is not present,
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output node ¢ should be 0.

.

In determining the idenﬁty of an odor with the simple olfactory neural network, only a single data sample is input

into the network. And so the system looks like this:
( Y1 \
Ty
Y
m | — — |7

T3

\ylﬁ)

where 2 is a vector of sensor readings at some time ¢, and y is the network output as described above.
So during training, exemplars are randomly chosen from the set of all vapor samples taken at all times. An
exponential threshold function was used, and a momentum constant of 4 introduced to speed the training process.

The threshold function required the very low scaling factor of .25 for the network to converge.

2.2 Results
Given thissimple training, the network was able to distinguish six vapors (Fig. 4) exﬁemely well after 1 million
backprop iterations, and could even distinguish all 15 vapors (Fig. 4) fairly well.

The outputs of these networks could be easily modified to categorize the beverages by brand or flavor, merely by
changing the output against which they were trained. The networks performed better categorizing by brand (Fig. 4)
than by flavor (Fig. 4). This makes some sense; to a system with only two sensors, the common chemical content of
beverages made by the same company is probably more noticeable than subtle flavor distinctions.

Ong very interesting outcome arose when the network was dsked to categorize vapors it was not trained on. For this,
the network was trained to identify all the beverages by brand except Vanilla Coke and week-old Coke, the exemplars
of which it was not allowed to see during the training process. Figure 4 graphs the network output whgn .it was then run
on all 15 vapor types. Week-old Coke was correctly grouped with the fresh Coke, but Vanilla Coke — which should
also have been grouped with this set, since the network was categorizing by brand — mapped to something sharing
the qualities of Cokes and Frappuccinos (most notably, the Vanilla Frappuccino). This may have been the result of the

caffeination of the two beverages; however, it may also have been an interesting flavor recognition when it ought to
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have been categorizing by brand.

3 BASIC FEED-FORWARD NETWORK WITH MEMORY

31 Setup

One property of olfaction is the length of time required by humans to identify certain scents. Is it perhaps the case that
many samples taken over a period of time would help our network in correctly classifying flavors?

In a network with memory, the network has access to information about current sensory inputs as well as informa-
tion about sensor data from previous time steps. This method is much more robust because it smooths the error caused
by air-current-induced fluctuations in sampling data, and would perhaps help extract the relevant data.

The simplest implementation of memory in a network is a vector of sensory inputs taken from contiguous vapor
samplings. The number of sets of sensory data taken at a time corresponds to the size of the network’s memory, which
we’ll call M. The network, then, is in effect taking as input a matrix, the size of which is proportional to its memory
size M.

The neural network was trained the same way, because this is still a simple feedforward network trainable by

backpropagation:

()

Y1

s [Fewai] — | “

xl(t) a:l(t—l) vee :cl(t—M)

.‘172(t) .‘172(t—-1) e :vz(t-M) .

\yls }
3.2 Results

When trained to identify beverages by brand, this memoried network was able to perform much better than the network
without membry. Although this is not directly visible from the distribution of its output across all input 2-second blocks
(Fig. 4), an examination of the distribution of this output (Fig. 4) shows that nearly all of the test cases were correctly

classified, and only a few were incorrectly categorized. Categorization by flavor was also more successful, as shown
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in Figure 4,

4 CONCLUSION

Adding memory to the network proved promising. Although flavor was still harder for ihe netWork to identify than
brand — a result attributable to the fact that companies maintain the same ingredient concentration throughout their
line of products — performance was improved significantly. Brand identification accuracy, meanwhile, was improved
to 98% (a result shown graphically in 4).

However, the implementation of memory here was rather impractical. It is clearly not biologically accurate:
the body’s chemical sensors do not have access to previous chemical concentrations. Rather, real memory must be
implemented on the outputs. What would be interesting to see in the future would be how well olfaction is performed
in a system of two networks, the first system of which operates on the direct sensor input, and the second system

operating on the network output from the first system (the real-time output) and taking other input from previous

outputs of the first system:
( y1(t) \
$1(t) — — y2(t) \
T (t) :
\yw(t))
Y(®)
(yl(t~1) n(t-2) ... yz(t—M)\
ya(t—1) yo(t—-2) ... y2(t — M) ~
\ 15t =1 pst-2) ... yis(t-M)

Now vector Y (t), adopting the same category format as y(2), is the true output of the system. In a real biological

system with 10,000 sensors, this is more likely how olfaction is organized.
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Sensor Main Chemicals Detected Others
1 CO .

2 | TGS814 | CHy, ethanol, propane, butane, Hy | CO
3 | TGS822 | butane, hexane, benzene, ethanol CH,, CO

(a) Sensors. Note that sensor #2 primarily detects combustible gases, while
#3 detects food vapors. The numbers in the first column will be used to
identify the sensors in this paper. The second column lists the part number
for the Figaro Blectronics sensots.

Vapor Beverage | Brand | Flavor
None 1 1 1
Vanilla Frappuccino 2 2 2
Mocha Frappuccino 3 2 3
Chetry Snapple 4 3 4
Lime Snapple 5 3 5
Orange Tropicana 6 4 6
Apple Tropicana 7 4 7
Black Cherry Soda 8 5 4
Lime Soda 9 5 5
Strawberry Soda 10 5 8
Root Beer 11 6 9
Vanilla Coke 12 6 2
Coke 13 6 10
Week-Old Coke 14 6 10
Week-Old Orange Tropicana 15 4 6

(b) Vapors. Here are listed the 15 scents used for the experiment, along
with their category assignment for the various identification tasks. A net
work that was categorizing by beverage, for example, would be expected
to output an 8 upon being given as input a sample of sensor data recorded
for Stewart’s black cherry soda. If trained to categorize by brand, how-
ever, it would be expected to output a 5, alongside the other Stewart's
sodas. ' ’ ’

Figure 1: Number References. A list of numbers used to refer to the sensors and categories in the graphs throughout
this paper. '
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Figure 2: Sensor data distribution for various vapors. Graphed here are the sensor readings for each scent, where
the sensors are identified by number. The first bar of each graph, for example, shows the carbon monoxide sensor
voltage in the presence of a certain scent. Table 1(a) details the three sensors used. The darker bars in the graphs
depict the minimum sensor readings for a scent. Meanwhile, the entire bar, outlined in black, shows the maximum
sensor readings. The white boxes, then, depict the range of values taken on by the sensors for a given scent.
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Figure 3: Six Vapors, Beverage Identification. This data graphs the output of the network with a randomly selected
vapor sample as input, after having been trained on only these six for 1 million training cycles. The vapors, here
identified by number, are detailed in Table 1(b).
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Figure 8: Brand Recognition With Memory. Even better than it already was. Although the best- and worst-case
answers were not very good, they are extreme outliers. This can be better seen in the next graph.
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Figure 9: Brand Recognition With Memory. This plots exactly the same information as the previous graph, but
shows the distribution of the outputs.

81





