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Abstract

Prolate Spheroidal Wave Functions, Quadrature, Interpolation, and Asymptotic

Formulae

Hong Xiao
2001

Whenever physical signals are measured or generated, the results tend to be band-limited
(i.e. to have compactly supported Fourier transforms). Indeed, measurements of electro-
magnetic and acoustic data are band-limited due to the oscillatory character of the processes
that have generated the quantities being measured. When the signals being measured come
from heat propagation or diffusion processes, they are (practically speaking) band-limited,
since the underlying physical processes operate as low-pass filters. The importance of band-
limited functions has been recognized for hundreds of years; classical Fourier analysis can
be viewed as an apparatus for dealing with such functions. When band-limited functions
are defined on the whole line (or on the circle), classical tools are very satisfactory.

However, in many cases, we are confronted with band-limited functions defined on in-
tervals (or, more generally, on compact regions in R™). In this environment, standard tools
based on polynomials are often effective, but not optimal. In fact, the optimal approach
was discovered more than 30 years ago by Slepian et al, who observed that for the analysis
of band-limited functions on intervals, Prolate Spheroidal Wave Functions (PSWFs) are a

natural tool. They built the requisite analytical apparatus in a sequence of famous papers,



and applied the resulting tools in many areas of signal processing, statistics, antenna the-
ory, etc. However, their efforts have not lead to numerical techniques; the principal reason
appears to be the lack at the time of effective numerical algorithms for the evaluation of
PSWFs and related quantities.

In this dissertation, we start with noticing that in the modern numerical environment,
evaluation of PSWFs presents no serious difficulties, and construct a straightforward pro-
cedure for the numerical evaluation of PSWFs. Then we use PSWF's to build analogues for
band-limited functions of some of the classical numerical techniques: Gaussian quadratures
and corresponding interpolation formulae (both exact on certain classes of band-limited
functions). We also construct a new class of asymptotic formulae for PSWFs. Unlike the
classical apparatus based on Legendre polynomials, our approach utilizes Hermite poly-
nomials, and is valid when bandwidth is large. We illustrate our results with numerical

examples.
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Introduction

A function f : R — R is said to be band-limited if there exists a positive real ¢ and a

function o € L2[—1,1] such that

f(z) = /_11 et o (t) dt. (1.1)

Band-limited functions are ubiquitous: whenever physical signals are measured or gener-
ated, the results tend to be band-limited. Indeed, measurements of electromagnetic and
acoustic data are band-limited due to the oscillatory character of the processes that have
generated the quantities being measured. When the signals being measured come from heat
propagation or diffusion processes, they are (practically speaking) band-limited, since the
underlying physical processes operate as low-pass filters.

For band-limited functions that are well-behaved on the whole line (for example, in
signal processing), numerical tools are well-studied and very satisfactory. Among them,
classical Fourier analysis has been one of the most important for more than 150 years.
However, in many cases, we are confronted with band-limited functions that are defined
on intervals (or, more generally, on compact regions in R"). Wave phenomena are a rich

source of such functions, both in the engineering and computational contexts; such functions
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are also encountered in fluid dynamics, signal processing, and many other areas. Often,
band-limited functions on intervals can be effectively approximated by polynomials via
standard tools of classical analysis. However, even when such approximations are feasible,
they are usually not optimal. Smooth periodic functions are a good illustration of this
observation: while they can be approximated by polynomials (for example, via Chebyshev
or Legendre expansions), they are more efficiently approximated by Fourier expansions,
both for analytical and numerical purposes. It would appear that an approach explicitly
based on trigonometric polynomials could be more eflicient in dealing with band-limited
functions on intervals. In this dissertation, we present a set of numerical tools that are
optimal when the underlying functions are limited both in the time domain and frequency
domain. Our apparatus is based on the Prolate Spheroidal Wave Functions, a class of

band-limited functions that were studied in some detail more than 30 years ago [31].

1.1 Brief History

Prolate Spheroidal Wave Functions (PSWFs) arose from the study of the wave equa-
tion in general ellipsoidal coordinates. When the wave equation is separated in prolate
spheroidal coordinates, the resulting second-order ordinary differential equations are satis-
fied by PSWFs. During the last 30 years or so, PSWFs have been used in a broad range of
physical and engineering environments such as acoustic radiation, scattering of electromag-
netic waves, fluid dynamics, antenna design, communication theory, and many others.
Prolate Spheroidal Wave Functions have been studied extensively since the late nine-
teenth century, and a large number of analytical and numerical results have been obtained.
In particular, numerous expansions of prolate spheroidal wave functions have been con-
structed, in associated Legendre polynomials, Gegenbauer functions, spherical Bessel func-

tions, power series, etc. (see, for example, [27, 6, 36, 28]). These expansions usually have
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extremely general forms, with analogous formulae for other spheroidal wave functions. The
expansion coefficients usually obey certain recursion formulae, and are often evaluated via
continued-fractions (see, for example, [36]) or Bouwkamp’s iterative scheme [2]. Detailed
tabulations of the expansion coefficients, as well as tables of the functions, have been pre-
sented in several monographs published on this subject (see, for example, [36, 6]). Un-
fortunately, both continued-fractions and Bouwkamp’s algorithm become unstable at high
frequencies. Although a series of asymptotic formulae have been developed for sufficiently
high frequencies [25], these formulae are incomplete (see [6]).

Among the early results on PSWFs, there were also a number of integral relations
reported in fairly general terms. These results were used in various derivations of the
analytical properties of PSWFs, but their significance was not realized until the 1960s,
when Slepian et al observed that the PSWFs are eigenfunctions of the Fourier operator
on intervals. The requisite analytical apparatus necessary for engineering applications was
then built in a sequence of famous papers (see [17]-[19], [31]-[34]), and the resulting tools
were utilized in many areas of signal processing, antenna theory, communication theory,
etc. However, these results have not lead to numerical techniques, due to what appears to
be the lack at the time of effective numerical algorithms for the evaluation of PSWFs and
related quantities.

We observe that, in the modern numerical environment, the evaluation of PSWFs
presents no serious difficulties, and construct a straightforward numerical evaluation pro-
cedure. We then construct a class of quadratures for band-limited functions that closely
parallel the Gaussian quadratures for polynomials. The nodes are very close to being roots
of appropriately chosen Prolate Spheroidal Wave Functions, the resulting quadratures are
stable, and all weights are positive. Moreover, as is in the case of polynomials, there are in-
terpolation, differentiation and indefinite integration schemes associated with the obtained

quadratures, exact on certain classes of band-limited functions. We also construct a class
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of asymptotic formulae for PSWF's and related quantities, which are uniformly convergent

on R! and are valid for high frequencies.

1.2 Outline of the Dissertation

This dissertation is organized as follows. In Chapter 2, we summarize various elementary
mathematical facts used in the remainder of the dissertation. In Chapter 3, we describe the
algorithms for the evaluation of Prolate Spheroidal Wave Functions and associated eigen-
values. We describe two procedures for the construction of qua(iratures for band-limited
functions in Sections 4.1 and 4.2, and show that roots of appropriately chosen Prolate
Spheroidal Wave Functions can serve as quadrature nodes. We then analyze the use of
PSWFs for interpolation in Section 4.3. The asymptotic formulae for Prolate Spheroidal
Wave Functions and related quantities at high frequencies are given in Chapter 5. We
present results of our numerical experiments with quadratures, interpolation, and asymp-
totic formulae in Chapter 6, and collect a number of miscellaneous properties of Prolate
Spheroidal Wave Functions in Chapter 7. Finally, Chapter 8 contains generalizations and

conclusions.



Mathematical Preliminaries

In this chapter, we summarize a number of well-known facts to be used in the remainder of
this dissertation. These facts can be found or easily follow from facts that can be found in,
for example, [1, 7.

As a matter of convention, unless stated otherwise, the norm of a function will refer to
its L? norm:

171 =/ [ 1£@)P da. (2.1

We also frequently use [a] (a is real) to denote the integer part of a.

2.1 Legendre Polynomials

In agreement with standard practice, we denote by P, the classical Legendre polynomials,

defined by the three-term recursion

2n+1 n
Prii(z) = e T Po(z) — g Pra(z), (2.2)
with the initial conditions
Py(z) = 1, (2.3)
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P1 (.’1)) = T
As is well known,
Pr(1) =1 (2.4)
for alln =0,1,2,..., and each of the polynomials P, satisfies the differential equation
d?P,(z) dP,(z)
.2 n N n . - )
(1—2z%) T2 2z e +n-(n+1) P,(z) =0. (2.5)

The polynomials defined by the formulae (2.2), (2.3) are orthogonal on the interval

[=1, 1]; however, they are not orthonormal, since for each n > 0,

1
/ (Pa(2))? dz = - +1 el (2.6)

-1

We introduce a normalized version of the Legendre polynomials P,, so that

Po(z) = Po(z) - y/n+1/2. (2.7

The following lemma follows immediately from the Cauchy-Schwartz inequality and from

the orthogonality of the Legendre polynomials on the interval [—1, 1].

Lemma 2.1 For dll integer k > n > 0,

<l (2.8)

1
o
P,
./_1$ n(z) dz k+1’

for all integer 0 < k < n,

1
/ ¥ P, (z) dz
-1

=0. (2.9)

2.2 Hermite Polynomials and Hermite Functions

As is well known, Hermite polynomials H,, satisfy the differential equation

"

H

n

(z) - 2-z- H,(z) +2n- Ha(z) =0, (2.10)
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and are orthogonal on R with the weight function e~=". That is, for all non-negative integers

m and n,

o0
/ ¢ - Ho(2) - Hn(2) dz = V7 2" 1l (2.11)

-0
where 0, , is the Kronecker Delta function. Moreover, Hermite polynomials satisfy the

three-term recursion

Hys1(2) =23+ Holg) — 2n - Ho_y(2), (2.12)
with the initial conditions
Hy(z) =1, (2.13)

Hy(z)=2z. (2.14)

(2.15)

for all integer n > 0 and z € R, where [7] denotes the integer part of n/2.

Throughout this dissertation, we use a scaled version of Hermite polynomials which we
denote by Hj. Defining the polynomials {HZ2} to be orthonormal on R with the weight
function e=%"%” (a # 0), i.e.,

/ C: ¢ . H2(z) HE(c) dz = b m (2.16)

for all non-negative integers m and n, we see easily that

Hi2) = Y% H(aq), (2.17)
w427 - (nl)?2
and that
2 a a
1 THN) o dHA@) | o ey = 0. (2.18)

a? dz? dz
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2.2.1 Recursion Relations

As in the case of Hermite polynomials H,, polynomials H? have their own three-term

recursion given by the formula

n+1 —aa:v Vn+

with the initial conditions

H(z) = Va (i)% ,

V3
Hz) =V2a (%)% az.

Rearranging the terms in (2.19), we immediately obtain the following theorem.

Theorem 2.2 For all real a # 0 and all integer n > 1,

1 /n+1
sH) = 2\ Hpa) 1R

z Hy(z) =

Furthermore,

\/iaHl( )

Applying Theorem 2.2 twice, we obtain the following theorem.

Theorem 2.3 For any real a # 0 and integer n > 2,

- Hi(z) = ol 7 T n+2(2)
IERYATE e
b2 Bt ().
Furthermore,
1) =52 i+ 5 ),
2 H3(e) = 55+ 75 H3(e) + 37 - 5 HE (@)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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Applying Theorem 2.3 twice, we obtain Theorem 2.4.

Theorem 2.4 For any real a and integer n > 4,

o H@) = o[ Dt )+t ) Hesalo)

+&1_4 . (n + E) v/ (n+1)(n+2) - Hp 5(2)

)
+% . % (1 +2n +2n?) - H(2)
+2_(114 f(n—Dn-@2n—1) HE_y(x)
+Zl% . \/(n =3)(n—-2)(n—1)n-H; 4(z). (2.27)
Moreover, for n =2 and n = 3,
zt Hi(z) = % A+ 1)(n+2)(n +3)(n +4) - Heyy(2)
2 (4 ) o D) Hepao
+?i'a_14 (14 2n +2n?) - H%(2)
s \fln =D (2n— 1) Hi_o(2). (2.28)

Finally, forn=0and n=1,

o H0) = oo/ Dt 2)(n+ A+ ) Hey(o)

1 3
+;1-- n+ 5) A/(n+1)(n+2) Hi o(z)
3 1
+1 g (1+2n+2n?) . H(z). (2.29)
2.2.2 Hermite Functions
Given any non-zero real number a, we define the functions ¢¢, ¢4, 4%, ... : R = R (frequently

referred to as Hermite functions) via the formula
—a2 22
Pe(z) =e %% /2. HY(z). (2.30)

The following theorem summarizes the well-known facts of Hermite functions.
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Theorem 2.5 Suppose that a is real and non-zero. Then, for all integers m > 0,n > 0,

[ #:@) - #1(2) do = bmn. (231)

Moreover, any function f € L?[~00,00] can be ezpanded in a Hermite series so that

f@) =3 andf(a), (2.32)
n=0

where a, are constants defined by the formula

on= [ f@)¢h(z)da. (2.33)

Furthermore, if f is even, aanyy1 = 0 for all natural n; if f is odd, ca, = 0 for all natural

n.

The following lemma is an immediate consequence of inequality (2.15). It shows that
for all integer n > 0 and sufficiently large a, the values of the function ¢ at points outside

the interval [—1,1] decay exponentially with a.

Lemma 2.6 Suppose that o is real and positive, and that m,n are non-negative integers.
Suppose further that ¢%, ¢ are the n-th and m-th Hermite functions with the weight func-

. 02 p2
tion e T, Then,

-1 2,2 o0 2,2
[ e @) dot [ e ) dne) do<ye (239
for all a such that
n m
032 [-2-}+2 HH, (2.35)

where constant vy is is given by the formula

2.-vminl!

BV GECNETIET

0% (2.36)

The following technical lemma will be used in Section 5.4. It is an immediate conse-

quence of Lemma 2.6.
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Lemma 2.7 Suppose that p > 0 is integer, and that ¢ is a sufficiently large real number.

Suppose further that function ¢ : [—1,1] = R is given by the Hermite ezpansion

P
‘@)= a;-¢Y(2) + O (cP7Y), (2.37)
1=0
where the ezpansion coefficients ag, a4, ...,0p are p-th order polynomials in 1/c. Suppose

further that for all integer k € [0, p], ax # 0 when ¢ = oo. Then, for all z € [-1,1],

_ V(=) (1)1’“
<M-|[- , 2.38
'nwcu | SMG (2:38)
where M > 0 is a constant, and
p
> a?. (2.39)
1=0

2.3 Prolate Spheroidal Wave Functions

In this section, we summarize a number of analytical properties of the Prolate Spheroidal
Wave Functions. Unless stated otherwise, all of these facts can be found in [31, 17].
Given a real ¢ > 0, we denote by F, the operator L?[—1,1] — L?[—1,1] defined by the

formula

1
Fie)a) = | (1) dt (2.40)

Obviously, F, is compact; we denote by Ag, A1,...,An, ... the eigenvalues of F, ordered so
that [Aj_i| > |};| for all natural j. For each non-negative integer j, we denote by ; the

eigenfunctions corresponding to A;, so that

1
Ajthj(z) = /_ 16“‘” ¥;(t) dt, (2.41)

for all z € [~1,1]. We adopt the convention that the functions are normalized such that

lvill—1,y = 1 for all j .I' The following theorem is a combination of several lemmas from

!This convention differs from that used in [31]; however, the present dissertation is concerned almost
exclusively with approximation of functions on [~1, 1], and in that context, the convention that the functions

{%;} have unit norm on that interval is by far the most convenient.
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31, 8, 14].

Theorem 2.8 For any positive real c, the eigenfunctions ¥y, ¥, ..., of the operator F are
purely real, are orthonormal, and are complete in L?[~1,1]. The even-numbered eigenfunc-
tions are even, and the odd-numbered ones are odd. All eigenvalues of F, are non-zero and
simple; the even-numbered eigenvalues are purely real, and the odd-numbered ones are purely
imaginary; in particular, \j = z'lej}. The functions v; constitute a Chebyshev system (see
Section 2.4 below) on the interval [—1,1]; in particular, the function v; has ezactly ¢ zeroes

on that interval, for any i =0,1,...,.

We define the self-adjoint operator Q. : L?[~1,1] = L?[~1,1] by the formula

1 ! sin(c-(z—t
Q) =2 [ 2z iy g (2.42)
T Ja x—1t
a simple calculation shows that
c *
Q. = e F! - Fe, (2.43)

that Q. has the same eigenfunctions as F¢, and that the j-th (in descending order) eigenvalue

; of Q. is connected with A; by the formula
c
= — |\ 2.4

The operator Q. is obviously closely related to the operator P, : L%[~00, 0] = L%[—00, 00

defined by the formula

P.(p) = 1, /oo sin(c- (¢ —t)) o(t)dt, (2.45)

T Jexo z—1
which, as is well known, is the orthogonal projection operator onto the space of functions
of band limit ¢ on (—oo0, 00).
For large c, the spectrum of . consists of three parts: about 2¢/7 eigenvalues that
are very close to 1, followed by order log(c) eigenvalues which decay exponentially from 1
to nearly 0; the remaining eigenvalues are all very close to zero. The following theorem,

proven in [19], describes the spectrum of (). more precisely.
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Theorem 2.9 For any positive real ¢ and 0 < a < 1, the number N of eigenvalues of the _

operator (). that are greater than a satisfies the equation

2c 1 l-a
N=?+(7r—210g

) log(c) + o(log(c)). (2.46)

By a remarkable coincidence, the eigenfunctions g, 41, - - - , %, of the operator Q). turn
out to be the Prolate Spheroidal Wave Functions, well known from classical Mathematical
Physics (see, for example, [26]). The following theorem formalizes this statement. It is

proven in a considerably more general form in [32, 12].

Theorem 2.10 For any ¢ > 0, there ezists a strictly increasing sequence of positive real

numbers Xo, X1,- .. such that for each § > 0, the differential equation

(1~ 2%)¢"(z) = 229/ (2) + (x; — " 2*) Y(z) = 0 (2.47)

has a solution that is continuous and bounded on the interval [—1,1]. Moreover, for each
J 20, the function ; (defined in Theorem 2.8) is the solution of (2.47). Furthermore, for
c— 00,

x; = (27 +1)c+O(1). (2.48)

2.4 Generalized Gaussian Quadratures

A quadrature rule is an expression of the form
n
> w;d(a)) (2.49)
J=1
viewed as an approximation to the integral of the form
b
/ $(z) w(z) do . (2.50)
a

The function w is assumed to be integrable and non-negative, and is often referred to as
the weight function; the points z; € R and coefficients w; € R are known as the nodes and

weights of the quadrature rule, respectively.
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Quadratures are typically constructed so that the formula (2.49) is exact for a prese-
lected set of functions, commonly polynomials of some fixed order. Of these, the classical
Gaussian quadratures are an important example: when the class of functions to be inte-
grated are polynomials and the weight function w is 1, an n-point Gaussian rule is exact
for all polynomials of orders up to 2n — 1, and no n-point rule is exact for all polynomials
of order 2n.

Gaussian quadratures admit fairly radical generalizations. Although the existence of
generalized Gaussian quadratures was observed more than 100 years ago (see [23, 24], [8, 16],
[13, 14]), the requisite numerical algorithms have been constructed only recently (see [21,
38, 3]); in the remainder of this subsection, we summarize several definitions and theorems

regarding the generalized Gaussian quadratures.

Definition 2.1 A quadrature formula will be referred to as Gaussian with respect to a set
of 2n functions ¢, ..., ¢ : [a,b] = R and a weight function w : [a,b] — R*, if it consists
of n weights and nodes, and integrates the functions ¢; exactly with the weight function w
foralli=1,...,2n. The weights and nodes of a Gaussian quadrature will be referred to as

Gaussian weights and nodes respectively.

Definition 2.2 A sequence of functions ¢1,..., ¢, will be referred to as a Chebyshev sys-

tem on the interval [a,b] if each of them is continuous and the determinant

$1(z1) -+ dilza)
(2.51)

Pn(z1) -+ dnlzn)

15 nonzero for any sequence of points T1,...,T, such thata < z1 < Ty3...< T, <b.

The following theorem appears to be due to Markov (see [23, 24]); proofs of it can also

be found in [16] and [14] (in a somewhat different form).
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Theorem 2.11 Suppose that the functions ¢1,...,d2n : [a,b] = R form a Chebyshev sys-
tem on [a,b]. Suppose in addition that w : [a,b] — R is a non-negative integrable function
[a,b] = R. Then there erists a unique Gaussian quadrature for the functions ¢i,...,don

on [a,b] with respect to the weight function w. The weights of this quadrature are positive.

Remark 2.12 When a Generalized Gaussian quadrature is to be constructed, the determi-
nation of its nodes tends to be the critical step (though the procedure of [21, 38, 3] deter-
mines the nodes and weights simultaneously). Indeed, once the nodes z1,z2,...,z, have
been found, the weights wi,ws, ..., w, can be determined easily as the solution of the n x n

system of linear equations
n b
ij - pi(z;) =/ w(z) ¢i(z) dz, (2.52)
=1 ¢

withi=1,2,...,n.

2.5 Convolutional Volterra Equations

A convolutional Volterra equation of the second kind is an expression of the form

o(z) = /am K(z —t)p(t) dt + o(x) (2.53)

where a, b are a pair of numbers such that a < b, the functions o, K : {a,b] — C are square-
integrable, and ¢ : [a,b] — C is the function to be determined. A proof of the following

theorem can be found (for example) in [5].

Theorem 2.13 The equation (2.53) always has a unique solution on the interval [a,b]. If
both of the functions K and o are k times cohtinuously differentiable, the solution ¢ is also

k times continuously differentiable.






Evaluation of PSWVFs and Related

Quantities

The classical Bouwkamp’s algorithm (see, for example, [2]) for the evaluation of the Prolate
Spheroidal Wave Functions ;, as well as the algorithm presented in this chapter for the
same task, are based on the expansion of 1; in a Legendre series of the form
o0
"I’j(m) = Z an Pr(z). (3.1)
n=0
The coefficients oy decay super-algebraically (see Theorems 3.1 and 3.2 below) once & is

sufficiently large.

3.1 Decay of Legendre Coefficients of PSWF's

The following two theorems establish bounds for the rate of decay of the Legendre coeffi-
cients of PSWFs. Throughout this section, we use [a] to denote the integer part of the real

number a.

16
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Theorem 3.1 Suppose that P,(z) is the n-th normalized Legendre polynomial (defined

in (2.7)). Then, for all real positive a and non-negative n,

r
/lez”Pn(a;)da;

= i a /1 % B, () dz + i i B /1 1P, (z) dz (3.2)
et k . n et k . n 3 .
where
2%
ap = (—1)k(—;k—)!, (3.3)
g2k+1
Br = (-1) @ (3.4)
ko = [n/2]. (3.5)

Furthermore, for all integer n > 0 and all integer m > [e-a] + 1,

1. m-1 1 .
/le“”Pn(a;) dz — Z ak/l % P, (z) dz

k=ko
(. 5

n>2(e-al+1), (3.7

— Z ﬂk/l .’E2k+1_P—n(:L‘) dz

In particular, if

then

< (%)"_1 . (3.8)

Proof. The formula (3.2) follows immediately from Lemma 2.1 and Taylor’s expansion

r .
l/le“”Pn(x) dz

of €!2%. In order to prove (3.6), we assume that m is an integer such that
m>le-a]+1. (3.9
Introducing the notation
00 1 . et 1 —
R, = Z ak/ 2k P.(z) dz +1 Z ,Bk/ 2?1 P, (z) dz, (3.10)
-1 -1

k=m k=m
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we immediately observe that, due to Lemma 2.1 and the triangle inequality,

 [a* 2
Fnl < 2 (m m)

k=2m
[o ¢} ak
< Y T (3.11)
k=2m
Since (3.9) implies that
a a 1 1
GmAk 3m <2 "2 (3.12)

for all integer m, k > 0, we rewrite (3.11) as

a’™ 1 1
R (1444
Bl < Gy (“Lz“in+ )

2. a2m
(2m)!’

—~

< (3.13)

and obtain (3.6) immediately using Stirling’s formula. Finally, we obtain (3.8) by setting
m=[e-a]+1. (3.14)

O

Theorem 3.2 Suppose that Py(x) is the k-th normalized Legendre polynomial (defined
in (2.7)). Suppose further that Y¥m, Ay, are the m-th eigenfunction and corresponding eigen-

value of (2.40). Then for all integer m > 0 and all real positive c,

E>2 (e d+1), (3.15)
implies
- k-1/2
/_ 11 o (2) Pa(z) dz| < )Ttn" (%) . (3.16)

Moreover, given any € > 0,

k>2(e-d + 1) +log, (é) +log, (Xl—) (3.17)

m
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implies

<e. (3.18)

Proof. Obviously,

- I—AITI 11 o (2) (/1 eiest B (1) dt> do
< TAIZ‘ (@ 1 / 2t Be(t) di| do (3.19)
Observing that
[ Wom(@)ldz < V2 (3.20
(since ||¢m|| = 1), and introducing the notation
a=cz, (3.21)

we conclude that the combination of (3.19), (3.21), (3.20), and Lemma 3.1 implies that

1 D
|/, ¥ml@) (o) do
1 (1\F1 1
pi(a) [ mtoles
1 (1)10-1/2
< — 1= . 3.22
Now, substituting (3.17) into (3.16), we immediately obtain (3.18). O

3.2 Numerical Evaluation of PSWFs

The classical scheme for the numerical evaluation of prolate spheroidal wave functions is

based on the connection between the PSWFs and the Legendre polynomials. Comparing
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the differential equations (2.47) and (2.5), we immediately observe that PSWF's converge to
corresponding Legendre polynomials as the band limit ¢ approaches zero. Substituting (3.1)
into (2.47), and using (2.2) and (2.5), we immediately obtain the well-known three-term

recursion

(k+2)(k+1)

REF3)@k+5) © 2T
(k(k +1)+ (zikf;;(gg—-ll) 32— Xj) o+ (3.23)

k(k - 1)

. 2. = (J.
Gh—3@h-1) ¢ @2=0

for the Legendre coefficients ay in (3.1). Combining (3.23) with (2.7), we obtain the three-

term recursion

(k+2)(k+1)

2k +3)\/(2k + 5)(2k + 1) Bz +
(k(k +1)+ (22: f;;(lz)k-_ll) - xj) B+ (3.24)
2k — 1)\/k((§k——1:)’>)(2k 1) & Bip=0
for the coefficients ﬂg, { , ... of the expansion
i(x) = ,i Bl Pr(z). (3.25)

In the remainder of this dissertation, we denote by 37 the vector in {2 defined by the formula
& = (83,8, 85-..) (3.26)

for each j = 0,1,2,..., . The following theorem restates the recursion (3.24) in a slightly

different form.

Theorem 3.3 The coefficients x; are the eigenvalues and the vectors B¢ are the correspond-

ing eigenvectors of the operator 12 — 12 represented by the symmetric matriz A given by the
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formulae
2k(k+1) -1 9
= . 27
Ach k(k+1)+(2k+3)(2k—1) ce, (3 )
kE+2)(k+1
Apgrr = k+2)kt]) (3.28)
(2k + 3)/(2k + 1)(2k + 5)
kE+2)(k+1
Aprop = ( i ) ye (3.29)
(2k + 3)/(2k + 1)(2k + 5)
for all k =0,1,2,..., with the remainder of the entries being zero.

In other words, the recursion (3.24) can be rewritten in the form
(A=x;- 1)) =0, (3.30)

where A is separable into two symmetric tridiagonal matrices A.., and A,qq, the first
consisting of the elements of A with even-numbered rows and columns and the second
consisting of the elements of A with odd-numbered rows and columns. While these two
matrices are infinite, and their entries do not decay much with increasing row or column
number, the coordinates of the eigenvectors 37 of interest (those corresponding to the first m
Prolate Spheroidal Wave Functions) decay rapidly (see Theorem 3.2). Thus, the evaluation

of Prolate Spheroidal Wave Functions can be performed by the following procedure:

1. Generate the leading k rows and columns of A, where k is given by (3.17).

2. Separate the generated portion of A into A.., and A,q, and use a solver for the
symmetric tridiagonal eigenproblem (such as that in LAPACK) to compute their

eigenvectors {} and eigenvalues {x;}.

3. Use the obtained values of the coefficients ﬁg ,ﬁ{ , ﬁg, ... in the expansion (3.25) to

evaluate the function 1; at arbitrary points on the interval [—-1,1].

Obviously steps 1 and 2 can be precomputed for any given c. As a numerical diagonalization
of a positive definite tridiagonal matrix with well-separated eigenvalues, this precomputa-

tion stage is numerically robust and efficient, requiring O (¢ m) operations to construct the
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Legendre expansions of the form (3.26) for the first m prolate spheroidal wave functions.
Since m is in general proportional to ¢, the complexity of this scheme is roughly O(c?), with

each subsequent evaluation of a prolate spheroidal wave function costing O(c) operations.

3.3 Prolate Series

Since the functions g, %1, ..., %n, ... constitute an orthonormal basis in L?[—1, 1], any for-
mula for the inner product of Prolate Spheroidal Wave Functions with another function
f is also a formula for the coefficients of an expansion of f into Prolate Spheroidal Func-
tions; we will refer to this expansion as the prolate expansion of f. The following theorem
provides the coefficients of the prolate expansion of the derivative of a Prolate Spheroidal
Wave Function, and the coefficients of the prolate expansion of a Prolate Spheroidal Wave
Function multiplied by z. On the other hand, these coefficients are the entries of the matrix
for differentiation of a prolate expansion (producing another prolate expansion), and the
entries of the matrix for multiplication of a prolate expansion by z, respectively. The formu-
lae in this section, however, are not suitable for the numerical evaluation of such matrices,
since in many cases they exhibit catastrophic cancellation; one stable way to obtain such

matrices is via formulae (3.1) or (3.25).

Theorem 3.4 Suppose that c is real and positive, and that the integers m and n are non-
negative. If m =n (mod 2), then

1

[ 9@ ¥n(@) do= [ c4a(@)¥m(z) dz =0, (3.31)
-1 1

If m # n (mod 2), then

1 2)‘2
[ (@) vmle) de = 5 (L) (D), (3:32)
1 2
[ ota@ tn@ dz = = 5 (1) (1), (3.:33)
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Proof. Since the functions 1; are alternately even and odd, (3.31) is obvious. In order to

prove (3.32), we start with the identity

1
Antn(z) = / ¢iot (1) dt (3.34)

-1

(see (2.41) in Subsection 2.3). Differentiating (3.34) with respect to x, we obtain

Ml (z) =ic / 1 te'Tta (t) dt. (3.35)

-1
Projecting both sides of (3.35) on 1, and using the identity (3.34) again (with n replaced

with m), we have

1
M [ V@) n@) da
= zc/ Y (T / t €%t o (t) dtdz
= icﬁlt'(/)n(t) /_1 €% () dez dt
= ichm / C tn () m (2) dt. (3.36)
-1

Obviously, the above calculation can be repeated with m and n exchanged, yielding the
identity
1 1
Mn [ U@ (@) dw=icda [ 0 (®)$m(t) di; (3.37)

combining (3.36) with (3.37), we have

/«pm ) thn(z) dz = 2 / ¥m (@) ¥4 (2) de. (3.38)

On the other hand, integrating the left side of (3.38) by parts, we have

[ ¥n@n(@) do

= Um0 = Gn(-DIa(D) = [ U@ Ym) dr (339)
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Since m # n (mod 2), we rewrite (3.39) as

1
/ 1¢;n(z> Yn(c) do
= 24m(l / ¥4 () Yim(2) da. (3.40)
Now, combining (3.38) and (3.40) and rearranging terms, we get
L 222,
[, @) ¥n(e) da = 55 (1) (D). (3.41)
Substituting (3.36) into (3.41), we get
1
[ 2ba @) ¥m(@) do
1A [,
= o [ @ @) do
1 A 222,
= sy e ()
2 AmAn
= S ). (3.42)

The following corollary, which is an immediate consequence of (3.38), finds use in the

numerical evaluation of the eigenvalues );.

Corollary 3.5 Suppose that c is real and positive, and that the integers m and n are non-

negative. If m # n (mod 2), then
1
e [ ) n() do
X2
[ (@) o) d

3.4 Numerical Evaluation of Eigenvalues

(3.43)

Although the algorithm of Section 3.2 for the evaluation of Prolate Spheroidal Wave Func-

tions also produces the eigenvalues x; of the differential operator (2.47), it does not produce
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the eigenvalues A; of the integral operator F, (defined in (2.40)). Some of those eigenvalues

can be computed using the formula

1
Ath5(z) = / T (1) dt, (3.44)
-1
by evaluating the integral on the right hand side numerically. Obviously, this scheme has
a condition number of about 1/};, and is thus inappropriate for computing small ;. A

well-conditioned procedure is as follows:

1. Use (3.44) to calculate Ag by evaluating the right hand side numerically at z = 0 (so

that 1o (z) is not small).

2. Use the obtained Ag and Corollary 3.5 to compute the absolute values |\;|, for j =
1,2,...,m. Compute each |A;| from |A;_;| (and again, evaluating the required integrals

numerically).

3. Use the fact that A; = i|);| (see Theorem 2.8) to finish the computation.



Quadrature and Interpolation

In this chapter, we construct quadratures and interpolation schemes based on Prolate
Spheroidal Wave Functions. As a matter of convention, all prolate functions ; of this

chapter correspond to the band limit ¢, which we omit from the notation.

4.1 Quadratures for Band-Limited Functions

Since the prolate spheroidal wave functions g, 41,...,%n,... constitute an orthonormal
basis in L?[-1,1],

o]

ert = 3 ( /_ 11 &7 () df) i (8) (4.1)

j=0
for all z,¢ € [—1,1]. Substituting (2.41) into (4.1), we have

eiczt = Z /\j ’I,[)j (.’II) ’I,[)j (t) ; (4.2)
=0

The following theorem provides a basis for the construction of quadratures for band-limited

functions with Prolate Spheroidal Wave Functions.

26
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Theorem 4.1 Suppose that the n-point quadrature with nodes 1, zs,...,z, € (—1,1) and

wetghts wy,wa, ..., wy, integrate exactly each of the functions ¥g,11,...,%¥Ym-1, So that
n 1
> witilon) = [ (o) de. (43
k=1 -1
Then, for all a € (—1,1) and real positive c,
n , 1 o)
Zwkezcazk__/ gicas o SM(TL'W'M+\/§) Z Al (4.4)
k=1 -1 j=m
with
W = 1rélja<x |w;], (4.5)
M= max (max o) v5(@)) (46)

Proof. Obviously,

n

. P
w e’lCaIk — ezca:c d.’L‘
Zwk(ZwJ zb]zk) /(Zw] ) 5, @D

which is equivalent to

1

n
Zwk elCaTk _/ etce dn

-1
Z )\ ’4[7] (Z Wk ’4[7] T) / ’4[7] ) ) (4°8)

due to (4.3). Since for all j > 0, the functions %); are analytic in C and have unit norm on
[—1,1], there exists a constant M defined by (4.6) (see, for example, [20], p.160). Now, the

combination of (3.20) and the triangle inequality converts (4.7) into (4.4). 0

Remark 4.2 From Theorem 4.1, it is easily seen that the error of the integration (4.4)

is proportional to |Ap|, provided that m is in the range where the eigenvalues {\;} decay
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exponentially (as is the case for quadratures of any useful accuracy; see Theorem 2.9). The
constant factor of the error is determined by the combination of the magnitude of the weights

{w}, the number of quadrature nodes, and the bound M of PSWFs.

The existence of an n/2-point quadrature that is exact for the first n Prolate Spheroidal
Wave Functions follows from the combination of Theorems 2.11 and 2.8. An algorithm for
the numerical evaluation of nodes and weights of such quadratures can be found in [3]. An
alternative procedure for the construction of quadrature formulae for band-limited functions
(leading to slightly different nodes and weights) is described in the next section. In Chapter 6

below, we give a numerical comparison of the two algorithms.

Remark 4.3 The above text considers only the error of integration of a single exponential.

For a band-limited function g : [-1,1] — C given by the formula
1 )
g(z) = / G(t) et g, (4.9)
-1
with function G : [~1,1] — C, the error is bounded by the formula

< e-|Gl, (4.10)

S wg(ex) - [ o) d
2 wrglon) = | 9(a) do

where € is the mazimum error of integration (4.4) of a single ezponential, for any t €
[-1,1]. While ||G|| might be much larger than llgll—1,1) (when, for instance, g = 30.n), if
we extend g to the rest of the real line using equation (4.9), then by Parseval’s formula,
NGl = |lgll(~c0,00); that is to say, although the bound on the error of such a quadrature when
applied to a band-limited function is not proportional to the norm of that function on the

interval of integration, it is proportional to the norm of that function on the entire real line.

4.2 Quadrature Nodes from Roots of the PSWFs

An alternative approach to that of the previous section is to use roots of appropriate Pro-

late Spheroidal Wave Functions as quadrature nodes, with the weights determined via the
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procedure described in Remark 2.12. The following theorems provide a basis for this con-
struction. Numerically, the resulting quadrature nodes tend to be inferior to those produced
by the optimization scheme of [21, 38, 3] (see Chapter 6); however, the former are useful
as starting points for the latter, or as somewhat less efficient nodes which can be computed

much faster.

4.2.1 Euclid Division Algorithm for Band-Limited Functions

The following two theorems constitute a straightforward extension to band-limited functions
of Euclid’s division algorithm for polynomials. Their proofs are simple, but are provided

for completeness.
Theorem 4.4 Suppose that o,¢ : [0,1] — C are a pair of c2—functions such that

o(1) #0, (4.11)

c is a positive real number, and the functions f,p are defined by the formulae

1 X
f(z) = / o(t) €2t dt, (4.12)
0
1 .
p(z) = | o(t) e dt. (4.13)
0
Then there ezist two c'-functions ,€ : [0,1] = C such that
f(z) = p(z) q(z) + r(z) (4.14)
for all x € R, with the functions q,r : [0,1] — R defined by the formulae

@)= [ nte) e (4.15)
1

r(z) =/0 £(t) et dt. (4.16)
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t

Figure 4.1: The split of integration range that yields (4.19)

Proof.

Obviously, for any functions p, g given by (4.13), (4.15),

p(z) q(z)

1 . 1 .
/0 o(t) et dt - /0 n(t) e dr
1 1 _
= / / () (1) ) dr dt.
0 Jo

Defining the new independent variable u by the formula
u=1+T7,

we rewrite (4.17) as

(see Figure 4.1). Substituting (4.12), (4.16), and (4.19) into (4.14), we get

/ “”””/(pu 7)n(7) dr du

/ em””/ elu—1)n(r )deu+/ £(t) e’®t gt
1 -1

1/2 ) .
=/ o (t) e?icet dt+/ o(t) ¥ dt,

0 1/2

30

(4.17)

(4.18)

(4.19)

(4.20)
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Due to the well-known uniqueness of the Fourier Transform, (4.20) is equivalent to two

independent equations:

1/2 )
/ icuz / ou—T1)n(7) drdu + / £(t) e dt = / o(t) e¥eet dt, (4.21)
0

1 .
/ icus / o(u—7)1(r) dr du = / o (t) €%t dt. (4.22)
1/2

Now, we observe that (4.22) does not contain £, and use it to obtain an expression of 7 as
a function of ¢ and 0. After that, we will view (4.21) as an expression of £ via ¢, o, 7.

From (4.22) and the uniqueness of the Fourier Transform, we obtain

/ul_l plu—7)n(7) dr = %a (g) , (4.23)

for all u € [1,2]. Introducing the new variable v via the formula
v=u-—1, (4.24)

we convert (4.23) into

/vl(p(v+1—7')7)(7') dr=%a(v;1> , (4.25)

which is a Volterra equation of the first kind with respect to 5. Differentiating (4.25) with

respect to v, we get

1 v
o)) + [ P ori-nn(r) dr = 1o (122), (4.26)

which is a Volterra equation of the second kind. Now, the existence and uniqueness of
the solution of (4.26) (and, therefore, of (4.23) and (4.22)) follows from Theorem 2.13 of
Chapter 2.

With 7 defined as the solution of (4.23), we use (4.21) together with the uniqueness of

the Fourier Transform to finally obtain

u

éw) =50 (3) - [ e o (4.27)
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for all u € [0, 1].

The following theorem is a consequence of the preceding one.

Theorem 4.5 (Division Theorem) Suppose that o,y : [~1,1] = C are a pair of c?—functions
such that p(—1) # 0, p(1) # 0, c is a positive real number, and the functions f,p are defined

by the formulae
f(z) = / Y o(t) st gy, (4.28)

-1
1 .
p(z) = [ o(t) e di. (4.29)
-1
Then there ezist two c'-functions n,¢ : [~1,1] = C such that
f(z) = p(z) ¢(z) + r(z) (4.30)
for all z € R, with the functions g,r: [-1,1] = R defined by the formulae
1 .
a@) = [ et d, (431)
-1
1 .
r(z) = / £(t) et dt. (4.32)
-1

Proof.

Defining the functions f4, f-,p4+, p—, by the formulae

filz) = /0 L o(t) Bt gt (4.33)

fo(z) = /_ Olo'(t) e%icat gy (4.34)

pe(@) = [ o a, (433)
0 .

p—(z) = /_ ()t dt (4.36)

we observe that for all z € R,

f(z) = f+(z) + f-(x), (4.37)
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p(z) = p4(z) +p-(2)- (4.38)

Due to Theorem 4.4, there exist n4, n—, {4, {~, such that
f+(@) = p4() ¢4 () + 4 (2), (4.39)
f-(z) = p-_(2) ¢-(2) + r_(z), (4.40)

with the functions ¢,4,q..,r4+,7— defined by the formulae

00(@)= [ me® e a, (@41)
0 ) .
g-(z) = /—1 n—(t) e dt, (4.42)
1 .
re(@) = [ ey e a, (4.43)
0 ,
r_(z) = /_ (e . (4.44)
Now, if we define ¢ by the formula
q(z) = q-(z) + ¢+ (z) (4.45)
for all z € [-1, 1], we have
p(z)a(z) = (p-(z) +p+(2)) - (¢-(z) + ¢4 (2))
= p+(2) 4+(7) + p-(2) ¢ (7) + p-(2) ¢+ (z) + p+(2) ¢ (2), (4.46)

and we define r(z) by the formula
1() = 7—(2) + 74(2) — (p-(2) 4 (&) + P+ (=) 4_(z). (.47
The product p. (z)g_(z) is given by the formula
pr@a-@ = [ [ 600 dvar. (4.48)

Since —1 < t+ 7 <1 in the integral in (4.48), the product p+(z)q_(z) has the appropriate

band limits; likewise for p_(z)g+(z).
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4.2.2 Quadrature Nodes from the Division Theorem

In much the same way that the division theorem for polynomials can be used to provide a
constructive proof of the existence of Gaussian quadratures, Theorem 4.5 provides a method
of constructing generalized Gaussian quadratures for band-limited functions.

To construct a quadrature for functions of bandwidth 2¢, we use the Prolate Spheroidal
Wave Functions corresponding to bandwidth c¢. Thus the eigenvalues {);} and eigenfunc-
tions {1/} of this section, as well as elsewhere in the dissertation, are those corresponding to
bandwidth c. The following theorem provides a bound on the error of a quadrature whose
nodes are the roots of the n-th Prolate Spheroidal Wave Function ,,, when applied to a

function f that satisfies the conditions of the Division Theorem.

Theorem 4.6 Suppose that ©1,2,...,%, € R are the roots of ¥, on the interval [—1,1].

Let the numbers wy,wa,...,w, € R be such that

S wkts(en) = [ y(a) de, (4.49)
k=1 -1

forallj =0,1,...,n—1. Then for any function f : [~1,1] — C that satisfies the conditions

of Theorem 4.5,

n 1
Sufo) - [ (@) do
< Dhal-linll + 180 30 Pl - (2+Z|wkl), (450)
j=n k=1

where the functions 1,£ : [~1,1] = C are as defined in Theorem 4.5.

Proof. Since f satisfies the conditions of Theorem 4.5, there exist functions ¢, 7 : [-1,1] —
R defined by (4.31),(4.32) such that
f(z) = ¢n(z) q(z) + r(z). (4.51)
Then, defining the error of integration Ey for the function f by
n 1
- wief(or) - [ f(o) do
k=1 -1

Ej = , (4.52)
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we have
n 1
By = |3 wk (halar)alar) + rlar)) - / (Wn(a) a(e) + r(z) de
< Zwk% ) q(zk) / Yn(z) g(z) dz
+ Zwkr(a:k) —/ r(z) dzj . (4.53)
k=1 -1
Since the nodes {z} are the roots of 1y,
Z wi Y (k) g(zk) = 0. (4.54)
Thus
Ef < /i Yn(z) g(z) dx| + > - /_117"(2:) dz|. (4.55)
On the other hand,
1 1 1 .
/_1¢n(z) g(z)dz = /_11,/;n(x) /_1 n(t) e'“*t dt dz
_ ! ! icxt dr dt
= [ 20 [ $al@) e do
= [ 10x0 (4.56)

Using the Cauchy-Schwartz inequality, and the fact that ¢, has unit norm, (4.56) implies

1
[ #n(@) g(a) do

that
< nf- il (4.57)

We also have
n 1
Zwkr(xk) —/ r(z) dz
k=1

- (L) ([ o)

lc
_ / o) (S — [ ot az ) (458)
-1 — k -1 . '
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Substituting (4.4) into (4.58), and using the Cauchy-Schwartz inequality, we get
1

E:umra% ./ T

1

-

k=1 =n

- /_ 1 (Z A 5(1) ¢j(x)) dx) dt

< usu-Z}Ajl-uwjn?,o-<2+f:1wk|)- (4.59)
j=n k=1

Combining (4.55), (4.57), and (4.59), we get

< Dl Dl + HEl -2 (2] sl - (2+ > Iwkl) : (4.60)
k=1

j=n

Remark 4.7 The use of Theorem 4.6 for the construction of quadrature rules for band-
limited functions depends on the fact that the norms of the band-limited functions q and r in
(4.51) are not large, compared with the norm of f (both sets of norms being on [—oo, 00]).
Such estimates have been obtained for all n > 2c/m + 10log(c). In this dissertation, we
demonstrate the performance of the obtained quadrature formulae numerically (see Chap-

ter 6 below).

Remark 4.8 It is natural to view (4.51) as an analogue for band-limited functions of the
Euclid division theorem for polynomials. However, there are certain differences. In particu-
lar, Theorem 4.4 admits extensions to band-limited functions of several variables, while the

classical Euclid algorithm does not.
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4.3 Interpolation via Prolate Spheroidal Wave Functions

Given a fixed sequence of functions ¢1,¢2,...,¢n : [a,b] = C, an interpolation scheme of

f :[a,b] = C in functions {¢;} is given by the formula

f@) =c11(z) + c2d2(z) + ... + cn ¢n(z), (4.61)

with the coefficients ¢;,cy,...,c, usually determined by solving an n X n linear system
from the values of f at the n interpolation nodes. The functions ¢; are referred to as the
interpolation functions, and the formula (4.61) is then used to evaluate f wherever needed.
As is well known, if f is well-approximated by a linear combination of the interpolation
functions, and if the linear system to be solved is well-conditioned, this procedure is accurate.

As shown in Section 4.1 in the context of quadratures, a linear combination of the
first n prolate spheroidal functions g, %1,...,%s—1 for a band limit ¢ can provide a good
approximation to functions of the form e*“*!, with ¢ € [~1,1] (see (4.2), (4.4)). In the regime
where the accuracy is numerically useful, the error is of the same order of magnitude as
|An|. This, in turn, shows that such linear combinations provide a good approximation (in
the same sense as in Remark 4.3) to any band-limited function of band limit c¢. Thus, if
%o, ¥1,...,%n-1 are used as the interpolation functions, they can be expected to yield an
accurate interpolation scheme for band-limited functions, provided that the matrix to be
inverted is well-conditioned.

The following theorem shows that if the interpolation nodes are chosen to be quadrature
nodes accurate up to twice the bandwidth of interpolation, with the quadrature formula
being accurate to more than twice as many digits as the interpolation formula is to be
accurate to, then the matrix inverted in the procedure is close to being a scaled version of

an orthogonal matrix.

Theorem 4.9 Given a real ¢ > 0, suppose that the numbers wi,ws,...,w, € R and
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I1,T2,...,Tn € R are such that

. i )
/ e2zcaa: dr — Z ,wje2zca:cj <€
-1 :

Jj=1

for all a € [~1,1]. Let the matriz A be given by the formula

(1/10(931) Yi(z1) ... Yn-ai(z1)
Yo(z2) Y1(x2) ... Yn-1(z2)

1/)0(xn) "/)l(xn) "/’n—l(fvn))

let the matriz W be the diagonal matriz whose diagonal entries are wy,ws,...

the matriz E = (e;x) be given by the formula

E=1-A"WA.
Then
lese] < 2¢
% Aj—1Ak-1]

Proof. Clearly
n
ek = 0jk — 3 wij—1(z1) Yp—1(z1),
=1
where §; ; is the Kronecker Delta function. Using (2.41), (4.66) becomes

.
€jr = Jk"zwl . <=—_/1€_wzlt’l/1j_1(t) dt)

J 1

: (ﬁ‘l‘ /1 e g 1(7) dT)
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(4.62)

(4.63)

, Wp, and let

(4.64)

(4.65)

(4.66)

= JJk_ A / / Yji-1(t) Yr—1( Zwle ent 1T ddr.  (4.67)
—1Ak-1

Using (4.62), (4.67) becomes

ejk = 0k — m/ / Pj-1(t) Yr-1(7)

1
. (/ et giOST (s fs(t—+—7)) dtdr,
-1

(4.68)
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where f. : [-2,2] — C is a function that satisfies the relation

'fs(x)l <§g,

for all z € [—2,2]. Thus,

1 . .
ejx = Ojk— -}'\——1—};—1'/ / Pi-1(t) Yr—1(7 )/le'z“t e dsdtdr
j -

+m/ / Yj—1(8) Ye-1(7) fe(t + 7) dtdr.

Using (2.41), (4.70) becomes
1
ek = Ok —/_1 Pj—1(8) PYr-1(s) ds
1 1 .
X /_1 ¥k-1(7) /~1 Pj-1(t) fe(t + 1) dtdr,

which becomes

/wkl /z/)“ ) fo(t +7) dtdr,

ek = 5
j
Aj— 1)\k 1
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(4.69)

(4.70)

(4.71)

(4.72)

due to the orthonormality of the functions {t;}. Finally, using the Cauchy-Schwartz in-

equality, we have

1] 1 3
lejr] < VRS VY lvk—1ll \//_1 ‘/_l’l,[)j_l(t) fo(t +7) dt| dr
1 Y e [
< m \//_1 -1l /_1 |[fe(t +7)|2 dt dr

1 1 1
= | t+7)2 dt d
Aj—1Ak-1 \//-1 /—1 fet+ )] 7

2e
Nj—1Ag—1]|

(4.73)

It can be easily seen from Theorem 2.9 that the number NV of eigenvalues needed for a

bandwidth of 2¢ and an accuracy of €2 is roughly twice the number of eigenvalues needed
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for a bandwidth of ¢ and an accuracy of . Thus a generalized Gaussian quadrature for a
bandwidth 2c and an accuracy €2 has roughly the same number of nodes as those needed
for interpolation of accuracy ¢ and bandwidth c.

In our numerical experiments, this correspondence was found to be much closer than
the rough bounds in Theorem 2.9 indicate. In the results tabulated in Chapter 6, the
number of nodes for an interpolation formula of a desired accuracy ¢ was always chosen to
be the number of quadrature nodes for a desired accuracy €2 for twice the band limit. The
correspondence between the desired accuracy and the experimentally measured maximum
error can be seen in Tables 6.3 and 6.4.

The coefficients ¢, cq,. .., c, produced by this interpolation procedure (see (4.61)) can,
of course, be used for evaluating derivatives or indefinite integrals of the interpolated func-

tion, as they can for computing the function itself.






Asymptotic Expansions

In this chapter, we present asymptotic expressions for Prolate Spheroidal Wave Functions
and corresponding eigenvalues at large bandwidths. These formulae are built upon a connec-
tion between PSWFs and Hermite polynomials, instead of the connection between PSWF's
and Legendre polynomials. The latter is the basis of the classical evaluation scheme pre-
sented in Chapter 3. Nevertheless, the underlying procedure for constructing the asymptotic
formulae of this chapter is a diagonalization process performed on symmetric tridiagonal
matrices, as is the case in the classical scheme.

This chapter is organized as follows. In Section 5.1, we introduce the five-term recursion
that connects a Prolate Spheroidal Wave Function to an arbitrary set of Hermite functions.
We then show that a specific choice of Hermite functions reduces the five-term recursion to
a three-term recursion. In Section 5.2, we analyze the resulting three-term recursion, and
introduce several analytical facts which we will use in the construction of the formulae of
this chapter. We present the obtained asymptotic formulae in Sections 5.3-5.5. Section 5.3
and Section 5.4 contain two sets of formulae for PSWFs, differ from each other by a scaling
factor. Section 5.4 also include formulae of a slightly higher order for v and ;. We present

the formulae for corresponding eigenvalues of equation (2.47) in Section 5.5.

41
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eigenvalue eigenvalue

5.1 Recursion Relations

We start with revisiting the differential equation (2.47), and introduce the differential op-

erator G, as follows: given a real ¢ > 0, G, is defined by the formula

Ge(¥)(z) = (1 = 2%)9"(2) — 229/ (2) — P 2® P(a). (5.1)

As is easily seen, G, is linear and self-adjoint. The following theorem is an immediate

consequence of Theorems 2.2, 2.3, 2.4.

Theorem 5.1 Suppose that a # 0 is real, and that {¢}} are the sequence of Hermite
functions for the weight function e=%'*" (defined in (2.80) ). Then, for any non-negative

real number ¢ and any integer n > 0,

2
Ge(dn) (z) = ~Z2 dn,i * $ny2i(2) 5 (5.2)
i—
where
dn—g = —% V=3 +nv=2+nv-n+n2, (5.3)
Gy = 5o (@2 =0) (P +0) Vomtn2, (5.4
dno = —-ﬁ (-—3(12 +2a*+2% - 2a¥n+4a'n+4cfn— 2a2n2) , (5.5)

1 2 2 </ 2

dn,1 t e (a “c) (a +c) 2+3n+n%, (56)
1

dna = ——Z\/3+n\/4+n\/2+3n+n2, (5.7)

forn >4, and

d3 -2 = dz,_z =0, (5.8)

di 2 = do—2=0, (5.9)

3

di1 = d(),_l =0. (5.10)

1
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Suppose now that 1, is an eigenfunction of G.. Obviously, for all a # 0, ¥, can be

expanded in the Hermite series given by the formula

=" op ¢ (x) (5.11)
n=0

(see Theorem 2.5). The following theorem gives the five-term recursion for the coefficients

o, and is the principal purpose of this section.

Theorem 5.2 Suppose that xm, ¥m are the m-th eigenvalue and eigenfunction of the dif-
ferential operator G.. Suppose further that af*, oT*, o3, ... are the coefficients of the expan-

sion (5.11). Then, for alln > 4, o satisfy the five-term recursion

—211-\/—3+n\/—2+m/——m o,
P (az—c) (a2+c) V-n+n?-aT,
+(xm— Z—i—f (——3a2+2a4+2c2—2a2n+4a4n+4czn—2a2n2)> -oy’
L (@) (@) VETIT e
—immm-aﬁ+4=0, (5.12)

where c is the bandwidth parameter in (2.47). Furthermore,

(xm— 412 ( 3a2+2a*+2¢ ))-a()"

+\/§1a2 (a2_c) (a2+.c)-a§"—% 6-al =0, (5.13)
(3= 7z (-70* + 60" +62) ) -ar
5—( -¢) (« +C)‘/6'agl—%m'a?=0, (5.14)

T (-9 ()
" (X"‘ - Z%Tz (~150% +10a* + 108)) o

-i-ai2 (a2——c) (a2+c) V3o - 3

2\/2_0~a’6"=0, (5.15)
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3 (#2=¢) (¢ +¢) V6 -a
" (X'" - 12—2 (-270* + 14" + 1462)) -af

+2_i_2.(a2_c) (a2+c) \/éﬁ-ag"—-;- 210- 0" =0. (5.16)

Proof. Applying G, to both sides of (5.11), we obtain

Ge($im)(z) = G (z o7 ¢:<x>) . (5.17)
n=0
Swapping the orders of the sum and G, we have
Ge(¥m)(z) = 3_ off Ge(¢r)(z). (5.18)
n=0

Due to Theorem 5.1, we have that for all n > 0,

2
Ge(d2)(z) = D dnyi- ¢4 0i(2), (5.19)

=2

where d,, ; are given by (5.3)—(5.10). Substituting (5.19) into (5.18), we get

00 2
Ge(Ym)(z) = Z an' Z dni* ¢%+2i(x) ) (5.20)
n=0 1=—2
which is equivalent to
00 2
Gc("pm)(x) = Z ( Z a:ln_% dn—2i,i) : ¢%(IL‘), (5.21)
n=0 \i=-2

with the additional definitions that d_4; = d_3; =d_o; =d_;; =0 forall -2 <7 < 2,
and that oy = o™ = o™ = o™ = 0. On the other hand, we have
o0
Ge(¥m)(z) = -1;)02" Xm - $r(2) - (5.22)
Comparing the corresponding coefficients for ¢2(z) in (5.21) and (5.22), we obtain the re-
cursion (5.12). Repeating the above exercise and setting n = 0, 1,2, 3 respectively, we obtain

formulae (5.13) through (5.16). O
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Introducing the notation u™ as the vector in [? defined by the formula

pm = (aen,agn, a?? o) (5.23)

we restate Theorem 5.2 in a slightly different form below.

Theorem 5.3 Suppose that B is a symmetric matriz defined by the formulae
1
bnpn = Y (—-3(12 +2a*+2c? —2a’n+4a*n+4cfn- 2a2n2) , (5.24)

bnnts = ! (a2 - c) (a2 + c) V2+3n+n2, (5.25)
bnton = (a2 - c) (a2 + c) V2+3n+n2, (5.26)

)
o
N

2a?
1
bunts = —7/(n+Dn+2)(n+3)n+4), (5.27)
1
buran = —7 Vi + D(n+2)n+3)(n+4), (5.28)
for all n = 0,1,2,..., where all other entries are zero. Suppose further that xm is an

eigenvalue of G., and that u™ 1is the vector defined by (5.28) and (5.11). Then —xm and

u™ are eigenvalue and corresponding eigenvector of B, for all integers m > 0.

In other words, in the basis consisting of the functions ¢§, %, ¢%, ..., the differential equa-
tion (2.47) has the form
(B+xm-I)-p™=0. (5.29)

An inspection of the formulae (5.24)-(5.28) immediately yields the following observation.

Observation 5.4 Suppose that
o’ =c. (5.30)

Then the matriz B defined by (5.24)-(5.28) is tridiagonal.

Combining Observation 5.4 with Theorem 5.3, we introduce the tridiagonal matrix B¢
below, which is the matrix representation of G, in the basis consisting of the Hermite

functions ¢(‘)/z,¢}/a,¢5/z,...,.
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Definition 5.1 We defined the tridiagonal matriz B® = (b ;) by the formulae

1
b = —(2n+1)c+ (3+2n+2n%), (5.31)
1
fae = —7/O+ D +2)(n+3)(n+4), (5.32)
1
fran =~/ DR+ +3)(n+4), (5.33)
where n =0,1,2, ..., and the remainder of the entries being zero.

5.2 Construction of Asymptotic Expansions

We observe that all diagonal elements of B¢ are proportional to ¢, while all subdiagonal
elements are independent of c. Dividing all entries of B¢ by ¢, we introduce the tridiagonal
matrix T defined by fhe formula

T - 1

Z.Bec. 5.34

- (534)
Clearly, if (xm,u™) is a pair of eigenvalue and eigenvector of B, then (Kc—"l, u™) is a pair

of eigenvalue and eigenvector of T'. In other words, in the basis consisting of the functions

(,bo‘/é, qb}fé, d)%/E ,. .+, the differential equation (2.47) can be written in the form

(T+Z<Z"1. )-u’"=0- (5.35)

1
Now, all entries of T' (defined in (5.34)) depend on - To emphasize this dependency,
we introduce the notation

=1
c

, (5.36)
and denote by T'(h) the matrix T in the remainder of this chapter.
Observation 5.5 For h = 0 (that is, for ¢ = o), T(0) is diagonal. Under this condi-

tion, the diagonal elements to,t1,1,.-.,tnn,. .., which assume the values of —1, -3, —5,.. .,

—(2n+1),..., respectively, are the eigenvalues and the only eigenvalues of T(0). In other



Chapter 5. Asymptotic Expansions 47

words, the m-th Prolate Spheroidal Wave Function 1, projects only on the m-th Hermaite
Functions g{%a for ¢ = oo; all projections of 1y, on other Hermite Functions are zero. For

all 0 < ¢ < 00, T(h) is tridiagonal.

Obviously, T'(h) can be viewed as a perturbation from T'(0) when h is sufficiently small.
The theorem below summarizes several well-known facts in the classical perturbation theory
pertaining to the linear operator 7. A proof (of a more general form) can be found in any
classical treatise on perturbation theory for linear operators, for example [15].

We first introduce a notation for describing certain fiﬁite submatrices of T'(h). Supposing
that integers u, v are such that 0 < g4 < v, and denoting the (7, j)-th element of T'(h) by
tij, we define T#*(h) as the (v — p + 1) by (v — p + 1) submatrix of T'(h) given by the

formula

tu,u tuptl
tutlp  fptlptl  fptlps2

T*(h) = bt 2,ut1 : : : (5.37)

tu—-l,u—l tu—l,u

L tu,u—- 1 tu,u A

Theorem 5.6 Suppose that T'(h) is the linear operator defined in (5.84) and (5.81)-(5.33).
Then, for all integers 0 < my < my and sufficiently small h, T™™2(h) has (my —m1 + 1)
isolated eigenvalues xo(h) < x1(h) < ... < Xmg—m,. Moreover, for all integers 0 < i <
my — my, Xi(h) is holomorphic in a neighborhood of h = 0. Furthermore, for all integers
0 < i < my — my, the corresponding eigenvector pi(h) € I™2~™+L is holomorphic in a

neighborhood of h = 0.

Observation 5.7 An inspection of the formulae (5.81)-(5.33) shows that for all integers
0 < u < v and sufficiently large c, the matrices T*¥(h) are diagonally dominant. The
eigenproblem for such matrices (i.e. symmetric, tridiagonal and diagonally dominant) can

be solved effectively using any classical technigues, such as the Inverse Power Method.
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The following two theorems summarize several technical facts regarding the asymptotic
formulae we are to construct. We omit the proofs to these theorems, and show the conver-

gence order numerically in Chapter 6.

Theorem 5.8 Suppose that y, is the m-th eigenfunction of G., and that ™ are the Her-
mite ezpansion coefficients (defined in (5.11) ) in the basis {¢]\/E} Then, for all m,n >0,
if m # n(mod 4), then

=0; (5.38)

m
an

if m = n(mod4), then o} are non-vanishing polynomials of 1/c. Furthermore, if 1, is
scaled such that ot =1, then o 4, = O(c7Wl), for all 5 > —[m/4] (where [m/4] denotes
the integer part of m/4).

Theorem 5.9 Suppose that integers m,l > 0, h is sufficiently small, and X is the m-th

eigenvalue of the differential operator G.. Suppose that
p = min(m,l), (5.39)

and that p™ = (of’,...,Qp'y .. ., Oy .00, ) € 12 is the vector consisting of coefficients
for the Hermite expansion of 1¥m in the basis {qu‘/z} (see (5.23) ). Suppose further that the
eigenvalues of T™ P+ (h) are ordered such that %_p(h) < X—ps1(h) < ... < %i(h), and
that the (p + 1 + 1)-dimensional vector (v—p(h),v—p41(h),...,vo(h) = 1,v1(h),...,v(h)) is

an eigenvector corresponding to xo(h). Then,
Xm — Xo(R) = o(R*); (5.40)
forall -p<j <1,
o, — vi(h) =.o(hl). (5.41)

Theorem 5.9 shows that for sufficiently large c, the appropriate eigenvector of the trun-
cated submatrix T™~P™+(h) provides an asymptotic expansion of ¥, in qu‘-/z to the order

of I.
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Before we proceed to describe our algorithm of the construction of asymptotic expansions

for prolate functions, we introduce one last notation below. Clearly, each element of T'(h)

only interacts with every fourth elements, therefore T'(h) separates into four submatrices,

which we will denote by T°(h), T'(h), T?(h) and T3(h), respectively. These four matrices

are defined by the formulae

where 1 =0,1,2,..

Example 5.1 The 5 by 5 submatriz T3 (h)

_1+3h ~/3h
0 —\/ﬁ-h
0 0

0 0

0

wand 5 =0,1,2,...,.

t4i 45,

tair1,45+1

ta4i12,45+2,

t4i+3,45+3

—-v105-h
147h

-17 +

-3

165

0

2

4

- h

of T°(h) is shown below.

0 0
0 0
165
-3/ -h 0
~25 + ——315” ~/2730 - h
47h
VIR h 33+

4

(5.42)
(5.43)
(5.44)

(5.45)

(5.46)

Thus, formulae for eigenvalues x,, and the coeflicients a;' of the Hermite expansion of

1¥m can be obtained by the following procedure.

1. Separate T(h) into four matrices T°(h), T (h), T2(h), T3(h), and choose T*(h) where

k = m mod 4.

2. Determine the size ! of the truncated matrix (see Theorem 5.9) necessary for the

required order.

3. Truncate T*(h) around the m-th diagonal element and create the matrix T*m—tm+,

if m < [, create the matrix

Tk,O,m+l_
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4. Compute Xo, v(h) (see Theorem 5.9) using the Inverse Power Method.

5.3 Formulae for Non-Normalized PSWPFs

We have implemented the scheme described in the previous section in Mathematica and
obtained several new asymptotic expansions. We present these expansions in the next three
sections.

This current section and Section 5.4 both consist of formulae for PSWFs. These formulae
differ only in the sense of scaling: the coeflicients in this section are scaled such that the
projection of the m-th prolate spheroidal wave function on the m-th Hermite function ¢n‘<z
is 1, while the coefficients of the next section are scaled so that the prolate functions have
unit norm on the interval [-1,1]. We denote the m-th Prolate Spheroidal Wave Function
scaled in this section by ¥m, and assume it has an expansion of the form

n n P n
Pm(@) =Y Gij eI Y@ + S S Biy T G (@) 4O (Y. (5.47)
i=0 j=0 i=1j=0
The number 7 in (5.47) is often referred to as the order of the expansion; the coefficients &; ;
are real constants, and the integer p is the minimum of [m /4] (i.e. the integer part of m/4)
and n. As mentioned before, the functions ¢]‘-/E are the Hermite functions corresponding to
the weight function e’

The following are coefficients of the expansion (5.47), accurate to the fifth order.

&g = 1 (5.48)
agy = 0 (5.49)
G2 = 0 (5.50)
aps = 0 (5.51)
G4 = 0 (5.52)

dos = 0 (5.53)
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01,4

a5

Q9,0

Q9.1

Qg2

G923

024

025

030

0

-1
EE\/24+50m+35m2 +10m3 + m4
-1

128
-1

65536
V24 +50m + 35m? + 10m3 + m4 )
-1
262144
+17277m? + 2352m® — 33m* + 6m5))

-1

((5+2m) V24+50m + 35m? + 10m? + m)

((4832 +3514m + 715m2 — 6m® + m4) :

(V24 +50m + 35m2 + 10m3 + m? (47200 + 47662

100663296

+67091736 m + 33702288 m? + 8077280 m> + 828745 m?

—14020m® + 2806 m® — 4m” + ms))
0

0

1
2048

V/(5+m) (6-+m) (7+m) (8+m)

L
4096

VE+m) (6+m) (7T+m) (8+m) (T+2m)

1
3145728

V(B+m) (6-+m) (7T+m) (8+m)-

(1+m)(24+m) (B3+m) (4+m)-

(1+m) (2+m) (3+m) (4+m)-

J1+m) @+m) (3+m) (4+m)-

(18672 +9882m + 1451 m? — 6 m3 + m4)

1
3145728

V/(5+m) (6+m) (7+m) (8+m)-

V(L +m) 2+m) (3+m) (4+m)-

(70824 + 52470 m + 14109 m2 + 1396 m3 — 9m* + 2 m5)

0

(V24+50m + 35m? + 10m3 + m? (53561856
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Q3.1

03,4

a3.5

G40
78]
02
03

Olg 4

Q45

0

0

-1
196608
V(5 +m) (6+m) (7+m) (8+m)-

(\/(1 Tm) (2+m) (3+m) (4+m)

V©O+m) (10+m) (11+m) (12 + m))

-1
262144

V(5+m) (6+m) (7+m) (8+m)

(\/(1 +m) (2+m) (3+m) (4+m)-

VO+m) (10+m) (11 +m) (12 +m) (9 +2m))

-1
268435456

V/(5+m) (6+m) (7+m) (8+m)

VO +m) (10+m) (11 +m) (12 +m).
(51392 +21370m + 2443m2 — 6 m3 + m4))
0
0
0

0

1
25165824

V/(5+m) (6+m) (7+m) (8+m)-

\ﬂg—f—m) (10+m) (11 4+ m) (124+m) -

V(13 +m) (14 +m) (15+m) (16 +m)
1
25165824

\/(5+m) (6+m) (7T+m) (8+m)-

V(O +m) (10 +m) (11+m) (12+m)-

(\ﬂl Tm) 2+m) B+m) (4+m).

VL +m) (2+m) 3+m) (4+m)-

J(L+m) (2+m) (3+m) (4+m)-
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Q5.0
a1
Q5.2
Q5.3
Gi5.4

as5

BI,O
B
Bra
Bl,3

B4

:31,5

B2,0
B2,1

/(13 +m) (14 +m) (15 +m) (16 +m) (11+2m)
0
0
0
0

0
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4026531840
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<\/(1+m) (2+m) (3+m) (4+m)

V(9 +m) (10+m) (11+m) (12 +m)-

V(13 +m) (14 +m) (15 +m) (16 +m)-

JAT+m) (18+m) (19+m) (20+ m))

0

1
32
1

128
1

65536
+739m2 + 10m® + m4)

1
262144

—9963m2 + 2544m> + 63m? + 6 m5)

1
100663296

(=3+m) (-2+m) (-1+m)m

(=3+m) (-24+m) (-1+m)m (-3+2m)

—20517048 m + 14625320 m? — 4565784 m3 + 941145 m*

+30996 m® + 2862mS + 12m7 + ms)
0

0

V/(=3+m) (=2+m) (~1+m) m (2040 — 2062m
V(=3 +m) (=2+m) (=1 +m) m (14424 + 20326 m

\/(—3 +m) (=2 +m) (=1 +m) m (12940704
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Ba,2

B2,3

B2,4

B2,

BS,O
53,1
53,2
53,3

B34

B35

1
3145728

V(=3+m) (=2+m) (=1+m) m-

V(=T+m) (=6 +m) (=5+m) (~4+m)-

(10248 — 69587 + 1475m? + 10m3 + m4)

1
3145728

V/(=3+m) (=24 m) (=1 +m) m (~31056 + 28486 m

V(=T+m) (=6 +m) (=5 +m) (~4+m)-

—0847m? + 1452m3 + 19m? + 2m5)
0
0

0

1
196608

V(=7 +m) (=6 +m) (=5+m) (—4+m)-

V(=11 +m) (=10 +m) (=9 +m) (-8 +m)

V(=3+m) (-2+m) (~-1+m) m
1
262144

V(=7 +m) (=6 +m) (=5+m) (—4+m)-

V(=11 +m) (=10 +m) (-9 +m) (=8 +m)-

V(=3+m) (=2+m) (~1+m) m (~T+2m)
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268435456

V(=7 +m) (~6+m) (=5+m) (~4+m)-
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\/(—3+m) (=24+m) (-1+m) m-
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Buo
B
ﬁ4,2
Bu3
B
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ﬁ5,0
Bs,1
Bs.2
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Bs 4
ﬁ5,5

(32472 - 16462m + 2467m? + 10m® + m?*)
0
0
0

0

1
25165824

V(=114 m) (=10 +m) (-9 +m) (=8 +m)-

V(=15 +m) (=14 +m) (~13 + m) (-12+m)

V(=T+m) (=6 +m) (=5+m) (—4+m)-

V(=3+m) (=2+m) (-1 +m)m
1
25165824

\/(——11+m) (=10+m) (-9+m) (-8 +m)-

V(=15 +m) (<14 +m) (-13 + m) (~12+m)-

V(=T+m) (=6 +m) (=5+m) (—4+m)-

V(=3+m) (=2+m) (<1+m) m (=9 +2m)
0
0
0
0

0

1
4026531840

V(=15+m) (=14+m) (-13+m) (=12 +m)-

V(=19 +m) (=18 +m) (=17 + m) (=16 +m) -
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V(=3+m) (~2+m) (-1+m)m

55

(5.101)
(5.102)
(5.103)
(5.104)

(5.105)

(5.106)

(5.107)
(5.108)
(5.109)
(5.110)
(5.111)

(5.112)

(5.113)



Chapter 5. Asymptotic Expansions 56

5.4 Formulae for Normalized PSWF's

In many situations (for example, in quadrature design), it is necessary to normalize the
Prolate Spheroidal Wave Functions such that their L? norms on some specific interval are
1. In this section, we present formulae for PSWFs 1, after such a scaling. To be more

specific, we assume that

lbmll-1,y =1, (5.114)
and that 1), is expanded in Hermite functions via the formula
Ym(z) = 0 $nai(@) + Y Bi -yl 4i(x) +O (7). (5.115)
=0 i=1

The expansion coefficients «;, §; here are polynomials of 1/c up to the order n ; the sum-

mation limit p is defined by the formula
p = min([m/4],n), (5.116)

where [m/4] denotes the integer part of m/4. The following theorem establishes the basis
for the computation of the expansion coefficients «;, §; of (5.115) via the coefficients of

formula (5.47).

Theorem 5.10 Suppose that m,n > 0 are integers, p is defined by (5.116) and that i,j are
integers such that 0 < i < p, 1 < j < n. Suppose further that &, Bj,k are coefficients of the

n-th order asymptotic ezpansion (5.47) for P, and that o;, B; are defined by the formulae

o = =, (5.117)

B; = B (5.118)

where

I= \Ji(ai)z +y (Bi)z, (5.119)
=0
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n
&= a;-c’, (5.120)
—~
~ n ~
Bi=> Bix-c*. (5.121)
k=0

Then, a;, B; are coefficients of the n-th order asymptotic expansion (5.115) for m,.

Proof. Clearly,

vl = @Dl (5122)

formulae (5.117), (5.118) follow immediately due to Lemma 2.7.

The formulae for «;, §; are presented in the next three sections.

5.4.1 Normalized Formula for 1

The Hermite expansion of the zero-th Prolate Spheroidal Wave Function g contains no
B; coefficients, since p = 0 (see 5.116). The following are the coefficients ¢; to the twelfth

order. The symbol h denotes 1/c throughout this section.

3 5h 3417h* 10345k 9070831h* 69656505 h°
oy = 1——h°|1+—+ +

256 2 512 512 + 131072 + 262144

152146864319 h® + 357807379735 h7 + 943629416863287 h®
134217728 67108864 34359738368
10582827757169135 h° " 16450747629554491685 h'° )
68719476736 17592186044416

(5.123)

g Va2l 7 T 256 T 1022 T 131072 T 524288

7685368511 A% 1356976004057  170020042796819 A8

33554432 134217728 T 34359738368
3655090749738775h°  1371061264355155055 A10

137438953472 + 8796093022208
34802730770885084785 h'!
35184372088832

o -1 /3 (1 5h 601h% 5855h% 2213069h* 30528325 hS
1 =

(5.124)
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256 128 + 131072 + 262144

151942845467 h6 4 840588201457 h7  5163818737175267 h®
33554432 33554432 34359738368
66840158761504577 h°  59457238265913265811 A0
68719476736 * 8796093022208 )

2 3109 h?  5893h3  25298213h* 233987741 K5
Qg = 128 h +

(5.125)

az =

27h  9633h% 212349AK% 155542269 h*
/2 3
2048 3Lh ( . 2956 ooz T 131072

3760444371 h° N 1545406615431 h6 N 42227250366039 b7
524288 33554432 134217728
78501712973628723 h8 N 2420049703810264281 hQ)
34359738368 137438953472

(5.126)

2 3
a = 3B [TI5., <1+11h+23053h 349327

32768 V 2 256 512

672206933 k4 N 1290151807 K° N 10500275949635 hS
131072 32768 33554432
173939724085367 A7  771001386332965379 h8 )

67108864 + 34359738368 (5.127)

—945 65h 47017h% 1877195 K3
= V. R {1
s 524288 ¥ 16189 ( t Tt 0o

2298838829 h*  87502840945h°  54021922328207 hé
131072 524288 T 33554432
2135191974295465 h7
134217728 )

(5.128)

10395 ,—— o ( 45h 85041k 1093425 h3
% = g3ss608 YO 0Ih <1+ 2 T Tm6 T 2%

6645913989 h*  153626611995h°  226418271225771 h6>

131072 T 262144 T 33554432 (5.129)

o = —2027025 [22287 w7 (14 119h + 145009 h? + 9164489 A3
7 T 67108864 2 4 256 1024
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16923941213 h . 934327827487 hS (5.130)
131072 524288 '
6081075 /33393355 i (1438 h+230173h2 +8843917h3
= 2147483648 2 256 512
4
39019921589 A (5.131)
131072
—172297125 o 189h 348153 K% 31970679 h®
Ay = o V90751353 h (1+ VR i Ty ) (5.132)
1964187225 10 115h 506437 h?
QU = promeraeoe /3829070245 h <1+ 5 T 256 (5.133)
_ —13749310575 (263012370465 11( 275h)
= 1308046511104 V 7\t (5.134)
4743512148375
— /35830670759 h12 )
12 T1073743835530g ¥ 30830670759 h (5.135)

5.4.2 Normalized Formula for v,

As in the previous section, no §; coeflicients are present in the Hermite expansion of ;.
The following are coefficients of the expansion to the twelfth order, with h again denoting

1/c.

15h? Th 6429h? 25319h3 28065463 h* 265524987 h°
a = 1- 1+ — +

256 2 + 512 512 * 131072 * 262144

698069990147 h6  1934996005313h7  5904057036771207 A8
134217728 | 67108864 | 34359738368
75369254618179333 K% 131493205293826048457 £10
68719476736 1759218604416 )

(5.136)
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= 2y mn
@ g V2 e Y 7me T 102 T 130z T T 2doss

33704624963 h® 699057017771 A7  1011316141666979 A8

33554432 | 134217728 T 34359738368
94732042380045021 1%  10410060698312917787 h10

137438953472 + 8796093022208
203232914038243737047 h1l
35184372088832

-1 /15 (14_7}1_*_1117}12 13993 h3 6624677 h* 111799247 h®

(5.137)

9 /3%, 9h  4985h% 5753h3  58923133h% 638386595 h°
R 1+ —+ +

“ = 13:V2 2 256 62 T 131072 T 262144

477800166223 h® N 3003575504521 k7 N 20706560133141235 h8
33554432 33554432 34359738368
297552339017127023 h°  291117166121432916463 A0 )

68719476736 8796093022208 (5.138)

2048 1 256 1024 T T 131072

8522527905 h° + 3946521040683 h° 4 120213842316609 h”
524288 33554432 134217728
246811766645833155h%  8334751311293039691 A°
34359738368 + 137438953472 )

~15 3h 14085h% 364803 K3 1093 A*
o = 3603 1 (1+3 N 36 309051093

(5.139)

2 3 4
o = 315 12155 B4 (1 +13h 4+ 31681 h + 550481 h 1199798189 h

32768 V 2 256 512 T 131072

645014009 h° 4 23303419676567 h® 4 424809328266721 A7
8192 33554432 67108864
2056902054145938707 A8
34359738368 )

(5.140)

—945 5 75h 61805h% 2780045 h3
= v 1
% = Goazgg V0NN ( T T Tme T Tom

3797895685 h* N 159867137155 A3 N 108306606244435 h6
131072 524288 33554432
4665516063967975 h7 )

134217728 (5.141)
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8388608 2 256 256

1 257h% 1 3
g = SWTE eenashs <1+5 h  109257h?  1545177h

10355608797 k¢ 262058558181 h®  420122902825503 h

131072 T 262144 | 33554432

o o 2027025 646323, ( 133 h . 179605 h2 N 12484423 h3
[ V™2 4 256 1024

67108864
25186533173 h* 1509916948085 h® )

181072 524288

o, _ 6081075 /TIOI9807IS 4 (| ok 279185 h2 N 11697259 A3
8 T 92147483648 V 2 256

55955374093 h4
131072

34359738368 4 256

41270577 h®
1024

—-1722 2
a = 72297125 razmessser 1o (1+207h+415101h

196418722 2
o = 1964187225 V156991880045 k10 (1 + 125h + 595225 h

549755813888
o, - 206239658625 (53602474093 ., (1+297h)
1= 4398046511104 V 2 4

33204585038625
= /35830670759 A!2
N2 = 0737488355328 ¥ So0o0070759 A

2 256
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(5.145)
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(5.147)

(5.148)
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5.4.3 Normalized Formula for v,

The general formula for the Hermite expansion of v, at large band-limit ¢ is given in this

section. The expansion is assumed to have the form

n n

. p n .
Ym(@) =33 iy (@) I+ Y g 8 () ¢ (5.149)
1=0 7=0 1=13j=1

where

p = min([m/4],n), (5.150)

and [m/4] denotes the integer part of m/4. The coefficients a; j, B ; are given to the fifth

order below.

agy = 1 (5.151)
ag; = 0 (5.152)
— 1 2 3 4
agy = 1024( 12 - 22m — 23 m* — 2m° —m*®) (5.153)
1
a3 = =—=(—60—158m —115m? —80m® — 5m* — 2m®) (5.154)
: 204§
—_ - A _ _ 2
%4 = o130 7 (—328032 — 891024 m — 1127140

—476156 m® — 247887 m* — 11768 m® — 3918 mS

+4m’ + m?®) (5.155)

1
= -~ — 3161552m — 2
a0 ooz (—993120 — 3161552 m — 3608884 m

—3044356 m> — 874439 m* — 363350 m® — 13566 m®

—3864m” +9m? +2m?) (5.156)
alp = 0 (5.157)
oy = ~v24 +50m + 33:527712 + 10m3 + m? (5.158)
o1y = —(5+2m) \/24+5017218+ 35m? + 10 m3 + m? (5.159)
ars = 63;%‘/(1 +m) (24 m) B+m) (4 +m) (—4808

—~3470m — 669m? + 10m® + m*) (5.160)
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14

ais

Q20
Q21

Q2,2

a3

2.4

a5

Q3.0
asg i
as2

a33

1
262144

—46762m — 16499 m? — 1920m® + 71 m* + 6 m5)
-t
402653184
(212454624 + 263405280 m + 128877012 m?

J(L+m) (2+m) (3+m) (4+m) (—46840

<\/(1+m) (2+m) 3+m) (4+m)

+29276108 m?® + 2118049 m* — 151072 m5
—~11030m8 +20m” + ms))
0

0

1
2048

\/(5+m) (6+m) (7T+m) (8+m)

L
4096

V(5+m) (6+m) (T+m) (8+m) (7+2m)
-1
6291456

V(5+m) (6+m) (T+m) (8+m) (—37308

(1+m) (2+m) (3+m) (4+m)-

(1+m) (2+m) (3+m) (4+m)-

(\/(l-i-m) 2+m) (3+m) (4+m)

—19698m — 2833 m?2 + 18m> + m4))

1
3145728

V/(5+m) (6+m) (7+m) (8+m) (70716

\/(l-i-m) (2+m) (3+m) (4+m)-

152218 m + 13869 m? + 1291 m3 — 21m* — m5)
0
0

0
-1

T (\/(l-i-m) 2+m) B+m) (d+m)-

V(5+m) (6+m) (T+m) (8+m)

63
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Q3.4

ass

27 %))
Q4.1
G2
Q43

Giq.4

Q4.5

as,0
as,1

Q5.2

V(9 +m) (10+m) (11 +m) (12+m)>

26'2"1144 (ﬁum) 2+m) B3+m) (4+m)

\/(5+m) (6+m) (7+m) (8+m)

O+ m) (10+m) (11 +m) (12+m) (9 +2m)>

1
805306368

/(5 +m) (6-+m) (7+m) (8+m)-

V(L +m) 2+m) 3+m) (4+m)-

V@ +m) (10+m) (11 +m) (12 +m) (154128
—64022m — 7237m? + 26 m® + m4)

0

0

0

0

1
25165824

VE+m) (6+m) (T+m) (8+m)-

V(L +m) 2+m) (3+m) (4+m)-

V(9 +m) (10 +m) (11 +m) (12 +m)-

/(13 +m) (14 +m) (15 +m) (16 +m)
1
25165824

V6 +m) (6+m) (7+m) (8+m)-

V(L +m) 2+m) B+m) (@d+m)-

VO +m) (10+m) (11+m) (12+m) -

/(13 +m) (14 +m) (15 +m) (16 +m) (11 +2m)
0
0

0

64

(5.172)

(5.173)

(5.174)
(5.175)
(5.176)
(5.177)

(5.178)

(5.179)

(5.180)
(5.181)
(5.182)

(5.183)



Chapter 5. Asymptotic Expansions

(5.3
Qs 4

Q55

B2
B1,3

B,

Bis

B2,1
B2,2

B2,3

B2,

0

0

-1
4026531840

V(B+m) (6+m) (7+m) (8+m)-

(\/(1+m) (2+m) (3+m) (4+m)

VO+m) (10 +m) (11+m) (12 +m)-

V(13 +m) (14 +m) (15 +m) (16 + m)-

V(A7 +m) (18 +m) (19 +m) (20 + m))

V(=3+m) (-2+m) (-1+m) m
32
V(=3+m) (-2+m) (-1+m) m(-3+2m)
128

(V=8 +m) (2 m) (-1+m) m (2016

=1
65536
+2106m — 693m? — 6m3 + m4))

1
262144

+19778 m — 10373 m2 + 2144m® +41m* — 6 m5)

1
402653184

(50908320 — 84318336 m + 55101860 m?

V(=3+m) (=2+m) (-1 +m) m (~14592

V(=3 +m) (=2+m) (1 +m) m-

—19514436 m® + 2707329 m* + 84528 m®
~11142m8 — 12m7 + ms)

0

1
2048

V(=3+m) (=2+m) (-1+m) m

(=7+m) (=6+m) (-5+m) (=4 +m) -

——/(=T+m) (-6+m) (-5+m) (—4+m)-

V(=3+m) (=2+m) (=1 +m) m (=5 +2m)

6291456

(VET+m) (o4 m) (<5 +m) (44 m)
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Ba,5

B3,1
B3,2
83,3

B3.4

B35

Ba,1
Ba2
Ba,3
Ba4

V(=3 +m) (=2+m) (=1 +m) m (~20460 + 13982m

—2881m? — 14m3 + m4))
_—1
3145728
V(=3 +m) (=2+m) (=1 +m) m (31056 — 28432m

<¢p7+m)pﬁ+m)p5+m)p4+my

198802 — 1365m3 — 16 m* + m5))
0

0

1
196608

V(=T +m) (=6+m) (=5+m) (~4+m)-

V(=11+m) (=10 +m) (=9 +m) (=8 +m)

V(=3+m) (=2+m) (=1+m) m
1
262144

V(=7 +m) (=6 +m) (=5+m) (~4+m)-

V(=114 m) (=10 +m) (=9 +m) (=8 +m) -

V(=3+m) (=2+m) (=1+m) m (-7 +2m)

-1
805306368
V(=T+m) (=6 +m) (<=5+m) (~4+m)-

V(=3+m) (~=2+m) (=1 +m) m (~97368
+49474m, — 7309 m? — 22m® + m?*)

0

0

0

(=114+m) (-10+m) (-9 +m) (-8 +m) -

1
25165824

V(=11 +m) (=10 + m) (=9 +m) (—8+m) -

(=T +m) (=6 +m) (=5+m) (~4+m)-

V(=15 +m) (14 +m) (=13 +m) (=12 +m)-
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(5.195)

(5.196)
(5.197)

(5.198)

(5.199)

(5.200)

(5.201)
(5.202)
(5.203)

(5.204)
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V(=3+m) (=2+m) (=1 +m) m (5.205)
Bas = m \/(—15 +m) (-14+m) (=13 +m) (=12 +m) -

V(=11 +m) (=10+m) (=9 +m) (=8 +m)-

V(=7 +m) (=6 +m) (=5 +m) (—~4+m) -

V(=3 +m) (=2+m) (~1+m) m (-9 +2m) (5.206)
Psg = 0 (5.207)
P52 = 0 (5.208)
Psz = 0 (5.209)
Psa = 0 (5.210)
b5 = qosmmsrezs V(19 m) (~18+m) (<17 +m) (<16 +m).

V(=15 +m) (=14 +m) (=13 +m) (=12 +m)

V(=114 m) (=10 +m) (=9 +m) (-8 +m)-

V(=7 +m) (=6 +m) (=5 +m) (—4+m)-

V(=3 +m) (=2 +m) (-1 +m) m (5.211)

5.5 Asymptotic Expansions for Eigenvalues x,,

In this section, we present formulae for the eigenvalues x,, in equation (2.47) (also referred

to as the separation parameters) for ¢ — oc.

5.5.1 Formula for x,

The asymptotic formula for xg to the 14-th order is given below.

3 3 15 453 4425 104613

4 16c 64c2  1024c® 4096¢* 32768 5
1442595 181431165 3200304885

T 1310725 4194304¢7 16777216 cB
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125185972551 2689647087045

T 134217728¢° 536870912 10
_ 251987915369193  6392700476893245

8580934592c11 34359738368 c12
_349366400286979629  40950465047128293315

274877906944 13 4398046511104 c1
+0 (). (5.212)

5.5.2 Formula for x;

The following is the asymptotic expansion for x; to the 14-th order.

7 15 105 4245 53655 1594245

4 16c 64c2 1024c3  4096c¢*  32768¢°
26929245 4055050365 83932150155

T 131072¢8  4194304c¢7 16777216 8
_ 3785103105735  92331184512315

134217728¢® 536870912 ci0
_ 9692588808867945  272433662232864195

858093459211 34359738368 cl2
_ 16338528501230653485  520891433271407619645
274877906944 c13 1099511627776 c14
+0(c%) (5.213)

5.5.3 Formula for x,,

The general formula for x,, (to the sixth order) as ¢ — oo is given below; m is any non-

negative integer.

2 62 T8 T3t el
1 (458 . 1321m . 639 m? 4 481 m? 4 165 m? . 33mb
1024 1024 512 512 1024 512

1 (15 35m 5m2 5m® 5mt
64

o

1 (4425 + 13349 m + 9239 m? + 5255 m? + 5885 m*
ct \ 4096 4096 2048 2048 4096

+ 189 m® + 63 mb
1024 1024
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117445 m2

13107 m?

_ 1 (104613 + 355301 m
e\ 32768 32768

163045m*  18149m>

8192

1024

32768 | 8102

16384 T 81

3689mb  527m’
92

cb

1 (1442595 N 5046979 m  1008819m?2  201271m3
131072 131072 16384 4096
2106769 m* N 609063 m® 56231mS 9387m7 9387 m?
65536 65536 16384 32768 131072

+0(c™)

)
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(5.214)






Numerical Results

This chapter contains numerical results primarily of two categories. In Section 6.1, we
present the performance results of the quadratures and interpolation schemes described in
Chapter 4. We also show some elemeﬁta.ry numerical properties of PSWFs and related
eigenvalues. In Section 6.2, we present the performance of the asymptotic expansions pre-
sented in Chapter 5. The algorithms of Sections 4.1-4.3 have been implemented in double
precision (64-bit floating point) arithmetic in Fortran, and the experiments on the asymp-

totic formulae in extended precision (128-bit floating point) arithmetic in Fortran.

6.1 Quadratures and Interpolation

The results of the algorithms of Sections 4.1-4.3 are summarized in Tables 6.1-6.1. Ta-
bles 6.1 and 6.2 show the performance of quadrature nodes produced by the schemes of
Sections 4.1 and 4.2, when used as quadrature nodes. Tables 6.3 and 6.4 show their per-
formance when used as interpolation nodes. The quadrature nodes and the interpolation
nodes are actually not the same sets of nodes: even with the bandwidth ¢ for interpolation

being half of the bandwidth for quadrature (as it is in the tables), the required accuracy of
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the nodes are higher (¢? as opposed to £) when used for interpolation than for integration in
achieving the same accuracy of €. This discrepancy can be seen by comparing the number
of nodes (printed in the column labeled n in each table).

Table 6.5 and Table 6.6 tabulate the numbers of nodes required for integrating or in-
terpolating band-limited functions to double precision accuracy. For each frequency, the
average number of nodes per wavelength is listed in the column labeled “nodes/\”.

The error figures in these tables are approximations of the maximum error of the quadra-
ture or of interpolation, when applied to functions of the form cos(az) and sin(az), with
0 < a < ¢. The errors were computed by measuring the error at a large number of points
in a (for interpolation, in both a and z).

In Tables 6.1-6.4, the columns labeled “Roots” contain the errors for the nodes produced
by the scheme of Section 4.2; the columns labeled “Refined” contain the errors after the
scheme of Section 4.1 was performed using the former results as a starting point. The
variable e that appears in the tables is the requested accuracy, used to determine the number
of nodes in the ways described in Sections 4.1 and 4.3. Also tabulated are the numbers of
Legendre nodes required to achieve the same accuracy € using polynomial interpolation
or quadrature schemes. Since Chebyshev nodes are generally known to be superior for
interpolation, the numbers of Chebyshev nodes required to achieve the same accuracy are
also tabulated.

Finally, Tables 6.7 and 6.1 contain samples of quadrature weights and nodes.
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Table 6.1: Quadrature performance for varying band limits, for ¢ = 10~7

c n | Maximum Errors Npol
Roots Refined
10.0 9 | 0.96E-05 0.51E-07 | 13
20.0 13 | 0.17E-04 0.94E-07 | 19
30.0 17 | 0.12E-04 0.50E-07 | 25
40.0 20 | 0.70E-05 0.30E-06 | 31
50.0 24 | 0.35E-05 0.83E-07 | 37
60.0 27 | 0.25E-04 0.27E-06 | 43
70.0 31 | 0.11E-04 0.66E-07 | 48
80.0 34 | 0.48E-05 0.17E-06 | 54
90.0 38 | 0.21E-05 0.40E-07 | 59
100.0 41 | 0.12E-04 0.91E-07 | 65
200.0 74 | 0.24E-05 0.86E-07 | 118
300.0 106 | 0.32E-05 0.21E-06 | 171
400.0 139 | 0.52E-05 0.62E-07 | 223
500.0 171 | 0.56E-05 0.88E-07 | 275
1000.0 331 | 0.50E-05 0.14E-06 | 530
2000.0 651 | 0.23E-05 0.64E-07 | 1038
4000.0 1288 | 0.37E-05 0.17E-06 | 2047
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Table 6.2: Quadrature performance for varying precisions, for ¢ = 50

€ n | Maximum Errors | N
Roots Refined
0.10E-01 19 | 0.45E-01 0.10E-01 | 30
0.10E-02 20 | 0.70E-02 0.13E-02 | 32
0.10E-03 21 | 0.91E-03 0.14E-03 | 33
0.10E-04 22 | 0.82E-04 0.13E-04 | 34
0.10E-05 23 | 0.54E-04 0.11E-05 | 36
0.10E-06 24 | 0.35E-05 0.83E-07 | 37
0.10E-07 25 | 0.33E-05 0.57E-08 | 38
0.10E-08 26 | 0.18E-06 0.36E-09 | 39
0.10E-09 26 | 0.18E-06 0.36E-09 | 40
0.10E-10 27 | 0.17E-06 0.21E-10 | 42
0.10E-11 28 | 0.79E-08 0.11E-11 | 43
0.10E-12 29 | 0.78E-08 0.56E-13 | 45
0.10E-13 30 | 0.31E-09 0.27E-14 | 55
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Table 6.3: Interpolation performance for varying band limits, for e = 10~7

c n | Maximum Errors Npol
Roots Refined | Cheb. | Leg.
5.0 13 | 0.12E-06 0.12E-06 17 17
10.0 18 | 0.12E-06 0.13E-06 | 24 25
15.0 22 | 0.24E-06 0.25E-06 | 31 32
20.0 26 | 0.26E-06 0.28E-06 | 37 39
25.0 30 | 0.22E-06 0.23E-06 | 43 45
30.0 33 | 0.67E-06 0.73E-06 | 49 51
35.0 37 | 0.42E-06 0.46E-06 { 55 57
40.0 41 | 0.25E-06 0.27E-06 | 61 63
45.0 44 | 0.54E-06 0.60E-06 | 67 69
50.0 48 | 0.29E-06 0.33E-06 | 73 75
100.0 82 | 0.39E-06 0.46E-06 | 128 131
200.0 147 | 0.12E-05 0.15E-05 | 235 239
300.0 212 | 0.13E-05 O0.17E-05 | 340 345
400.0 277 | 0.10E-05 0.14E-05 | 443 450
500.0 341 | 0.16E-05 0.22E-05 | 547 554
1000.0 662 | 0.16E-05 0.24E-05 | 1058 1068
1500.0 982 | 0.15E-05 0.25E-05 | 1566 1578
2000.0 1301 | 0.20E-05 0.35E-05 | 2072 2086
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Table 6.4: Interpolation performance for varying precisions, for ¢ = 25

. n Maximum Errors Npol
Roots Refined | Cheb. | Leg.
0.10E-01 21 | 0.38E-01 0.43E-01 31 34
0.10E-02 23 | 0.37E-02 0.41E-02 34 36
0.10E-03 25 | 0.29E-03 0.31E-03 37 39
0.10E-04 26 | 0.74E-04 0.81E-04 39 41
0.10E-05 28 | 0.44E-05 0.47E-05 41 43
0.10E-06 30 | 0.22E-06 0.23E-06 43 45
0.10E-07 31 | 0.46E-07 0.49E-07 45 47
0.10E-08 32 | 0.95E-08 0.10E-07 47 49
0.10E-09 34 | 0.36E-09 0.38E-09 49 51
0.10E-10 35 | 0.67E-10 0.70E-10 51 52
0.10E-11 37 | 0.21E-11 0.22E-11 53 54
0.10E-12 38 | 0.36E-12 0.37E-12 54 56
0.10E-13 39 | 0.59E-13 0.63E-13 98 61
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Table 6.5: Quadrature performance and number of nodes per wavelength for varying band

limits, for ¢ = 10714

c n Error nodes/A

10.0 13 0.17764E-14 4.08
20.0 18  0.15543E-14 2.83
30.0 22 0.44270E-14 2.30
40.0 26  0.46491E-14 2.04
50.0 30 0.20366E-14 1.88
60.0 33  0.21550E-13 1.73
70.0 37 0.95202E-14 1.66
80.0 41  0.38337E-14 1.61
90.0 44  0.12216E-13 1.54
100.0 48  0.29126E-14 1.51
200.0 82 0.37951E-14 1.29
300.0 | 115 0.65867E-14 1.20
400.0 | 147 0.24807E-13 1.15
500.0 | 180 0.12677E-13 1.13
1000.0 | 341 0.23376E-13 1.07
2000.0 | 662 0.15834E-13 1.04

4000.0 | 1302 0.19924E-13 1.02
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Table 6.6: Interpolation performance and number of nodes per wavelength for varying band

limits, for ¢ = 1014

c n Error  nodes/A

10.0 25  0.44E-13 7.85
20.0 35 0.32E-13 5.50
30.0 43  0.98E-13 4.50
40.0 51  0.81E-13 4.01
50.0 59  0.57E-13 3.71
60.0 66  0.98E-13 3.46
70.0 74 0.48E-13 3.27
80.0 81  0.47E-13 3.18
90.0 88 0.71E-13 3.07
100.0 95 0.62E-13 2.98
200.0 | 163 0.11E-12 2.56
300.0 | 229 0.20E-12 2.40
400.0 | 295 0.28E-12 2.32
500.0 | 360 0.41E-12 2.26
1000.0 | 682 0.31E-12 2.14
2000.0 | 1324 0.18E-11 2.08

4000.0 | 2601 0.90E-11 2.04
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Table 6.7: Quadrature nodes for band-limited functions, with ¢ = 50 and ¢ = 1077

This table contains only half of the nodes and weights, in particular those for which the
node is less than or equal to zero. Reflecting these nodes around zero yields the remaining

nodes; the weight for the node at —z is the same as the weight for the node at z.

Node

Weight

—.9904522459960804E+00
—.9525601106643832E4-00
—.8927960861459153E4-00
—.8186117530609125E4-00
—.7350624131965875E+-00
—.6452878027260844E+00
—.5512554698695428E+-00
—.4542505281525226E+-00
—.3551568458127944E4-00
—.2546173463813596E+-00
—.1531287781860989E+00

—.5110121484050418E~01

0.2413064234922188E—01
0.5024347217095568E—01
0.6801787677830858E—01
0.7952155999100788E—01
0.8706680708376023E—01
0.9216240765763570E—01
0.9569254015486106 E—01
0.9817257766311556 E—01
0.9990914516102242E—01
0.1010880172648715E4-00
0.1018214308931439E+00

0.1021735189986602E+-00
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Table 6.8: Quadrature nodes for band-limited functions, with ¢ = 150 and ¢ = 10~14

This table contains only half of the nodes and weights, in particular those for which the
node is less than or equal to zero. Reflecting these nodes around zero yields the remaining

nodes; the weight for the node at —z is the same as the weight for the node at z.

Node

Weight

—.9982883010959975E+00
—.9911354691596528E+00
—.9788315280982487E+00
—.9621348937901911E+-00
—.9418386698454396E+00
—.9186509576802944E+-00
—.8931541850293142E+-00
—.8658083894041821E+4-00
—.8369709588254746E+00
—.8069187108185302E+00
—.7758670331396409E+00
—.7439849501152674E+00
—.7114064976175457E+00
—.6782391686910609E+00
—.6445701594098660E+00
—.6104710013384929E+-00

—.5760010202980960E+00

0.4374483371752129E—02
0.9842619236149078E—-02
0.1463518300250369E-01
0.1862396111287527E—01
0.2184988739217138E—-01
0.2442858670932862E—01
0.2648864579258096 E—01
0.2814375940413615E—01
0.2948528624795690E—01
0.3058356160435090E—01
0.3149181066633766E—01
0.3225015506203403E—01
0.3288893713079314E—-01
0.3343126421620424E—01
0.3389488931551181E—-01
0.3429358206877410E—01

0.3463812513892117E-01
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(continued)

—.5412099413257457E+00
—.5061398697742787E+00
—.4708268134473433E+-00
—.4353018643598344E4-00
—.3995921259242572E+00
—.3637214481257228E+00
—.3277110167114320E+-00
—.291579830581966 7TE+00
—.255345093038868 7E+00
—.2190225363501577E+00
—.1826266945721476 E+00
—.1461711362450572E+00
—.1096686661347072E+00
—.7313150339365902E—01
—.3657144220122915E-01

0

0.3493704033879884E—01
0.3519712095895683E—01
0.3542382499917732E—-01
0.3562156808557525E~01
0.3579394352776868E—01
0.3594388900778062E—01
0.3607381381247460E—01
0.3618569660385742E—01
0.3628116095737887E—~01
0.3636153393399723E—01
0.3642789154364812E—01
0.3648109393796617E—01
0.3652181242257066E—01
0.3655054982303338E—01
0.3656765531685031E—01

0.3657333451556860E—01
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6.1.1 Miscellaneous Numerical Properties

Figure 6.1 contains the maximum norm of the derivative of each prolate spheroidal wave
function ¢; as a function of j, for ¢ = 200 and z € [—1,1]. Also graphed, for comparison,
is the maximum norm of the derivative of each normalized Legendre polynomial P;(z)
over the same range. The absolute values of the eigenvalues \; are graphed below, on the
same horizontal scale. The graph clearly shows that, for this value of ¢, computing the
derivatives of a function given by a prolate series is a better-conditioned operation than
computing the derivatives of a function given by a Legendre series of the same number
of terms. Obviously, if the number of terms can also be reduced, as in the situations of
Tables 6.1-6.4, there is a further improvement in the condition number. The same general
pattern of behavior is exhibited for other values of c¢. As ¢ approaches zero, the value of
J at which the maximum norm of the derivative rises sharply also approaches zero. This
phenomenon is to be expected, since for ¢ = 0 the prolate functions reduce to Legendre

polynomials.
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Figure 6.1: Maximum norms of derivatives of prolate spheroidal wave functions for ¢ = 200,

and of normalized Legendre polynomials
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The following observations can be made from the examples presented in this section,

and from the more extensive tests performed by the author.

1. When the nodes obtained via the algorithm of [3] are used for the integration of band-
limited functions, the resulting quadrature rules are significantly more accurate than the
quadratures obtained from the nodes of appropriately chosen prolate wave functions; how-
ever, the difference between the numbers of nodes required by the two approaches to obtain
a prescribed precision is not large. When the nodes obtained via the two approaches are
used for the interpolation (as opposed to the integration) of band-limited functions, the

performances of the two are virtually identical.

2. For large c, the number of nodes required by a quadrature rule for the integration of
band-limited functions with the band-limit ¢ is close to ¢/7; the dependence on the required
precision of integration is weak (as one would expect from Theorem 2.9 and subsequent

developments).

3. The number of nodes required by our quadratures rules to integrate band-limited func-
tions is roughly 7/2 times less than the number of Gaussian nodes; the number of nodes
required by our interpolation formulae in order to interpolate band-limited functions is
roughly 7/2 times less than the number of Chebyshev (or Gaussian) nodes. Again, the

dependence of the required number of nodes on the accuracy requirements is weak.

4. The norm of the differentiation operator based on our nodes is of the order ¢3/2, as
compared to the norm of the spectral differentiation operators obtained from classical poly-
nomial expansions. This might be useful in the design of spectral (or pseudo-spectral)

techniques.
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6.2 Performance of Asymptotic Expansions

6.2.1 Approximations of ¢,

We compared the results from the asymptotic formulae of ¢, and those from the evaluation
procedure described in Chapter 3. The experiments are summarized below. The errors
reported in Tables 6.9-6.11 are L? errors on the interval [—1,1], which were approximated
by measuring the error at a large number of equispaced points on [—1,1].

Table 6.9 and Table 6.10 show at various values of ¢ the accuracy of the twelfth-order
approximations of vy, 11, and that of the fifth-order approximations of several arbitrarily
chosen Prolate Spheroidal Wave Functions. In Table 6.11, we show the accuracy of the
fifth-order approximations of Prolate Spheroidal Wave Functions ¢y through 119 at three
arbitrarily chosen frequencies: ¢ = 15w, ¢ = 20w and ¢ = 25n. Table 6.11 shows that for
moderate values of ¢ (such as ¢ = 207), the fifth-order approximation for each of the first

eleven prolate functions has roughly single precision accuracy.
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Table 6.9: Errors of the twelfth-order approximations of 1, 1; for varying band limits

c Error of 1y Error of 4,

10 0.131732210659618F — 05 0.117720227326312E — 04
20 0.130769291525087E — 08 0.114923274403983FE — 07
40 0.228781718888588E — 12 0.230610279001231F — 11
80 0.228105840274304F — 16 0.229431254878355F — 15
160 0.253798504532040E — 20 0.254176969938198E — 19
320 0.296804337674577E — 24 0.296697705527968E — 23
640 0.521517427857163E — 28 0.360557579827469F — 27
1280 0.647635038949054F — 28 0.608485856537912F — 28

Table 6.10: Errors of the fifth-order approximations of ¢, 110, {0 for varying band limits

c Error of i Error of 119 Error of 199
10 0.23242F + 00 0.10145FE + 01 0.12817E + 02
20 0.31189F — 02 0.24351F — 01 0.14292F + 01
40 0.31435E — 04 0.23830E — 03 0.28909F — 01
80 0.40183F — 06 0.28233E — 05 0.24885E — 03
160 0.57643F — 08 0.39464F — 07 0.31490E — 05
320 0.86551E — 10 0.58604F — 09 0.45010F — 07
640 0.13266F — 11 0.89358E — 11 0.67473F — 09

1280 0.20532F — 13 0.13795E — 12 0.10333E — 10
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Table 6.11: Errors of the fifth-order approximations of ; for 0 < j < 10

. Errors
J
c= 15w c = 20w c = 25w

0 0.26462F — 08 0.45417F — 09 0.11659E — 09
1 0.17320E — 07 0.29598F — 08 0.75792E — 09
2 0.77196 E — 07 0.33501E — 08 0.43215E — 09
3 0.27195E — 06 0.11688E — 07 0.15022E — 08
4 0.80974E — 06 0.34422F - 07 0.44059E — 08
5 0.21224F — 05 0.89146FE — 07 0.11360E — 07
6 0.50328E — 05 0.20865F — 06 0.26464F — 07
7 0.11014FE — 04 0.45029F — 06 0.56833F — 07
8 0.22570F — 04 0.90913F — 06 0.11416E — 06
9 0.43804E — 04 0.17369E — 05 0.21695E — 06
10 0.81208E — 04 0.31673FE — 05 0.39345E — 06
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Remark 6.1 We observe that the above accuracies are strictly in L? sense. At the ends
of the interval [—1,1}, the asymptotic expansion formulae of 1m are only accurate in the
sense that both the actual values and the approzimated ones are small, for sufficiently large

c. This observation can be easily seen from Table 6.12 and Table 6.13.

Table 6.12: 1)y(1) and the 6% -order and 12th_order approximations for varying band limits

c Exact 6'*-order Appr. 12t"-order Appr.
10 0.65478E — 03 0.67200F — 03 0.66236E — 03
20 0.50983F — 07 0.36693FE — 06 0.56739F — 07
40 0.17835E — 15 0.10497E — 09 —0.27294F — 12
80 0.69770F — 27 0.46657FE — 15 —0.11568E — 18
160 —0.22067FE — 27 0.11222F — 29 0.11986F — 29
320 —0.10514F — 26 0.31654F — 62 0.34152F — 59
640 —0.54266FE — 27 0.10814F — 129 0.19188F — 124
1280 —0.92841F — 27 0.10170E — 266 0.17473E — 259

2560 0.96445E — 27 0.93887F — 543 0.12551F — 533
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Table 6.13: 14(1) and the 12%*-order approximations for varying band limits

Exact 94(1)

12t Order Appr.

10

20

40

80

160

320

640

1280

2560

0.41938F + 00
0.20273E - 03
0.32847F - 11
0.61521F — 27
0.42283F — 27
—0.63142F — 27
—-0.97616F — 27
0.95964F — 27

—0.10846E — 26

0.38453E + 00
—0.17051F — 03
—0.19154F — 06
—0.16503EF — 11
—0.74239F — 26
—0.40735F — 58

—0.27470F — 125
—0.51343F — 262

—0.94494F — 538
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6.2.2 Approximations of x,,

We rewrite (5.214) in the form

n 1 7
Xm =p-1(m)-c+ Zpi(m) . (—c-) +0(c™ ), (6.1)
i=0
where p_1(m),po(m),...,pn(m) are polynomials in m of n-th order, as given in (5.214). In

the rest of this section, we refer to the number n as the order of the expansion (6.1).

Table 6.14 and Table 6.15 consist of results of the approximation of xo and 1 using
formulae (5.212) and (5.213), respectively; these results were obtained using all 16 terms of
each expansion. In Tables 6.16 and 6.17, we list results of the approximation of x2 and x3
with formula (5.214) to the sixth order.

Tables 6.18—6.20 contain the minimum order n of the expansion (5.214) that is required
for achieving a specific accuracy ¢ for each of the first several eigenvalues. The columns
labeled “j” give the indices of the eigenvalues ;.

Finally, we show in the Tables 6.21 and 6.22 the accuracy of (5.214) for the first eleven

eigenvalues of the differential equation (2.47) at frequencies ¢ = 207w and ¢ = 200.
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Table 6.14: Errors of the fourteenth-order approximation of xg for varying band limits

Exact xo

Absolute error

Relative error

10

20

40

80

160

320

640

1280

0.92283F + 01
0.19240F + 02
0.39245F + 02
0.79248F + 02
0.15925F + 03
0.31925F + 03
0.63925F + 03

0.12792F + 04

0.23974F — 06

0.39399F — 11

0.85702F — 16

0.22987F — 20

0.65932F — 25

0.25638E — 29

0.23054F — 27

0.12129F — 27

0.25978E — 07

0.20477E — 12

0.21838E — 17

0.29007E — 22

0.41402EF — 27

0.79926 E — 32

0.36063E — 30

0.94852F — 31

Table 6.15: Errors of the fourteenth-order approximation of x; for varying band limits

Exact 1

Absolute error

Relative error

10

20

40

80

160

320

640

1280

0.28133F + 02
0.58198F + 02
0.11823F + 03
0.23824E + 03
0.47824F + 03
0.95825F + 03
0.19182F + 04

0.38382F + 04

0.10593F — 04

0.23096F — 09

0.48209F — 14

0.12815F — 18

0.36772E — 23

0.15688F — 27

0.16921F — 27

0.66225E — 27

0.37654E — 06

0.39684F — 11

0.40777E — 16

0.53791F — 21

0.76889E — 26

0.16370F — 30

0.88208E — 31

0.17256 E — 30
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Table 6.16: Errors of the sixth-order approximation of s for varying band limits

c Exact xo Absolute error Relative error
10 0.45869F + 02 0.30534E — 02 0.66567E — 04
20 0.96090F + 02 0.11477F — 04 0.11944F — 06
40 0.19618F + 03 0.72761FE — 07 0.37090F — 09
80 0.39621F + 03 0.52104F — 09 0.13150E — 11
160 0.79623F + 03 0.39094F — 11 0.49099FE — 14
320 0.15962F + 04 0.29953F - 13 0.18764F — 16
640 0.31962F + 04 0.23177E - 15 0.72514FE — 19

1280 0.63962F + 04 0.18021FE — 17 0.28175F — 21

Table 6.17: Errors of the sixth-order approximation of x3 for varying band limits

c Exact xs3 Absolute error Relative error
10 0.62258F + 02 0.25241E — 01 0.40543E — 03
20 0.13287F + 03 0.83058E — 04 0.62513E — 06
40 0.27307F + 03 0.50295E — 06 0.18418F — 08
80 0.55317FE + 03 0.35461FE — 08 0.64106E — 11
160 0.11132E + 04 0.26431E — 10 0.23743E — 13
320 0.22332F + 04 0.20188FE — 12 0.90398F — 16
640 0.44732F + 04 0.15598F — 14 0.34869F — 18

1280 0.89532F + 04 0.12119F — 16 0.13536E — 20
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Table 6.18: Minimum order n required for ¢ = 1073, for ¢ = 20

j Min n Relative error

0 1 0.337422864120107F — 04
1 1 0.811202216861174F — 04
2 1 0.197595874877010F — 03
3 1 0.426434771008809E — 03
4 1 0.831173278939073F — 03
5 2 0.424991987300546E — 03
6 2 0.833156789212658E — 03
7 3 0.678544959628742E — 03
8 4 0.754566227646631E — 03

Table 6.19: Minimum order n required for € = 1075, for ¢ = 50

7 Min n Relative error

0 2 0.755976896517343E — 07
1 2 0.239020755340339E — 06
2 2 0.711980808974688E — 06
3 3 0.171031787786026 E — 06
4 3 0.442130435042915E — 06
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Table 6.20: Minimum order n required for £ = 1072, for ¢ = 150

J Min n Relative error

0 2 0.892827592625061E — 09
1 3 0.591968282468442F — 10
2 3 0.215659115085051FE — 09
3 3 0.641923516105837FE — 09
4 4 0.681751546447221F — 10
5 4 0.175118080642807FE — 09
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Table 6.21: Errors of (5.214) for xo, x1,- .-, X10, for ¢ = 62.832

J Xj Relative error
0 0.620788076925242EF + 02 0.19397FE — 12
1 0.186730205258151F + 03 0.14605E — 11
2 0.310362813313921FE + 03 0.93179F — 11
3 0.432963651106072E + 03 0.45638FE — 10
4 0.554519171938024F + 03 0.18073E — 09
5 0.675015221252847E + 03 0.13948E — 08
6 0.794436990272064E + 03 0.15186F — 07
7 0.912768964569442F + 03 0.29778E — 07
8 0.102999486684922F + 04 0.60436E — 07
9 0.114609759306556E + 04 0.59101E — 06
10 0.126105914085799F + 04 0.87981E — 06
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Table 6.22: Errors of (5.214) for xo,x1,- - -

, X10, for ¢ = 200

Xj

Relative error

10

0.199249056584642F + 03
0.598245270957844F + 03
0.996235776724989F + 03
0.139321672741520F + 04
0.178918422715135E + 04
0.218413432959437F + 04
0.257806303685598E + 04
0.297096629837867FE + 04
0.336284000978153E + 04
0.375368001167075E + 04

0.414348208841325F + 04

0.17344FE — 16

0.12962E — 15

0.81653E — 15

0.39425F — 14

0.15374F — 13

0.28512F — 12

0.41183F — 11

0.77894F — 11

0.15362E — 10

0.46737E — 09

0.65268E — 09
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The following observations can be made from the examples presented in this section,

and from the more extensive tests performed by the author.

1. For the approximation of the zeroth and the first Prolate Spheroidal Wave Functions
at moderately large ¢’s (such as ¢ = 40), the asymptotic expansions of Sections 5.4.1
and 5.4.2 give double precision accuracy (in the L? sense, see Remark 6.1). For the
approximation of the other Prolate Spheroidal Wave Functions, the general formula of
Section 5.4.3 has single precision accuracy only. Nevertheless, such approximations are
still useful when used as starting points in other more elaborate schemes. Furthermore,
expansions of higher orders can always be constructed individually for any prolate
function, although the accuracy of these formulae tend to degrade slowly as the orders

of the PSWFs increase.

2. The number of terms needed in the general asymptotic expansion of x,, for achieving
single precision accuracy is fairly small: for ¢ = 50, the approximation of the first
six eigenvalues require roughly three to six terms. Of course, the formulae given
in Section 5.5.1 and Section 5.5.2 have much higher accuracies; other higher-order

formulae can be constructed for each individual case.






Miscellaneous Properties

Prolate Spheroidal Wave Functions possess a rich set of properties, resembling those of
Bessel functions. This chapter establishes several such properties, some of which can be
found in [6, 31, 17] or easily derivable from the facts in [6, 31, 17]. Through out this
chapter, unless otherwise stated, we will use 1, to denote the m-th Prolate Spheroidal
Wave Function corresponding to band limit ¢, and use Ap, fim, Xm to denote corresponding
eigenvalues of the operators F, Q., G, respectively (see (2.40), (2.42), (5.1)). The band
limit ¢ associated with these notations is omitted whenever the context is clear.

The following five lemmas are immediate consequences of the identity

et = 20 Am Ym(T) Pm(t) (7.1)

(see Section 4.1). Although these properties are fairly obvious, we record them here since

similar properties of other special functions have often been found useful.

Lemma 7.1 For all z,t € [-1,1], c € (0,00), and all integers j, k > 0,

L 1\ U+k) == )
xjtke’“tz(gg) Z—:O)\mz/)f,{)(:z:)z/)f,’f)(t). (7.2)
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Proof. Differentiating (7.1) j times with respect to z and k times with respect to ¢ yields

the above formula. O

Lemima 7.2 For all z,u € [—1,1] and ¢ € (0, 00),

sine (z—w) _ 520 A Y (@) Yim (), "9

r—u

Proof. Multiplying (7.1) by e~**“!, and integrating with respect to ¢, we immediately ob-

tain (7.3). a

Lemma 7.3 The eigenvalues A, satisfy
[o o]
Y Aml>=4. (7.4)
m=0

Proof. Taking the squared norm of (7.1), and integrating with respect to = and ¢, we

immediately obtain the above formula. a

Lemma 7.4 The etgenvalues p, satisfy

= 2¢
Z P, = —. (7.5)
m=0 T
Proof. Combining (7.4) with (2.44) yields identity (7.5). O

Lemma 7.5 For all real c,

= 3 An i) (7.6)
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Proof. Setting z =¢ = 1 converts (7.1) into (7.6). O

The identity

Atom(@) = [ (0 (r7)

(see Section 2.3) also has a number of simple but potentially useful consequences.

Lemma 7.6 For all z € 1,1}, c € (0,00), and all integers m,k > 0,

1
Amt ) (2) = (ic)* / et ¢k ohrn(t) dt. | (7.8)
-1
Proof. Differentiating (7.7) k times with respect to = yields the above identity. ]

The following lemma provides a recursion connecting the values of the k-th derivative

of the function 1, with its derivatives of orders k — 1, k-2, k-3, k — 4.

Lemma 7.7 For all c € (0,00), integer m > 0, and z € (—00, +0),

(1 —2?) p¥+D(z) — 2 (k + 1) sy (2)
+ (xm = k (k+1) = & 2?) Y{¥ (2)

—22kzyp-D(z) - 2k (k- 1)yp¥D(z) =0 (7.9)
for all k > 2, with the initial condition

(1 - 2%) ¢ (@) — 42 ¢m(@) + (xm — 2 = ¢*2°) Y (2)

-2 zYm(z) =0. (7.10)
Moreover,

—2(k + 1) p¥+V(Q) + (pm — k(B +1) = &) pP(1)

—22 kD) = 2k (k— 1)y (1) =0 (7.11)
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for all k> 2, and
=29, (1) + (m — ) ¥m(l) = 0, (7.12)
— 49 (1) + (xm —2 = ) Y (1) =2 ¢ (1) = 0. (7.13)
Furthermore, for all integer m > 0 and k > 2,
PP 0) + Oom — k (k+ 1) $5(0) =k (k = )i =2(0) = 0. (7.14)
For all odd m,
m(0) + (xm — 2) ¥, (0) = 0, (7.15)
and for all even m,
m(0) + Xm ¥m(0) = 0. (7.16)

Finally, for all integer m >0, k > 0,

Ym(1) #0, (7.17)
Y1 (0) =0, (7.18)
$ZE+D () = 0. (7.19)

Proof. Identities (7.9) — (7.16), (7.18), (7.19) are immediately obtained by repeated differ-

entiation of (2.47). In order to prove (7.17), we assume the contrary that
Ym(1) =0 (7.20)

is valid for some integer m > 0, and observe that the combination of (7.20) with (7.11),

(7.12), (7.13) implies that

&, (1) =0 (7.21)
for all k = 0,1,2,.... Due to the analyticity of v,,(z) in the complex plane, this would

imply that
Ym(z) =0 (7.22)
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for all z € R.
m]
The following is an immediate consequence of the identity (7.12) of Lemma 7.7.
Corollary 7.8 For all integer m,n > 0,
Pm(1) - Y (1) = Yn(1) - ¥m(1) = (xn — Xm) - ¥n(1) - Pm(1). (7.23)

Theorem 3.4 in Section 3.3 gives a set of formulae for the entries of matrices for differ-
entiation of prolate series and for multiplication of prolate series by z. Matrices for any
combination of differentiation and of multiplication by a polynomial can obviously be con-
structed from these two matrices. For instance, calling the differentiation matrix D, and
the multiplication-by-z matrix X, the matrix for taking the second derivative of a prolate
series, then multiplying it by 5 — z2, is equal to (5 — X?) D2.

In many cases, however, there are simpler formulae for the entries of such matrices,
that is, for inner products of 1, with its derivatives and with polynomials. The following
lemmas establish several such formulae, as well as a few formulae for inner products which
do not involve 1, itself but only its derivatives. We start with Theorem 3.4, restated here

for consistency.

Lemma 7.9 Suppose that ¢ is real and positive, and that the integers m and n are non-

negative. If m = n (mod 2), then

1 1
/ Yy (z) Ym(z) dz =/ Z Pn(z) Ym(z) dz = 0. (7.24)
If m #n (mod2), then
v 222,
[ #h@) n(@) dz = 5P tm (1) (1), (7.25)

1
[ ebu@)tmle) de = 2 57 dn()6a(0). (7.26)
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Lemma 7.10 For all integers m,n > 0, if m # n (mod 2), then

[ 24&)bm(z) dz =0;

if m =n (mod 2), then

/ 11z¢;(z) Ym(@) dz = 2" 24 (1) Y (1) = Gm)

- Am + An

where 0 45 the Kronecker Delta function.

102

(7.27)

(7.28)

Proof. Identity (7.27) is obvious since the functions 1, are alternately even and odd (see

Lemma 2.8). In order to prove (7.28), we consider the integral

[ 24,@) ¥m(e) da

- Xl;/_llx (/_11 €Tt 4 (1) dt); b (z) dz
= ;—Z/_llxwm(x) (/_lltz,bn(t) gteat dt) dz

_ ;‘\_Z/l ¢ (/11 () € d:z:) balt) dt

-1 -

1
= [ o) o

In other words,

Am

1 1
[ e @¥n@ do =2 [ cvn(@)n(a) do.
1 1

- An J-

On the other hand, integrating the left side of (7.29) by parts, we obtain

[ i@ pma) de

1

= 26U ) = [ Wal0) ¥n(e) 2 + () Yin(e) do

-1

1
= wm(l)zbn(l)—/1 £ n(2) Yo () 4T — Sy -

Combining (7.29) and (7.30), we have

1
2 [ v bale) do

1
= wm(lwn(l)—/l T, (2) Yn(2) dz — Sy,

(7.29)
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from which (7.28) follows directly. O

Lemma 7.11 For all integers m,n > 0, if m # n (mod 2), then

[ 2 () bmla) dz =05 (7.30)

if m =n (mod 2) and m # n, then

[ 2 i) bulo) o

22, , hW
= o (¥n(1 )d’m(l)-—i/)m(l)zpn(l)) - XTX“”"(”’/’T"(” (7.31)
= )\m)‘j oW (Xn - Xm) "wbn(l) "wbm( ) )\ T )\ 'd)n( )’l/)m(l) . (7.32)

Proof. Clearly, (7.30) is true, since the functions ; are alternately even and odd. In order
to prove (7.31) and (7.32), supposing that m = n (mod2) and m # n, we consider the

integral

[ #410) ¥m(o) do

= Xl— : ( et 4 (t dt) ’ Ym(z) dz

= _rj/ . (/11 2 o (t) et dt) dz
_ e / ( / bom(z) 22 €107 dx) dn(t) £ dt

1
= %‘\E/ 2o (£) P (t) dt,
n J-—1
which is summarized as
1 2 4. )‘m ! 2 N
[ @) dm(a) da = [ 22Ul (@) bn(a) do (7.33)
_ n J—

On the other hand, integrating the left side of (7.33) by parts, we have

[ @) () da
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= 2901 / ¥ (o )22 + 20 Pm(2)) do
= 29),(1) ¥m 2/ ¥4(2) Ym(z) 7 do
—/_1 Y (2) Y (2) 2 do.

Due to Lemma 7.10 and the fact that m # n, we immediately rewrite (7.34) as

[ #410) ¥me) e
= 2 (1) = S 20 ()~ [ Y)Y (e) do,

which we rewrite as

[ S Yhle) da
= 2000 ¥m(1) = T oD Pm(1) = [ @) Yne) da

Swapping m with n, we convert (7.36) into

[ @) da

= 2000 ()~ o YD)~ [ 2 @) (e da

Combining (7.36) and (7.37), we obtain

/-11 2 Y (2) Y (z) dz — 29, (1) Ym (1) + ,\_:‘i\'ﬁ\—n Yn(1) Ym(1)

- /1 LY (2) ha(z) do — 240 (1) ha (1) + —22

. m%(l)lﬁm(l),

which is obviously equivalent to

[ 9@ (o) da

= [ 2 ) ba(o) do +2 (1) iml) ~ (1) (D)

An

4
+,\+,\

Yn(1) Ym(1).
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(7.35)

(7.36)

(7.37)

(7.38)

(7.39)
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Finally, combining (7.33) with (7.39), we have
Am ! 2,
5 T° P (z) Yn(z) dz
n J-1

- [ " 2 (@) (@) do + 2 WD) Y (1) — P (1) P (1))
An —
An +

4TS (1) (D), (7.40)

which is easily rewritten as

/ ! An - Am
= 2 @h)Ym(1) = YD) + 4325 (1) (D),
or
[ 4@ (o) da
2\ / / 4An
= (Yr(1) ¥m(1) — ¥m(1) (1)) — m¢n(1)¢m(1)- (7.41)
We finally rewrite (7.41) as (7.32) using Corollary 7.8. O

The following lemma is an immediate consequence of the combination of the preceding

lemma and equation (7.36).

Lemma 7.12 Suppose that c is real and positive, and that the integers m and n are non-

negative. If m # n (mod 2), then

/ 11 224 (2) 9, (z) dz = 0. (7.42)

If m =n (mod 2) and m # n,

[ 2 dnl@ o) da

= 2606 + g G 9(1) — 51 (D) (7.43)
= 2Y0) () + T G = U (D Ga1) (744

dmXm = AnXn _ c2) : (7.45)

= PV valD) (2R
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Lemma 7.13 Suppose that c is real and positive, and that the integers m and n are non-

negative. If m # n (mod2), then
1
[ @ vi@) do= [ 2 yn(@)gm(a) do =0 (7.46)
-1
If m =n (mod 2) and m # n, then

/_ 11 Yn(z) 9" (z) de

2,\2 ,

2

22 j 2 (Xn = xXm) ¥m (1) ¥n (1), (7.48)

[ #40@) (o) d
‘32 ,\; mn 7 (Yn(1) ¥m(1) — ¥ (1) Y7, (1)) (7.49)
= —é%(xn_){m)wm(l)wn(l)- (7.50)

Proof. Identity (7.46) is obvious, since the functions v, are alternately even and odd. In

order to prove (7.47)-(7.50), we start with the expression
l -
Mth(e) = ¢ [ Eeiety, () b, (7.51)
-1

Taking the inner product of (7.51) with ¥,,(z), we have

An / Wz
= —c2/_ll </11 t2 b, (t) 't dt) Ym(z) dz
= —c2/_1 t2 1, (1) (/ Y ”“dz> dt
= =@ [ O m() dt,
which we summarize as
1A [,

[ 0@ (@) do = -5 22 [ 4l (o) do (7.52)

c2m—1
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Swapping n, m, we rewrite (7.52) in the form of

[ @ dm@de = =552 [ 4l @) dna) da. (7.59
Combining (7.52) and (7.53), we get
1 )\2 1
L 9@ n(e) do = 32 [ 4@ vnte) o (7.54

On the other hand, integrating the left side of (7.54) by parts, we have

[ @) ¥m@) d

= Y1) (1) — Y1) i / V(2) Yine
1
+ / n() U (z) da. (7.55)
-1

We rewrite (7.55) in the form of

[ @) gm(@) da
= 20 In(D) = 9D $0) + [ dalz) ¥ala) da.
We combine (7.54) and (7.56) and get
(— - 1) / Ynla dz = 2 (%), (1) (1) = Yu(1) ¥ (1) - (7.56)

Since m # n, we easily rewrite (7.56) as (7.47). We obtain expression (7.49) by combin-
ing (7.53) and (7.47). The identities (7.48), (7.50) follow from (7.47), (7.49) immediately
due to Corollary 7.8. m]

Lemma 7.14 Suppose that c is real and positive, and that the integers m and n are non-

negative. Let the function U, be defined by the formula

- /0 ! e de. (7.57)
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Then, m # n (mod 2) implies that

11
_ Z"pn(t) d’m(t) dt

= e g (1) U (1) +2 T U (L) /1 2 Yalt) dt;

A2+ 22 A2 + A2, 1t

m = n (mod 2) implies that
11
‘/_1 ?"/’n( )d’m( ) dt=0.

Proof. We start with the identity

An Pn(z) = /1 e'et Pn(t) dt.

-1

Integrating (7.61) with respect to z, we have

)
M [ nle) da
= /y (/11 €% o (t) dt) dz
- / bnlt / &5 gz dt

= [ twmera- = [y a
- tcJ_1 t " ’
which we summarize as
1 11 icyt 1 711

Taking the inner product of (7.65) and v, (y), we obtain

A/\Il )
o (o)
/wm ( —"/)n )y

- L -z/;n ( eicvt g d)dt

108

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)
(7.63)

(7.64)

(7.65)

(7.66)
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1
";lz 2n(®) dt- [ m(y) dy (7.67)
Am
= e 1 Z"/’n(t)"/’m(t) dt
1 1 1
o [ o) dte [ bty dy. (7.68)

which we sumimarize as

[ 3 n@) mt)
= 0032 [ G gm(t) it = [ Lunlt) e [ m@du. (159

Exchanging m with n, we convert (7.69) into

|
[, 3 om)0nlt) at
- zc———/ Tpm () ¥ (8) dt + xln-/_l1 %1/)m(t) dt~/_111/)n(y) dy.  (7.70)

Combining (7.69) and (7.70), we get

j—m/l Ca(O¥m(®) dt — 20 [ Um0 d

- 3‘1_/111 ) dt - / Un(t) dt—)‘——/ll%zﬁn(t) dt-/_llzpm(t) dt. (7.71)

Now suppose that m is even and n is odd. Then the first product in the right hand side

of (7.71) is zero, so that

—zc/ T (£) Y (t) dt———zc/ T,

_ _/\_/1?1/," ) dt - / Ym(?) dt, (7.72)

which is equivalent to
1
/ T, (t) Y (1) dt
11

/ T, ) dt — T\UZ/ -¢n dt-/—llz/)m(t) dt,  (1.73)
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or
1
[ ¥ ta(®) @t
An 1 1
/ T (£) Y (£) dt + A;’.—/ ) dt - / Um(®) dt.  (T.74)
On the other hand, integrating the left side of (7.74) by parts, we obtain
1
[ n(®) ntt) at
1
= Ta(1) ¥n(1) = Fn=1) (1) = [ Fa®)n(®) . (7.75)

Since the product ¥,,(z) ¥,(z) is an odd function when m # n (mod 2), we rewrite (7.75)

as
1 1
/_ T (8) Yn(t) dt = 20a(1) Tn(1) - /_ RACIMORS (7.76)

The combination of (7.74) and (7.76) implies that

/\I/ ) Ym(t) dt + SF /\I/ ) Ym(£)

- 2\I/n(1)\1/m(1)-X§—Z—C-/ ) dt - / bm(d) dt, (7.77)
or
AZ, +,\2/ Uolt) (D) dt
- 2\1/,,(1)\1/,,1(1)—;\—2"% ) dt - / bm(t) dt, (7.78)

which is equivalent to

/ 11 Up(t) G (t) dt

_ 2 g () o() — —n i/ ) dt - / bm(®) dt.  (7.79)
A2+ A2 A2+ 2 ic
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Finally, combining (7.69) and (7.79), we have

11
[, 79n@ %) at
1

2Am An

1C——o A
A2+ A2,

+__.____._.
A2 4 )2,

(1) (1) [ vnty e [ g a0

Equation (7.60) is easily proven since the product %1/1,71(:1;) ¥n(z) is an odd function when-

ever m = n (mod 2). m

The above lemmas do not use much of the detailed structure of the integral operators
of which the functions {¢;} are eigenfunctions. Thus many of them generalize easily to the

case of an operator L : L?[0,1] — L?[0, 1] defined via the formula
e = [ K@) d, (7:81)
for some function K : [0,1] — €. The following lemma is an example of this.
Lemma 7.15 Let A\, Ay be two eigenvalues of the operator L defined by (7.81), that is,
/01 K(zt)ya(t) dt = Mth(z), (7.82)
[ K@ity a6 = ratala). (7.89

Then )
N[ U@ ta(a) do

A - 1 ’ (784)
b [ e ne i
provided that neither A, nor the denominator of the right hand side of (7.84) is zero.
Proof. Differentiating (7.82), (7.83) with respect to z, we get
1
| tK@h@ d = avi), (7.85)
0

/O LK @t a(t) dt = dotl(a). (7.86)
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Multiplying (7.85) by z 12(z), we have
1
Mz (z) Ya(e) = 292 (2) /0 t K (xt) 1 (2) dt. (7.87)
Integrating on the interval [0, 1], we obtain

A /0 (@) fale) de = /0 2 (a) /0 LK (ot) 1 (t) dtdo

1 1
- / £ (1) / 2 K'(zt) o (z) d dt . (7.88)
0 0
Renaming the variables of integration on the right hand side from z to ¢ and vice versa, we
get
1 1 1
A / 29 (2) ¥o(z) dz = / 21 () / t K'(2t) 4bo(t) dt da. (7.89)
0 0 0
Substituting (7.86) into (7.89), we obtain
1 / ! /
/\1/0 z(z)o(z) dz = /\2/0 z 1 (z) Yy(z) dz, (7.90)
from which (7.84) follows immediately. O

The following lemma establishes the relation between the norm of each function v, on

[—1,1] (which in this dissertation is taken to be one), and its norm on (—o0, 00).

Lemma 7.16 For all integer m > 0,

© ;pz—l-
/_ (@) o= (7.91)

Proof. Since 1, is an eigenfunction of the operator ()., we have

/_‘: Y2 (z) dz = /oo <___1_ /1 on(®) M dt) Ym(z) dz. (7.92)

—o0 \Tlm J-1 z—t

Swapping integrals, we have

/w Y% (z) dz = = 11 Ym(t) - (1 /°° w%(z) da:) dt, (7.93)

Um T J_oo z—1
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which is equivalent to

/_ °:o V2. (z) dz = uim _11 W2, (6) dt. (7.94)

Identity (7.91) immediately follows from (7.94) due to the unit norm of ¢,,. - o

The following lemma extends Lemma 7.16 to any band-limited function with band limit

Lemma 7.17 Suppose that ¢ is real and positive, and that f : R — C is a band-limited

function with band limit c. Then for all integer m > 0,

/_o:o Ym(z) f(z) dz = L ' Ym(z) f(z) dz. (7.95)

Hm J-1

Proof. Since ¢y, is an eigenfunction of the operator Q., we have

[ @) 1(z) da
- /°°< ! /1 sinfe- (@ =8) dt) f(z) dz . (7.96)

—o00 \TlHm J-1 r—t

Exchanging integrals, we convert (7.96) into

[ #n@) (@) do
- L (l/w sinc- (=) £y dx) dt. (7.97)

Hm J-1 T J—o00 r—1
Obviously, the second integral on the right-hand side of (7.97) equals to f(t), since f belongs

to the range of the projection operator P, (see Section 2.3). We thus have

[ tn@ $@) o= = [ ) 19 . (7.98)

BPm J-1

]
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Lemma 7.18 Suppose that c is real and positive, and that the integer n is non-negative.

Then,
Am .
o 2T (), i —l<z <1,
/ Gt Ym(t)dt = ¢ Hm
e 0, if z>1 or z< —1.
Proof. Remembering the identity
1l sin(c-(z—u
(@) = = [ EHE L ) g,
T J-1 r—Uu

we have

/ % gieat Y () dt

-0

= LT (L) e )y ) )

Hm TJ-1 T—Uu
1 1 [o TP . —_ R
= J_. ¢m(u) (__/ S’m,(c (.'L‘ U)) e‘LC.’l‘t dt) du.
Hm J-1 TJ-0 T—u

(7.99)

(7.100)

(7.101)

(7.102)

Since the innermost integral is the orthogonal projection operator P, onto the space of

functions of band limit ¢ on (—o00, 00), it follows that:

/_ °:o eieet (1) dt

1 e if —l<z<1,

= - 1¢m(u) du

fm J=1 0, if >1 or < ~1

1 g .
——/ Ym(w) €% du, i —l<z <1,
MHm J-1
0, if £>1 or z < ~1,

from which (7.99) immediately follows.

(7.103)

(7.104)

The following five lemmas provide some simple formulae for the calculation of derivatives

of Y, Am, tm with respect to c.
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Lemma 7.19 For all positive real ¢ and non-negative integer m,

m 292.(1) -1
= , 1
o = m r (7.105)
Proof. We start with
1
Amthn(z) = / Tt (8) dt. (7.106)
-1

Differentiating (7.106) with respect to ¢, we obtain

O 0Ym(z)
e Ymld A5
st Dim(®)

1 ‘ 1
= / izt e (t) dt+/ et ———= dt. (7.107)
-1 -1 dc

Multiplying by 1m(z) on both sides of (7.107), and integrating on the interval [—1,1], we

have

/_ 11 Ym(z) (a;\_;n ¢m(w)+>~mg¢—5—”‘c(x—)) dz (7.108)
1 1 _
/1 Ym(z) /1 izt o (1) dt dx
! U icat OYm(t)
+ /—1 Ym () /-1 e "8 dt de

which we rewrite as

+ / 8’/’"‘ (z) dz
= / ztwm()/ &% 2 h () dr dt
-~ 1
+ / 1 a'/’"‘ / et o (z) dz di (7.109)
= Im / itPm(t) ilcad’"‘()dt
L 0y (t)
+>\m/_1 22 Ym() . (7.110)

We summarize the preceding derivations as

aAm Am 1 a m
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On the other hand, integrating the right-hand side of (7.111) by parts, we have

1 O ()
/_ tm(t) T d

1
= EO+AED-1- [ wn@: 220 4,

which we rewrite as

! Om(t) 2 1
/_1 tm(t) 0 dt = 92,(1) — 5.
Finally, substituting (7.113) into (7.111), we immediately have
OAm =) 2¢72n(1) -1
oc " 2¢ '

Lemma 7.20 For any positive real ¢ and non-negative integer m,

Opm _ 2 2
5 = 'C"mem(l)-

Proof. We start with the identity

3R

-Xm Am-

Um =

Differentiating (7.116) with respect to ¢, we get

oc de

Substituting Lemma 7.19 into (7.117), we get

0 2c - 292 (1) -1 2<
Hm _9.2 m)‘m__dim()___,_._)‘m)‘m
dc T 2¢c T
292 (1)—-1 1
= 2)u'm ¢m2() +_;u'm
2 ¢ 1 cl
= —Hm 72n(1)"_ll'm+“‘ll'm

2% (< O X -
Qﬁ‘—”i=f<,\mg—"l+ ,\mfa—’\-m)+%,\m,\m.

116

(7.112)

(7.113)

(7.114)

(7.115)

(7.116)

(7.117)

(7.118)

(7.119)
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]
The following lemma immediately follows from Lemmas 7.19 and 7.20.
Lemma 7.21 For all positive real ¢ and non-negative integer m, n,
() =521 waw -ww) (7.120)
(L) = 22 (2 - i) (7.121)

Lemma 7.22 Suppose that c is real and positive, and the integers m,n are non-negative.

Then, for all m # n,

azpn _ 2 Mdm _
[ it 2 325 Ym (D) () (7.122)

for allm =mn,
/ Y (t) a¢" dt = 0. (7.123)

Proof. Since the norm of ¢, on [—1, 1] remains constant as ¢ varies, 9, must be orthogonal
n [—1,1] to its own derivative with respect to ¢, which immediately yields (7.123). To
establish (7.122), we start with the identity

1
Anthn(z) = / &ty (1) dt . (7.124)
-1
Differentiating (7.124) with respect to ¢, we get
9 Ny
e ¥n () + An ER
1 . ,
- / (imte’”t Wn(t) + et 2%15(—@) dt. (7.125)
-1

Multiplying both sides of (7.125) by ¥,(z) and integrating with respect to z, we have

= M () o (2) de 1 Bn (£)
= = /_1 ¥ (2) Ym(z) d +,\m/_1¢m(t) —5 dt, (7.126)
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which, using (7.28), we rewrite as

O = A /¢m 3%

A Am
o o ¥m() $a(l) = bmn) (7.127)
Assuming that m # n, and dividing by A, — A, we obtain (7.122). ]

Lemma 7.23 Suppose that c is real and positive, and integer m is non-negative. Then
59—’@ =2 / 22 (2 (7.128)
Proof. Due to Lemma 2.10,
(1= 2" (2) = 22 ¢ (@) + (xm — 2°) Ym(2) = 0. (7.129)

Making the infinitesimal changes ¢ = ¢+ h, xm = xm + €, and ¥ (z) = Ym(z) + d(z), this

becomes

(1-2%) - (Y (z) +8"(z)) — 22 - (Y (2) + &' ()
+ (xm + € — (¢ + h)%2?) - (Y (z) + 6(z)) = 0. (7.130)

Expanding each term, discarding infinitesimals of the second order and greater (i.e. products

of two or more of the quantities h, ¢, and d(z)), and subtracting (7.129), we have
(1 —2)8"(z) — 226" (z) + (xm — 222) 6(z) + (¢ — 2cha?)pm (z) = 0. (7.131)
Defining the self-adjoint differential operator L by the formula
L(f)(@) = (1 = 2*)f"(2) — 22f'(z) + (Xm — ¢*2*)f (), (7.132)

multiplying (7.131) by ¥m(z)/h and integrating on {—1,1], we get

[2(G) @@t - [patim=e (s
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Now 7 = Qg(‘:ﬂ. In addition, since L is self-adjoint,

[ 1(%) @ ) do= [ 220 Lm) (@) da. (7.134)

But due to (7.129), L(vy,)(z) = 0 for all z € [—1, 1], so the integrals on both sides of (7.134)

are zero. Thus, (7.133) becomes

OxXm _ Voo
xm 2 /_ @) (7.135)

Finally, we consider the integral

1 eiczt
#(2) = fla,z) = /_ o m(t) dt. (7.136)
Differentiating (7.136) with respect to z, we have
d ) 1 teic:tt
— f(a,3) = ic /_ () dt. (7.137)

Multiplying (7.136) by ica, and subtracting it from (7.137), we obtain

d ; = e[ et d 7.138
—fla,2)—icaf(@,2) = ic [ (1) dt (7.138)
= 1A p¥m ().

In other words, f satisfies the differential equation
f(z) —icaf(z) = icAm¥Pm(z)- (7.139)
The standard “variation of parameter” calculation provides the solution to (7.139):

(@) = ichm /0 " emia@y (1) dt + £(0) €. (7.140)

Introducing the notation

D=—0— (7.141)
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(i.e. D is the product of multiplication by 1/ic and differentiation), we rewrite (7.8) as

k 1 ! k _icxt
D ()(@) = 5= /| e )t (7.142)

for an arbitrary polynomial P (with real or complex coefficients),
1 1 .
P(D)(%m)(z) = +— / P(t) €% iy, (t)dt. (7.143)
m J—1

By the same token, the function ¢ defined by the formula

1 ezczt

¢(z) = /_ . mzbm(t)dt (7.144)

satisfies the differential equation

P(D)(¢)(z) = Am¥pm(). (7.145)



Generalizations and Conclusions

In this dissertation, we have designed quadrature rules for band-limited functions, based
on the properties of Prolate Spheroidal Wave Functions (PSWFs), and the connections of
the latter with certain fundamental integral operators (see (2.40), (2.42) in Section 2.3).
The quadratures are a surprisingly close analogue for band-limited functions of Gaussian
quadratures for polynomials, in that they have positive weights, are optimal in the ap-
propriately defined sense, and their nodes, when used for approximation (as opposed to
integration), result in extremely efficient interpolation formulae. Thus, Sections 4.1-4.3 of
this dissertation can be viewed as reproducing for band-limited functions much of the stan-
dard polynomial-based approximation theory (see, for example, [35]). Generally, there is a
striking analogy between the band-limited functions and polynomials.

Obviously, there are certain differences between the resulting apparatus and the standard
numerical analysis. To start with, where the classical techniques are optimal for polynomi-
als, the approach of this dissertation is optimal for band-limited functions. Whenever the
functions to be dealt with are naturally represented by trigonometric expansions on finite
intervals, our quadrature and interpolation formulae tend to be more efficient than those

based on polynomials. When the functions to be dealt with are naturally represented by

121
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polynomials, the classical approach is more efficient; however, many physical phenomena
involve band-limited functions, while few involve polynomials.

Qualitatively, the quadrature (and interpolation) nodes obtained in this dissertation
behave like a compromise between the Gaussian nodes and the equispaced nodes: near the
middle of the interval, they are very nearly equispaced, and near the ends, they concentrate
somewhat, but much less than the Gaussian (or Chebyshev) nodes do. For large c, the
distance between nodes near the ends of the interval is of the order (1/ c)3/ 2, with the total
number of nodes close to ¢/n. In contrast, the distance between the Gaussian nodes near
the ends of the interval is of the order 1/n2, with n being the total number of nodes. A
closely related phenomenon is the reduced norm of the differentiation operator based on the
Prolate expansions: for an n—point differentiation formula, the norm is of the order n3/2,
as opposed to n? for polynomial-based spectral differentiation. Thus, PSWFs are likely
to be a better tool for the design of spectral and pseudo-spectral techniques, rather than
orthogonal polynomials and related functions.

The asymptotic expressions of Prolate Spheroidal Wave Functions and eigenvalues of
differential equation (2.47) are a small addition to the literature of prolate functions. The
formulae for ,,, which converge uniformly to 1,, on R, show a striking connection between
Hermite functions and PSWFs. In the numerical aspect, these formulae are also an effective
tool for the evaluation of PSWFs, eigenvalues of related operators, and, to some degree,
derivatives of PSWFs. Since the number of operations involved in the evaluation of a prolate
wave function of band-limit ¢ using the classical scheme is O (c?), the traditional process
becomes cumbersome when ¢ becomes large. In such cases, the asymptotic expansions
provide a convenient alternative; the accuracies of these formulae are satisfactory, especially
when the desired prolate functions have relatively low orders.

Much of the analytical apparatus we use was developed more than 30 years ago (see [31]-

[32], {17], [18]); the fundamental importance of these results in certain areas of electrical
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engineering and physics has also been understood for a long time. However, there appears
to have been no prior attempt made to view band-limited functions as a source of numerical
algorithms. Generally, there is a fairly limited amount of information in the literature about
PSWFs, especially when compared to the wealth of facts on many other special functions.
Chapter 7 of this dissertation is an attempt to remedy this situation to a small degree.
The apparatus built in this dissertation is strictly one-dimensional. Obviously, one
can construct discretizations of rectangles, cubes, etc. by using direct products of one-
dimensional grids. The resulting numerical algorithms are satisfactory but not optimal.
Furthermore, representation of band-limited functions on regions in higher dimensions is
of both theoretical and engineering interest. Obvious applications include seismic data
collection and processing, antenna theory, NMR imaging, and many others. When the
region of interest is a disc, most of the necessary analytical apparatus can be found in [32].

Applications on more general regions pose much more difficult questions.
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