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Abstract. Consider the problen of solving F(x)=0, a system of N
real, e.g. transcendental, nonlinear equations in N real unknowns.
Brown [2], [4] has given a derivative-free, ilewvton-like method for
solving such a system. In [3] second order convergence is proved for
the analytic form of this method (requiring exnlicit derivatives);
however, the analytic form requires M2 derivative and N function
evaluations per iterative step, the same computational effort required
by Newton's method (usual or derivative-free form). On the other

hand, the derivative~free algorithm requires only N2/2 + 3N/2 func-
‘tion evaluations per iterative step; moreover, there is a corresponding
savings in storage -- from ¥ + N locations to N2/2 + 3N/2 loca-
tions. In this paper we give a constructive method for choosing the
increment, h, in the first difference quotients which are used in
the derivative-free method. Based upon this choice, we are able to
prove second order convergence under hypotheses no more restrictive
than those needed for Newton's method, namely: din a vicinity of a -
root, x*, the Jacobian matrix of F has continuous entries and at x*
this matrix is nonsingular. Results of computational experiments are
presented; the algorithm is particularly effective on Rosenbrock’s

function [14] and several nonlinear economics problems [16].
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1. Introduction.

In this paper we consider the system
fl(xl’ Kys eee s xN) = 0

fz(xl, Xys ees s xN) = 0
(1.1)

fN(xl, Xys cee s XN) = 0,

or in vector notation as
(1.2) F(x) = 0.

Here we assume that each fi is real-valued and continuously differ-

are real; typically we may have N real,

entiable and that the xi

transcendental equations in N real unknowns. The problem of sol§ing
such a system of nonlineaf equations falls conveniently into three
subproblems, namely a) proceeﬁing from perhaps poor initial estimates
in some regular fashion into a region of local convergence; b) using
a rapidly convergent, computationally efficient and stable algorithm
local to the root; and c¢) obtaining further solutions - different

from those previously found - of the system (see Brown and Gearhart
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[5]1). We shall concentrate our efforts on b).

In this paper we analyze an algorithm proposed by Brown [} ]
for solving (1.1). The method is a Newton-like iteration based
upon Gaussian elimination; it is derivative-free and hgs a built-in
partial pivoting effect to help control rounding errors. Experimen-
tally, the method has shown stability and rapid convergence in a
vicinity of a solution; here we show how to guarantee.second order
convergence for the method by proper parameter selection. In §2
we describe the method algorithmically and establish the notation
needed for the convergence analysis. The local, second order conver-
gence of the method is proved in §3 under hypotheses no more res-
trictive than those needed for proving the convergence of Newton's
method. In 84 we give computer results obtained by implementing a
new FORTRAN program based on the method; comparisons are made with
some of the better recent techniques as well as with the classical

Mewton's method.
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2. Description of the Method.

Given a vector xn which is'an approximation to the solution
* - .
x of (1.1), Newton's method is based on expanding the entire func-
tion vector f about the point xn, retaining only the linear terms
in this expansion as an approximation to f, equating this linear

n % '
System to zero (since, if x is close to x , at points x in a
' *

neighborhood of x : f(x) =~ £(x) = 0), and taking the solu-
tion of the linear system to be the next iterate, xn*l. The diffi-
culty with this approach is that all equations are treated simulta-
neously; i.e., there is no attempt made to utilize information con-
tained in the first few equations in later ones.

Brown [ 3] approached the problem by working with one equation

at a time: expand the first function f. in a Taylor series expan-

1

. n
sion about x , truncate to linear terms and equate to zero; solve

for that variable, say xj, associated with the partial derivative
2E, e

of largest absolute value, say . » as a function (necessarily
J

a linear function) of the other RN~-1 variables. Now consider the

second equation; in that equation replace the variable xj with the

linear function just obtained -- this replaces the second equation
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by an equation having just N-1 unkrowns. Again expand fz, trun-
cate, set to zero and solve for one variable as a linear combination
of the rest. Continue in this fashion eliminating one variable per .
equation until the ngg equation which will then involve just one

unknown. Do a single (one dimensional) Newton step on this Nth e-

— -

~-quation and take the result to be one component of an+1; finally,

back-solve the system of linear relationships built up to get the
remaining N-1 components of xn+1.

In addition to using the exact partial derivative expressions
in the Taylor series expansions, Brown has shown how to approximate
these partials by first difference quotients in such a way as to
effect a savings of about one-half in the number of functions values
needed per iteration and storage locations used relative to Newton's
method. We shall show how to guarantee second order convergence for
this derivative free method by a computationally simple choice of

parameters.

The following notation will be used.

T
x = (xl, oo s xN) .
n o_ n n,T
X = (Xl ’ . ) XN) 9
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where the superscript n denotes the nth iteration. Let ¢ be

real and let u, denote the jth wunit column vector. For x € EN,

3

denote by zj, the j-vector (xl, oo xj)T obtained by trun-

cating the last N-j componénts of x. Now if g is a real furc-

tion of k wvaridbles, let Ag(Tkx,e) stand for the 'k,-dimensional

. _
row vector whose jth component is A_QJANJ/; AJ>-‘\/’I p.Qd_l e

Ag(Tkx,e) Tku§ = g(Tk(x + euj)‘) - g(Tk(x)).. If € = 0 then

- . . - i
replaced Ag('rkx,e) by Vg(Tkx),‘ the gradient vector. Another use-

ful convention is that when f, g and h are real functions of

T

k, k+l and k+2 variables respectively <Tkx, £, g; h >°  will

denote the vector of length k+3
T
by
(Tkx, £ (Tkx) s 8 (Tkx, f (Tkx) ), h (Tkx b¥ 3 ('I‘kx) s 8 (Tkx, £ (Tkx) n-.

We will often use this notation with two, or more than three func-
tions.

Ve now define the algorithm formally with (I) being the deri~
vative ‘free method and (II) denoting the form of the method which

uses the exact derivative expressions.
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(I) In order to obtain xn+l from x° and ¢ # 0, one pro-

ceeds as follows:

Define 81 = fl and form Agl(x“;en), Without loss of
generality, assume that “Ag. (xn‘en) i = IAg (Xn'en) I and
> 1 4 ™3 1 ’ uN —
define
' _.n n n -1 n n.,. n n n
bN(TN_lx) =X - (Agl(x ;€ )uN) [TN—lAgl(x H> )TN_]_(X x) +e gl(x )1.

In general, given the functions gl, cee 3 gk, bN’ bN—-l’ ces g bN—k+1

= < >
~define gk+1(TN-kx) = fk+1 TN_kx, bN-k+1? ces s bN & assume

without loss of generality that

. ~ n. n _ ' n. n e
"Agk+l(Th+kx ;e - = IAgk+1(TN_kx H> )TN—k uN—kl and set |
2
= L n n -1
Py Ty = Fyere ™ @y Teap® 36 )T Ui

n n n
[Ty =18 81tq Tmr® 36 Mgy & = %)

n n
te gy Ty )1 -

Proceed by induction for k=1, 2, ... , N-1 and notice that bl

is a constant. Set

——

_ .n n n n,,-1 n n
x; = by = oxp = (T (x +euy) - g(Tx)) e gN(Tl(,ix )
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-+
and x"1 o <x;f+l, bys eee s bN >.

(II) In order to obtain xn+1 from x" and e = 0, one proceeds

as follows:

Define g, = fl and form Vgl (xn). Without loss of generality

assume ;hat "Vgl(xn) ”w = |Vgl(xn)uNf and define

n n -1 [ n n n /S ' ’ NS .;
= - (V < v - + o = :

Proceed by analogy with (I) and the above and set

dg. .
n+l . T N n, y-1 n...
_,',
n+l ntl
X = <x1 ,bz, ...,bN>.

We will show in the next section that (I) and (II) are

consistent.

Remark 2.1. If F is a linear system, (I) and (II) reduce to
transverse Gaussian elimination with partial (column) pivoting and,
if the coefficient matrix is nomsingular, x1 is the root regardless

of the choice of x0 and eo.

Remark 2.2. The reader will observe that whereas (II) requires
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the same number of evaluations and storage locations as Newton's

method, (I) requires only

N1 Nz I 3N
k = 2 2
k=2

function evaluations per iterative step and. ( g—-+'%§ ) storage

locations.
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3. Convergence Results.

In this section we will prove that the method is well defined
and has the same local convergence properties as Newton's method.

Wle will work with two basic sets of assumptions on F,

N
The weak hypothesis. Let x ©be a zero of F, R> 0, and the

LA R X R R R ey VX TR U

{x & EN: llx - x*"w < R}

- %
Jacobian of F be continuous in S(x ;s R)

*
and nonsingular at x .

The strong hypothesis. Let K > 0 and assume that, in addition

Bl R R R X E I VN

to the weak hypothesié,‘ F satisfies the property that
% ; * %
Ha¢x) - J(x )H“ < Klx - x “w , for llx - x “Q < R,

The goal of this section is the following theorem.

THEOREM If F satisfies the weak hypothesis then there exist posi-

. *
tive numbers r, € such that if x0 ¢ S(x ;¥) and {e"} 1is bounded in

modulus by €, Brown's method  (I) for nonlinear systems applied.

n . * .
F generates a sequence {x } which converges to x . Yoreover,
. . . n, .
if F satisfies the strong hypothesis and {e"} is

0( {Ifl(xn)l} ), then the convergence is at least second order.

to
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Remark. The condition for quadratic convergence of Hewton's method
with difference quotient approximations in place of partial derivatives
is {en} = 0( {HF(xn)nw} ) [9], [15]. Clearly the requirement in
the theorem is more stringent and the "F(xn)u requirement would suf-

R . 1™ * _ ¢ N
fice, as would any requirement which implies O( {llx" - x I} ) = {e"}.
tle use the |fl(xn)] requirement because it is computationally conven-

ient in the implementation of the method.

Proof. The proof consists of three basic parts. First we show
that under the weak hypothesis there exist R' >0 and e' > 0
n . % n

such that if x € S(x ; R') and le~! < €', then one iteration of
the method can be carried out and xn+1exists-In the second part we
prove that positive numbers R" < R' and ¢" < €' exist such that

. *
x0 € 8(x'; R") and |ef| < €" imply that the iteration is a sequence
of contractive mappings with uniformly bounded contractivity and

hence converges. In the third part of the proof we show that under

the strong hypothesis, the contractivity of each iteration function is

bounded by a sequence uniformly proportional, in n, to the

current error and thus the convergence is quadratic.
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The first part of the proof, which is given immediately below,
is very tedious and unenlightening. - We recommend that the reader
allow his intuition to convince him of the assertion and assume that

the authors have insured its validity.

Part i. Clearly the g and b functions depend implicitly on thé

point o and the value en as well as on the explicit variables

vindicated in section 2. Brown [3] has shown in detail that if

xn, an are taken as x*, 0, then the fact that J(x*) ié nonsingular

guarantees that Vgi(x*) # 0 for 4i=1, ..., N, This amounts

to the well-known fact that Gaussian elimination with partial

Pivoting can be carried out on the nonsingular matrix J(x*).
Let us think of gl(x) as gl(xp; en)(x). Since gl is defined

in terms of fl and x, it is entirely independent of the implicit

variables x" andv en. Hence gl(xn; en)(x) is continuous in kxp;en)

and satisfies the same differentiability assumptions as f1 in thé

- %
variable x. [Here, of course, X and x & S(x ; R). Furthermore,

og
V{gl(xn; en)](x)ui = —L (x) is independent of, and hence contin-

X,
1

. n 0
uwous in, (x ; €) as well as x.
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9g, (x*)

Since from [3] some T #0, by continuity there is an Rl >0
h|

and an €, > 0 such that if len - x*.”°° < Rys Il x - x*llm <R

1
n alg, (x"35e™ ] -
and |e| < € then 5% (x) # 0. Let us now consider

1

Agl(xn;en). By the mean value theorem, for each i between 1 and

dlg, (x"3e™ 1
N and for some SiE(xn,xn+snui%Agl(xn;en)ui = 18x : (Ei)~
: i

Hence it is not hard to see that Ag1 is continuous in (xn;en).

Furthermore, since IIEj-x*II°° < Rl’ at least this component of

Agl(xn;en) is not zero. It is consistent to assume j = N. Thus,

for || x" - x*[| . < R, and | e®] < €5 bN(xn;en)(TN_lx) is defined,

continuous in (xn;en) and affine in TN_lx. By inspection,

bN(x*;OXTN_lx*) = xﬁ, and so by continuity, given any n > 0,

there exist numbers Ri(n) and ei(n) no larger than Rl and €1

respectively such that if I]xn - x*ll°° < Ri(n), bN(xn;en)(TN_lx)

n n * .
is defined and IbN(x > )(TN_lx) - le <.
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n : ‘
g ("¢ )(TN—IX) is formally defined as f2(<TN_1x,bN>) , which makes

it clear that g2 is continuous in (xn ;en) and TN—lx as long as

I - <"l < r'@), Ty, Gx - . < R'@ amd [P < e'@.
- *® 1 = *® 1 ‘ 1

If we formally differentiate g (xn;en) with respect to the N-1
2

explicit variables we obtain an -1 tuple whose ith coordinate is

alg, (x";e™] of

of ab
N
( =
%, n-1") E?N—l"’bms"' #&-1""’1\135};” 1%
afgl of ' ag, (< 3eM)u
Y I’-lx’bl\!>)+ a'x.,E I'J—lx’bl\*% : n n .
i - N g, (x"3e )uy
in *’ . ' % u ,
Thus, as long as <" - x ‘w < RI(R), ‘TN_l(x -x) w S RI(R)

and ]enl < ¢'(R), then V[g (xn;en)]('l‘ X) exists and is continuous
= 1 2

N-1

in (xn;en) and (TN_lx). Now, as in the previous step we use the
*
' ale, (x ;0)] * _
result from [3] that for some i < ¥-1, —_T(T’i-lx ) # 0,
1 N

together with continuity to insure the existence of R > 0 and
2

€ >0 such that R <R'(R) and e < e¢'(R) and, in fact, for
2 ’ 2 - 1 2~ 1

[ %" -x*] | 7

% .
x-x) < = and |e < ¢, it

i R-21

< R, |t
2
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follows that Ag (xn;en) # 0. It is entirely consistent to assume that
2 : .
i=N-1. Th o,.n p,"
= N-1. hus, for such (x ;e ), bﬂkl(x ;e ) 1is defined, continuous
in (xn;gn) and affine in TN_éx. Again, by inspection,
b (x50 (T, .x) = % 0 th ‘
N-1$% 3 )( N-2% ) = Xeq and so for any n > there exist numbers

R*(n) <R and €'(n) < e such that for
2 - 2 2 T 2

% #
=" - =l < R;(n) > Iy, (x - x| and G e;(n),

| n,.n o *
Py y GseD) (Ty_pm)-xg 4| < .

Choose R' = R&(R&_l(...(ﬁi(R))...)), e' = e&(R&_l(...(Ri(R))...))

%
and let lix" - x ”w < R', lenl < €'. Then, since the Ri and e;

are chosen by the above process, all the g and b functions are de-
fined in terms of the implicit variables (xn;en). Furthermore,

lx;iﬂ_,;;] = |b,-x]] < RY LY (el (RI(R)).LD) so

n+1l

2 - =¥, < Ry Go@i@). > [T, P x| and

n ' v v '
le7] < ey < ep B G ®RI(R))..))  imply that
n+l o o+l % ' .
[xz - x2| = |§2(T1x ) - x| < BRi 5 G BRI
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n+l *
X - x [

n+l %
Hence “Tz(x -X )"‘m rax {| A )

ntl % ) ' (o
Jxl »xll} < RN_2(...(R1(4))...),
since R! _(...) < < _(...), and so L is defined, etc
w1000 S By < T,  x » ete.
+1 n+]

- % .
Clearly this leads to x° is defined and, in fact, x 2 S(x :r),

: n - * 1
as long as x <€ S(x ;R') and Ienl <e',

‘n - *
Part ii. Let x' & S(x ;R'") and Ienl < e'. Each 8; is contin-

L

uously differentiable and so there exist functions pl, cee 5 Py such

% . ' %
that 1f [Ty oG- 2l <n' > T G- %Dl , then
- - ol iy - =
85 Tpoga1® = 85 Ty g q¥) = 95, (T VT 1 (X = ) Py Tes 1 X Tyog ¥
] - ‘ - H
and vpi(TN—1+1x’Tu—i+lY) / dTH~i+1(x I, >0 as "Tn-i+l(x il -+ o.

Now . depends implicitly on (xp;sn), since g; does, as well as on

the explicit variables Obviously g is continuous

Tyoi1® Ty

in the explicit variables since the defining equation is, but we showed

in Part i that the defining equation and hence A is also continuous in

(";e™). First we note that
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IbN(TN_ix)-x;‘I Ix:, - x;‘, + (Agl(xn‘;r:n)uﬂ)"1

: n n.. _.n n
. [Tﬂ-lAgl(x se )LN_I(X %) + gl(x )1

IX;; - X + (Agl(xn;en)uN)-l

IA

e [TN_lAgl(xn;en)TH_l(x -+ Vgl(xn)(x'n - x?)][

+ Ipl(x*,fl)l . IAgl(xn;sn)ul\II“1 .
n n ég1

Now, by the mean value theorem, Agl(x e )uN . = 3;;-(5) for sorme
S (xp, =+ enuN). This is in the region where we assumed in Part i
(without loss of generality) that this partial doesn't vanish and is
hence bounded below Ly some number l/b independent of (xn;en). Thus
the second term on the right hand side is bounded by blpl(x*,xtsl. In
order to bound the first term on the risht hand side, we add and subtract

- %
(Ag (xn;en) ) 1 Ag (xn;en)(xn - x ) inside the absolute value. Ze-
1 UN 1

arranging terms we obtain
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* n n n -1 n . n n *
[xy xy + (88 (x75e)uy) (8g, (x"5e Duy) (xp - x0)
n n -1. . n n n )\ *
+ (8g, (x ;e ) (g, (x7) - 88, (x 56 ) (x*- x)

+ (Agl(xn;sn)uN) ! TN_lAgl(xn;en)TN_l(x -x 4 - x)|

i n n -1
< agy (56 )y
n, -1 L n n n,y jn %y %
«(e7) Z |pl(x teu, x ) =" - x "w + “TN_I(x -x )“1 .
i=1
We have used lAgl(xn;en)uNl = Hl_\.sg,]_(xn;e:n)"ﬂ° as well as the Holder

inequaltiy for p =1, q = «. Now combine "the first inequality

with earlier results to obtain:..

(3.1) lbﬁ(TN_lx)—x;I ..<_”TN_1(X - x*)"l + bllx® - x*"w

N
. Z lpl(xn + enui,xn) / en| + blpl(x*,J?)l.
i=1

Without loss of generality we can appeal to Part i to assume that

~ .~

bt > IAgz(xn;en)uN_l | uniformly for Ix" - x*” <P', Ie“l < e',
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We begin exactly as above.

} % n 1

* . -
IByp (Tyop®) =2yl = lxgog = Xyoq + ey (xn;en)uu_l)
. [Tﬁ_ZAgz(xn;en)TN_z(x - ) + gZ(TN_lxn)][.

. %
Remember that g, ('I‘N_lx ) # 0 and so the situation is slightly more
* )
complicated than before when gl(TNx ) = fl(xx) = 0, We handle this

as follows:

n, _ n % % %
gZ(TN-lx ) = gZ(TN_lx ) - gy (TN__lx ) + f2 [TN__lx ,bN]_ - fz(x )

® *
= Vg, (T XD (8 - %) = 9y (Tyyx Ty )

of
2 % *
+ 5;;; @) b (Ty %) - %) .

%* i
Of course & = ( < Ty_1* by >, x ) and so its existence depends on

this interval being of length no more than R'. From (3.1),

N

% % *

IbN(TN_lx ) - >N' < b“xn - x"“oo 'Z]_ Ipl(xn + enui,xn) / enl + bpl(x *,xn)
i= '

which can be made arbitrarily small, and hence less than R' by taking
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"xp - x*"°° smali. Select b' such that b' is a uniform upper bound on all
the elements of J(x) for x € §(x#;R'); (Ve are really only concerned with
the transverse strict lower triangular part of J(x) .)

At this point, split the right haﬁd side of the inequality after substi-
tuting for gz(TN_lxn) and adding and subtracting

- _ *
(Agz(xn;en)uN_l) 1 Agz(xn;en)TN_l(xn - x ) and obtain as before,

+ (1382(xn;s:n)un__l)"1 (ng(TN_lxn) - Agz(xn;en))TN_l(xp—x*)

+ (Agz(xn;en)un_l) 1 TN_ZAgz(xn;en)TN_z(x“~x +x-x") |

% * %
+‘b|pz(TN_lx STy X0+ bb' by (Ty ;% ) = x|

' N-1 .
‘ % n % n, n n, n
< "TN_Z(x-x )"l + buTN-l(x -x )“°° izl Ipz(TN_l(x +c ui),TN_IXIYS ]

%
+ blpz(TN_lx ,TN_lxn)l

2 n _*p N n, n n n * n
+ b b {llx"-x “w ) Ipl(x teu,x) /e | + Ipl(x x|} .

i=1
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Ge2) Jby_y (Ty_pm)=my_yl <l Ty Gemx™

1
+ 1o e i, oD
320 |

N-j
n n n n * n
° . T + T. . + . T . .
L 1P T G e ug) Ty gm0 /e + o gy(Ty_ =75 Ty_gx)| ]

There is no additional difficulty in establishing the general case,

*
(3.3)] Byep (Tyop-1) —x;;__plf N.TN_p_l(x-x )Ul

+ Eobp“j‘” [, 3 P-xHll
J'=

»ijl (T, Meu) T X/ + oo, (T L x" 11
(L 1ogn ey G e e Ty /el oy (y_gx Ty gx 01T

for O <p < N-1.
We know enough about the p functions to allow us to conclude that for any
n > 0, there are positive numbers R(n) < R' and e(n) < ¢' such that for

n . n, n n,,n .
le’] < en) and any j > 0, 'pj-f-l(TN-j(x +e u,) ’TN-jx /e | <n ;s and for

n % . . * n i n *
x" - x “m < R(n) and any j > 0, ij+l (TN_jx,TN_jx * n”TN-j (x -x )llm .
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Hence there is a constant C, independent of X, xn, e” such that

) )
for <" - x "°° < R(n) and |en| < e(n) we can simplify (3.3) to the

following form.

(3.4)| bn_p(Tﬁ_p_lx’)-‘-x; = Ol ovaniin | =~x*] . |

; fbl 2 “TNFp 1
' ’ n+l
Remember that bl is a constant function whose value is xl and

by (304) FY p=N—1’
"‘I - X‘1‘+1| < enven | | x®-x*t

and by (3.4) with ,x = Tlxn+l s

l * n+l

- xy | g2 CN(N+LN | ] x"-x*|] -

Clearly then,

e - = < 2¥ v o] | <=1 ] -

1

Choose 1 < [ZN—IN(N+1)C]- and set R"=R(n) and €"=e(n) and the

proof of Part ii is complete.

~ e
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Part iii. Let the strong hypothesis hold and let 1 be any index

QN oo 0 as w0 o w0

between 1 and N.

llog; @ - ve, Il ¢ max llve, (o) - ve

3 (x*)"1 = o - 36O < xllx - <7l .
1<j<N

3

Notice also that Ibi(Ti—lx) - bi(Ti_ly)] < (i—-l)"'ri_l(x - y)“w follows
readily from the definition of bi and the maximum component assumption on

AgN_i+1(xn;en)_ Let 1< j <1 and by the chain rule

s

agi of i s
S— = < L ]
ox, Ty-142%) 3xj( TN-141%Pn-142° By )
N
N of, ab,
+ (S Ty XDy oseeesb ST . x,...,b . >)
KeNCig2 9Py NeiHLTON-i T k-1
abl
Noww —— 4is a constant so
ox
J
. * *
g (Ty_ga®) = T8y Ty gy x )l < Mgy 08, G0 - vg el
If I afi abk
+ —KT X,b_ 3eeesb >)—
KeNCit2 90y NeiHLTUUN-142 N ex
of P b
- 1 ' b, . >)—F | .

—(< .o
b - In-i41® Pyeian oo P %,
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3f, , ab,
Inside each term of the sum, add and subtract T (x) 5;; .

Rearrange the terms and use the fact that all the b-partials are less than
or equal to one in absolute value. The following inequalities result:
live, (T x) - vg, (T, x*)"
» i N-i+l” 1" "N-i+l 1
< lve, () - ve, O, + IEC< T, . %pueeb D= 9E (D
- i B § 1 i N-i+17?°"°°°N i 1
* %
- - < 3
+llve, ) - VE (ST X ,.. by ,)”1

L 4 * £ 3
< K"x - X ‘L + K" < TN-i-!-lx”"’bN > - x IL

+®lx -<T * > .

N-141% 2+* o0y
We can use (3.4), 0< p< i-2 to bound these last two terms.

Ity oq G = xDI + v n] | P[] .

N-i+l

A

.
| %yos42 = Preita Tnega®

* * i
N D NP LY

A

%
- < >
| Kot~ Pueitd € Tyegt1®oPyoze2 )

+

[}

CN(N+1)n|Ixn—x*ll

2nrn_i+l(x-x*)"1+ 2eN(N+1) 0] | x-x*] | _.

1A
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*
- X )
lxN-i-i-j bN-i+j( < TN«-i-l-l’bN-i-l-Z’ ot ’bN-i-l-j-l > |

x - O, +23 Zenwryn] [ -2 ] -

I Ty-141

< 232
Hence

ive, (T

N-141%) ~ VB4

* ‘ . i-1
Tyopsn® My < 2K | x-x*| | +K2 IITN—1+1(X‘X*)|’1

+ k2t Tenen+)n] | <™ -x*] | ..

But since the 21 and 2, norms are equivalent, we can pick constants

Q and Q' such that the following inequality holds for every i=1,...,N :

* % n s
N8y (T gy ® ~ 983 (T g ® My < Ax = x ]l + QMillx - x ], .

. s n, n n, n
At this point we wish to reexamine pj+1(TN-j(x +€ ui),TN_jX / €

n *

and pj+1(TN—jx ’TN-jX )

We can write
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P ya (Tyg (K746 0D, 1 ) = ‘ftl,[ngﬂ(TN_j ("4ee"u,)) - vy ﬂ(rﬂ_jx“)]’e%N_juidt
. *
= J'éIng +1(TN_j(xn+tenui)) - Vg, +1(TN_jx )-]enTN_juidt
* ng+1(TN-jx*) V8341 (Tyg® ey guy -
Hence,

10 442 € Nj(x-!-e v,)5 Ty 5|
n ns % n n., ,.n % n ' n _*%
<l - @ @, + D + e, + e ertmllxx],
and so there is a constant Q" such that

lpj-!-l N- J(x +eu 1Ty xn) /" l< @Y=" - x*uw + qle"]

If we choose |e"| = 0(] fl(xn)l) = O(Ifl(xn) - fl(x*)l) = 0Gx" - x*u,,) ;

then we may as well assume Q" was chosen such that

%
‘pj+1 N- j(x ﬂnui)’TIq-jxn) / enl < Q" - x fl, «+ Now write

*
p...(T ,Xn,T .
J+1N-j N-j

1 n * n - * * n .
-fong-i-l(TN-j(x + t(x -x)) - ng+1(ll-l—jx )] TN-j(X x )dt ;
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n * n * 2 | R
thus 'pj+l(TN-jx ’TN-jx )l < (Q+Q)jx -x fl, «+ This allows us to

redevelop (3.4) as follows:
_ * ' Lk B A2
(3.5) ,:LN__p bN-p(TN-p-lx)l < “TN—p-l(x x )“1 + Cl|x x|l .

From whence we obtain

% * 2
EAEE A IR P
lxz - x2+l| < ZC'"xn - xﬁ]i s

etc., until

- 2
R I e L

. N-1 . . )
and so the method is at least second order, since 2 C' is independent

of n.

This completes the proof. A
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4. Numerical Pesults.

Example 4.1. The following are Powell's equations [13]

derived from Rosenbrock's function [14].

. R N
fl(xl,xz) = 10(x2 x ) 0

fz(xl,xz) = 1- x = 0
The "standard" starting guess (-1.2, 1.0) was used and the results

are given in Table 4.1.

Table 4.1.

‘ Number of (Equivalent)
Method Final JFll Evaluations of the
Function Vector F

Newton 7.5 % 1!.0—8 12
Broyden (I) [6] 4.8 x 10710 59
Broyden (II) [6] 2.5 x 10710 39
Brown (I) zero 7
Brown (II) zero 9

Remark 4.1. Rosenbrock's function [14]

(4.1) 0 (x ,%,)) = 1000x, - xl")2 + (1 - x1)2

consists of a steep-sided parabolic valley whose single minimum
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occurs at X =%, = 1. C.G. Broyden (in correspondence) proposed
that a starting guess of (-0.8,>l.p) on the other side of the
§a11ey night prdvide a good challenge for method (I). We are
happy to report a final norm of 6.5 x 10”7 in only 5 (équivalent)

function vector evaluations for the proposed starting guess.

When we solved the system in the reverse order

we obtained convergence in just one iteration from the standard
starting guess (-1.2, 1.0). This example supports'a good  general
strategy to follow when using Brown's methods (I) and (II)

namely, always preorder the system of equations so that the

linear (or most nearly linear) equations come first and then the

remaining equations become progressively more nonlinear -- as

measured, say, by their degree.

Broyden has pointed out in [7] that his new methods, also
[7], will produce the exact solution (1.0, 1.0) from the stan-

dard starting guess in just three iterations.



CONVERGENCE OF BROWN'S IIETHOD FOR STIULTANEOUS NOWLINEAR EQUATIONS

Example 4.2. Rosenbrock's function (4.1) has been used as

a standard (“tough') example to tegt many function minimization
algorithms. One way of minimizing a function, ¢, of N vari-
ables is to locate the zeros of the associated gradient system, for,
as is wgll known, any local minima of ¢ must occur among the
zeros of V¢. We take this approach with Rosenbrock's function

(4.1); hence, we seek the zeros of

: 2
2(x1 -1) - 400x1(x2 - x

n

fl(xl,xz)

2 -
_ 200(x2 - X ) = YO .

fz(xl,xz)

Again we take xO = (-1.2, 1.0). The results are given in Table

4.2.
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Tﬁe problem was run for N = 5, 10, 15 and 20 with the starting
vector for all cases being a vector having 0.5 in each component.
Both Brown (I) and Brown (II) converged in each case to the
root, a vector all of whose components are 1.0. For ﬁ =5 New-
ton's method converged to the root given approximately by

(-.579, ~.579, -.579, -.57%, 8.20). VWe note that the failure of
Newton'g method on this problem is root attributable to singularities
of the Jacobian matrix, since the Jacobian matrix is ndnsingular at
the starting guess and at the two roéts. The results are given in
Table 4.3. 1In the table "diverged" means that ’,xn"w *> ©
‘whereas "converged" means that each component of xn+1 agreed with
the corresponding component of x* to 15 significant digits and

"f(x < 10 ; moreover, conv. = converged,

n+1)‘}2 -15 -
2

div. = diverged, and its. = iterationms.
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Table 4.2.

Number of (Equivalent)

tiethod Final Value of ¢ Evaluations of the
Function Vector F

Powell [13] <1.0 x 107% 70
Stewart [13] 1.7 x 1078 132
Broyden [7]
a) "0.M.D." failed > 500
b) "Oo.M.U." failed > 500
c) New X = .05
(version 1) failed > 500
d) New A = .1 '
(version 1) failed > 500
e) New A = .2 -12 :
(version 1) < 1.0 x 10 158
f) New A = .05 -12
(version 2) < 1.0 x 10 480
g) Few A = .1 -12
(version 2) < 1.0 x10 184
h) New A = .2 -12
: (version 2) < 1.0 x 10 188
Brown (I) < 1.3 % 10 1 53

Example 4.3. 1In order to illustrate how Brown's methods (I) k

and (II) capitalize on the preordering strategy given in Remark

4.1, we consider the following example from [3]

N
£,0) = - (N4 1) +2x + .2 x5 i=1, ..., -1
. j=1
jA
N
fN(x) = -1+ X -

5=1
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Table 4.3.

N Newton's Hethod » Brown (I) Brown (II)

5 conv.(18 its.) conv. (7 its.) conv. (6 its.)
10 div., ‘|x1“-103 conv.(8 its.) conv. (7 its.)
15 div., llxlll«—105 conv. (8 its.) conv. (8 its.)
20 div., Jxt) ~10° conv. (8 its.) conv. (8 its.)

Example 4.4. This system is due to Freudenstein and Roth [11]:

fl(xl,xz) =13 + x, + (( -x, + 5)x2 -2)x, = 0

1 2

fz(xl,xz) -29 + X, + ((x2 + l)x2 - 14)x2 = 0 .

The starting guess used was xo = (15, -2). The solution is at

(5,4). The results are given in Table 4.4,

Table 4.4.

Method Result
Newton converged in 42 iterations
Broyden's 1 [6, p. 591] diverged
Broyden's II [6, p. 591] diverged
Broyden [7] diverged
Damped MNewton (discrete form) [17]' diverged

Brown (I) and (II) converged in 10 iterations
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Example 4.5. This example is a macroeconomic model due to

Christensen [8]. It entails a éystem of 19 simultaneous equa-
tions, ten of which are linear. Our colleague, R.M. Bass of the
Office of Emergency Preparedness, Washington, D.C., has used our
program to solve these equations. With "good" starting guesses he
obtained convergence for all 39 time periods using an average of
only 3.5 iterations per time period. With poorer starting guesses
he obtained convergence for 22 of the 39 time periods with an
average of 5.4 iterations per time period (when convergence was

obtained). Dr. Bass had originally solved these equations by -

\ T’_ {/'-¥ ;"-A: P I:-:“_ . iz}.“/_{\i,
- e VTERASLANR FRRET W

19 2 o o/\}-'ﬁ‘f" et

minimizing 2 fi , using the method .of-Fletcher and Powell~

“i=1

[10]. Approximately 500 iterations were needed to reduce the

3 S

sum of squares to 5 % 10 ~. yL¢}Amcgg@gf

Remark 4.2. As the Rosenbrock example (contrast,example 4.1

with 4.2) and Bass' experience confirm experimentally, it is

ridiculous to complicate the problem of solving simultaneous non- 1 e

linear equations unnecessarily; specifically, do not solve a non- Lol

. . s 2
linear system by attempting to minimize Z fi !




CONVERGENCE OF BROWN'’S IIETHOD FOR SIMULTANEOUS NONLINEAR EQUATIONS

Example 4.6. Scarf ([16] has given an elegant method for

finding thé fixed points of a mapping which takes the unit simplex
into itself; i.e. he has given a constructive proof of Brouwer's
fixed point theorem. Scarf's technique turns out to be remarkably
easy to implement on a digital computer. The technique applies
directly to a nonlinear model of a pure trade economy. Scarf's al-
gorithm is an example of a good technique for attacking the first
subproblem of solving nonlinear equations: getting into a region
of local convergence from perhaps poor initial estimates (see §1).
We coupled Brown (I) witﬁ Scarf's algorithm and tested it on a
ten dimensional pure trade model with the following results: the
time needed to solve the problem was reduced from 4.6 minutes
(when using "pure"” Scarf) to just 16 seconds when employing the
hybrid technique of using Scarf's algorithm to get an initial guess

and then switching over to Brown (I).
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