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Abstract

One of the many challenges of a parallel-program compiler is to map an algorithm across a
large number of processors while minimizing increased communication overhead. In this paper, a
systematic method for generating systolic programs for large scale multiprocessors is described.
The method applies to a subclass of programs called quasi-uniform recurrent equations, which
is an extension to uniform recurrent equations appearing in literature. With a given optimality
principle, our method will generate a (near) optimal mapping from the equations to a virtual
machine with a given network topology. The solution on the virtual machine is then transformed
to one for a concrete multiprocessor, based on the performance model of the target machine. A
compiler implementing this method has been developed. It takes a set of quasi-uniform recur-
rent equations as its input and generates target systolic programs for the Intel iPSC/1 as its
output. The performance model used by the compiler to fine-tune the target code as well as the
performance results of the compiler generated code are discussed.

1 Introduction

Parallel processing can speed up computations substantially for many applications [3,4,5]. The
appearance of the first generation of message-passing multiprocessors in recent years shows that it is
not only desirable but also practical to build parallel machines. When talking about message-passing
multiprocessors, we refer to machines such as the Cosmic Cube [21], the FPS T series [1], the Intel
iPSC [2], the Connection Machine [11], and the WARP systolic processors [6].

One promising new architecture has already been proposed by Dally and Seitz [8,9]. The machine
consists of a massive number of processing nodes interconnected into a mesh-like torus network. In
contrast to present machines, this machine has a fine-grained architecture and it has a large diameter
with low connectivity. Furthermore, the communication costs on this type of a machine is improving.
As claimed in [8], the local node-to-node communication costs can “approach main memory access
times of sequential computers.” In order to achieve the greatest potential of efficiency provided by
this type of multiprocessor, one can take advantage of fast local communication while avoiding the
large diameter of the network.
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Large diameter, low connectivity multiprocessors have many properties in common with systolic
arrays. There is a large class of important application algorithms, like numerical solutions to partial
differential equations, matrix operations, signal processing, dynamic programming and some graph
algorithms, which have the property that the data dependencies of the algorithms are very regular
and are mostly local. These algorithms have been shown to be suitable for systolic processing.
Many efficient systolic arrays for them have been designed. It is highly desirable to emigrate these
algorithms to multiprocessors so that they can be executed efficiently not only on special purpose
devices but also on more general and economical multiprocessors.

Low-level programming of multiprocessors, especially large-scale multiprocessors, can be tedious
and error-prone. Ideally, programming is left to a high-level language compiler. A parallel-program
compiler bears much more responsibility than a conventional compiler. One of the significant chal-
lenges for such a compiler is to map an algorithm across a large number of processors while minimizing
communication overhead. Many methods for designing special purpose systolic arrays have been de-
veloped [7,10,14,16,17,19,22]. However, designing systolic programs for multiprocessors requires the
target machine characteristics — communication latency between processors, ratio of processing speed
versus communication speed, machine size, network topology, etc. — to be taken into account. In
designing systolic arrays, the goal is to find good designs to be realized on VLSI chips. The size and
the topology of the design to be constructed is tailored to heed the special-purposes of the algorithm
in question.

In this paper, the problem of designing systolic algorithms for large-scale multiprocessors is
explored. A systematic procedure for constructing linear mappings from an algorithm to a target
network topology is described. The method is applicable to algorithms that are characterized by a set
of recurrent equations called quasi-uniform recurrent equations (QURE) which are an extension to
the well-known uniform recurrent equations (URE) [13] used in many previous works. Ideas similar
to QURE have also been proposed by Rao [20]. Delosme and Ipsen have considered affine recursive
equations which are a different extension to URE. The target machine is described by a performance
model, in which computation cost, communication cost, granularity, and etc. are taken into account.
The procedure for designing systolic programs consists of two parts. First, a (near) optimal linear
mapping from a system of QURE to a virtual network is derived using linear programming plus a
reasonable amount of heuristics to avoid the high cost of integer programming. The virtual network
is defined based on the topology of the target machine. Optimality is measured against some given
criteria. The program for the target machine is generated by choosing parameters that optimize the
performance based on a model of the target machine.

The rest of this paper is organized as follows. For this article to be self-contained, section 2
presents preliminary notions of linear mappings and the necessary and sufficient conditions for the
existence of a linear mapping. In Section 3, a procedure combining linear programming and heuristics
for generating linear mappings is described. Section 4 discusses the relationship between the virtual
machine and the target machine. In Section 5 we present a performance model for the Intel iPSC /1,a
(coarse-grained) hypercube multiprocessor, and the discuss performance results of compiler generated
target code. We conclude with a few remarks in Section 6.




2 Linear Mapping and the Mapping Equation

This section presents basic definitions and results concerning linear mappings. Readers can find
alternative expositions in previous works [7,10,13,14,16,17,19].

2.1 Preliminaries:
2.1.1 Dependency Vectors:

Let f(41,12,...,%n) be a recurrent equation defined on an n-dimension integral space Z":

f(i17i2, .. 'ain) = ¢(f(jlaj21 .. -7jn); .. -,f(j{,jé, .. ’.71,1,)) (1)

Denote the domain of f by Q. Each point in Q represents a unit computation which is called
a computation point. (Computation points are comparable to the names of processes or ob jects in
other models of computation.) Based on the definition of f, a dependency relation among all the
computation points can be defined. :

Definition 2.1 A computation point u is said to depend on a computation point v (denoted by
u > v), if f(v) appears on the right hand side of Equation 1, when f(u) is on the left hand side.
The difference of the two points, d = u — v, is called a dependency vector (associated with u).

Denote the set of dependency vectors associated with a computation point u by D(u). For a
general recurrent equation, D(u) may depend on u. For example, in the following equation, at every
odd-k point D(u) = {(1,1)}, while at every other point D(u) = {(-1,1)}:

o fi-1,k—1)+1 ifkodd,
f(z,k)_.{ f(G+1,k—1)+1 otherwise. 2)

2.1.2 Quasi-Uniform Recurrent Equations:

There is a class of recurrent equations called uniform recurrent equations (URE) [13], in which D(u)
is afinite constant set independent of u and the size of the domain. However, as far as linear mapping
is concerned, URE is a little too restrictive in the sense that some non-UREs can still have linear
mappings. In the following, we define QURE, a superset of URE, to make our result precise. The
extension from URE to QURE is not substantial, most of the results developed for URE can be
easily adapted to QURE.

Definition 2.2 A recurrent equation f = ¢(f) is quasi-uniform if the set of all dependency vectors,
D= |J D(u),
uingQ

is a finite constant set independent of the size of the domain.




The set of dependency vectors in D can be represented by an n X m matrix where n is the
dimension of the QURE and m is the total number of dependency vectors in the set. The matrix
constructed is called a dependency matriz of the QURE. Note, that m can either be greater or less
than n. For example, a five-point discrete approximate of the Laplace equation in two dimension:

f(ivjvt'l'l) = ( f(i'“:l’jat) + f(i+1’j7t) + f(i’j_l’t) + f(i’j'l'l?t) - 4f(i)j’t) )/h2 (3)

has five dependency vectors, which can be represented by a dependency matrix:

—_ o =
=)
e
-0 O

2.1.3 Communication Vectors:

We consider the class of parallel machines having regular multi-dimensional network structures. Pro-
cessing elements are interconnected by communication channels or links. Typical network topologies
include hexagonal networks and torus-connected k-ary n-cubes (hypercubes fall into this group). In
such networks every node has the same set of communication links. For example, in a 2D square
mesh, every node will have four links each connecting to its nearest neighbors in north, south, east
and west directions, respectively.

Communication links are represented by communication vectors. If the dimension of the network
is k, then each communication vector is of length k+1. The first k component corresponds to k spatial
dimensions and the last component represents time. We assume that passing a message through a
communication link takes one unit of time. Hence, the last component of every communication
vector is 1. Furthermore, we represent time delays explicitly. A unit delay is represented by a
communication vector (0,...,0,1). A topology matriz can be defined for each network such that
each communication vector is a column vector. For convenience, we assume that the delay vector
(0,...,0,1) is always the last column vector in a topology matrix.

2.2 Linear Mapping:

Let  denote the domain of an n dimensional QURE. Let F denote a linear mapping function from
Z™ to Z™, and let F; denote the time component of F. The function F maps each point in Q to a
point in the range R which represents a process to be executed on a certain node in the network.
Linear mappings preserve the dependency relation among the computation points. We call the set of
points in the range R with dependency relation “>~” a design of the QURE. Any meaningful mapping
function F has to satisfy the causality constraint in the time domain:

Definition 2.3 A linear mapping satisfying the following two conditions is called a basic linear
mapping.

Al. Forallz, y in Q, ifz # vy, then F(z) # F(y);
A2. Forall z, y in Q, if y depends on z, then Fy(z) < Fi(y).
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For a QURE, any computation point in its domain can be expressed by a linear combination of
dependency vectors together with initial boundary points. The result of applying a linear mapping to
a computation point, then, is equivalent to the result of applying the mapping to each corresponding
dependency vector first and then taking the linear combination of them together with the mapping
of the boundary points. We can concentrate on the mapping of dependency vectors rather than each
individual computation point. For a QURE f = ¢(f), if there exists a linear mapping for every
dependency vector in the set D, then the image of any computation point can be found accordingly
since the set of dependency vectors associated with each individual computation point is a subset of
D.

A linear mapping from Z" to Z™ can be represented by an n X n square matrix. Let T be such
a matrix. T may contain elements that are rational. Let D be the dependency matrix of the QURE
and C be the topology matrix of the network.

Definition 2.4 Given a QURE with a dependency matriz D and a network with topology C, a square
matriz T satisfying the following three conditions is called a valid linear mapping of D with respect
to C.

B1. T is non-singular;

B2. For every column vector d in D, t-d > 0, where t is the last row vector of T, which
represents time (- is the inner product of vectors).

B3. (Validity w.r.t. topology C) For each column vector d in D, the resulting space-time
vector T'd must be a composition of communication vectors given by matriz C, where a
composition is a linear combination with non-negative integral coefficients.

2.3 The Mapping Equation:

A valid linear mapping defines a valid design with respect to a given network. The following propo-
sition tells us that we can find all the valid designs by solving a matrix equation, and conversely, any
valid mapping must satisfy this matrix equation.

Proposition 1 Given a QURE with dependency matriz D (n X m) and a network topology matriz
C (nx k), then an n x n matriz T is a valid linear mapping of D with respect to C if and only if T
is non-singular and there ezists a k X m non-negative integral matriz P satisfying

TD =CP (4)

and each column of P contains at least one positive element.

Proof:

(=) Let T be a valid linear mapping of D with respect to C. Denote the last rows of T' and C by t
and c, respectively. By Condition B3, for each column vector of D, d;, the vector T'd; is a composition
of communication vectors. Therefore, it can be expressed as Cp; for some non-negative integral vector p;.
Furthermore, since t - d; = ¢ - p; > 0 (by Condition B2), p; contains at least one positive element. Let P be




a matrix containing all the vectors p; as columns. If P = (py,...,Pm), then P satisfies Equation 4 and all
it’s conditions.

(<=) Since T is a non-singular matrix by our assumption, we only need to show that T satisfies Conditions
B2 and B3. Let P be a matrix satisfying the above equation and conditions. By definition of communication
vector, ¢ is a vector of all 1s. Since each column of P contains at least one positive element, we know that every
element of vector ¢P is an integer greater than 0. This implies that T satisfies Condition B2. Furthermore,
since P is non-negative and integral, for every column j of P, vector Cp; is a composition of communication
vectors. Therefore, T satisfies Condition B3. Hence, T is a valid linear mapping of D with respect to C.
Q.E.D.

Equation TD = CP not only describes the mapping problem, but also provides some useful
information about the resulting designs.

Routing information: Suppose that T' and P are a solution to the equation. A valid linear map-
ping maps each dependency vector to a composition of communication vectors. The informa-
tion about the composition is completely represented by the corresponding column of matrix
P. For example, if there is a column p; = (1,2,0,1), then we know that dependency vector d;
is mapped to a path in the network which uses the first communication link once; the second
twice and delay one time unit (recall that the last communication vector represents delays).

Timing information: We describe delay by an explicit communication vector. The advantage of
doing this is that the timing for message passing is totally explicit. Therefore, we can derive
completely self-synchronized designs in which the data needed for a computation will always
get to the right place at the right time. Using explicit timing also makes it easier to define and
search for time optimal designs.

2.4 Existence Result:

Definition 2.5 A time direction for a QURE is an integral' vectort such that for all the dependency
vectorsd, t-d > 0. A QURF is consistent if it has a time direction.

Intuitively, a time direction of a QURE is a common direction of all the dependency vectors
since geometrically, condition t -d > 0 means that the angle between vectors t and d is < 90°. The
time direction is very close to the algebraic concept polar vector defined on a set of vectors with the
exception that a polar vector does not require the dot product to be strictly greater than 0.

Not all QUREs have a time direction. However, whether a QURE is consistent can be determined
without too much difficulty. The time complexity for solving this problem with a fixed n is polynomial
in the total number of dependency vectors.

In a special case where the given QURE represents an iterative algorithm, the set of dependency
vectors has a built-in time direction since the explicit iteration index, or time index, is monotonic
with respect to the dependency relation. Hence, the vector corresponding to that index is a valid
time direction. Take Equation 3 as an example. The third index of that equation, ¢, is an explicit

1This is not essential, we can use rational instead.




time index. Every computation point in the domain of that equation only depends on points which
have smaller ¢ values. Hence, the third components of all the dependency vectors are positive integers
(actually, they are all 1 in this particular example). The vector (0,0, 1), which corresponds to the
third index, is a time direction for that equation.

Definition 2.6 The complementary vector of a communication vector ¢ = (c1,...,¢n-1,1) is the
vector (—c1,...,—Cp—1,1). A network (represented by C) is symmetric if for any communication
vector in C, its complementary vector is also in C.

Intuitively, a network is symmetric if every physical link is bidirectional. Most existing parallel
machines use symmetric networks. Some of them have two separate physical links; some use time
multiplexing to realize bidirectional communications.

Theorem 1 Given a QURE with dependency matriz D and any symmetric network topology C, a
valid linear mapping of D with respect to C ezists if the QURE is consistent.

Corollary: If a QURE has an explicit time index, then it has valid designs with respect to any
symmetric network.

The above theorem shows that as long as a QURE is consistent, it can be mapped to a symmetric
network by a linear mapping, and iterative algorithms represented by a QURE can always be mapped
to any symmetric network by a linear mapping.

3 Procedure for solving the mapping equation

Finding one solution to the mapping equation may not be very hard, but finding an optimal one can
be very difficult. It depends on the complexity of the optimality criteria. If optimality criteria can
be formulated in a linear form, then the problem of finding an optimal solution can be formulated
as an integer programming problem. Otherwise, no method except exhaustively searching through
the solution space has been developed [14].

In this section, we first discuss and compare several optimality criteria. Then, we describe a
systematic method for finding an optimal solution to the mapping equation with a linear optimality
criteria. Our method is based on linear programming and a reasonable amount of heuristics so as to
avoid an expensive integer programming procedure. The trade-off of using a fast procedure instead
of getting an optimal solution is based on the following two observations:

1. Experimentally, the heuristics have been able to find the optimal solution most of the time;

2. Near-optimal solutions at this level can be just as good due to processing stages to be performed
later. Partitioning a large number of logical elements to a fixed size physical processor usually
makes the advantage of optimal solution over near-optimal solution negligible.




3.1 Different Optimality Criteria:

There are many different optimality criteria for measuring systolic designs. The following are three
examples (See [13,19] for the first two definitions):

OC1. Wavefront stages: Once a QURE is given, together with its index domain, a wavefront
number can be computed for each node in its dependency graph which tells when it should be
computed. The maximum wavefront number can be considered as an optimality criterion, i.e.
a design in which every node is scheduled at a time slot which corresponds to its wavefront
number can be considered as an optimal design. As a matter of fact, such a design can be
derived from the dependency graph.

OC2. Minimal time steps w.r.t. linear mappings: Since a scheduling function achieving OC1
may have a complicated form and may be costly to use, more practical optimality criteria can
often be defined by putting constraints on scheduling functions to make sure they are econom-
ical to use. Criteria OC2 is such that the scheduling function is restricted to be linear. A
design is optimal according to OC2 if it has the minimal number of time steps with respect to
a linear scheduling function.

OC3. Shortest execution time w.r.t. a given target machine: The above two optimality cri-
teria are defined independently of the target network topology. However, a design so defined
may not correspond to one which runs the fastest on a target machine. For example, if we
assume that a message traversing through a physical link takes a unit of time, and that an OC2
optimal scheduling function is described by vector (1,1), then if a target machine does not have
diagonal channel (i.e. (1,1) is not a communication vector), the corresponding optimal design
may not be the one that runs the fastest. With a proper definition for the computation time
of a machine, an optimal design can be defined to be the one which has the shortest execution
time on the target network.

All of these three criteria can be expressed as objective functions. Suppose a pair T and P is a
solution to the mapping equation (Equation (4)), and t is the time component of T'. Then, the total
execution time of the corresponding design is given by,

exe_time(T, P) = max (t -x) — min (t - x). (5)
x1inQ x1nQ
Without losing generality, we can rename the origin in the problem index domain, so that Equa-
tion (5) can be simplified to

exe_time(T, P) = max (t - x). (6)
x1inQ

To obtain an optimal design, exe_time(T', P) must be minimized over all possible solutions of T
and P. Solving this problem involves finding a solution for a system consisting of a large number of
equations (comprising all the unknowns in T and P) and an unconstrained objective function. In
this case, the optimality criteria can be approximated by a linear function, as discussed below.




3.2 The Searching Procedure:

The procedure for finding an optimal solution to the mapping equation consists of three steps. The
first step involves finding an optimal time direction. Second, a mapping matrix 7T is constructed, and
third a matching path matrix P is found. The input to the procedure is a set of dependency vectors
of a consistent QURE and a set of communication vectors of a symmetric network, represented by
matrices D and C, respectively. The following problem serves as an example:

Problem: Map a nine point discrete approximation of the Laplace equation to a sym-
metric hexagonal network.
fG4,t41) = (4f(i+1,5+1,8) + 4f(i+1,5-1,0) + f(i+1,5,8) +
4f(i_1’j+1’t) + 4f(i—17j_1’t) + f(":_]-’j’t) +
4f(i,3+1,8) + f(i,5-1,8) — 20£(i, 5, 1)) /B2 (M

The corresponding dependency matrix and topology matrix are:

-1 -1 -1 111 000
D=}-1 1 0 -110 -110/{,
1 1 1 111 111
-1 -1 11 00O
C=]1-1 010 -110
1 111 111

Step 1. Finding an optimal time vector:

The first step is to find an integral vector t = (#1,%2,...,%,) such that t -d; > 0 for D =
(d1,d2,...,ds), and the corresponding schedule function produces minimal time steps.

To formulate the optimality criteria as linear objective functions, we use the following observation:

Observation: With respect to OC2, a time vector with a small norm is better than one
with a large norm. (Define norm to be a vector t = (¢3,%2) to be |t1] + [t2].)

To see the above, we assume that the problem domain is a rectangular domain, with four corner
points, (0,0), (m,0), (0,n), and (m,n). Let us suppose that t = (a,b) is a time vector. Then, the
timing step number for a point (z,y) is given by az + by. The maximum time step number will be
|a|m + |b|n. Therefore, the smaller the norm, the fewer the time steps. If the assumption of the
rectangular domain does not hold, the ranges of the indices must be known and all the boundary
points of the domain are tested to obtain the maximum time step number.

According to the above observation, the optimality criteria can be formulated as

minimizing |t1] + [ta| + -« - + |tn]-




The problem of finding an optimal time vector can be formulated as a minimization problem,

11 1
el I P B (8)
tn 1

Objective function: f = [t1] + [t2] + - - - + [tn]-

Note that function f is not linear and variables ¢y,...,%, are unbounded (they can be either
positive or negative). Linear programming techniques cannot be applied directly to this system.
Thus, the above system is transformed into the following equivalent system, which is in a standard
form:

T
1
z 1
DICDNT | 2 2] | @i20a20,i=1,0m, 9)
1
xl

Objective function: f=21 4+ -+ 2z, +2] +---+ 2.

A solution of this new system can be transformed to a solution of the original system by letting
ti=x;—z} for i=1,...,n.

The system we posted above is actually an integer programming system. There is no known
deterministic polynomial-time algorithm for solving it. Nevertheless, there are many approximation
algorithms which use heuristics and run in polynomial time. We have implemented one algorithm
which uses a combination of linear programming and heuristics to find an integral solution.

See Table 5 for a script of applying this step to Equation (7).
Step 2. Finding a mapping matrix T

After obtaining t, a complete mapping matrix T can be constructed. The solution to this is not
unique, adding any additional n» — 1 linearly independent vectors to t forms a non-singular 7. The
designs corresponding to different 7’s will have different spatial properties.

Qualified T’s can be generated systematically one by one up to an a priori bound, which pro-
vides the user a chance of comparing different designs. Alternatively, optimization principles for
space can be provided by the user, so optimal solutions can be found. One such principle is to
minimize the determinant of T, which corresponds to minimizing the image domain size. Un-
der this principle, the first T to try is the one formed by taking t and n — 1 other vectors from
(1,0,...,0),(0,1,...,0),...,(0,0,...,1).
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Table 6 shows the corresponding scripts and results of this step on the mapping of the Laplace
equation.

Step 3. Finding an optimal P for the chosen T:

For each column of the unknown matrix P, form a linear system:

Cp; < Td;, j=1,2,...,m, (10)

Objective function: f= P+ Pyj+ -+ Ppn-1;.

The parameter k (a positive integer) is called a time dilation bound which determines the max-
imum length of the image communication path of a dependency vector. For the example we chose,
setting k to 4 or 5 is adequate. The optimality measure used here is the length of the image com-
munication path of each dependency vector. Recall for a moment that the last column vector of
matrix C represents time delay, therefore, the last component of each column of P, P, ;, indicates
the usage of local memory or message buffers to implement time delay. In the above cost function
however, P, ; is not included. That means only the total number of communication links is to be
minimized for each dependency vector. We certainly also want to minimize time delays, however, we
will handle that issue in next step.

Table 7 shows a script of solving the first column of P. The complete result of this step is shown
in Table 8.

Step 4. Remove excess time dilation:

The matrix P constructed in the previous step may still contain unnecessary time delay due to
over estimating the time dilation parameter k. To further improve P, excess time dilation needs to
be removed. This is done by reducing the time dilation parameter k on the left hand side of the
equation and factoring out the constant vector accordingly from the last row of P on the right hand
side, while keeping both sides of the equation to be equal and keeping P to be non-negative and
integral.

For example, to optimize the P shown in Table 8, we first reduce the time dilation parameter
k to 3. Accordingly, we factor out a constant vector (1,1,1,1,1,1,1,1,1) from the last row of P.
(In general, the constant vector may contain different integers). The result is shown in Table 9. We
further reduce k to 2 and get a new P shown in Table 10. However, we cannot go any further since
that will make P contain negative elements.

Remarks:

The above procedure finds a pair of T' and P in time polynomial in the total number of dependency
vectors and communication vectors. For practical applications, the dimension parameter n is usually
a small constant (1, 2, or 3) which makes the procedure very inexpensive in practice.
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4 Relation Between a Virtual and a Target Machine

The linear mapping discussed in previous sections requires that both the domain and the range are of
the same dimensionality. In this section, we discuss the problem of matching the dimensionality and
the size of a QURE and a multiprocessor. First, we construct a virtual network whose dimensionality
and size match the dimensionality and size of the QURE . Then, after a design is generated by the
mapping procedure, the virtual network solution is mapped to a target machine. Relative work can
be found in [18,12,20,22].

4.1 Construction of a Virtual Network:

For our purpose, a virtual network must satisfy the following two conditions:

1. The virtual network preserves the topology of the target network so that any algorithm designed
for the virtual network can be realized on the target machine by a simple mapping.

2. A virtual network is considered to be a general network based on the target network in the
sense that any realization on the target network has a realization on the virtual network.

We show the construction of a virtual network through the following example where we will solve
a 4-dimensional QURE on a 2-dimensional mesh. To match the dimensionality of the QURE, a
space-time domain of dimensionality four is needed. This means a 3-dimensional virtual network
needs to be augmented from the mesh.

1. Extend the mesh to infinity along each of the two dimensions.

2. Create a third dimension orthogonal to the previous two. Replicate the (infinite) mesh along
the third dimension.

3. Set up neighboring communication links between the layers along the third dimension in such a

way that the projection of these links on the first two dimensions results in the original square
mesh. All such links are added.

The first two dimensions of the network preserve the structure of the target network. No new
communication links are created in these dimensions. This guarantees that any algorithm designed
for the virtual network can be realized on the target machine by simple projections. The augmented
dimension is collapsed down into the time dimension of a single processor in the target machine.

Using communication vectors, the physical and the virtual network with respect to the example
can be represented by the following matrices:

Colga =

[
— o
=)
|
[
-0 o
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1 11 -1 -1 -10 00 0 O OO 00O

Co = 6o o0 o0 o0 01 11-1 -1 -10 00
r—-l1-10 1 -1 01-10 1-1 01 -10
1 11 1 1 11 11 1 1 11 11

4.2 Mapping a Virtual Network Solution:

For simplicity, assume that both the virtual network and the physical network are rectangular.
Networks of other regular shapes can be handled similarly. Let the dimensionalities of the virtual
network and the physical network be m and n (m > n), respectively. Represent the size of the
virtual network by a vector (s1,82,...,8m), in which component s; represents the size along the ith
dimension. Similarly, let vector (ki, k2, ...,kn) represent the size of the physical network. Without
loss of generality, we further assume that dimensions n,n+1,...,m—1 of the virtual network are the
augmented spatial dimensions (dimension m corresponds to time).

One way of mapping a virtual network to a physical network is to partition the computations
with respect to a fixed time slice.

Denote the computation performed at time t at node (21,...,2Zm,-1) in the virtual network by
f(z1,...,Zm—1,t). Then the set of computations corresponding to a fixed time slice ¢ in the whole
network can be expressed as follows:

Fe=A{f(.,ziy...,0) |z =1,...,8}

There are no dependency relations among these computations. Therefore, they can be executed in
any sequential order of interleaving.

Reducing the dimensionality of a virtual network from m to n is done by projecting the augmented
spatial dimensions to the time dimension. More specifically, the indices of the augmented dimensions
are mapped to loop indices within a single processor. The order of executions of the computations
in the loops are not essential. One simple construction of the loop is the following:

Code for node (z1,...,Z,—1) at time ¢:
FOR i;:=1 TO s, DO
FOR i3 :=1 TO 8,41 DO

FOR ¢y_n :=1 TO s,,—1 DO
compute f(Z1,...,Zp-1,1).

After the dimensionality of the virtual network is reduced, the size of the virtual network can be
compressed (if needed). We introduce a a function G to describe the compression. The input to this
function is the address of a node in the virtual network and the output is the address of a node in
the physical network. Function G indicates which physical processor of a virtual node is mapped to.
Two methods for doing this are discussed below.
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Grouping: It maps neighboring nodes in the virtual network into a physical node. It can be
described by the following formula (recall that (kq,k2,...,k,) which represents the size of the
physical network):

1 k T k
G(z1,...,7) = (| ISIIJ,...,[ =21), (11)
where (z1,...,2,) is a node in the virtual network.

Wrap-around: It effectively makes the physical network appear as an infinite torus. The corre-
sponding formula is:

G(z1,...,%,) = (z1 mod ky,...,2, mod k). (12)

After local grouping or wrap-around, each physical processor will represent a set of virtual nodes.
A simple loop is needed to simulate these nodes. Again, the order of these simulations is not
important since the corresponding computations are independent of each other with respect to the
dependency relation. A possible scheduling loop is:

Code for node (z1,...,Z,—1) at time i:
FOR each (¥1,...,Yn—1) in set
{1, 3 ¥n=1) 1 G(w1, -, Un1) = (B15+ -, Tn1)}

compute f(y1,---,Yn—1,1)-

A nice property of the above compression methods is that the interprocessor communication
patterns are still the same as they were before the compression, except that the volumes of the
messages are increased.

4.3 Granularity versus Latency:

On a coarse-grained machine like the iPSC/1, a startup overhead is attached to each message trans-
mission so it is more economical to pack small messages together to send them as one bigger packet,
rather than sending them separately. Hence, another way of mapping a large design on a virtual
network to a physical machine is to enlarge the unit data packet size. Instead of applying the linear
mapping directly to the index points, we first decompose the index domain to form a collection of
subdomains. Then, we apply the linear mapping to the space of subdomains. In other words, we
consider a subdomain as a unit, and analyze dependencies between these subdomains. However,
enlarging each subdomain may increase the initial waiting time (i.e. the latency) of a processor
because it cannot start its computation unless it gets the result of the preceding node. The tradeoff
between granularity and latency can be adjusted by the compiler based on the performance model
introduced in next section.

5 A Performance Model

The mapping procedure presented above has been incorporated in a compiler for a high level parallel
language Crystal. A user program written in Crystal is first transformed to a set of QUREs [7]. Then
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a set of dependency vectors are extracted from the QUREs to form a dependency matrix. A matrix
representing the target network topology is also formed. The mapping procedure is applied to the
dependency matrix and topology matrix to produce (near) optimal mappings. Finally, a target code
is generated based on the mapping and the parameters obtained from the performance model of the
target machine.

The performance model consists of characterizations of both the program and the target machine.
Characterization of the program is obtained from the source program and the mapping described in
the two previous sections. Once a model is established, it is then used to predict the performance of
the program on the target machine with respect to a chosen optimization criterion.

5.1 Machine Profile

e p — the total number of processors.

e 7, —the time it takes to perform a unit computation on a unit data element. A unit computation
may mean an integer operation, a floating point operation, or a mixed sequence of both. A
unit data element is either an integer or a floating point number. The exact value 7, depends
on the instruction cycle and the basic cycle time. In this paper, all timing is given in units of
micro-seconds.

o 7, — the startup time for transmitting a message.
o 7. — the time it takes to transmit a unit data element to an adjacent processor.

o Ty — the time it takes to broadcast a unit data element to other processors. For hypercube
multiprocessors, 7, = 7, log(p).

5.2 Data Size

One of the factors that determines the amount of communications between processors is the amount
of data assigned to each processor. The way data is partitioned is expressed by the mapping from
virtual network to physical network. The parameters of the mapping are determined by optimizing
the performance with the given performance model. The following is a list of parameters relating to
the data size.

e N - total number of data elements in the program. For example, in Program Matrix Multipli-
cation, N equals the total number of matrix elements.

e n — total number of data elements on a given processor. If the data is evenly partitioned over
all of the p processors, n = N/p.

® 71, — total number of data elements to be transmitted from a given processor to its adjacent
processor (neighboring communications). Note, that n,. is a function of n.

o . — total number of data elements to be broadcasted from a given processor to other proces-
sors. Similarly, np. is also a function of n.
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o k,. — total number of messages for neighboring communications.

o ki — total number of messages for broadcasting.

5.3 Performance of Individual Processors
e t,(¢) — the computation time. It is a function of n:
tp(i) = 1 X n.
® t,.(%) — the time spent on neighboring communications,

tne(?) = Ts X kne + Te X Nige.

o tp:(2) — the time spent on broadcasting,
the(2) = 75 X log(p) X kpe + e X log(p) X mpe.

e t;(3) — the starting latency time. In our model, we assume that all processors start their clocks
at the same time. However, if one processor needs data from other processors in order to
execute, it cannot start until such data arrive. The parameter t; is defined to be the time
interval from when the clock is started until the execution begins. The interval #; certainly
varies over processors. For a pipelined algorithm, for instance, the latency, ¢; depends on the
stage of a processor in the pipe. For processor i, we denote its stage by () and the delay at
each stage by A. Then,

t(¢) = k() X A.

o (1) — the total elapsed time,

1(2) = tp(2) + tnc(2) + toe(2) + 1 (3).

5.4 Global Performance Parameters

o T, — the sequential elapsed time. It is defined as the total elapsed time executing the program
on one single processor, for example Processor 1,

Ts = t(1) = t,(1) since t.(1) = t3.(1) = 0.

e T, — the parallel elapsed time. It is defined as

T. = max (7).

e T, - the average computation time,

1 .
Tp = Ezi:tp(‘l).
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o T, — the average communication time,
1 . .
T. = 1—’ Z(tnc(z) + tpe(2))-
t

e 7 — speedup,
r =T,/ Te.

5.5 Target Program

The target machine of our first version of the Crystal compiler is an Intel iPSC/1 hypercube (with 32
nodes). The coarse-grained nature of this particular machine prevents us from taking full advantages
of the systematic mapping procedure described above. For instance, the routing matrix P which tells
how a message is to be routed will be of no use on the iPSC/1, since message routing on this machine
is done at a very low level, over which our compiler does not have control. What is interesting is
the trade-off between communication and latency. We illustrate this tradeoff by a matrix-matrix
multiplication (MM) program compiled from the following source:

c(i,j,k)over N = Kk=0-0,
(n> ) and (k > 0) = e, j,k — 1) + a(i, 5, 6) # b(ir 4, k) >, (13)
a(i,j,k)over N = < j=0- a0(s,k),

(n>j)and (j >0)— a(i,j—1,k)>, (14)
b(i,j,k)over N = < i=0-—bO(k,j ),
(n>1i)and (1>0)— b(s—1,5,k) >, (15)

N = MXMxM, M=1,...,n.

For this example, the problem domain specified by index domain M, is partitioned first, then a
linear mapping is applied. The partitioning is done by slicing the domain along all those dimensions
to form a collection of almost equal-sized submatrices. Due to the uniformity of dependency in
QURE, the dependencies between data associated with these submatrices are represented by the
same set of dependency vectors which represent the dependencies between array elements. The
granularity of the unit data element, i.e. the size of the submatrices, is controlled by a parameter.
Based on the performance model introduced above, the Crystal compiler can then find a value for
the parameter such that the total execution time is optimized. In the following, we will show that
the optimal value produced by the compiler in fact agrees with the optimal value obtained from the
experiment.

5.6 Performance Model of the Program

Suppose the input matrices are of sizes M X M. According to the program (Equations (13)—(15)),
the computation consists of M time steps. The index domain of this algorithm is a 3-dimensional
cube, which is of size M x M x M. The p processors of the target machine are organized as a
two-dimensional mesh of size p; X ps. The following parameters can be adjusted at compile time:
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o k — the block size along the time axis. The total computation is divided into M/k iterations,
each iteration consists of k time steps.

® p1,p2 — the number of processors along each dimension of the mesh (p = p; X p2).

® n1,n2 — the size of the sub matrix size. The index domain is thus decomposed into a collection
of subdomains, each of size ny X ny X k. These subdomains are the unit data packets.

From these parameters, granularity is defined as the size of the unit data packet,i.e. ny X ny X k.

When (M/n1) > p1, a wrap-around of data element will occur along the first dimension of
the mesh of the processors. Similarly, (M/n3) > p2, a wrap-around will occur along the second
dimension. To simplify the analysis, we assume that the parameters are always chosen in a way that
M /n, divides p; and M/nq divides p,. The overall performance of the program can be obtained as
follows. First, based on the size of the index domain, the total number of data elements is,

N = M3
The number of elements on each processor is therefore,
n= M3/p.

The unit data element of the program is a floating point number. The unit computation involves
several array references and two floating point operations (e.g. c[:][5][k] = a[z][5][k] x b[¢][5][k] +
c[é][j][k — 1]). On the Intel iPSC/1, a floating point operation costs 10us. So the time it takes to
perform a unit computation on a unit data element is,

T, = 30.
The message transmitting startup time on the iPSC/1 is 2ms,
7s = 2000.
The average cost of transmitting one floating point number (which is 4 bytes) is 8us. So,
T. = 8.

Since a unit data packet size is nynqk, there are n/(nynyk) unit data packets on each processor. Two
message transmissions are associated with each unit data packet, one to the north neighbor and one
to the east neighbor. The total number of messages for neighboring communication is

kne = 2n/(ningk) = 2M3/(n1n2kp).

The size of these messages is either n1k or nyk, because only the data elements in two boundary
planes of a unit data packet need to be transmitted. Therefore, the total number of data elements
to be transmitted is

e = (n1k)n/(nanzk) + (nak)n/(ningk) = (ny + nz)M>/(nynsp).
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The time that a processor spends on neighboring communication is,

tnc(i) = ToXkn+ Te X Npe
2000 X 2M3/(ninakp) + 8 X (nq + n2) M3 /(nyngp)
4000 M3 /(nyn2kp) + 8(ny + n2) M3/ (nynyp).

Il

The computation time is,
t,(i) = 30M3/p.

The unit latency equals the time a processor spends on computing a unit data packet,
A = 1p(ningk).
The startup latency time is therefore,

tl(l) = K,(O) X (30n1n2k)

Since there is no broadcasting, communication in this program is,
tc() = 0.
Therefore, the total elapsed time for an individual processor is,
t(i) = 30M>/p + 4000 M3/ (nynokp) + 8(n1 + 1) M3/(nyn2p) + 30myn2kk(i),
and the total elapsed time for the multiprocessor is,
T. = max t(i) = o1 + a3z + a3 + a4, where,

@i = max t,(¢) = 30M3/p,

az = max Tskne = 4000M3/(nynykp),

az = max TedsNp = 8(ny + nz)Ms/(nlnzp),

ay = maxt(i) = 30n1nok max(k(7))) = 30nyn2k(p1 + p2)- (16)

From this model, we examine the effect of various parameters on the performance.

5.7 Effects of Parameters on Performance

1. Changing p;,p; — The only term in T, involving p; and p; is (p1 + p2), which minimizes when
p1 = p2 = /p. This says that a square-mesh organization of processors is better than other
types of organizations. See Table 1 for the experimental results.

2. Changing the granularity — The granularity of a unit data packet is controlled by three param- |
eters ny, ng, and k. We first analyze the collective effect of these parameters, i.e. we would like f
to see how the product, g = nynyk, as one term affects the performance. In Equation(16), oy |
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does not affect, while a3’s effect is dominated by those of a3 and ay4. Here, we want to see that
in terms of minimizing (g + a4), what the value of g should be. For this purpose, we form

f(g) = 4000M°/gp + 60g./p.

To obtain the minimum value of the above function, we differentiate f with respect to g and
solve equation

f'(g) = —4000M°/(pg®) + 60,/p = 0,

4000 M3
= —. 17
\eop v (a7)

3. Changing n;,n2 — Now suppose we fix the product nynzk to the optimal value given by
Equation(17). Under this constraint, larger n; and ny is better, since that will make as
smaller. The maximum values of n; and ny are M/p; and M/p,, respectively. And by Point
1 discussed above, p; = ps = \/p, M = ny = M/ /p.

which yields

4. Changing k — Effect of k on the performance is constrained by other parameters. If we let
p1=p2 = /p and ny = ny = M/,/p, then we can derive the optimal k from Equation(17),

k=—L_ —(‘/ﬁ)2 4000M3=10‘/6M"1/2pl/4. (18)
n1n2 60p,/p 3

What we found from the above analysis is that the simple block-partitioning (corresponding
to letting ny = ny = M/,/p) of the index domain is good enough for minimizing T.. The more
complicated wrap-around partitioning is not needed. This situation is due to the contribution of
message startup time a;.

Now let’s take a concrete example to see how good the theoretically derived k is, comparing
against the experimental one obtained from running the program on the real machine. Let p = 4
and M = 50. We have

b= 10f

10V6 o-1/241/4 o 1 6,
Take k£ = 2,

T.

30 - 503/4 4+ 4000 - 50/2 + 16 - 502/2 + 60 - 2 - 502/2
= 937500 + 100000 + 20000 4 150000 = 1197500 (us).

In order to compare the performance predicted by the model and the actual experimental result,
we define the percentage of extra time taken. For each value of k, over the optimal time:

e(k) = E’g x 100%

where k& denotes the optimal k value. Table 2 summarizes the result for M = 50 and p = 4.

The performance of the target code on the largest hypercube used in our experiments is summa-
rized in Table 3.
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(p17p2) (1716) (2’8) (474) (8’2) (16,1)
T. 1389 | 1185 | 970 | 1076 | 1306

Table 1: Effect of Changing p, p..

k 50 [ 25 [ 17 | 13 10| 7 | 5] 4] 3] 2 | 1
e(k) (model) | 3.92 | 2.36 | 1.86 | 1.61 | 1.43 | 1.25 | 1.13 | 1.08 | 1.03 | 1.00 | 1.02
e(k) (exper) | 1.76 | 1.33| 1.19 | 1.12 | 1.07 | 1.03 | 1.01 | 1.00 | 1.00 | 1.01 | 1.10

Table 2: Comparison of the predicted performance and the actual performance.

NCUBE (p=128)
program T, T. T. T
Pipelined MM | 14317 | 5075 | 21060 | 87.0
Block MM 721 171 980 | 94.2
Pipelined LUD | 16240 | 5721 | 24220 | 85.8

Table 3: Performances of three programs on 128-node NCUBE. Matrix-size for pipelined MM and
LUD is 200 x 200; for Block MM is 128 x 128.

21




6 Concluding Remark

In this paper we demonstrate techniques for synthesizing systolic algorithms. These techniques are
applicable and they have proven to be useful in generating efficient target code for general purpose
multiprocessors. In dealing with such machines, we take into account realistic constraints, such as
processor and memory limitation and latency of communications between processors. For a parallel
program to obtain good performance, we need to deal with the issue of load balancing among
processors. Thus, optimization for code generation must be based on a realistic performance model
of a particular problem on a particular machine.

We have shown such code generation by partitioning the index domain over which the quasi-
uniform recurrent equations are defined, and we have chosen specific parameters based on a perfor-
mance model. The performance model is established as follows: given measures of the execution time
of the integer, floating-point, and other instructions, a compiler can examine the code and give an
estimate of the total execution time. Similarly, given the unit communication time and the message
startup time of a particular machine, a compiler can estimate for a given program the size of data
transmitted between processors, and produce an estimate of the communication time.

The success of compiling the class of quasi-uniform recurrent equations to multiprocessor pro-
grams is encouraging and we are pursuing techniques for partitioning, task distribution, and perfor-
mance modeling for a broader class of problems.
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Appendix 1:
Proof of Theorem 1:

(=) Let T denote a valid linear mapping and let t denote the last row of T. By definition, for every
dependency vector d, T;, - d > 0. If T, is an integral vector, it is a time direction itself. Otherwise, we form a
vector t' = ct where c is the least-common-multiple of the denominators of all rational components of t. Then,
t’ is integral and t’ - d > 0. Therefore, t’ is a time direction for the QURE. Hence the QURE is consistent.

(«<=) Let t be a time direction. Since for every dependency vector d, t - d > 0, the angle between vector
t and every d is < 90°. Define a hyperplane L which passes the origin and perpendicular to t. Then, all the
dependency vectors d lie on one and the same side of L. Find in L n — 1 linearly independent vectors with
rational components. (This can always be done, since L is of dimension n — 1). Together with vector t, these
vectors form a basis for the whole dependency vector space. Every d can be expressed as a linear combination
of these basis vectors with rational coeflicients and the coefficient corresponding to t is positive. Furthermore,
by properly scaling the norms of these basis vectors, we can express all the dependency vectors d with integral
coefficients. Denote the basis vectors by square matrix Dg (let t be the last column). Then we have

D =DgA

for some integral matrix A, whose last row consists of only positive integers.

On the other hand, we can find n linearly independent communication vectors from C. Denote them by
C’. We have

C'=CB
for some 0-1 matrix B (B selects the corresponding columns to form C’).

Now let T be a mapping matrix such that
TDg =C'

then
TD =TDsA=C'A=CBA = C(BA).

Matrix @ = BA contains only integral elements, but the elements are not necessarily all non-negative. How-
ever, since C represents a symmetric network, we can define a new matrix P based on @ as follows:

otherwise.

P(i,j) = { Q1) = QMk,) 1QG) > Qlk.1),

where the ith column vector and the kth column vector of C are complementary communication vectors of
each other.

It’s easy to verify that
TD=CP

and P satisfies all the conditions stated in the theorem. Hence T is a valid linear mapping of D with respect
to C. Q.E.D.

Appendix 2:

The following scripts show a few snap shots of the process of solving the mapping equation by integer
programming routines for the example given in Section 3. See [15] for details about linear programming
method. The program implementing the procedure is written in T (a dialect of Lisp).
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-1 -1

>(ppmtx d)
-1

>(ppmtx c)

-1

-1

Table 4: Input matrices D and C.

> (mp d ¢)

Step 1. Finding a time direction:

First Tableau:

-1 -1

-1

1 -1 -1 -1

1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1
=(000000000111111),

-1 -1
-1

-1

-1
-1

S = (10 11 12 13 14 15)

X
£f=0

New Tableau:

-1
-1

0o -2 -2 -2 -1 -1
-2 -1 -2

-1

0
-2

0

0

0

S = (10 11 1 13 14 15)

X=(10000000022000 2),

f=-1
Done.

0

Time vector found:

Table 5: Finding a time direction.
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Step 2. Constructing T:

T:
1 0 0
0 1 0
0 0 1

Is this T OK (y/n)? y

Input time dilation (a positive integer): 4

Table 6: Constructing 7" and setting time dilation bound.

Step 3. Finding P:

For Column 1:

Slack Tableau:

1 i -1 -1 0 0] 0 1 0 0 1
1 o -1 0 1 -1 0 0 1 0 1
1 1 1 1 1 1 1 0 (o] 1 4
-3 -2 1 o -2 o -1 0 0 0 -6
X=(0000000114)), S = (89 10)
f =6
New Tableau:
1 i -1 -1 0 0 o] 1 0 0 1
0 1 2 1 0 2 1 o -1 1 3
o -1 0 1 1 -1 o -1 1 0 0
0 0 0 0 0 0 0 1 1 1 0
X=(1000003000), S=(75)
£f=0
Is this Tableau OK? y
Initial Tableau:
1 1 -1 -1 0 0 0 1
0 1 2 1 (o] 2 1 3
o -1 0 1 i -1 0 0
0 1 2 1 0 2 o -1

X¥X=(1000003), S=(175)
f=1
Done.

Table 7: Constructing 1st column of P.
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Table 8: A matrix P resulting from Step 3.

Step 4. Removing excess time dilatiom:

o

i

o

(32}

o

Table 9: Removing excess time dilation.

Final result:

o

Lal

o

N

o

Table 10: Final result.
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