
Yale University

Department of Computer Science

A Verifiable SSA Program Representation for

Aggressive Compiler Optimization

Extended Version

Vijay S. Menon1 Neal Glew1 Brian R. Murphy2

Andrew McCreight3 Tatiana Shpeisman1

Ali-Reza Adl-Tabatabai1 Leaf Petersen1

YALEU/DCS/TR-1338
December 2005

1Intel Labs.
2Intel China Research Center.
3Dept. of Computer Science, Yale University. Supported in part by NSF grants CCR-0208618 and
CCR-0524545.

Abstract

We present a verifiable low-level program representation to embed, propagate, and preserve
safety information in high performance compilers for safe languages such as Java and C#. Our
representation precisely encodes safety information via static single-assignment (SSA) [11, 3] proof
variables that are first-class constructs in the program.

We argue that our representation allows a compiler to both (1) express aggressively optimized
machine-independent code and (2) leverage existing compiler infrastructure to preserve safety in-
formation during optimization. We demonstrate that this approach supports standard compiler
optimizations, requires minimal changes to the implementation of those optimizations, and does not
artificially impede those optimizations to preserve safety.

We also describe a simple type system that formalizes type safety in an SSA-style control-flow
graph program representation. Through the types of proof variables, our system enables composi-
tional verification of memory safety in optimized code.

Finally, we discuss experiences integrating this representation into the machine-independent
global optimizer of StarJIT, a high-performance just-in-time compiler that performs aggressive
control-flow, data-flow, and algebraic optimizations and is competitive with top production systems.

1 Introduction

In the past decade, safe languages have become prevalent in the general software community and have
gained wide acceptance among software developers. Safe languages such as Java and C# are particularly
prominent. These languages provide a C++-like syntax and feature set in conjunction with verifiable
safety properties. Foremost among these properties is memory safety, the guarantee that a program will
only read or write valid memory locations. Memory safety is crucial to both robustness and security. It
prevents common programmer memory errors and security exploits such as buffer overruns through a
combination of compile-time and run-time checks.

Both Java and C# were designed to allow programs to be compiled and distributed via bytecode
formats. These formats retain the crucial safety properties of the source language and are themselves
statically verifiable. Managed runtime environments (MRTEs), such as the Java Virtual Machine (JVM)
or the Common Language Infrastructure (CLI), use static verification to ensure that no memory errors
have been introduced inadvertently or maliciously before executing bytecode programs.

Bytecodes, however, are still rather high-level compared to native machine code. Runtime checks
(e.g., array bounds checks) are built into otherwise potentially unsafe operations (e.g., memory loads) to
ease the verification process. To obtain acceptable performance, MRTEs compile programs using a just-
in-time (JIT) compiler. A JIT compiler performs several control- and data-flow compiler transformations
and produces optimized native machine code. In the process, runtime checks are often eliminated or
separated from the potentially unsafe operations that they protect. As far as we are aware, all production
Java and CLI JIT compilers remove safety information during the optimization process: optimized low
level code or generated machine code is not easily verifiable. From a security perspective, this precludes
the use of optimized low level code as a persistent and distributable format. Moreover, from a reliability
perspective it requires that the user trust that complex compiler transformations do not introduce
memory errors.

In recent years, researchers have developed proof languages (e.g., PCC [19] and TAL [18]) that allow
a compiler to embed safety proofs into low-level code, along with verification techniques to validate
those proofs. They have demonstrated certifying compilers that can compile Java and safe C-like lan-
guages [20, 8, 17, 13] while both performing optimizations and generating safety proofs. Nevertheless,

1

although the proof language and verification process is well-developed, implementing or modifying exist-
ing optimizations to correctly generate and/or preserve safety information is still an arduous and poorly
understood process.

In this paper, we introduce a new program representation framework for safe, imperative, object-
oriented languages to aid in the generation, propagation, and verification of safety information through
aggressive compiler optimization. In this representation we encode safety dependences, the dependences
between potentially unsafe operations and the control points that guarantee their safety, as abstract proof
variables. These proof variables are purely static: they have no runtime semantics. Nevertheless, they
are first class constructs produced by control points and consumed by potentially unsafe instructions.
From the perspective of most compiler transformations, they are the same as any other variable.

We argue that this representation is particularly well-suited to use as an intermediate representation
for an aggressively optimizing compiler. We demonstrate that it supports common advanced compiler
optimizations without artificially constraining or extensively modifying them. In particular, we demon-
strate that by carrying proof values in normal variables a compiler can leverage existing transformations
such as SSA construction, copy propagation, and dead code elimination to place, update and eliminate
proof variables.

We illustrate our ideas in the context of the machine-independent global optimizer of StarJIT [1], a
dynamic optimizing compiler for Java and C#. StarJIT was designed as a high-performance optimizing
compiler and is competitive in performance with the best production MRTE systems. We describe a
prototype integration of our ideas into StarJIT’s internal representation, and we discuss how it is able
to preserve safety information through a varied set of aggressive optimizations. The original motivation
for the safety dependence representation described in this paper was for optimization rather than safety.
However, a prototype implementation of a verifier has also been developed, and this paper is intended
to provide both a description of the safety dependence mechanism and a theoretical development of a
type system based upon it.

In particular, our paper makes the following contributions:

1. We introduce a safe low-level imperative program representation that combines static single-
assignment (SSA) form with explicit safety dependences, and we illustrate how it can be used
to represent highly optimized code.

2. We present a simple type system to verify memory safety of programs in this representation. To
the best of our knowledge, this type system is the first to formalize type checking in an SSA
representation. While SSA is in some sense equivalent to CPS, the details are sufficiently different
that our type system is quite unlike the usual lambda-calculus style type systems and required
new proof techniques.

3. We demonstrate the utility of this program representation in a high-performance compiler, and
we describe how a compiler can leverage its existing framework to preserve safety information.
In particular, we demonstrate that only optimizations that directly affect memory safety, such
as bounds check elimination and strength reduction of address calculations, require significant
modification.

The remainder of the paper is organized as follows. In Section 2, we motivate the explicit represen-
tation of safety dependence in an optimizing compiler and describe how to do this via proof variables in
a low-level imperative program representation. In Section 3, we describe a formal core language specif-
ically dealing with array-bounds checks and present a type system with which we can verify programs

2

if (a!=null)

while (!done) {
b = (B)a;

· · · = · · · b.x · · ·
· · ·

}

Figure 1: Field load in loop

in SSA form. In Section 4, we demonstrate how a compiler would lower a Java program to the core
language and illustrate how aggressive compiler optimizations produce efficient and verifiable code. In
Section 5, we informally describe extensions to our core language to capture complete Java functionality.
In Section 6, we discuss the status of our current implementation, and, finally, in Sections 7 and 8 we
discuss related work and conclude.

2 Motivation

We define a potentially unsafe instruction as any instruction that, taken out of context, might fault
or otherwise cause an illegal memory access at runtime. Some instructions, taken independently, are
inherently unsafe. A load instruction may immediately fault if it accesses protected memory or may
trigger an eventual crash by reading an incorrectly typed value. A store may corrupt memory with an
illegal value (e.g., if an arbitrary integer replaces an object’s virtual table).

Consider, for example, the field access in Figure 1. Assuming C++-like semantics, the operation b.x
dereferences memory with no guarantee of safety. In general, C++ does not guarantee that b refers to
a real object of type B: b may hold an an integer that faults when used as a pointer.

Assuming Java semantics, however, the field access itself checks at runtime that b does not point to a
null location. If the check succeeds, the field access executes the load; otherwise, it throws an exception,
bypassing the load. By itself, this built-in check does not ensure safety: the load also depends on the
preceding cast, which dynamically checks that the runtime type of b is in fact compatible with the type
B. If the check succeeds, the cast executes the load; otherwise, it throws an exception, bypassing the
load.

Typically, the safety of a potentially unsafe instruction depends on a set of control flow points. We
refer to this form of dependence as safety dependence. In this example, the safety of the load depends on
the cast that establishes its type. We call an instruction contextually safe when its corresponding safety
dependences guarantee its safety. To verify the output of a compiler optimization, we must prove that
each instruction is contextually safe.

2.1 Safety In Java

In Java and the verifiable subset of CLI, a combination of static verification and runtime checks guar-
antee the contextual safety of individual bytecode instructions. Static type checking establishes that
variables have the appropriate primitive or object type. Runtime checks such as type tests (for narrow-
ing operations), null pointer tests, and array bounds tests detect conditions that would cause a fault or
illegal access and throw a language-level runtime exception instead.

Figure 2 shows Java-like bytecode instructions (using pseudo-registers in place of stack locations

3

ifnull a goto EXIT

L :
ifeq done goto EXIT

b := checkcast(a, B)
t1 := getfield(b, B::x)
· · ·
goto L

EXIT :

Figure 2: Field load with Java-like bytecode

for clarity) for the code of Figure 1. The Java type system guarantees that variable b has type B at
compile time, while the getfield instruction guarantees non-null access by testing for null at runtime.
The check and the static verifier together guarantee that the load operation will not trigger an illegal
memory access.

2.2 Safety in a Low-Level Representation

The Java bytecode format was not intended to be an intermediate program representation for an opti-
mizing compiler. There are a number of reasons why such a format is not suitable, but here we will focus
only on those related to safety. First, bytecodes hide redundant check elimination opportunities. For ex-
ample, in Figure 2, optimizations can eliminate the null check built into the getfield instruction because
of the ifnull instruction. Even though several operations have built-in exception checks, programmers
usually write their code to ensure that these checks never fail, so such optimization opportunities are
common in Java programs.

Second, extraneous aliasing introduced to encode safety properties hides optimization opportunities.
In Figures 1 and 2, variable b represents a copy of a that has the type B. Any use of a that requires
this type information must use b instead. While this helps static verification, it hinders optimization.
The field access must establish that b is not null, even though the ifnull statement establishes that
property on a. To eliminate the extra check, a redundancy elimination optimization must reason about
aliasing due to cast operations; this is beyond the capabilities of standard algorithms [16, 5].

In the absence of a mechanism for tracking safety dependences, StarJIT would lower a code fragment
like this to one like that in Figure 3. Note that the ld operation is potentially unsafe and is safety
dependent on the null check. In this case, however, the safety dependence between the null check
and the load is not explicit. Although the instructions are still (nearly) adjacent in this code, there
is no guarantee that future optimizations will leave them so. Figure 4 roughly illustrates the code
that StarJIT would produce for our example. Redundant checks are removed by a combination of
partial loop peeling (to expose redundant control flow) and common subexpression elimination. The
invariant address field calculation is hoisted via code motion. In this case, the dependence of the load
on the operations that guarantee its safety (specifically, the if and checkcast statements) has become
obscured. We refer to this as an erasure-style low-level representation, as safety information is effectively
erased from the program.

An alternative representation embeds safety information directly into the values and their correspond-
ing types. The Java language already does this for type refinement via cast operations. This approach
also applies to null checks, as shown in Figure 5. The SafeTSA representation takes this approach,
extending it to array bounds checks [24, 2] as well. We refer to this as a refinement-style representation.

4

if a = null goto EXIT

L :
if done = 0 goto EXIT

checkcast(a, B)
checknull(a)
t2 := getfieldaddr(a, B::x)
t1 := ld(t2)
· · ·
goto L

EXIT :

Figure 3: Field load lowered in erasure-style representation

t2 := getfieldaddr(a, B::x)
if a = null goto EXIT

if done = 0 goto EXIT

checkcast(a, B)
L :

t1 := ld(t2)
· · ·
if done 6= 0 goto L

EXIT :

Figure 4: Field load optimized in erasure-style representation

In this representation, value dependences preserve the safety dependence between a check and a load.
To preserve safety, optimizations must preserve the value flow between the check and the load. Check
elimination operations (such as the checknull in Figure 5) may be eliminated by optimization, but the
values they produce (e.g., t2) must be redefined in the process.

From an optimization standpoint, a refinement-style representation is not ideal. The safety depen-
dence between the check and the load is not direct. Instead, it is threaded through the address field
calculation, which is really just an addition operation. While the load itself cannot be performed until
the null test, the address calculation is always safe. A code motion or instruction scheduling compiler
optimization should be free to move it above the check if it is deemed beneficial. In Figure 3, it is clearly
legal. In Figure 5, it is no longer possible. The refinement-style representation adds artificial constraints
to the program to allow safety to be checked. In this case, the address calculation is artificially dependent
on the check operation.

A refinement-style representation also obscures optimization opportunities by introducing multiple
names for the same value. Optimizations that depend on syntactic equivalence of expressions (such as the
typical implementation of redundancy elimination) become less effective. In Figure 3, a is syntactically
compared to null twice. In Figure 5, this is no longer true. In general, syntactically equivalent opera-
tions in an erasure-style representation may no longer be syntactically equivalent in a refinement-style
representation.

2.3 A Proof Passing Representation

Neither the erasure-style nor refinement-style representations precisely represent safety dependences.
The erasure-style representation omits them altogether, while the refinement-style representation encodes

5

if a = null goto EXIT

L :
if done = 0 goto EXIT

b := checkcast(a, B)
t3 := checknull(b)
t2 := getfieldaddr(t3, B::x)
t1 := ld(t2)
· · ·
goto L

EXIT :

Figure 5: Field load lowered in refinement-style representation

[s1, s2] if a = null goto EXIT

L :
if done = 0 goto EXIT

s3 := checkcast(a, B)
s4 := checknull(a)
t2 := getfieldaddr(a, B::x)
s5 := pfand(s3, s4)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 6: Field load lowered in a proof passing representation

them indirectly. As a result, the erasure-style representation is easy to optimize but difficult to verify,
while the refinement-style is difficult to optimize but easy to verify.

To bridge this gap, we propose the use of a proof passing representation that encodes safety depen-
dence directly into the program representation through proof variables. Proof variables act as capabilities
for unsafe operations (similar to the capabilities of Walker et al. [25]). The availability of a proof variable
represents the availability of a proof that a safety property holds. A potentially unsafe instruction must
use an available proof variable to ensure contextual safety. This methodology relates closely to mecha-
nisms proposed for certified code by Crary and Vanderwaart [10] and Shao et al. [22] in the context of
the lambda calculus. We discuss the relationship of our approach to this work in Section 7.

Proof variables do not consume any physical resources at runtime: they represent abstract values
and only encode safety dependences. Nevertheless, they are first-class constructs in our representation.
They are generated by interesting control points and other relevant program points, and consumed by
potentially unsafe instructions as operands guaranteeing safety. Most optimizations treat proof variables
like other program variables.

Figure 6 demonstrates how we represent a load operation in a proof passing representation. As in
Figure 5, we represent safety through value dependences, but instead of interfering with existing values,
we insert new proof variables that directly model the safety dependence between the load and both check
operations.

Figures 7 to 10 represent the relevant transformations performed by StarJIT to optimize this code.
In Figure 7, we illustrate two optimizations. First, StarJIT’s common subexpression elimination pass
eliminates the redundant checknull operation. When StarJIT detects a redundant expression in the

6

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

L :
if done = 0 goto EXIT

s3 := checkcast(a, B)
s4 := s1

s5 := pfand(s3, s4)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 7: Field load with CSE and Code Motion

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

L :
if done = 0 goto EXIT

s3 := checkcast(a, B)
s5 := pfand(s3, s1)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 8: Field load with Copy Propagation

right hand side of an instruction, it replaces that expression with the previously defined variable. The if
statement defines the proof variable s1 if the test fails. This variable proves the proposition a 6= null.
At the definition of s4, the compiler detects that a 6= null is available, and redefines s4 to be a copy of
s1. StarJIT updates a redundant proof variable the same way as any other redundant variable.

Second, StarJIT hoists the definition of t2, a loop invariant address calculation, above the loop.
Even though the computed address may be invalid at this point, the address calculation is always safe;
we require a proof of safety only on a memory operation that dereferences the address.

Figure 8 shows a step of copy propagation, which propagates s1 into the load instruction and elimi-
nates the use of s4, allowing dead code elimination to remove the definition of s4.

Figure 9 illustrates the use of partial loop peeling to expose redundant control flow operations within
the loop. This transformation duplicates the test on done and the checkcast operation, and makes the
load instruction the new loop header. The proof variable s3 is now defined twice, where each definition
establishes that a has type B on its corresponding path. The compiler leverages SSA form to establish
that the proof variable is available within the loop.

Finally, in Figure 10, another pass of common subexpression elimination eliminates the redundant
checkcast. Copy propagation propagates the correct proof variable, this time through a redundant phi
instruction. Note, that this final code is equivalent to the erasure-style representation in Figure 4 except
that proof variables provide a direct representation of safety. In Figure 10, it is readily apparent that
the if and checkcast statements establish the safety of the load instruction.

In the next section we formalize our approach as a small core language, and the following sections
show its use and preservation across compiler optimizations and extension to full Java.

7

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

if done = 0 goto EXIT

s1
3 := checkcast(a, B)

L :
s2
3 := φ(s1

3, s3
3)

s5 := pfand(s2
3, s1)

t1 := ld(t2) [s5]
· · ·
if done = 0 goto EXIT

s3
3 := checkcast(a, B)
goto L

EXIT :

Figure 9: Field load with Partial Loop Peeling

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

if done = 0 goto EXIT

s3 := checkcast(a, B)
s5 := pfand(s3, s1)

L :
t1 := ld(t2) [s5]
· · ·
if done 6= 0 goto L

EXIT :

Figure 10: Field load with 2nd CSE and Branch Reversal

3 Core Language

In this section we describe a small language that captures the main ideas of explicit safety dependences
through proof variables. As usual with core languages, we wish to capture just the essence of the problem
and no more. The issue at hand is safety dependences, and to keep things simple we will consider just
one such dependence, namely, bounds checking for arrays. In particular, we consider a compiler with
separate address arithmetic, load, and store operations, where the type system must ensure that a load
or store operation is applied only to valid pointers. Moreover, since the basic safety criteron for a store
is the same as for a load, namely, that the pointer is valid, we consider only loads; adding stores to
our core language adds no interesting complications. Not considering stores further allows us to avoid
modelling the heap explicitly, but to instead use a substitution semantics which greatly simplifies the
presentation.

8

(P, L1, n1, b.i) 7→ (P, L2, n2, pc) where:

P (b.i) L2 n2 pc Side conditions
p L1{x1 := L1(x2)} n1 b.(i + 1) p[n1] = x1 := x2

x : τ := i L1{x := i} n1 b.(i + 1)
x1 : τ := x2 L1{x1 := L1(x2)} n1 b.(i + 1)
x1 : τ := newarray(x2, x3) L1{x1 := v1} n1 b.(i + 1) L1(x2) = n, L1(x3) = v3, v1 = 〈v3, . . . , v3| {z }

n

〉

x1 : τ := newarray(x2, x3) L1{x1 := v1} n1 b.(i + 1) L1(x2) = i, i < 0, v1 = 〈〉
x1 : τ := len(x2) L1{x1 := n} n1 b.(i + 1) L1(x2) = 〈v0, . . . , vn−1〉

x1 : τ := base(x2) L1{x2 := v@0} n1 b.(i + 1) L1(x2) = v, v = 〈v′〉
x1 : τ := x2 bop x3 L1{x1 := i4} n1 b.(i + 1) L1(x2) = i2, L1(x3) = i3, i4 = i2 bop i3
x1 : τ := x2 bop x3 L1{x1 := v@i4} n1 b.(i + 1) L1(x2) = v@i2, L1(x3) = i3, i4 = i2 bop i3
x1 : τ := ld(x2) [x3] L1{x1 := vi} n1 b.(i + 1) L1(x2) = 〈v0, . . . , vn〉@i, 0 ≤ i ≤ n

x1 : τ := pffact(x2) L1{x1 := true} n1 b.(i + 1)
x : τ := pfand(y) L1{x := true} n1 b.(i + 1)
[x1 : τ1, x2 : τ2] L1{x1 := true} edgeP (b, b + 1) (b + 1).0 L1(x3) = i3, L1(x4) = i4,¬(i3 rop i4)

if x3 rop x4 goto b′

[x1 : τ1, x2 : τ2] L1{x2 := true} edgeP (b, b′) b′.0 L1(x3) = i3, L1(x4) = i4, i3 rop i4
if x3 rop x4 goto b′

goto b′ L1 edgeP (b, b′) b′.0

Figure 11: Operational semantics

The syntax of our core language is given as follows:

Prog. States S ::= (P, L, n, pc)
Programs P ::= B
Blocks B ::= p; ι; c
Phi Instructions p ::= x : τ := φ(x)
Instructions ι ::= x : τ := r
Right-hand sides r ::= i | x | newarray(x1, x2) |

len(x) | base(x) |
x1 bop x2 | ld(x1) [x2] |
pffact(x) | pfand(x)

Binary Ops bop ::= + | −
Transfers c ::= goto n | halt |

[x1 : τ1, x2 : τ2] if x3 rop x4

goto n
Relations rop ::= <|≤|=|6=
Environments L ::= x := v
Values v ::= i | 〈v〉 | 〈v〉@i | true
Prog. Counters pc ::= n1.n2

Here i ranges over integer constants, x ranges over variables, n ranges over natural numbers, and φ is
the phi-operation of SSA. We use the bar notation introduced in Featherweight Java [15]: B abbrevi-
ates B0, . . . , Bn, x := v abbreviates x0 := v0, . . . , xn := vn, et cetera. We also use the bar notation
in type rules to abbreviate a sequence of typing judgements in the obvious way. In addition to the
grammar above, programs are subject to a number of context-sensitive restrictions. In particular, the
n in [x1 : τ1, x2 : τ2] if x3 rop x4 goto n and goto n must be a block number in the program (i.e., if
the program is B0, . . . , Bm then 0 ≤ n ≤ m); the transfer in the last block must be a goto or halt; the
number of variables in a phi instruction must equal the number of incoming edges (as defined below) to

9

the block in which it appears; the variables assigned in the phi instructions of a block must be distinct.
Informally, the key features of our language are the following. The operation base(x) takes an array

and creates a pointer to the element at index zero. The arithmetic operations can be applied to such
pointers and an integer to compute a pointer to a different index. The ld(x1) [x2] operation loads the
value pointed to by the pointer in x1. The variable x2 is a proof variable and conceptually contains a
proof that x1 is a valid pointer: that is, that it points to an in-bounds index. The typing rules ensure
that x1 is valid by requiring x2 to contain an appropriate proof. The operations pffact(x) and pfand(x)
construct proofs. For pffact(x) a proof of a formula based on the definition of x is constructed. For
example, if x’s definition is x : int := len(y) then pffact(x) constructs a proof of x = len(y). A
complete definition of the defining facts of instructions appears in Figure 14. For pfand(x1, . . . , xn),
x1 through xn are also proof variables, and a proof of the conjunction is returned. Values of the form
〈v0, . . . , vn〉@i represent pointers to array elements: in this case a pointer to the element at index i
of an array of type 〈v0, . . . , vn〉. Such a pointer is valid if i is in bounds (that is, if 0 ≤ i ≤ n) and
invalid otherwise. The typing rules must ensure that only valid pointers are loaded from, with proof
variables used to provide evidence of validity. The final unusual aspect of the language is that branches
assign proofs to proof variables that reflect the condition being branched on. For example, in the branch
[x1 : τ1, x2 : τ2] if x3=x4 goto n, a proof of x3 6= x4 is assigned to x1 along the fall-through edge, and
a proof of x3 = x4 is assigned to x2 along the taken edge. These proofs can then be used to discharge
validity requirements for pointers.

To state the operational semantics and type system we need a few definitions. The program counters
of a program pcs(P) are {b.i | P = B0, . . . , Bm∧b ≤ m∧Bb = p; ι1; · · · ; ιn; c∧ i ≤ n+1}. We write P (b)
for Bb when P = B0, . . . , Bn and b ≤ n; if P (b) = p; ι1; . . . ; ιm; c then P (b.n) is p when n = 0, and ιn
when 1 ≤ n ≤ m and c when n = m + 1. The edges of a program P , edges(P), are as follows. The entry
edge is (−1, 0). If P (n) ends in [x1 : τ1, x2 : τ2] if x3 rop x4 goto n′ then there are edges (n, n + 1),
called the fall-through edge, and (n, n′), called the taken edge. If P (n) ends in goto n′ then there is an
edge (n, n′). For a given P and n2 the edges (n1, n2) ∈ edges(P) are numbered from zero in the order
given by n1; edgeP (n1, n2) is this number, also called the incoming edge number of (n1, n2) into n2.

Operational Semantics A program P is started in the state (P, ∅, 0, 0.0). The reduction relation
that maps one state to the next is given in Figure 11. Note that the third component of a program state
tracks which incoming edge led to the current program counter—initially this is the entry edge (−1, 0),
and is updated by transfers. It is used by phi instructions to select the correct variable. The notation p[i]
denotes x1 := x1i, . . . , xn := xni when p = x1 : τ1 := φ(x11, . . . , x1m), . . . , xn : τn := φ(xn1, . . . , xnm).
A program terminates when in a state of the form (P, L, n, pc) where P (pc) = halt. A program state
is stuck if it is irreducible and not a terminal state. Stuck states all represent type errors that the
type system should prevent. Note that the array creation operation must handle negative sizes. Our
implementation would throw an exception, but since the core language does not have exceptions, it
simply creates a zero length array if a negative size is requested.

In the operational semantics, the proof type has the single inhabitant true, upon which no inter-
esting operations are defined. Proofs in this sense are equivalent to unit values for which non-escaping
occurrences can be trivially erased when moving to an untyped setting. This “proof erasure” property
is precisely analogous to the “coercion erasure” property of the coercion language of Vanderwaart et
al. [23]. In practice, uses of proof variables in the StarJIT compiler are restricted such that all proof
terms can be elided during code generation and consequently impose no overhead at run time. While we
believe that it would be straightforward to formalize the syntactic restrictions that make this possible,

10

Judgement Meaning
Γ ⊢ τ1 ≤ τ2 τ1 is a subtype of τ2 in Γ
⊢ F1 =⇒ F2 F1 implies F2

Γ ⊢ p p is safe in environment Γ
Γ ⊢P ι ι is safe in environment Γ
Γ ⊢ c c is safe in environment Γ
⊢P τ at du τ well-formed type at du in P
⊢P Γ environment Γ well-formed in P
⊢ P P is safe

Figure 12: Typing judgements

we choose for the sake of simplicity to leave this informal here.

Type System The type system has two components: the SSA property and a set of typing judgements.
The SSA property ensures both that every variable is assigned to at most once in the program text (the
single assignment property) and that all uses of variables are dominated by definitions of those variables.
In a conventional type system, these properties are enforced by the typing rules. In particular, the
variables that are listed in the context of the typing judgement are the ones that are in scope. For SSA
IRs, it is more convenient to check these properties separately.

The type checker must ensure that during execution each use of a variable is preceded by an as-
signment to that variable. Since the i-th variable of a phi instruction is used only if the i-th incoming
edge was used to get to the block, and the proof variables in an if transfer are assigned only on par-
ticular out-going edges, we give a rather technical definition of points at which variables are assigned
or used. These points are such that a definition point dominating a use point implies that assignment
will always precede use. These points are based on an unconventional notion of control-flow graph, to
avoid critical edges which might complicate our presentation. For a program P with blocks 0 to m,
the control-flow graph consists of the nodes {0, . . . , m} ∪ edges(P) and edges from each original node
n to each original edge (n, n′) and similarly from (n, n′) to n′. The definition/use points, du(P), are
pcs(P) ∪ {b.0.i | P (b.0) = p0, . . . , pn ∧ 0 ≤ i ≤ n} ∪ {e.i | e ∈ edges(P) ∧ i ∈ {0, 1}}.

Figure 13 gives the formal definition of dominance, definition/use points, and the SSA property.
The syntax of types is:

Types τ ::= int | array(τ) | ptr?〈τ〉 | S(x) | pf(F)

Facts F ::= e1 rop e2 | F1 ∧ F2

Fact Exps. e ::= i | x | len(x) | e1 bop e2 | x@e
Environments Γ ::= x : τ

The type ptr?〈τ〉 is given to pointers that, if valid, point to values with type τ (the ? indicates that
they might not be valid). The singleton type S(x) is given to things that are equal to x. The type pf(F)

is given to proof variables that contain a proof of the fact F . Facts include arithmetic comparisons and
conjunction. Fact expressions include integers, variables, array lengths, arithmetic operations, and a
subscript expression—the fact expression x@e stands for a pointer that points to the element at index
e of array x.

11

The judgements of the type system are given in figure 12. Most of the typing rules are given in
Figure 14. Typing environments Γ state the types that variables are supposed to have. The rules check
that when assignments are made to a variable, the type of the assigned value is compatible with the
variable’s type. For example, the judgement Γ ⊢ int ≤ Γ(x) in the rule for x : τ := i checks that integers
are compatible with the type of x. The rules also check that uses of a variable have a type compatible
with the operation. For example, the rule for load expects a proof that the pointer, x2, is valid, so the
rule checks that x3’s type Γ(x3) is a subtype of pf(x@0≤x2∧x2<x@len(x)) for some x. It is this check along
with the rules for proof value generation and the SSA property that ensure that x2 is valid.

Given these remarks, the only other complicated rule is for phi instructions. In a loop a phi instruction
might be used to combine two indices, and the compiler might use another phi instruction to combine
the proofs that these indices are in bounds. For example, consider this sequence:

x1 : int := φ(x2, x3)
y1 : pf(0≤x1)

:= φ(y2, y3)

where y2 : pf(0≤x2)
and y3 : pf(0≤x3)

. Here the types for y1, y2, and y3 are different and in some sense
incompatible, but are intuitively the correct types. The rule for phi instructions allows this typing. In
checking that y2 has a compatible type, the rule substitutes x2 for x1 in y1’s type to get pf(0≤x2)

, which
is the type that y2 has; similarly for y3.

For a program P that satisfies the SSA property, every variable mentioned in the program has
a unique definition point, and that definition point is decorated with a type. Let vt(P) denote the
environment formed from extracting these variable/type pairs. A program P is well formed (⊢ P) if:

1. P satisfies the SSA property,

2. ⊢P vt(P),

3. vt(P) ⊢ p for every p in P ,

4. vt(P) ⊢P ι for every instruction ι in P , and

5. vt(P) ⊢ c for every transfer c in P .

The type system is safe:

Theorem 1 (Type Safety)
If ⊢ P and (P, ∅, 0, 0.0) 7→∗ S then S is not stuck.

A proof of this theorem is given in appendix A. The proof takes the standard high-level form of
showing preservation and progress lemmas, as well as some lemmas particular to an SSA language.
It is important to note that safety of the type system is contingent on the soundness of the decision
procedure for ⊢ F1 =⇒ F2. In the proof, a judgement corresponding to truth of facts in an environment
is given. In this setting, the assumption of logical soundness corresponds to the restriction that in any
environment in which F1 is true, F2 is also true.

The typing rules presented are for the most part syntax-directed, and can be made algorithmic. A
consideration is that the rule for load must determine the actual array variable, which is not apparent
from the conclusion. In general, the decision prodecure only needs to verify that the rule holds for one of
the arrays available at that program point. In practice, the correct array can be inferred by examining
the type of the proof variable. We believe that judgements on facts may be efficiently decided by an

12

Defs and Uses:
If P (b.i) = x : τ := r then program counter b.i defines x, furthermore, b.i is a use of the ys where r has
the following forms:

y | newarray(y1, y2) | len(y) | base(y) | y1 bop y2 | ld(y1) [y2] | pffact(y) | pfand(y)

If P (b.i) = (p0, . . . , pn) and pj = xj : τj := φ(yj1, . . . , yjm) then b.i.j defines each xj and ek.1 uses each
yjk where ek is the k-th incoming edge of b. If P (b.i) = [x1 : τ1, x2 : τ2] if y1 rop y2 goto n then e1.0
defines x1 and e2.0 defines x2 where e1 and e2 are the fall-through and taken edges respectively, and b.i
uses y1 and y2. If x has a unique definition/use point in P that defines it, then defP (x) is this point.

Dominance:

• In program P , node n dominates node m, written domP (n, m), if every path in the control-flow
graph of P from (−1, 0) to m includes n.

• In program P , definition/use point n1.i1 strictly dominates definition/use point n2.i2, written
sdomP (n1.i1, n2.i2) if n1 = n2 and i1 < i2 (here i1 or i2 might be a dotted pair 0.j, so we take this
inequality to be lexicographical ordering) or n1 6= n2 and domP (n1, n2).

Single Assignment:
A program satisfies the single-assignment property if every variable is defined by at most one defini-
tion/use point in that program.

In Scope:
A program P satisfies the in-scope property if for every definition/use point du1 that uses a variable
there is a definition/use point du2 that defines that variable and sdomP (du2, du1).

SSA:
A program satisfies the Single Static Assignment (SSA) property if it satisfies the single-assignment and
in-scope properties. Note that a program that satisfies SSA has a unique definition for each variable
mentioned in the program.

Figure 13: SSA definitions

13

⊢P τ at du ⊢P Γ

fv(τ) ⊆ inscopeP (du)

⊢P τ at du

⊢P τ at defP (x)

⊢P x : τ

Γ ⊢ τ1 ≤ τ2 ⊢ F1 =⇒ F2

Γ ⊢ int ≤ int

Γ ⊢ τ1 ≤ τ2

Γ ⊢ array(τ1) ≤ array(τ2)

Γ ⊢ τ1 ≤ τ2

Γ ⊢ ptr?〈τ1〉 ≤ ptr?〈τ2〉

Γ ⊢ S(x) ≤ S(x) Γ ⊢ S(x) ≤ Γ(x)

⊢ F1 =⇒ F2

Γ ⊢ pf(F1) ≤ pf(F2)

Γ ⊢ τ1 ≤ τ2 Γ ⊢ τ2 ≤ τ3

Γ ⊢ τ1 ≤ τ3

The judgement ⊢ F1 =⇒ F2 is some appropriate decision procedure for our fact language.

Γ ⊢ p Γ ⊢P ι Γ ⊢ c

Γ ⊢ S(xij) ≤ Γ(xi){x1, . . . , xn := x1j , . . . , xnj}

Γ ⊢ x1 : τ1 := φ(x11, . . . , x1m), . . . , xn : τn := φ(xn1, . . . , xnm)

Γ ⊢ int ≤ Γ(x)

Γ ⊢P x : τ := i

Γ ⊢ S(x2) ≤ Γ(x1)

Γ ⊢P x1 : τ := x2

Γ ⊢ Γ(x2) ≤ int Γ ⊢ array(Γ(x3)) ≤ Γ(x1)

Γ ⊢P x1 : τ := newarray(x2, x3)

Γ ⊢ Γ(x2) ≤ array(τ2) Γ ⊢ int ≤ Γ(x1)

Γ ⊢P x1 : τ := len(x2)

Γ ⊢ Γ(x2) ≤ array(τ2) Γ ⊢ ptr?〈τ2〉 ≤ Γ(x1)

Γ ⊢P x1 : τ := base(x2)

Γ ⊢ Γ(x2) ≤ int Γ ⊢ Γ(x3) ≤ int Γ ⊢ int ≤ Γ(x1)

Γ ⊢P x1 : τ := x2 bop x3

Γ ⊢ Γ(x2) ≤ ptr?〈τ2〉 Γ ⊢ Γ(x3) ≤ int Γ ⊢ ptr?〈τ2〉 ≤ Γ(x1)

Γ ⊢P x1 : τ := x2 bop x3

Γ ⊢ Γ(x2) ≤ ptr?〈τ2〉 Γ ⊢ Γ(x3) ≤ pf(x@0≤x2∧x2<x@len(x)) Γ ⊢ τ2 ≤ Γ(x1)

Γ ⊢P x1 : τ := ld(x2) [x3]

Γ ⊢ pf(deffactP (x2)) ≤ Γ(x1)

Γ ⊢P x1 : τ := pffact(x2)

Γ ⊢ Γ(y1) ≤ pf(F1) · · · Γ ⊢ Γ(yn) ≤ pf(Fn) Γ ⊢ pf(F1∧···∧Fn) ≤ Γ(x1)

Γ ⊢P x : τ := pfand(y1, . . . , yn)

Γ ⊢ Γ(x3) ≤ int Γ ⊢ Γ(x4) ≤ int Γ ⊢ pf(¬(x3 rop x4)) ≤ Γ(x1) Γ ⊢ pf(x3 rop x4) ≤ Γ(x2)

Γ ⊢ [x1 : τ1, x2 : τ2] if x3 rop x4 goto n

Γ ⊢ goto n Γ ⊢ halt

deffactP (x) The fact deffactP (x) depends upon the defining instruction of x in P , and is given by these rules:

deffactP (x : τ := i) = x=i

deffactP (x : τ := len(x′)) = x=len(x′)
deffactP (x : τ := base(x′)) = x = x′@0
deffactP (x : τ := x1 bop x2) = x=x1 bop x2

Figure 14: Typing rules

14

integer linear programming tool such as the Omega Calculator [21] with two caveats. First, such tools
reason over Z rather than 32- or 64-bit integers. Second, they restrict our fact language for integer
relations (and, thus, compiler reasoning) to affine expressions. This is, however, sufficient to capture
current StarJIT optimizations.

4 Compiler optimizations

In this section we examine compiler optimizations in the context of the core language. We demonstrate
how an optimizing compiler can preserve both proof variables and their type information. We argue
that our ideas greatly simplify this process. In previous work, an implementer would need to modify
each optimization to update safety information. In our representation, we leverage existing compiler
infrastructure to do the bulk of the work. In particular, most control-flow or data-flow optimizations
require virtually no changes at all. Others that incorporate algebraic properties only need to be modified
to record the compiler’s reasoning. In the next section we will discuss how these ideas can be extended
from the core language to full Java.

In general, there are two ways in which an optimization can maintain the correctness of the proofs
embedded in the program. First, it can apply the transformation to both computation and proof
simultaneously. This is sufficient for the majority of optimizations. Second, it can create new proofs
for the facts provided by the original computation. As we show below, this is necessary for the few
optimizations that infer new properties that affect safety. In the rest of this section we show how these
general principles apply to individual compiler optimizations on a simple example. For this example, we
show how to generate a low-level intermediate representation that contains safety information and how
to preserve this information through several compiler optimizations, such as loop invariant code motion,
common subexpression elimination, array bounds check elimination, strength reduction of array element
pointer, and linear function test replacement.

The example we will consider, in pseudo code, is:

for (i=0; i<a.length; i++) {
· · · = a[i];

}

Where we assume that a is a non-null integer array, that a is not modified in the loop, and that the
pseudo code array subscripting has an implicit bounds check. Although this example does not reflect
the full complexity of Java, it is sufficient to illustrate the main ideas of propagating safety information
through the compiler optimizations. Section 5 discusses additional issues in addressing full Java.

The first compilation step for our example lowers the program into a low-level representation suitable
for optimization, as shown in Figure 15. In our system, lowering generates instructions that express the
computation and any required proofs of the computation’s safety. For example, a typical compiler would
expand an array element access a[i] into the following sequence: array bounds checks, computation of the
array element address, and a potentially unsafe load from that address. In our system, the compiler also
generates proof variables that show that the array index i is within the array bounds (q4 for the lower
bound and q6 for the upper bound) and that the load accesses an element i of the array a (proof variable
q9). The conjunction of these proofs is sufficient to type check the load instruction according to the
typing rules in Figure 14. The proof variables are generated by the explicit array bounds checks (which
we use as syntactic sugar for the branches that transfer control to a halt instruction if the bounds check

15

i1 : int :=0
uB : int :=len(a)

LOOP :
i2 : int :=φ(i1, i3)
[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

aLen : int :=len(a)
q3 : pf(aLen=len(a)) :=pffact(aLen)

q4 : pf(0≤i2) :=checkLowerBound(i2, 0)

q5 : pf(i2<aLen) :=checkUpperBound(i2, aLen)

q6 : pf(i2<len(a)) :=pfand(q3, q5)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val

i3 : int := i2+1
goto LOOP

EXIT :
. . .

Figure 15: Low-level representation for array load in loop

fails) and by pffact and pfand statements that encode arithmetic properties of the address computation
as the types of proof variables.

Next, we take the example in Figure 15 through several common compiler optimizations that are
employed by StarJIT to generate efficient code for loops iterating over arrays (Figures 16 - 19). The
result is highly-optimized code with an embedded proof of program safety.

We start, in Figure 16, by applying several basic data-flow optimizations such as CSE, dead code
elimination, and loop invariant code motion. An interesting property of these optimizations in our
system is that they require no modification to preserve the safety proofs. They treat proof variables
identically to other terms, and, thus, are automatically applied to both the computation and the proofs.
For example, common subexpression elimination and copy propagation replace all occurrences of aLen
with uB, including those that occur in proof types. The type of the proof variable q3 is updated to
match its new definition pffact(uB).

In Figure 17, we illustrate array bounds check elimination. In the literature [4], this optimization
is typically formulated to remove redundant bounds checks without leaving any trace of its reasoning
in the program. In such an approach, a verifier must effectively repeat the optimization reasoning
to prove program safety. In our system, an optimization cannot eliminate an instruction that defines
a proof variable without constructing a new definition for that variable or removing all uses of that
variable. Intuitively, the compiler must record in a new definition its reasoning about why the eliminated
instruction was redundant. Consider the bounds checks in Figure 16. The lower bound check that
verifies that 0≤i2 is redundant because i2 is a monotonically increasing variable with the initial value
0. Formally, the facts that i1=0, i2=φ(i1, i3) and i3=i2+1 imply that 0≤i2. This reasoning is recorded
in the transformed program through a new definition of the proof variable q4 and the additional proof
variables q11 and q13. We use SSA to connect these proofs at the program level. The upper bound

16

i1 : int :=0
uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

LOOP :
i2 : int :=φ(i1, i3)
[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q4 : pf(0≤i2) :=checkLowerBound(i2, 0)

q5 : pf(i2<uB) :=checkUpperBound(i2, uB)

q6 : pf(i2<len(a)) :=pfand(q3, q5)

addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val

i3 : int := i2+1
goto LOOP

EXIT :
. . .

Figure 16: IR after CSE and loop invariant code motion

i1 : int :=0
q11 : pf(i1=0) :=pffact(i1)

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

LOOP :
i2 : int :=φ(i1, i3)
q4 : pf(0≤i2) :=φ(q11, q13)

[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q6 : pf(i2<len(a)) :=pfand(q3, q1)

addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val

i3 : int := i2+1
q12 : pf(i3=i2+1) :=pffact(i3)

q13 : pf(0≤i3) :=pfand(q4, q12)

goto LOOP

EXIT :
. . .

Figure 17: IR after bound check elimination

17

i1 : int :=0
q11 : pf(i1=0) :=pffact(i1)

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

addr1 : ptr?〈int〉 :=aBase+i1
q14 : pf(addr1=aBase+i1) :=pffact(addr1)

LOOP :
i2 : int :=φ(i1, i3)
q4 : pf(0≤i2) :=φ(q11, q13)

addr2 : ptr?〈int〉 :=φ(addr1, addr3)
q8 : pf(addr2=aBase+i2) :=φ(q14, q16)

[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q6 : pf(i2<len(a)) :=pfand(q3, q1)

q9 : pf(addr2=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr2) [q10]
. . . : . . . :=val

i3 : int := i2+1
q12 : pf(i3=i2+1) :=pffact(i3)

addr3 : ptr?〈int〉 :=addr2+1
q15 : pf(addr3=addr2+1) :=pffact(addr3)

q13 : pf(0≤i3) :=pfand(q4, q12)

q16 : pf(addr3=aBase+i3) :=pfand(q8, q12, q15)

goto LOOP

EXIT :
. . .

Figure 18: IR after strength reduction of element address

check that verifies that i2<len(a) (proof variable q5) is redundant because the if statement guarantees
the same condition (proof variable q1). Because the new proof for the fact q5 is already present in the
program, the compiler simply replaces all uses of of q5 with q1.

In Figure 18, we perform operator strength reduction (OSR) [9] to find a pointer that is an affine
expression of a monotonically increasing or decreasing loop index variable and to convert it into an
independent induction variable. In our example, OSR eliminates i from the computation of addr by
incrementing it directly. Because variable addr is used in the q8 := pffact(addr) statement, the com-
piler cannot modify the definition of addr without also modifying the definition of q8 (otherwise, the
transformed program would not type check). Informally, the compiler must reestablish the proof that the
fact trivially provided by the original definition still holds. In our system, OSR is modified to construct
a new proof for the fact trivially implied by the original pointer definition by induction on that fact.
Again, we leverage SSA to establish the new proof. In this case, q8 : pf(addr2=aBase+i2) is defined by the
phi instruction that merges proof variables q14 : pf(addr1=aBase+i1)

and q16 : pf(addr3=aBase+i3)
.

Finally, we illustrate linear function test replacement (LFTR) [9] in Figure 19. 1 Classical LFTR

1Note that the code resulting from LFTR is not typable in our core language, since we do not allow conditional branches
on pointers. Extending the language to handle this is straightforward, but requires a total ordering on pointer values which
essentially requires moving to a heap-based semantics. Note though that the fact language does permit reasoning about
pointer comparison, as used in the previous examples.

18

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

addr1 : ptr?〈int〉 :=aBase

q14 : pf(addr1=aBase) :=pffact(addr1)

addrUB : ptr?〈int〉 :=aBase+uB

q17 : pf(addrUB=aBase+uB) :=pffact(addrUB)

LOOP :
addr2 : ptr?〈int〉 :=φ(addr1, addr3)
q4 : pf(aBase≤addr2) :=φ(q14, q13)

[q1 : pf(addr2<addrUB), q2 : . . .] := if addrUB≤addr2
goto EXIT

q6 : pf(addr2<aBase+len(a)) :=pfand(q3, q1, q17)

q10 : pf(a@0≤addr2<a@len(a)) :=pfand(q4, q6, q7)

val : int :=ld(addr2) [q10]
. . . : . . . :=val

addr3 : ptr?〈int〉 :=addr2+1
q15 : pf(addr3=addr2+1) :=pffact(addr3)

q13 : pf(aBase≤addr3) :=pfand(q4, q15)

goto LOOP

EXIT :
. . .

Figure 19: IR after linear function test replacement

replaces the test uB≤i2 in the branch by a new test addrUB≤addr2. If our program contained no proof
variables, this would allow the otherwise unused base variable i to be removed from the loop. We
augment the usual LFTR procedure, which rewrites occurrences of the base induction variable i2 in loop
exit tests (and exits) in terms of the derived induction variable addr2, to also rewrite occurrences of i2 in
the types of proof variables. Finally, to eliminate the original induction variable altogether, the compiler
must replace the inductive proofs on the original variable (expressed through φ instructions) with proofs
in terms of the derived induction variable. In this case, the compiler must replace the proof that 0≤i2
(established by q11 and q12) with one that proves aBase≤addr2 (established by q14 and q15). After the
replacement, the loop induction variable i and any proof variables that depend upon it are no longer
live in the loop, so all definitions of the variable can be removed. The compiler must remove the proof
variables whose types reduce to tautologies and apply further CSE to yield Figure 19.

5 Extensions

Our core language can easily be extended to handle other interesting aspects of Java and CLI. In this
section we describe several of these extensions.

Firstly, we can handle object-model lowering through the use of our singleton types. Consider an
invoke virtual operation. It is typically lowered into three operations: load the virtual dispatch table
(vtable), load the method pointer from the vtable, call the method pointer passing the object as an

19

additional argument. In our system, these operations would look like this:

x : SomeClass := · · ·
t1 : vtable(x) := vtable(x)
t2 : (S(x), int) → int := method(foo : (int) → int, t1)
t3 : int := call(t2)(x, 10)

Here the method foo (taking an integer and returning an integer) is being invoked on variable x. In the
lowered code, variable t1 gets the dependent type vtable(x) meaning that it contains the vtable from
the object currently in x. Variable t2 gets the loaded method pointer. From the type vtable(x), the
typing rules can determine a precise function type for this method pointer, namely (S(x), int) → int,
where the first argument must be x. The actual call is the last operation, and here we pass x as an
explicit argument. Since x has type S(x), this operation type checks.

By using singleton types based on term variables, we achieve a relatively simple type system and still
avoid the well known typing problems with the explicit “this” argument (see [12] and references). The
existing solutions to this typing problem have much more complicated type systems, with one exception.
Chen and Tarditi [7] have a similarly simple type system for a lowered IR for class-based object-oriented
languages. Like our system, theirs also has class names as types, and keeps around information about the
class hierarchy, fields, and methods. They also have existentials with subclass bounds (type variables can
be bounded above by a class, and range over any subclass of that class). They use these existentials to
express the unknown runtime type of any given object, and thus the type of the explicit “this” argument.
They also have a class representation function that maps class names to a record type for objects in the
class, and they have coercions to convert between the two. These ideas could be adapted to our system
instead of our vtable types, and our vtable types could be adapted to their type system. In summary,
both systems are simpler than existing, more foundational, object encodings. Theirs has type variables
and bounded existentials, ours has singleton types based on term variables.

Java and CLI also allow null as a value in any class type, and at runtime this null value must be
checked and an exception thrown before any invocation or field access on an object. We can use our
proof variable technique to track and ensure that these null checks are done. We simply add a null
constant to the fact expression language. We can add an operation like p : pf(x 6=null) := chknull(x) to
check that x is not null. If x is null then it throws an exception, if not then it assigns a proof of x6=null

to p. Similarly to array-bounds check elimination, we can eliminate redundant null checks.
To handle exceptions we simply add explicit control flow for them. Each potentially exception

throwing operation will end a basic block and there will be edges coming out of the block corresponding
to exceptions that go to blocks corresponding to the exception handlers. An important point is that
exceptions typically occur before the assignment of the potentially exception throwing operation, so
like the conditional branches of our core language, we must treat the definition point as occuring on
the fall-through edge rather than at the end of the basic block. So in both x : τ := chknull(y) and
x : τ := call(y)(y), the variable x is assigned on the fall-through edge.

We can easily deal with stores to pointers by adding a store operation of the form st(x, y) [p] where
x holds the pointer, y the value to store, and p a proof that x is valid. The type rule for this operation
is:

Γ ⊢ Γ(x) ≤ ptr?〈τ〉 Γ ⊢ Γ(y) ≤ τ
Γ ⊢ Γ(p) ≤ pf(z@0≤x∧x<z@len(z))

Γ ⊢P st(x, y) [p]

Modifying our formalisation and type soundness proof to accomodate stores would be straightforward.

20

Java and CLI have mutable covariant arrays, and thus require array-store checks at runtime. In
particular, when storing into an array, the runtime must check that the object being stored is compatible
with the runtime element type of the array (which could be a subtype of the static element type). In
our implementation we use types of the form elem(x) to stand for the runtime element type of array x.
The load base operation on x actually returns something of type ptr?〈elem(x)〉. The array-store check
produces a proof value that can be used to prove that some other variable has type elem(x) and we have
a coercion to use the proof value to change the variable’s type. The end of a lowered array store would
look something like this:

x : array(C) := · · ·
y : C := · · ·
· · ·
p1 : pf(x 6=null∧x@0≤t∧t<x@len(x)) := · · ·

p2 : pf(y:elem(x)) := chkst(x, y)

st(t, retype(y, p2)) [p1]

One technicality is worth noting. In order to avoid circularities between the type system and the fact
language, and to avoid making the fact language’s decision procedure mutually dependent upon the
subtype checker, we restrict the types that can appear in a fact of the form x : τ to those that do not
mention proof types.

Downcasts are similar to store checks, and we can treat them in a similar way. A chkcast(x : C)
operation checks that x is in type C and returns a proof of this fact, otherwise it throws an exception.
The actual subtype checks performed at runtime in our implementation are generally done by the virtual
machine itself, and the virtual machine is not type checked by the type system of our JIT. However, we do
partially inline this operation to include some common fast cases, and to expose some parts to redundant
elimination and CSE. For example, if a object is null then it is in any reference type and can be stored
into any reference array or downcast to any reference type. Another example is comparing the vtable of
an object against the vtable of a specific class, if these are equal then that object is in that class. Such
comparisons produce facts in our system of the form x=null or vtable(x)=vtable(C). We can simply
add axioms to our fact language like ⊢ x=null =⇒ x : C or ⊢ vtable(x)=vtable(C) =⇒ x : C.

6 Implementation Status

The current implementation of the StarJIT compiler generates and maintains proof variables through-
out its compilation process to enable safe implementation of certain optimizations in the presence of
check elimination (to be described in a forthcoming paper). For their initially designed role in opti-
mizations, proof variables did not require proof types: optimizations do not need to know the reason an
optimization was safe, but only its safety dependences. As such, the current StarJIT representation is
similar to that described in Section 2 with some of the extensions in Section 5.

StarJIT implements all of the optimizations discussed in this paper as well as more described in [1].
We modified each optimization, if necessary, to correctly handle proof variables. Array bounds check
elimination and operator strength reduction required the most significant modification, as described in
Section 4. For partial inlining of virtual machine type checking functions, as described in Section 5,
we updated the definition of proof variables to established that a variable has the checked type. We
also modified method inlining to properly establish the type of inlined methods. For each parameter
of a method, we added a proof variable that established that it had the correct type. When a method
is compiled independently, that proof variable is trivially defined at the method entry (as parameter

21

types to a method are guaranteed by the runtime environment). When the method is inlined, the
corresponding proof variables must be defined by the calling method instead. As method call operations
require proof variables for each parameter in our system, this information is readily available. Most
optimizations, however, did not require significant changes for the reasons outlined in this paper.

An early version of a type verifier which inferred proof types itself was implemented. This imple-
mentation was particularly helpful in finding bugs within StarJIT, but was insufficient for complete
verification of optimized code. In particular, the inference algorithm was insufficient for some more
complicated optimization situations, such as the LFTR example (without proof type information) in
Section 4. We are confident that extending the compiler to use precise proof types for proof variables
will be straightforward, using the framework developed in this paper.

7 Related Work

As far as we are aware, SafeTSA [24, 2] is the only other example of a type-safe SSA representation
in the literature. The motivation of their work is rather different than ours. SafeTSA was designed as
an alternative to Java bytecode, whereas our representation is designed to be a low-level intermediate
language for a bytecode compiler. SafeTSA can represent certain optimizations, such as CSE and limited
check elimination, that Java bytecode does not. However, in our classification in Section 2, SafeTSA
is a refinement-style representation and, thus, cannot represent the effect of many of the low-level
optimizations we discuss here. For example, it cannot represent the safety of check elimination based
upon a previous branch or the construction of an unsafe memory address as illustrated in Figure 7. On
the other hand, we do not support their notion of referential security: the property that a program must
be safe by construction.

While most of the work on certified code focuses on the final machine code representation, there
has been previous work on intermediate representations that allow verification of the memory safety of
highly optimized machine level code. One of the major differences between the various approaches lies
in the degree to which safety information is made explicit.

On the side of less explicit information are the SpecialJ compiler [8] and DTAL [26]. Both approaches
record loop invariants, but not explicit safety dependences. This makes verification harder (all available
invariants must be considered by the decision procedure), interferes with more optimizations (such as
loop peeling) than our approach, and makes removing dead invariants much more difficult (because
invariants never have explicit uses).

At the other end of the spectrum, there are other systems that not only represent dependences
explicitly as we do, but also record exactly why the dependences imply safety for each instruction, using
proofs, instead of relying on a decision procedure during checking, as in our system. The LTT system
of Crary and Vanderwaart [10] and the TSCB system of Shao et al. [22], developed independently, both
take this approach, albeit in the setting of a functional or mostly-functional language. Both systems are
designed around the idea of incorporating a logic into a type theory, in order to combine the benefits of
proof-carrying code [19] with the convenience of a type system. LTT and TSCB adopt the linear logical
framework LLF and the Calculus of Inductive Constructions, respectively, as their proof languages.
Incorporating a proof system also gives them more flexibility, as they can express a variety of properties
within a single framework.

The lack of explicit proofs in the representation forces us to use a decision procedure during type-
checking. This limits us to decidable properties, and may be less suited for certified code applications
where the added complexity of a decision procedure in the verifier may be undesirable.

22

On the other hand, a system such as ours is much more suited to use in the internals of an optimizing
compiler. For the limited use that we need proofs for—to verify the correctness of checks which are
eliminated by a real optimizing compiler—we can get away with a vastly simpler system, one that
imposes much less of a burden on the compiler than more syntactically heavy systems. Moreover, for
applications of certified code, we believe that it should be possible to take optimized intermediate code
in the style presented here and translate it, as part of code generation, to a more explicit form in the
style of LTT or TSCB, thereby reaping the benefits of both approaches, perhaps by following the Special
J model of using a proof generating theorem prover. However, this remains future work.

Finally, our proof variables are also similar to the Jalapeño Java system’s condition registers as
described in [6, 14]. Both are mechanisms to represent control-flow information as abstract value
dependences. Their usage, however, is more limited. Condition registers are not used to express general
safety information or to support verification of code. Instead, they are used by the compiler to model
control flow between a check operation and all (rather than just potentially unsafe) instructions that
follow it. Jalapeño uses condition registers to collapse control flow due to exceptions into a single
extended block and, in that block, to prevent instruction reordering that would violate control flow
dependences.

8 Conclusions

This paper has shown a typed low-level program representation that preserves memory safety depen-
dences in highly-optimizing type-preserving compilers. Our representation encodes safety dependences
as first-class term-level proof variables that capture the essential memory-safety dependences in the
program without artificially constraining optimizations—previous approaches that piggy-back safety de-
pendence on top of value dependence inhibit optimization opportunities. Our representation encodes
proofs of memory safety as dependent types associated with proof variables. Experience implement-
ing this representation in the StarJIT compiler has demonstrated that a highly-optimizing Java JIT
compiler can easily generate and maintain this representation in the presence of aggressive SSA-based
optimizations such as bounds check elimination, value numbering, strength reduction, linear function
test replacement, and others. Using explicit proof values and proof types, modern optimizing compilers
for type-safe languages can now generate provably safe yet low-level intermediate representations without
constraining optimizations.

References

[1] Adl-Tabatabai, A.-R., Bharadwaj, J., Chen, D.-Y., Ghuloum, A., Menon, V. S., Mur-

phy, B. R., Serrano, M., and Shpeisman, T. The StarJIT compiler: A dynamic compiler for
managed runtime environments. Intel Technology Journal 7, 1 (February 2003).

[2] Amme, W., Dalton, N., von Ronne, J., and Franz, M. SafeTSA: a type safe and referentially
secure mobile-code representation based on static single assignment form. In Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and implementation (Snowbird, UT,
USA, 2001), pp. 137–147.

[3] Bilardi, G., and Pingali, K. Algorithms for computing the static single assignment form. J.
ACM 50, 3 (2003), 375–425.

23

[4] Bod́ık, R., Gupta, R., and Sarkar, V. ABCD: Eliminating array bounds checks on demand.
In Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and im-
plementation (Vancouver, British Columbia, Canada, 2000), pp. 321–333.

[5] Briggs, P., Cooper, K. D., and Simpson, L. T. Value numbering. Software—Practice and
Experience 27, 6 (June 1996), 701–724.

[6] Chambers, C., Pechtchanski, I., Sarkar, V., Serrano, M. J., and Srinivasan, H. De-
pendence analysis for Java. In Proceedings of the 12th International Workshop on Languages and
Compilers for Parallel Computing (1999), vol. 1863 of Lecture Notes in Computer Science, pp. 35–
52.

[7] Chen, J., and Tarditi, D. A simple typed intermediate language for object-oriented languages. In
Proceedings of the 32nd Annual ACM Symposium on Principles of Programming Languages (Long
Beach, CA, USA, Jan. 2005), ACM Press, pp. 38–49.

[8] Colby, C., Lee, P., Necula, G. C., Blau, F., Plesko, M., and Cline, K. A certifying com-
piler for Java. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation (New York, NY, USA, 2000), ACM Press, pp. 95–107.

[9] Cooper, K. D., Simpson, L. T., and Vick, C. A. Operator strength reduction. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 23, 5 (September 2001), 603–625.

[10] Crary, K., and Vanderwaart, J. An expressive, scalable type theory for certified code. In ACM
SIGPLAN International Conference on Functional Programming (Pittsburgh, PA, 2002), pp. 191–
205.

[11] Cytron, R., Ferrante, J., Rosen, B., Wegman, M., and Zadeck, K. An efficient method of
computing static single assignment form. In Proceedings of the Sixteenth Annual ACM Symposium
on the Principles of Programming Languages (Austin, TX, Jan. 1989).

[12] Glew, N. An efficient class and object encoding. In Proceedings of the 15th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages (Minneapolis, MN, USA, Oct. 2000),
ACM Press, pp. 311–324.

[13] Grossman, D., and Morrisett, J. G. Scalable certification for typed assembly language. In
TIC ’00: Selected papers from the Third International Workshop on Types in Compilation (London,
UK, 2001), Springer-Verlag, pp. 117–146.

[14] Gupta, M., Choi, J.-D., and Hind, M. Optimizing Java programs in the presence of exceptions.
In Proceedings of the 14th European Conference on Object-Oriented Programming - ECOOP ’00
(Lecture Notes in Computer Science, Vol. 1850) (June 2000), Springer-Verlag, pp. 422–446.

[15] Igarashi, A., Pierce, B., and Wadler, P. Featherweight Java: A minimal core calculus for
Java and GJ. ACM Transactions on Programming Languages and Systems (TOPLAS) 23, 3 (May
2001), 396–560. First appeared in OOPSLA, 1999.

[16] Knoop, J., Rüthing, O., and Steffen, B. Lazy code motion. In Proceedings of the SIGPLAN
’92 Conference on Programming Language Design and Implementation (San Francisco, CA, June
1992).

24

[17] Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,

D., Weirich, S., and Zdancewic, S. TALx86: A realistic typed assembly language. In Second
ACM SIGPLAN Workshop on Compiler Support for System Software (Atlanta, Georgia, 1999),
pp. 25–35. Published as INRIA Technical Report 0288, March, 1999.

[18] Morrisett, G., Walker, D., Crary, K., and Glew, N. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems (TOPLAS) 21, 3 (May
1999), 528—569.

[19] Necula, G. Proof-carrying code. In POPL1997 (New York, New York, January 1997), ACM
Press, pp. 106–119.

[20] Necula, G. C., and Lee, P. The design and implementation of a certifying compiler. In PLDI
’98: Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and
implementation (New York, NY, USA, 1998), ACM Press, pp. 333–344.

[21] Pugh, W. The Omega test: A fast and practical integer programming algorithm for dependence
analysis. In Proceedings of Supercomputing ’91 (Albuquerque, NM, Nov. 1991).

[22] Shao, Z., Saha, B., Trifonov, V., and Papaspyrou, N. A type system for certified binaries. In
Proceedings of the 29th Annual ACM Symposium on Principles of Programming Languages (January
2002), ACM Press, pp. 216–232.

[23] Vanderwaart, J. C., Dreyer, D. R., Petersen, L., Crary, K., and Harper, R. Typed
compilation of recursive datatypes. In Proceedings of the TLDI 2003: ACM SIGPLAN International
Workshop on Types in Language Design and Implementation (New Orleans, LA, January 2003),
pp. 98–108.

[24] von Ronne, J., Franz, M., Dalton, N., and Amme, W. Compile time elimination of null-
and bounds-checks. In 3rd Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3)
(December 2000).

[25] Walker, D., Crary, K., and Morisett, G. Typed memory management via static capabilities.
ACM Transactions on Programming Languages and Systems (TOPLAS) 22, 4 (July 2000), 701–771.

[26] Xi, H., and Harper, R. Dependently typed assembly language. In International Conference on
Functional Programming (September 2001), pp. 169–180.

25

Γ ⊢P v : τ in L at du L ⊢P e is v at du L ⊢P F at du

x ∈ dom(L) x ∈ inscopeP (du)

Γ ⊢P L(x) : S(x) in L at du Γ ⊢P i : int in L at du

Γ ⊢P v : τ in L at du

Γ ⊢P 〈v〉 : array(τ) in L at du

Γ ⊢P v : τ in L at du

Γ ⊢P 〈v〉@i : ptr?〈τ〉 in L at du

L ⊢P F at du

Γ ⊢P true : pf(F) in L at du

Γ ⊢P v : τ1 in L at du Γ ⊢ τ1 ≤ τ2

Γ ⊢P v : τ2 in L at du

x ∈ dom(L) x ∈ inscopeP (du)

L ⊢P x is L(x) at du

L ⊢P x is 〈v0, . . . , vn−1〉 at du

L ⊢P len(x) is n at du

L ⊢P i is i at du

L ⊢P e1 is i1 at du L ⊢P e2 is i2 at du

L ⊢P e1bope2 is i1 bop i2 at du

L ⊢P e1 is i1 at du L ⊢P e2 is v@i2 at du

L ⊢P e1bope2 is v@(i1 bop i2) at du

L ⊢P e1 is v@i1 at du L ⊢P e2 is i2 at du

L ⊢P e1bope2 is v@(i1 bop i2) at du

L ⊢P x is 〈v〉 at du L ⊢P e is i at du

L ⊢P x@e is 〈v〉@i at du

L ⊢P e1 is 〈v0, . . . , vn〉@i1 at du L ⊢P e2 is 〈v0, . . . , vn〉@i2 at du i1 rop i2

L ⊢P e1rope2 at du

L ⊢P e1 is i1 at du L ⊢P e2 is i2 at du i1 rop i2

L ⊢P e1rope2 at du

L ⊢P F1 at du L ⊢P F2 at du

L ⊢P F1 ∧ F2 at du

Γ ⊢P L : Γ′@V ⊢ S

∀x ∈ V : Γ ⊢P L(x) : Γ′(x) in L at defP (x)

Γ ⊢P L : Γ′@V

⊢ P vt(P) = Γ
Γ ⊢P L : Γ@dfndAtP (pc, n)

n is an in-edge number for b where pc = b.i

pc ∈ pcs(P)
∀x ∈ dfndAtP (pc, n) if deffactP (x) = F then L ⊢P F at pc

⊢ (P, L, n, pc)

Figure 20: Typing for States, Environments, Values, and Facts

A Appendix: Proof of Type Safety

A.1 Preliminaries

Assumption 1 (Logical Soundness) If L ⊢P F1 at du and ⊢ F1 =⇒ F2 then L ⊢P F2 at du.

Note that if domP (n1, n2) and domP (n2, n1) then n1 = n2. Hence strict dominance is asymmetric.
Thus dominance and strict dominance induce a partial order that we can think of as a dominance tree
rooted at (−1, 0) and (−1, 0).0 respectively.

Let inscopeP (du) = {x | sdomP (defP (x), du)}. The latter set is the variables we know are defined
at the beginning of an instruction (if du is the program counter). However, at the beginning of the phi
instructions we also need variables in scope on the incoming edge to be defined. Therefore, we define
dfndAtP (b.0, e) to be inscopeP (e.1), dfndAtP (b.(i + 1), e) to be inscopeP (b.(i + 1)), and dfndAtP (b.i, n)
to be dfndAtP (b.i, e) where e is the n-th incoming edge to b.

The typing for states, environments, values, and facts appears in Figure 20.

26

A.2 Auxiliary lemmas

Lemma 1 If L1(x) = L2(x) for all x ∈ inscopeP (du) and sdomP (du, du′) or du = du′ then:

• If Γ ⊢P v : τ in L1 at du then Γ ⊢P v : τ in L2 at du′.

• If L1 ⊢P F at du then L2 ⊢P F at du′.

Proof: The proof is by induction on the typing derivation. In the case of the singleton value rule and
the rule for the value of an expression that is a variable, the variable in question has to be in scope for
du, so L1 and L2 agree on its value and the variable is in scope for du′.

Corollary 1 (Environment weakening)

• If L ⊢P e is ve at du and x /∈ inscopeP (du) and then L{x := v} ⊢P e is ve at du

• If L ⊢P F at du and x /∈ inscopeP (du) then L{x := v} ⊢P F at du

Proof: Follows immediately from Lemma 1.

Lemma 2 If Γ ⊢P L1 : Γ@inscopeP (du), x /∈ inscopeP (du), L2 = L1{x := v} and Γ ⊢P v : Γ(x) in

L2 at defP (x) then Γ ⊢P L2 : Γ@inscopeP (du) ∪ {x}.

Proof: The result follows by the typing rule if Γ ⊢P L2(x) : Γ(x) in L2 at defP (x) for x ∈
inscopeP (du) ∪ {x}. For x in the latter, the judgement holds by hypothesis. For x in the former,
note that inscopeP (defP (x)) ⊆ inscopeP (du), so L1(y) = L2(y) for all y ∈ inscopeP (defP (x)) and clearly
L1(x) = L2(x). Thus the judgement holds by hypothesis and Lemma 1.

Note that subtyping is reflexive and transitive.

Lemma 3 (Subtyping Inversion)

• If Γ ⊢ τ ≤ S(x) then τ = S(y) for some y.

• If Γ ⊢ S(x) ≤ τ then either τ = S(x) or Γ ⊢ Γ(x) ≤ τ .

• If Γ ⊢ array(τ1) ≤ array(τ2) then Γ ⊢ τ1 ≤ τ2.

• If Γ ⊢ ptr?〈τ1〉 ≤ ptr?〈τ2〉 then Γ ⊢ τ1 ≤ τ2.

• If Γ ⊢ pf(F1)
≤ pf(F2) then ⊢ F1 =⇒ F2.

• The following are not derivable: Γ ⊢ int ≤ array(τ), Γ ⊢ int ≤ ptr?〈τ〉, Γ ⊢ int ≤ S(x),
Γ ⊢ int ≤ pf(F), Γ ⊢ array(τ) ≤ int, Γ ⊢ array(τ) ≤ ptr?〈τ

′〉, Γ ⊢ array(τ) ≤ S(x),
Γ ⊢ array(τ) ≤ pf(F), Γ ⊢ ptr?〈τ〉 ≤ int, Γ ⊢ ptr?〈τ〉 ≤ array(τ ′), Γ ⊢ ptr?〈τ〉 ≤ S(x),
Γ ⊢ ptr?〈τ〉 ≤ pf(F), Γ ⊢ pf(F) ≤ int, Γ ⊢ pf(F) ≤ array(τ), Γ ⊢ pf(F) ≤ ptr?〈τ〉, and
Γ ⊢ pf(F) ≤ S(x).

27

Proof: The proof is by induction on the derivation of the subtyping judgement. The result is clear for
all the rules except the transitivity rule. There is some intermediate type σ that is a supertype of the
left type we are considering and a subtype of the right type we are considering. For the first item, σ is a
subtype of S(x) so by the induction hypothesis, σ = S(z) for some z. Since σ is a supertype of τ , by the
induction hypothesis, τ = S(y) for some y, as required. For the second item, σ is a supertype of S(x),
so by the induction hypothesis eitehr σ = S(x) or Γ ⊢ Γ(x) ≤ σ. In the first case, the result follows by
the induction hypothesis on the other judgement. In the second case, the result follows by transitivity
of subtyping. For the third item, since σ is a supertype of an array type, by the induction hypothesis, σ
must be an array type, say array(σ′). Then by the induction hypothesis for both judgements, Γ ⊢ τ1 ≤ σ′

and Γ ⊢ σ′ ≤ τ2. By transitivity of subtyping, Γ ⊢ τ1 ≤ τ2 as required. The fourth and fifth items are
similar (the fifth requires transitivity of implication in the logic). For the sixth item, consider the cases.
If the left type is int, an array type, a pointer type, or a proof type, then by the induction hypothesis
σ must be of the same form, so by the induction hypothesis again, the right type must have the same
form. These are all the cases we need to consider for the sixth item.

Lemma 4 (Canonical Forms) If Γ ⊢P L : Γ@V , x ∈ V , and inscopeP (y) ⊆ V for y ∈ V then:

• If Γ ⊢ S(x) ≤ S(x′) and x′ ∈ V then L(x) = L(x′).

• If Γ ⊢ Γ(x) ≤ int then L(x) is an integer.

• If Γ ⊢ Γ(x) ≤ array(τ) then L(x) has the form 〈v〉 and Γ ⊢P v : τ in L at defP (x).

• If Γ ⊢ Γ(x) ≤ ptr?〈τ〉 then L(x) has the form 〈v〉@i and Γ ⊢P v : τ in L at defP (x).

• If Γ ⊢ Γ(x) ≤ pf(F) then L ⊢P F at defP (x).

Proof: For the first item, if the hypothesis holds then by Subtype Inversion either S(x) = S(x′) or
Γ ⊢ Γ(x) ≤ S(x′). For the former, x = x′ and the conclusion therefore holds. Thus we need only show
the first item for the stronger hypothesis that Γ ⊢ Γ(x) ≤ S(x′) and x′ ∈ V . The proof is by induction
on the depth of x in the dominance tree. Since x ∈ V , by the typing rule, Γ ⊢P L(x) : Γ(x) in L at

defP (x). This judgement can be derived by a non-subsumption rule followed by zero or more uses of the
subsumption rule. Since subtyping is reflexive and transitive, the zero or multiple uses of subsumption
can be transformed into exactly one use. Consider the non-subsumption rule used:

Singleton Value Rule: In this case, L(x) = L(x′′), x′′ ∈ dom(L), x′′ ∈ inscopeP (defP (x)), and Γ ⊢
S(x′′) ≤ Γ(x). Since x′′ ∈ inscopeP (defP (x)), x′′ ∈ V and x′′ is less deep in the dominance tree
than x. By the induction hypothesis, the result holds for x = x′′, we just need to show that it
holds for x. If the hypothesis of the first item holds (Γ ⊢ Γ(x) ≤ S(x′) and x′ ∈ V), then by
transitivity Γ ⊢ S(x′′) ≤ S(x′), so by the induction hypothesis, L(x′′) = L(x′). Thus L(x) = L(x′)
as required. If the hypothesis of the third item holds (Γ ⊢ Γ(x) ≤ array(τ)), then by Subtyping
Inversion on Γ ⊢ S(x′′) ≤ Γ(x) either S(x′′) = Γ(x) or Γ ⊢ Γ(x′′) ≤ Γ(x). For the former, we have
Γ ⊢ S(x′′) ≤ array(τ), so by Subtyping Inversion Γ ⊢ Γ(x′′) ≤ array(τ). For the latter, the last
judgement holds by transitivity. Then by the induction hypothesis L(x′′) has the form 〈v〉 and
Γ ⊢P v : τ in L at defP (x′′). By Lemma 1, Γ ⊢P v : τ in L at defP (x), as required. The cases for
the second and fourth items are similar to the case for the third item. If the hypothesis for the
fifth item holds then by similar reasoning to the third item, Γ ⊢ Γ(x′′) ≤ pf(F). By the induction
hypothesis, L ⊢P F at defP (x′′). By Lemma 1, L ⊢P F at defP (x), as required.

28

Integer Rule: In this case, L(x) = i for some i and Γ ⊢ int ≤ Γ(x). The second item clearly holds. If
the hypothesis of the other items held then by transitivity of subtyping, int would be a subtype
of a singleton, array, pointer, or proof type, which is not possible by Subtyping Inversion.

Array Rule: In this case, L(x) = 〈v〉, Γ ⊢P v : τ in L at defP (x), and Γ ⊢ array(τ) ≤ Γ(x). If the
hypothesis of the third item, namely Γ ⊢ Γ(x) ≤ array(σ), holds then by transitivity of subtyping
and Subtyping Inversion, Γ ⊢ τ ≤ σ. Then by subsumption Γ ⊢P v : σ in L at defP (x) as required
by the conclusion of item three. If the hypothesis of the other items held then by transitivity of
subtyping, array(τ) would be a subtype of a singleton, integer, pointer, or proof type, which is
not possible by Subtyping Inversion.

Pointer Rule: In this case, L(x) = 〈v〉@i, Γ ⊢P v : τ in L at defP (x), and Γ ⊢ ptr?〈τ〉 ≤ Γ(x). If the
hypothesis of the fourth item, namely Γ ⊢ Γ(x) ≤ ptr?〈σ〉, holds then by transitivity of subtyping
and Subtyping Inversion, Γ ⊢ τ ≤ σ. Then by subsumption Γ ⊢P v : σ in L at defP (x) as required
by the conclusion of item four. If the hypothesis of the other items held then by transitivity of
subtyping, ptr?〈τ〉 would be a subtype of a singleton, integer, array, or proof type, which is not
possible by Subtyping Inversion.

Proof Rule: In this case, L ⊢P F ′ at defP (x) and Γ ⊢ pf(F ′) ≤ Γ(x). If the hypothesis of the fifth
item, name Γ ⊢ Γ(x) ≤ pf(F), held, then by transitivity of subtyping and Subtyping Inversion,
⊢ F ′ =⇒ F . Then by Logical Soundness, L ⊢P F at defP (x), as required by the conclusion to
item five. If the hypothesis of the other items held then by transitivity of subtyping, pf(F ′) would
be a subtype of a singleton, integer, array, or pointer type, which is not possible by Subtyping
Inversion.

Lemma 5 For any b a block number for P and n an incoming edge number to b, inscopeP (b.i) ⊆
dfndAtP (b.i, n).

Proof: If i > 0 then the result holds by definition. Otherwise let (b′, b) be the n-th incoming edge to b.
Then dfndAtP (b.i, n) = inscopeP ((b′, b).1). Let N be the parent of b in the dominance tree for P . If N is
not equal to or an ancestor of (b′, b) then there exists a path from (−1, 0) to (b′, b) that does not include
N . We can extend this path with the edge from (b′, b) to b to obtain a path from (−1, 0) to b that does
not include N contradicting the fact that N is b’s parent in the dominance tree. Let x ∈ inscopeP (b.0)
then sdomP (defP (x), b.0). Let defP (x) = b′′.i′′ then domP (b′′, N), so domP (b′′, (b′, b)). Since (b′, b).1
does not define any variables, sdomP (defP (x), (b′, b).1) and x ∈ inscopeP ((b′, b).1), as required.

Lemma 6 (Canonical Forms 2) If Γ ⊢P L : Γ@inscopeP (du) and Γ ⊢P v : τ in L at du then:

• If τ = int then v = i.

• If τ = array(σ) then v = 〈v〉 and Γ ⊢P v : σ in L at du.

• If τ = ptr?〈σ〉 then v = 〈v〉@i and Γ ⊢P v : σ in L at du.

• If τ = S(x) then v = L(x) and x ∈ inscopeP (du).

• If τ = pf(F) then v = true and L ⊢P F at du.

29

Proof: The proof is by induction on the depth of du is the dominance tree. The judgement Γ ⊢P

v : τ in L at du can only be derived by a nonsubsumption rule following by zero or more uses of the
subsumption rule. Since subtyping is reflexive and transitive, we can turn these uses of subsumption
into exactly one use. Consider the nonsubsumption rule used:

Singleton Rule: In this case v = L(x), x ∈ inscopeP (du), and Γ ⊢ S(x) ≤ τ . If τ = S(x) then
the result holds. Otherwise, by Subtyping Inversion Γ ⊢ Γ(x) ≤ τ . By hypothesis, Γ ⊢P v :
Γ(x) in L at defP (x). By subsumption, Γ ⊢P v : τ in L at defP (x). Since x ∈ inscopeP (du),
defP (x) ∈ inscopeP (du), so sdomP (defP (x), du). Thus defP (x) is higher in the dominance tree
than du. The result follows by the induction hypothesis.

Integer Rule: In this case v is some i and by Subtyping Inversion τ must be int, as required.

Array Rule: In this case v is 〈v〉, Γ ⊢P v : τ1 in L at du, and Γ ⊢ array(τ1) ≤ τ . By Subtyping
Inversion τ must be array(τ2) and Γ ⊢ τ1 ≤ τ2. By subsumption, Γ ⊢P v : τ2 in L at du, as
required.

Pointer Rule: In this case v is 〈v〉@i, Γ ⊢P v : τ1 in L at du, and Γ ⊢ ptr?〈τ1〉 ≤ τ . By Subtyping
Inversion τ must be ptr?〈τ2〉 and Γ ⊢ τ1 ≤ τ2. By subsumption, Γ ⊢P v : τ2 in L at du, as required.

Proof Rule: In this case v is true, L ⊢P F1 at du, and Γ ⊢ pf(F1)
≤ τ . By Subtyping Inversion τ must

be pf(F2)
and ⊢ F1 =⇒ F2. By Logical Soundness L ⊢P F2 at du, as required.

Lemma 7 If Γ ⊢P L : Γ@inscopeP (du) then:

• If ⊢P τ at defP (x) and Γ ⊢P v : τ{x1 := x2} in L at du then Γ ⊢P v : τ in L{x1 := L(x2)} at

defP (x).

• If ⊢P F at defP (x) and L ⊢P F{x1 := x2} at du then L{x1 := L(x2)} ⊢P F at defP (x).

• If ⊢P e at defP (x) and L ⊢P e{x1 := x2} is v at du then L{x1 := L(x2)} ⊢P e is v at defP (x)

Proof: Let ρ = x1 := x2 and L′ = L{x1 := L(x2)}. The proof is by induction of the structure of τ , F ,
or e. Consider the different forms that τ , F , or e could take:

τ = int: In this case, τ = τ{ρ}, so the hypothesis and Canonical Forms 2 imply that v = i. The
conclusion then follows by the integer rule.

τ = array(σ): In this case, τ{ρ} = array(σ{ρ}), so by hypothesis and Canonical Forms 2, v = 〈v〉 and
Γ ⊢P v : σ{ρ} in L at du, by the induction hypothesis, Γ ⊢P v : σ in L′ at defP (x), so by the array
rule the conclusion holds.

τ = ptr?〈σ〉: In this case, τ{ρ} = ptr?〈σ{ρ}〉, so by hypothesis and Canonical Forms 2, v = 〈v〉@i and
Γ ⊢P v : σ{ρ} in L at du. By the induction hypothesis, Γ ⊢P v : σ in L′ at defP (x), so by the
pointer rule the conclusion holds.

τ = S(z): Let y be ρ(z). Then τ{ρ} = S(y) and by hypothesis and Canonical Forms 2, v = L(y). Since
⊢P τ at defP (x), z ∈ inscopeP (defP (x)). Clearly L′(z) = L(y) and z ∈ dom(L′). Thus by the
singleton value rule, Γ ⊢P v : S(z) in L′ at defP (x), as required.

30

τ = pf(F): In this case, τ{ρ} = pf(F{ρ}), so by hypothesis and Canonical Forms 2, v = true and
L ⊢P F{ρ} at du. By the induction hypothesis, L′ ⊢P F at defP (x), and the conclusion holds by
the proof value rule.

F = e1 rop e2: In this case, F{ρ} = e1{ρ} rop e2{ρ}. Since the hypothesis can be derived by only two
rules, it must be the case that L ⊢P e1{ρ} is v1 at du, L ⊢P e2{ρ} is v2 at du, v1 and v2 have
the forms i1 and i2 or the forms 〈v〉@i1 and 〈v〉@i2, and i1 rop i2. By the induction hypothesis,
L′ ⊢P e1 is v1 at defP (x) and L′ ⊢P e2 is v2 at defP (x). The conclusion follows by applying the
same rule.

F = F1 ∧ F2: In this case, F{ρ} = F1{ρ}∧F2{ρ}. Since the hypothesis can be derived in only one way,
L ⊢P F1{ρ} at du and L ⊢P F2{ρ} at du. By the induction hypothesis, L′ ⊢P F1 at defP (x) and
L′ ⊢P F2 at defP (x). The conclusion follows the and rule.

e = i: In this case the conclusion follows by the integer rule.

e = z: Let y be ρ(z). Then e{ρ} = y. The hypothesis can be derived in only one way, so v = L(y).
Clearly, L′(z) = L(y) and z ∈ dom(L′). Since ⊢P e at defP (x), z ∈ inscopeP (defP (x)). Thus by
the expression variable rule, L′ ⊢P z is v at defP (x), as required.

e = len(z): Let y be ρ(z). Then e{ρ} = len(y). The hypothesis can be derived in only one way,
so L ⊢P y is 〈v0, . . . , vn−1〉 at du and v = n. Then by the induction hypothesis, L′ ⊢P

z is 〈v0, . . . , vn−1〉 at defP (x). The conclusion follows by the length rule.

e = e1 bop e2: In this case, e{ρ} = e1{ρ} bop e2{ρ}. Since the hypothesis can be derived in only one
way, L ⊢P e1{ρ} is i1 at du, L ⊢P e2{ρ} is i2 at du, and v = i1 bop i2. By the induction hypothesis,
L′ ⊢P e1 is i1 at defP (x) and L′ ⊢P e2 is i2 at defP (x). The conclusion follows by the binary
operation rule.

e = z@e′: Let y be ρ(z). Then e{ρ} = y@e′{ρ}. The hypothesis can be derived in only one way,
so L ⊢P y is 〈v〉 at du, L ⊢P e′{ρ} is i at du, and v = 〈v〉@i. By the induction hypothesis,
L′ ⊢P x is 〈v〉 at defP (x) and L′ ⊢P e′ is i at defP (x). The conclusion follows by the pointer rule.

A.3 Preservation

Lemma 8 If ⊢ P then ⊢ (P, ∅, 0, 0.0).

Proof: Straightforward given that dfndAtP (0.0, 0) = ∅.

Lemma 9 (Preservation) If ⊢ S1 and S1 7→ S2 then ⊢ S2.

Proof: Let S1 = (P, L1, e1, b.i) and S2 = (P, L2, e2, pc). Assume that ⊢ S1 and S2 7→ S2. Let
Γ = vt(P).

By the typing rule for programs:

1. ⊢ P

2. Γ ⊢P L1 : Γ@dfndAtP (b.i, e1)

31

3. e1 is a valid in-edge number for b

4. b.i ∈ pcs(P)

5. ∀x ∈ dfndAtP (b.i, e1) if deffactP (x) = F then L1 ⊢P F at b.i

If P (b.i) = ι or P (b.i) = p then pc = b.(i + 1) ∈ pcs(P) and e2 = e1 so e2 is a valid in-edge number
for pc’s block. We will show that validity of pc and e2 for transfers in the respective rules below. Thus
it remains to show that:

1. Γ ⊢P L2 : Γ@dfndAtP (pc, e2)

2. ∀x ∈ dfndAtP (pc, e2) if deffactP (x) = F then L2 ⊢P F at pc

For all instructions for which deffactP (x) is not defined, note that (2) follows immediately by Lemma 1,
since the set of defined facts remains unchanged. For instructions for which deffactP (x) = F , it suffices
to show that L2 ⊢P F at pc.

The proof proceeds by case analysis on the reduction rule.

Phi rule: In this case, P (b.i) = p, p[e1] = x1 := x2, and L2 = L1{x1 := L1(x2)}. By the defini-
tions, dfndAtP (pc, e2) = inscopeP (pc) = inscopeP (b.i) ∪ {x1}. By Lemma 5, inscopeP (b.i) ⊆
dfndAtP (b.i, e1). Clearly by the typing rules and Γ ⊢P L1 : Γ@dfndAtP (b.i, e1), Γ ⊢P L1 :
Γ@inscopeP (b.i). So by Lemma 2, we just need to show that Γ ⊢P L1(x2) : Γ(x1) in L2 at defP (x1)
(note that φ instructions define no facts).

Let (b′, b) be the e1’th incoming edge to b. Since the phi instructions are uses of x2 at (b′, b).1,
defP (x2) ⊆ inscopeP ((b′, b).1) = dfndAtP (b.i, e1). By Env Typing, x2 ⊆ dom(L1). Thus by the
singleton typing rule, Γ ⊢P L1(x2) : S(x2) in L1 at (b′, b).1. By the typing rules for phi-instructions,
Γ ⊢ S(x2) ≤ Γ(x1){ρ} where ρ is x1 := x2. Thus by subsumption, Γ ⊢P L1(x2) : Γ(x1){ρ} in L1 at

(b′, b).1. By the typing rules, ⊢P Γ(x1) at defP (x1). So by Lemma 7, Γ ⊢P L1(x2) : Γ(x1) in L2 at

defP (x1).

Constant rule: In this case, P (b.i) = x := i and L2 = L1{x := i}. Also note that deffactP (x) = (x = i).

By expansion of the definitions:
defP (x) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
x /∈ dfndAtP (b.i, e1)

First we must show that:
L2 ⊢P x = i at pc

By the environment rule (since L2(x) = i):
L2 ⊢P x is i at pc

By the integer rule:
L2 ⊢P i is i at pc

So by the comparison rule:
L2 ⊢P x = i at pc

By Lemma 2, it suffices to show that Γ ⊢P i : Γ(x) in L2 at b.i.

32

By assumption:
Γ ⊢P x : τ := i

So by inversion:
Γ ⊢ int ≤ Γ(x)

So by construction using the integer rule and subsumption:
Γ ⊢P i : Γ(x) in L2 at b.i

Copy rule: In this case, P (b.i) = x1 := x2 and L2 = L1{x1 := L1(x2)}. By expansion of the definitions,
defP (x1) = b.i, dfndAtP (pc, e2) = dfndAtP (b.i, e1)∪{x1}, and x1 /∈ dfndAtP (b.i, e1). By Lemma 2,
we need to show that Γ ⊢P L1(x2) : Γ(x1) in L2 at b.i. The typing rule for this instruction
include Γ ⊢ S(x2) ≤ Γ(x1). Since this instruction is a use of x2 and the in-scope property,
x2 ∈ dfndAtP (b.i, e1), thus x1 6= x2, x2 ∈ dom(L1), L2(x2) = L1(x2), and x2 ∈ inscopeP (b.i). By
the singleton typing rule and subsumption, Γ ⊢P L1(x2) : Γ(x1) in L2 at b.i, as required.

New array (i ≥ 0) In this case P (b.i) = x1 : τ := newarray(x2, x3) and L2 = L1{x1 := v1}, where
L1(x2) = n, L1(x3) = v3, v1 = 〈v3, . . . , v3

︸ ︷︷ ︸

n

〉.

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show that Γ ⊢P v1 : Γ(x1) in L2 at b.i.

By assumption:
Γ ⊢P x1 : τ := newarray(x2, x3)

By inversion of Γ ⊢P x1 : τ := newarray(x2, x3):
Γ ⊢ array(Γ(x3)) ≤ Γ(x1)

By assumption (since x3 ∈ dfndAtP (b.i, e1)):
Γ ⊢P v3 : Γ(x3) in L2 at b.i

So by construction, using the newarray rule and subsumption:
Γ ⊢P v1 : Γ(x1) in L2 at b.i

New array (i < 0)

The proof proceeds exactly as in the previous case, except that there is no proof obligation for v3,
and hence the construction from the newarray rule follows immediately.

Array length rule In this case, P (b.i) = x1 : τ := len(x2) and L2 = L1{x1 := n} where L1(x2) =
〈v0, . . . , vn−1〉. Also note that deffactP (x1) = (x = len(x2))

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
x2 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

33

First we must show that:
L2 ⊢P x1 = len(x2) at pc

By the environment rule (since L2(x1) = n, and L2(x2) = 〈v0, . . . , vn−1〉):
L2 ⊢P x1 is n at pc
L2 ⊢P x2 is 〈v0, . . . , vn−1〉 at pc

So by the length rule:
L2 ⊢P len(x2) is n at pc

So by the comparison rule:
L2 ⊢P x1 = len(x2) at pc

By Lemma 2, it suffices to show that Γ ⊢P n : Γ(x1) in L2 at b.i.

By assumption:
Γ ⊢P x1 : τ := len(x2)

By inversion:
Γ ⊢ int ≤ Γ(x1)

So the result holds by construction using the integer rule and subsumption.

Pointer base rule In this case, P (b.i) = x1 : τ := base(x2) and L2 = L1{x2 := v@0}, where L1(x2) =
v, v = 〈v′〉. Note that deffactP (x1) = (x1 = x2@0)

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

First we must show that:
L2 ⊢P x1 = x2@0 at pc

By the environment rule (since L2(x1) = v@0, and L2(x2) = v):
L2 ⊢P x1 is v@0 at pc
L2 ⊢P x2 is v at pc

So by the managed pointer rule:
L2 ⊢P x2@0 is v@0 at pc

So by the comparison rule:
L2 ⊢P x1 = x2@0 at pc

By Lemma 2, it suffices to show that Γ ⊢P v@0 : Γ(x1) in L2 at b.i.

By assumption:
Γ ⊢P x1 : τ := base(x2)

By inversion:
Γ ⊢ Γ(x2) ≤ array(τ2)
Γ ⊢ ptr?〈τ2〉 ≤ Γ(x1)

34

So by Canonical Forms:
Γ ⊢P v′ : τ2 in L1 at defP (x2)

Note that b.i is a use of x2, so by the in-scope property, sdomP (defP (x2), b.i), and so x1 /∈
inscopeP (defP (x1)).

So by Lemma 1:
Γ ⊢P v′ : τ2 in L2 at b.i

So the result holds by construction using the managed pointer rule and subsumption.

Binary op rule (int) In this case, P (b.i) = x1 : τ := x2 bop x3 and L2 = L1{x1 := i2 bop i3} where
L1(x2) = i2, L1(x3) = i3. Note that deffactP (x1) = (x1 = x2 bop x3).

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

First we must show that:
L2 ⊢P x1 = x2 bop x3 at pc

By the environment rule (since L2(x1) = i2 bop i3, L2(x2) = i2, and L2(x3) = i3):
L2 ⊢P x1 is i2 bop i3 at pc
L2 ⊢P x2 is i2 at pc
L2 ⊢P x3 is i3 at pc

So by the integer arithmetic rule:
L2 ⊢P x2 bop x3 is i2 bop i3 at pc

So by the comparison rule:
L2 ⊢P x1 = x2 bop x3 at pc

By Lemma 2, it suffices to show that Γ ⊢P i2 bop i3 : Γ(x1) in L2 at b.i.

By assumption:
Γ ⊢P x1 : τ := x2 bop x3

So by inversion:
Γ ⊢ int ≤ Γ(x1)

So the result holds by construction using the integer rule and subsumption.

Binary op rule (pointer) In this case, P (b.i) = x1 : τ := x2 bop x3 and L2 = L1{x1 := v@(i2 bop i3)}
where L1(x2) = v@i2, L1(x3) = i3. Note that deffactP (x1) = (x1 = x2 bop x3).

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

35

First we must show that:
L2 ⊢P x1 = x2 bop x3 at pc

By the environment rule (since L2(x1) = v@(i2 bop i3), L2(x2) = v@i2, and L2(x3) = i3):
L2 ⊢P x1 is v@(i2 bop i3) at pc
L2 ⊢P x2 is v@i2 at pc
L2 ⊢P x3 is i3 at pc

So by the pointer arithmetic rule:
L2 ⊢P x2 bop x3 is v@(i2 bop i3) at pc

So by the pointer comparison rule:
L2 ⊢P x1 = x2 bop x3 at pc

By Lemma 2, it suffices to show that Γ ⊢P v@i2 bop i3 : Γ(x1) in L2 at b.i.

By assumption:
Γ ⊢P x1 : τ := x2 bop x3

So by inversion:
Γ ⊢ Γ(x2) ≤ ptr?〈τ2〉
Γ ⊢ Γ(x3) ≤ int

Γ ⊢ ptr?〈τ2〉 ≤ Γ(x1)

So by Canonical Forms:
Γ ⊢P v : τ2 in L1 at defP (x2)

Note that b.i is a use of x2, so by the in-scope property, sdomP (defP (x2), b.i), and so x1 /∈
inscopeP (defP (x1)).

So by Lemma 1:
Γ ⊢P v : τ2 in L2 at b.i

So the result holds by construction using the managed pointer rule and subsumption.

Load rule In this case, P (b.i) = x1 : τ := ld(x2) [x3] and L2 = L1{x1 := vi}: where L1(x2) =
〈v0, . . . , vn〉@i, 0 ≤ i ≤ n.

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show that Γ ⊢P vi : Γ(x1) in L2 at b.i.

By assumption:
Γ ⊢P x1 : τ := ld(x2) [x3]

So by inversion:
Γ ⊢ Γ(x2) ≤ ptr?〈τ2〉
Γ ⊢ Γ(x3) ≤ pf(x@0≤x2∧x2<x@len(x))

Γ ⊢ τ2 ≤ Γ(x1)

36

So by Canonical Forms:
Γ ⊢P v : τ2 in L1 at defP (x2)

Note that b.i is a use of x2, so by the in-scope property, sdomP (defP (x2), b.i), and that x1 /∈
inscopeP (defP (x1)).

So by Lemma 1:
Γ ⊢P v : τ2 in L2 at b.i

So in particular:
Γ ⊢P vi : τ2 in L2 at b.i

So the result holds by subsumption.

Proof Fact In this case, P (b.i) = x1 : τ := pffact(x2) and L2 = L1{x1 := true}.

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show that Γ ⊢P true : Γ(x1) in L2 at b.i.

By assumption:
Γ ⊢P x1 : τ := pffact(x2)

By inversion:
Γ ⊢ pf(deffactP (x2))

≤ Γ(x1)

By assumption, L1 is consistent. Thus, since x2 ∈ inscopeP (b.i), L1 ⊢P deffactP (x2) at defP (x2).

Note that b.i is a use of x2, so by the in-scope property, sdomP (defP (x2), b.i), and so x1 /∈
inscopeP (b.i).

So by Lemma 1:
L2 ⊢P deffactP (x2) at b.i

By the true rule:
Γ ⊢P true : pf(deffactP (x2))

in L2 at b.i

By subsumption:
Γ ⊢P true : Γ(x1) in L2 at b.i

Proof conjunction In this case, P (b.i) = x : τ := pfand(y1, . . . , yn) and L2 = L1{x := true}.

By expansion of the definitions:
defP (x) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
y1, . . . , yn ∈ dfndAtP (b.i, e1)
x /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show that Γ ⊢P true : Γ(x) in L2 at b.i.

By assumption:
Γ ⊢P x : τ := pfand(y1, . . . , yn)

37

By inversion:
Γ ⊢ Γ(y1) ≤ pf(F1)

· · ·
Γ ⊢ Γ(yn) ≤ pf(Fn)

Γ ⊢ pf(F1∧···∧Fn) ≤ Γ(x)

By Canonical Forms:
L1 ⊢P F1 at defP (y1)
· · ·
L1 ⊢P Fn at defP (yn)

Note that b.i is a use of x1 through yn, so by the in-scope property, sdomP (defP (y1), b.i) through
sdomP (defP (yn), b.i).

So by Lemma 1:
L1 ⊢P F1 at b.i
· · ·
L1 ⊢P Fn at b.i

By the conjunction rule:
L1 ⊢P F1 ∧ · · · ∧ Fn at b.i

Note that x /∈ inscopeP (b.i).

Therefore by Weakening (Lemma 1):
L2 ⊢P F1 ∧ · · · ∧ Fn at b.i

By the true intro rule:
Γ ⊢P true : pf(F1∧···∧Fn) in L2 at b.i.

By subsumption:
Γ ⊢P true : Γ(x) in L2 at b.i.

Conditional Branch Rule In this case, P (b.i) = [x1 : τ1, x2 : τ2] if x3 rop x4 goto b′ and L2 =
L1{xj := true}: where L1(x3) = i3, L1(x4) = i4, where j = 1 if ¬(i3 rop i4) and where j = 2 if
i3 rop i4.

It suffices to show:
edgeP (b, b′) is an in-edge number for b′

edgeP (b, b + 1) is an in-edge number for (b + 1)
b′.0 and (b + 1).0 are in pcs(P)
Γ ⊢P L2 : Γ@dfndAtP (pc, e2)

By the context-sensitive syntactic restrictions on programs, b′ must be a block number in the
program, and b must not be the last block in the program. Therefore, by definition, b′.0 and
(b + 1).0 are in pcs(P). Also by definition, there are edges in the program (b, b′) and (b, b + 1): so
the in-edge numbers are likewise well-defined.

It remains to show that Γ ⊢P L2 : Γ@dfndAtP (pc, e2). There are two cases: ¬(i3 rop i4) and
L1{x1 := true}, or i3 rop i4 and L1{x2 := true}.

Suppose ¬(i3 rop i4).

By Lemma 2, it suffices to show that Γ ⊢P true : Γ(x1) in L2 at b.i.

38

Since L1(x3) = i3 and L1(x4) = i4, by the environment rule:
L1 ⊢P x3 is i3 at b.i
L1 ⊢P x4 is i4 at b.i

By assumption, ¬(i3 rop i4), so by the comparison rule:
L1 ⊢P pf(¬(x3 rop x4))

at b.i

So by Lemma 1:
L2 ⊢P pf(¬(x3 rop x4))

at b.i

So by the true introduction rule:
Γ ⊢P true : pf(¬(x3 rop x4))

in L2 at b.i

By inversion of the typing derivation for the instruction:
Γ ⊢ pf(¬(x3 rop x4))

≤ Γ(x1)

Γ ⊢ pf(x3 rop x4)
≤ Γ(x2)

So by subsumption:
Γ ⊢P true : Γ(x1) in L2 at b.i

The argument is similar when i3 rop i4.

Goto rule: In this case P (b.i) = goto b′, L2 = L1, pc = b′.0, and e2 = edgeP (b, b′). By the syntactic
restrictions b′ must be a valid block number, so b′.0 ∈ pcs(P). Since (b, b′) is an edge, edgeP (b, b′)
is a valid in-edge number for b′. Since i > 0, dfndAtP (b.i, e1) = inscopeP (b.i). By the definitions,
b.i immediately dominates (b, b′).0, which immediately dominates (b, b′).1. Since b.i is a goto, there
are no definitions at b.i or (b, b′).0. Hence inscopeP ((b, b′).1) = inscopeP (b.i). By the definitions
inscopeP ((b, b′).1) = dfndAtP (b′.0, (b, b′)) = dfndAtP (pc, e2), in other words dfndAtP (b.i, e1) =
dfndAtP (pc, e2). Thus Γ ⊢P L2 : Γ@dfndAtP (pc, e2) follows from (2).

A.4 Progress

Lemma 10 (Env Typing) If Γ ⊢P L : Γ@dfndAtP (pc, n) and x ∈ dfndAtP (pc, n), then L(x) is well
defined.

Proof: By inversion of the environment typing rules.

Lemma 11 (Progress) If ⊢ S then S is not stuck.

Proof: Assume that ⊢ S and S = (P, L, e, b.i).
Recall that by the definition of ⊢ S:

⊢ P vt(P) = Γ
Γ ⊢P L : Γ@dfndAtP (pc, n)
n is an in-edge number for b where pc = b.i
pc ∈ pcs(P)

And by the definition of ⊢ P :
P satisfies the SSA property
For each x ∈ vt(P), and each y ∈ fv(vt(P)), sdomP (defP (y), defP (x))
vt(P) ⊢ p for every p in P
vt(P) ⊢P ι for every instruction ι in P
vt(P) ⊢ c for every transfer c in P

39

The proof proceeds by case analysis on P (b.i).

p:

Let x1 := x2 = p[e] and (b′, b) be the e’th incoming edge to b (this is well defined by the type
rules).

By the use/def definition, the instruction is a use of x2 at (b′, b).1, so by the in-scope property
x2 ∈ dfndAtP (b.i, e) (since i = 0).

By the definition of ⊢ S above and by Lemma 10, note that x2 ∈ dom(L) and hence L(x2) are well
defined.

Therefore S 7→ (P, L{x1 := L(x2)}, e, b.(i + 1)).

x : τ := i:

In this case, S 7→ (P, L{x := i}, e, b.(i + 1)).

x1 : τ := x2:

In this case, since this instruction is a use of x2, by the in-scope property, x2 ∈ inscopeP (b.i).

So by definition, x2 ∈ dfndAtP (b.i, e), and so by Lemma 10 L(x2) is defined.

Therefore S 7→ (P, L{x1 := L(x2)}, e, b.(i + 1)).

x1 : τ := newarray(x2, x3):

It suffices to show that L(x2) = n for some integer n, and (in the case that n >= 0) that L(x3) = v3

for some value v3.

By definition, x2, x3 ∈ inscopeP (b.i), and so by definition, x2, x3 ∈ dfndAtP (b.i, e).

Therefore, by 10 L(x2) = v2 and L(x3) = v3 for some v2, v3. It suffices to show that v2 = n for
some integer n.

By assumption, Γ ⊢ Γ(x2) ≤ int, and Γ ⊢P L : Γ@dfndAtP (b.i, e), so by Canonical Forms (Lemma
4), L(x2) = v2 = n for some integer n.

x1 : τ := len(x2):

It suffices to show that L(x2) = 〈v0, . . . , vn−1〉.

By assumption, Γ ⊢ Γ(x2) ≤ array(τ2) and Γ ⊢P L : Γ@dfndAtP (b.i, e), so by Canonical Forms
(Lemma 4) L(x2) = 〈v0, . . . , vn−1〉 for some n.

x1 : τ := base(x2):

It suffices to show that L(x2) = v, v = 〈v′〉 for some v, v′.

By assumption, Γ ⊢ Γ(x2) ≤ array(τ2) and Γ ⊢P L : Γ@dfndAtP (b.i, e), so by Canonical Forms
(Lemma 4) L(x2) = 〈v0, . . . , vn−1〉 for some n.

x1 : τ := x2 bop x3:

It suffices to show that L(x2) = v2, L(x3) = i3, for some integer i3, and where either v2 = i2 or
v2 = v@i2 for some integer i2 and value v.

Recall that by assumption, Γ ⊢P L : Γ@dfndAtP (b.i, e), and by the inscope property, x2, x3 ∈
dfndAtP (b.i, e).

40

By assumption, Γ ⊢ Γ(x3) ≤ int so by Canonical Forms (Lemma 4) L(x3) = i3.

There are two cases to consider for x2, corresponding to the two possible last typing rules of the
derivation.

1. Suppose the last rule was the integer operation rule. Then by assumption, Γ ⊢ Γ(x2) ≤ int,
and so by Canonical Forms (Lemma 4) L(x2) = i2.

2. Suppose the last rule was the managed pointer operation rule. Then by assumption, Γ ⊢
Γ(x2) ≤ ptr?〈τ2〉, and so by canonical forms, L(x2) = v@i2.

x1 : τ := ld(x2) [x3]:

It suffices to show that L(x2) = 〈v0, . . . , vn〉@i and that 0 ≤ i ≤ n.

By assumption, Γ ⊢ Γ(x2) ≤ ptr?〈τ2〉 and by the in-scope property, x2 ∈ dfndAtP (b.i, e), so by
Canonical Forms (Lemma 4), L(x2) = 〈v0, . . . , vn〉@i.

Also by assumption, Γ ⊢ Γ(x3) ≤ pf(x@0≤x2∧x2<x@len(x)), so again by the in-scope property Canon-
ical Forms applies. Therefore, L ⊢P (x@0≤x2 ∧ x2<x@len(x)) at defP (x3), for some x.

Let D be the derivation of L ⊢P (x@0≤x2 ∧ x2<x@len(x)) at defP (x3). Note that this derivation
has a unique last rule.

By inversion of D :
L ⊢P x@0≤x2 at defP (x3)

The derivation of L ⊢P x@0≤x2 at defP (x3) must end in one of the two comparison rules (in-
teger or pointer). Note though that by Canonical Forms (above) L(x2) = 〈v0, . . . , vn〉@i, and
therefore the only derivation possible for the second premise of the comparison rules is that
L ⊢P x2 is 〈v0, . . . , vn〉@i2 at defP (x3).

Therefore, by inversion, we have:
L ⊢P x@0 is 〈v0, . . . , vn〉@i1 at defP (x3)
L ⊢P x2 is 〈v0, . . . , vn〉@i2 at defP (x3)
i1 ≤ i2

By inverting the first sub-derivation, we have:
L ⊢P x is 〈v0, . . . , vn〉 at defP (x3)
L ⊢P i1 is 0 at defP (x3)

Therefore, i1 = 0. By inverting the second sub-derivation, we have L(x2) = 〈v0, . . . , vn〉@i2, and
by the Canonical Forms L(x2) = 〈v0, . . . , vn〉@i, so by transitivity, we have i = i2. Finally, recall
that i1 ≤ i2, so we have 0 ≤ i.

It remains to be shown that i ≤ n.

By inversion of D :
L ⊢P x2<x@len(x) at defP (x3)

By the same argument as above, this derivation must be a use of the pointer comparison rule.

41

Therefore, by inversion:
L ⊢P x2 is 〈v0, . . . , vn〉@i2 at defP (x3)
L ⊢P x@len(x) is 〈v0, . . . , vn〉@i4 at defP (x3)
i2 < i4

By the same argument as above, i2 = i. It therefore suffices to show that i4 = n + 1.

By inversion of L ⊢P x@len(x) is 〈v0, . . . , vn〉@i4 at defP (x3):
L ⊢P x is 〈v0, . . . , vn〉 at defP (x3)
L ⊢P len(x) is i4 at defP (x3)

But note that, L(x) = 〈v0, . . . , vn〉, so L ⊢P len(x) is n + 1 at defP (x3), and hence i4 = n + 1.

x1 : τ := pffact(x2):

The reduction rule for this instruction always applies.

x1 : τ := pfand(x2, x3):

The reduction rule for this instruction always applies.

[x1 : τ1, x2 : τ2] if x3 rop x4 goto b′:

It suffices to show that:
L1(x3) = i3 for some integer i3
L1(x4) = i4 for some integer i4
edgeP (b, b + 1) is well-defined
edgeP (b, b′) is well-defined

Note that x3, x4 ∈ inscopeP (b.i), so x3, x4 ∈ dfndAtP (b.i, e).

By assumption:
Γ ⊢ Γ(x3) ≤ int

Γ ⊢ Γ(x4) ≤ int

So by Canonical Forms (Lemma 4)
L1(x3) = i3 for some integer i3
L1(x4) = i4 for some integer i4

Finally, by definition, (b, b′) and (b, b+1) are in edges(P) and hence edgeP (b, b + 1) and edgeP (b, b′)
are well-defined.

goto b′:

It suffices to show that edgeP (b, b′) is well-defined, which follows immediately since by definition,
(b, b′) is in edges(P).

A.5 Type Safety

Proof: [of Type Safety] The proof is by induction, Lemma 8, Preservation, and Progress.

42

