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Abstract

This paper presents a step forward in the use of partial evaluation for interpreting and compiling
programs, as well as for automatically generating a compiler from executable denotational definitions
of programming languages.

We determine the static and dynamic semantics of the programming language, reduce the expres-
sions representing the static semantics, and generate object code by instantiating the expressions
representing the dynamic semantics. By processing the static semantics of the language, compiling
programs is performed. By processing the semantics of the partial evaluator, generating compilers
is achieved. The correctness of the compiler is guaranteed by the correctness of both the executable
specification and our partial evaluator.

The results reported in this paper improve on previous work in the domain of compiler generation
[14, 28, 37], and solves several open problems in partial evaluation [15]. In essence:

e Our compilation goes beyond a mere syntar-to-semantics mapping since the static semantics
gets processed at compile time by partial evaluation. It is really a syntaz-to-dynamic-semantics
mapping.

e Because our partial evaluator is self-applicable, a compiler is actually generated.

e Our partial evaluator handles higher-order functions, and non-flat binding time domains. Our
source programs are enriched with an open-ended set of algebraic operators.

Our experiment parallels the one reported in [22]: starting with the same denotational semantics
of an Algol subset, we obtain the same good results, but entirely automatically and using the
original semantics only, instead of writing several others, which requires proving their congruence.
We are able to compile strongly typed, Algol-like programs and to process their static semantics at
compile-time (scope resolution, storage calculation, and type checking), as well as to generate the
corresponding compiler completely automatically.

Object code is reasonably efficient. It has been found to be about twenty times faster than the
interpreted source program. The compiler is well-structured and efficient. The static semantics is
still processed at compile time. Compiling using this compiler is twelve times faster than compiling
by partially evaluating the interpreter with respect to the source program.
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1 Introduction

Existing semantics-directed compiler generators essentially amount to a syntax-to-semantics mapping
[14, 32, 28]. They map the representation of programs as abstract syntax trees into the representation
of their meaning as lambda-expressions. Lacking a static/dynamic distinction in the semantic specifica-
tion, it is not clear how to simplify the resulting lambda-expressions [24]. For this reasons compile-time
actions are likely to be performed at runtime, thereby impeding the performances of the whole system.

In this perspective, using a self-applicable partial evaluator is an obvious choice. As a static se-
mantics processor, a partial evaluator ensures the static semantics of a program to be processed at
compile-time. Viewing the valuation functions as a definitional interpreter [24, 30, 35, 37], compiling
a program is achieved by specializing its interpreter. Further, generating a compiler is achieved by
specializing the partial evaluator with respect to the interpreter [2]. Of course, the partial evaluator
needs to be powerful enough.

We have solved a series of open problems in partial evaluation [15]. This makes it possible to
match the requirements that have been found necessary in semantics-directed compiler generation [28].
Our partial evaluator tackles higher-order Scheme programs [29] with an open-ended set of algebraic
operators and non-flat binding time domains. Also, it can specialize itself and thus generate compilers
automatically.

This paper illustrates this step forward with the compilation of Algol-like programs and the auto-
matic derivation of a stand-alone compiler from an executable specification of this Algol-like language.
Compiling includes reducing the expressions representing the static semantics and therefore goes beyond
a mere syntax-semantics mapping. The compiler is stand-alone and therefore optimizes the compila-
tion process. The whole static semantics of Algol is processed at compile time: syntax analysis, scope
resolution, storage calculation, and type checking. Running the object code is twenty times faster than
interpreting the source code. Compiling an Algol program using the stand-alone compiler is twelve
times faster than compiling by specializing the definitional interpreter of Algol with respect to the
Algol program.

- We compile Algol into low level Scheme, with explicit store and properly typed operators. Figure
1 displays the source and object code of the factorial program. The Algol source program is written
with a while loop and an accumulator. There is no explicit type declaration. The target program is a
specialized version of the interpreter with respect to the source program. It is written in Scheme because
the interpreter is written in Scheme. It computes the factorial of 5 because the source program computes
the factorial of 5. The main procedure is passed a store and updates it during the computation. The

block (letrec ([evProgrami (lambda (s)
{ n int 5; r int 1;} (loop2 (intUpdate 1 5 (intUpdate 0 1 8))))]
{ vhilen >0 [loop2 (lambda (s)
do (if (gtInt (fetchInt 1 s) 0)
r :=n *r; (let ([s1 (intUpdate O (mullnt (fetchInt 1 s) (fetchInt O s)) s)])
n:=n-1; (loop2 (intUpdate 1 (subInt (fetchInt 1 s1) 1) s1)))
od; } (initCcont s)))])
end evProgram1)

Figure 1: Source and object code of the factorial program.




while loop has been mapped to a tail-recursive procedure iterating on the store. All the continuations
of the original continuation semantics except the initial one have disappeared: the target program is
in direct style. All the locations have been computed at compile-time (variables r and n at locations
0 and 1, respectively). There is no type-checking at run-time: all the injection tags have disappeared
and all the operators are properly typed. Essentially we obtain a front-end compiler, mapping syntax
to a lambda-expression representing the dynamic semantics. Representing this lambda-expression with
assembly language instructions is out of scope here, but is naturally achieved by a realistic program
transformation such as the one reported in [20].

Our experiment parallels the one reported in [22], where a compiler is derived by hand, which
necessitates (1) to introduce three semantics and proving their congruence to make it possible to
process the static semantics and (2) to introduce combinators and using the compiling algorithm of [36]
to generate object code. In contrast, self-applicable partial evaluation offers a unified framework for
semantics-directed compiler generation. The static and dynamic semantics are determined by analyzing
the binding times [17] of the executable specification. Compile time and run time combinators are
automatically extracted, based on the binding time information [10]. The compiling algorithm is
provided by the partial evaluator. We can experiment with the executable specification before turning
it into a compiler. We can experiment with compiling by specializing the same executable specification.
We generate a compiler by self-application with respect to the same executable specification.

Three reasons motivate this subset of Algol. It is small enough for its complete description to fit in
a paper, and yet significant enough to highlight the effectiveness of our treatment. It is precisely the
same as in [22] and thus our treatment can be compared directly with the one in [22]. It is very simple
to extend, e.g., with procedures, and we have actually done it. The semantics gets more voluminous
and the results are still as good.

This paper is organized as follows. Section 2 presents an overview of the source language specifica-
tion. Section 3 describes how this specification is analyzed, and how its static and dynamic semantics
are processed. Section 4 addresses the actual compiling process. Section 5 describes the generation of
a stand-alone compiler. Section 6 compares our results with related works. Finally our approach is put
into perspective.

2 Semantic Definition: An Executable Specification

Denotational semantics definitions can be seen as executable specifications by transliterating their
valuation functions into functional programs that act as definitional interpreters [15, 30, 37]. This makes
it convenient to experiment with these specifications in a purely functional framework before turning
them into compilers. Our specification language is a side-effect free dialect of Scheme. In particular,
because we consider continuation semantics, the transliterations are evaluation-order independent [30]
and thus are not tailored to run in Scheme only.

However, Scheme is not enough: its capacity for data abstraction is limited by its ground data types
(pairs, vectors, etc.) unless we use Church-like data abstractions, which is sound but often cumbersome.
We want to specify our data types algebraically. For example, figure 2 displays the abstract syntax of
our Algol subset and its concrete definition.

Figure 3 displays two algebraic specifications defining the locations and the store. This makes it
possible to target their actual representations and to limit our transformations to what these operators




(Program) ::= (Block) (defineType Program block)
(Block) ::=block { (DeclList) } { (StmtList) } end
(DeclList) := empty | (Declaration) ; (DeclList) (defineType Declaration ident expr)
(Declaration) ::= (Ident) (Expr) .
(StmtList) = empty | (Stmt) ; (StmtList) (dg::e'vrg:jq(’;eal value) (Bool value)
e
(Stmt) = (Bl?ck) | (Ident) := (E)Epr) (Identifier ident)
| while (Expr) do (StmtList) od (AritBinop op expri expr2)
| if (Expr) then (Stmt) else (Stmt) (RelBinop op exprl expr2)
(Expr) := (Constant) | (Ident) (RelUnop op expr))
| (Expr) (AritBinop) {(Expr) .
| (Expr) (RelBinop) (Expr) (defineType Stz.ttuent )
. (Block declList stmtList)
(Constant) ::= int (Int) | real (Real) | bool (Bool) (Vhi .
o ile expr stmtList)
(AntB}nop) == /] (If expr stmtl stmt2)
(RelBinop) =< |>|= (Assign ident expr))
Figure 2: The abstract syntax and its concrete declaration

do (not interfering with how they are implemented). In all the figures, domains and type constructors
are overlined, underlined or accented with a tilde depending on their static properties, as explained in
section 3.

Figure 4 presents the definition of the semantic domains and the types of the valuation functions.
The valuation functions are displayed in figures 5 and 8.

In essence, our source specification is the denotational semantics of [22]. It is runnable, modular,
and expressed in a side-effect free subset of Scheme extended with abstract data types.

3 Determining Static and Dynamic Semantics

Traditionally, to derive a compiler from a semantic definition, one first has to determine its static
semantics. Then, the soundness of the static semantics is proved manually. This process is generally
agreed to be very difficult and error prone [18, 28].

In contrast, our approach consists in automatically analyzing the semantic definition to determine
its static properties. This process is achieved by binding time analysis [5, 8, 17, 26]. Essentially, this
phase splits the definition of a language into two parts: a safe approximation of the static semantics
(the usual compile time actions) and the dynamic semantics. By analogy with the traditional approach,
binding time analysis can be seen as a theorem prover: for each syntactic construct, a set of inference
rules is defined to infer the static properties; the starting axioms state that the program is static
(available at compile time) and the store is dynamic (not available until run time).

Before giving an example of the kind of reasoning performed by the binding time analysis, let us

Domain m € Mappings Domain s € Store
Operations Operations
initMappings : Mappings initStore : Store -
addMapping  : Ident x Location X Mappings — Mappings intUpdate : IntLoc X Int X Store — Store
fetchLoc : Ident x Mappings — Location realUpdate  : RealLoc X Real X Store — Store
BoolUpdate : BoolLoc X Bool X Store — Store
fetchInt : IntLoc X Store — Int
fetchReal : RealLoc X Store = Real
fetchBool : BoolLoc X Store — Bool

Figure 3: Location and Store algebras.




evProgram : Program X Store — Store
evBlock : Block X Env X Ccont X Store = Store

v € Evalue = Int ¥ Real ¥ Bool makeDecl : DeclList X Env X Store — Env X Store
| € Location = IntLoc + RealLoc + BoolLoc evStmtList : StmtList X Env X Ccont X Store = Store
r € Environment = FreeLoc x Mappings evStmt : Stmt X Env X Ccont X Store = Store
k € Ccont = Store = Store evExpr : Expr X Env X Econt X Store = Store
e € Econt = Evalue = Store locldent : Ident x Env — Location

For simplicity, we have left out lifting domains, etc. that account for errors.

Figure 4: Semantic domains.

point out that the domains and the type constructors, displayed in figure 4, are overlined or underlined
depending on how they account for static or dynamic computations, respectively. These constructors
are accented with a tilde when they represent partially static data, i.e., structured data made of
both static and dynamic parts (or recursively of partially static data). For simplicity, we have not
annotated continuations, though they are a good example of partially static, higher-order values. The
annotations represent the deductions achieved by the binding time analysis; they will support the
following reasoning.

Property 1 Every valuation function is static in its program argument.

Initially the program is static. Because the ser:antic definition respects the denotational assumption
[32], i.e., it is compositional, the meaning of a sentence is solely defined in terms of its proper subparts.
The original motivation for the denotational assumption was to enable structural induction over abstract
syntax trees. Presently, compositionality implies staticness: no abstract syntax tree is ever built.
Furthermore, assuming that the arguments of the valuation functions are used consistently, i.e., a
variable is uniquely bound to elements of the same domain, no dynamic argument interfere with a
program argument. Therefore, the staticness of a program argument is guaranteed in every valuation
function. O

Property 1 is at the basis of compiling by partial evaluation. It has numerous consequences.
Property 2 Storage calculation and location types are completely static.

All the identifiers of the program are static since they are part of the program (by property 1). Because
storage calculation only depends on identifiers, this operation is completely static (cf. function locIndent
in figure 4). m

Property 3 In the representation of an ezpressible value, the injection tag is static.

Let us consider the domain Evalue, defined as a disjoint sum of basic values. As such, this sum is
used to perform type checking. Operationally, this domain is implemented as a cartesian product. Its
elements hold the injection tag and the actual value. The injection tag is static because it is induced
by the program text (static by property 1) or the location type (static by property 2). O




Once static properties of language definitions have been automatically determined, we can perform
static and dynamic processing. In addition to the present application, static properties are useful both
from a language design and from an implementation point of view: they give precise and safe bases to
reason about this language.

4 Processing Static and Dynamic Semantics

The static and dynamic properties of a language definition determine what to process at compile time
and at run time. This section focuses on how this is done. We describe specializing the executable
specification with respect to a program, based on the binding time information.

4.1 Compiling binding time information

According to the binding time information, this phase determines which partial evaluation action
(that is, program transformation) is to be performed during specialization for each expression of the
definition. This greatly simplifies and improves the specialization phase, as introduced and discussed in
[10]. Indeed, the binding time information of a given expression does not have to be analyzed repeatedly
to determine which partial evaluation action to perform. This has been done statically in the present
phase.

The main partial evaluation actions denote the following treatments. Standard evaluation — Ev: the
expression only manipulates available data. Reproduction of the expression verbatim — Id: no data is
available. Reduction — Red: the outermost syntactic construct can be reduced. Rebuilding — Reb: the
outermost syntactic construct has to be rebuilt, but sub-components have to be partially evaluated.

The actions are defined for each syntactic construct of the meta-language. Those described above
capture the usual program transformations for partial evaluation of first order functional programs as
described in [7, 33]. This set of actions is extended in [9] to handle higher order functions and structured
data.

4.2 Extracting static and dynamic combinators

Actions can be exploited further for extracting two sets of combinators representing the purely static and
purely dynamic semantics of a language definition. An Ev-combinator is extracted from an expression
solely annotated with Ev, and an Id-combinator is extracted from an expression solely annotated with
Id [10].

These combinators are actually capturing an instruction set to compile — the Ev-combinators —
and an instruction set to execute a program — the Id-combinators. In the present specification, an
Ev-combinator will perform compile time storage calculation and some Id-combinators will perform run
time storage management.

4.3 Specialization

At this stage, we have reduced specialization to executing the partial evaluation actions. The specializer
is implemented as a simple processor for these actions. This processor is perfectly suited for self-
application.




4.4 Summary

Separating the static and dynamic semantics of partial evaluation has been found to be crucial for
generating compilers by self-application, not only for generating a compiler and but also for running
a generated compiler [18]. With respect to simplicity, orthogonality, and efficiency, our treatment
as given in this section largely improves earlier results. For example, extracting combinators usually
reduces the size of source programs sharply, yielding smaller programs that are faster to specialize and,
correspondingly, smaller and faster compilers [10]. This observation has been confirmed again in this
Algol experiment.

5 Generating a Compiler

Generating a compiler is achieved by specializing the partially evaluator with respect to the executable
specification. This is realized straightforwardly because our partial evaluator is self-applicable. What
we specialize is the processor for partial evaluation actions presented in section 4.3. We specialize it
with respect to the preprocessed executable specification, encoded with partial evaluation actions.

In essence, all the static semantics of the specializer is processed at compiler generation time,
yielding a residual program dedicated to processing the static semantics of the language and emitting
object code representing its dynamic semantics — in other terms: a stand-alone compiler. Beyond its
theoretical interest and its conceptual elegance, self-application pays off: compiling using the compiler
is twelve times faster than compiling by specializing the executable specification.

6 Comparison with related work

6.1 Semantics-directed compiler generation

(35] asserts it firmly: denotational semantics specifications may have the format of a program, but
programs they are not — they are mathematical objects. Showing less certainty, [23] derived a compiler
from an interpreter using Peter Landin’s Applicative Expressions. On the observation that A-expressions
represent mathematical functions, the first semantics-directed compiler generator was built [24]. From
then on, a number of systems were developed [14].

From the point of view of partial evaluation, which in essence processes static semantics [32],
existing semantics-directed compiler generators suffer from the same problem of not processing the
static semantics for fear of looping [24]. The call-by-need strategy of Paulson’s compiler generator
[27] often delays compile-time computations until runtime, which clearly is unsatisfactory. The toolbox
approach illustrated by SPS [37] stresses the problem of mere composition of tools: they make compilers
compilers without actual speedups. What is expected from a compiler is that it processes the static
semantics of a language. Yet as sound as it is, PSI [25] does not unfold static fixpoints and has no
partially static structures. In contrast, the micro and macro semantics of MESS [21] characterize the
static and the dynamic semantics of a language and ensure the static semantics to be processed at
compile time, even though distinguishing between micro and macro semantics relies on the initiative
of the user. More recently, [38] introduces a log I' recording static information about earlier static
reductions. The corresponding change in the semantics (type information located in the log instead of
the runtime store) can be propagated directly using partial evaluation.




Semantics-directed compiler generation systems share the same goal, and ultimately use the same
methods. The trends, as analyzed in Uwe Pleban’s POPL’87 tutorial [28], are to use semantic algebras
instead of A-terms; to improve the software engineering of systems; to manage a tradeoff between gen-
erality and efficiency; and to choose existing functional languages as specification languages. Since this
tutorial, the open problem of including specifications of flow analysis and optimization transformations
has been solved [26].

On the other hand, the very format of denotational semantics may be criticized [31]. This is not our
point here. We want to illustrate progress in partial evaluation with the classical example of compiling
and compiler generation.

Higher-order programming constructs match the expressive power needed for in semantics-directed
compiler generation (intensional reason). Partial evaluation captures semantics-directed compiler gen-
eration from interpretive specifications (extensional reason). Therefore it makes sense to use the new
generation of partial evaluators to solve problems like the turning of non-trivial interpreters into realistic
compilers.

6.2 Partial evaluation

A thorough overview of partial evaluation can be found in [2, 13]. On the side of functional program-
ming, the activity has been concentrated on strenghtening self-applicable specializers, with the notable
exception of [1], where a powerful specializer is reported. It treats arbitrary numeric-heavy scientific
programs, in contrast with our carefully formulated specifications of programming languages [19]. This
partial evaluator is not self-applicable and is targeted for “data independent programs”, i.e., it stops
specializing at dynamic conditional expressions.

Building on top of strengthened self-applicable specializers [6, 7, 4], the barrier of higher-orderness
has been teared down in 1989 [16, 3, 8]. Further progress in tackling higher-order constructs and non-
flat binding time domains on a unified basis [8] and enhancing the actual treatment of the static and
dynamic semantics [10] has led us to the results reported here.

7 Conclusion and Issues

The general mechanism of compilation and compiler generation — reducing expressions representing the
static semantics and emitting residual expressions representing the dynamic semantics — was captured
extensionally in the definition of a partial evaluator: partially evaluating an interpreter with respect
to a program amounts to compiling this program. Previous experiences in semantics-directed compiler
generation established the need for modularity, for algebras, for handling higher-order constructs, etc.
in source specifications.

This paper illustrates the intensional use of partial evaluation where source programs are specified
modularly and algebraically with higher-order constructs and non-flat binding time domains. The
example is an executable specification of a block-structured, strongly typed language. We automatically
derive a compiler where all the static semantics — scope resolution, storage calculation, type checking,
etc. — is reduced at compile-time. The compiler inherits the structure of the partial evaluator, and the
object programs inherit the structure of the interpreter. Our whole systems run in Scheme: partial
evaluators, interpreters, compilers, and object programs (though they are parameterized by the semantic
algebras of the specializer and of the interpreter).




This work was possible due to a series of breakthroughs starting with separating the static and
dynamic semantics of specialization and including: binding time analysis for higher-order constructs
and non-flat binding time domains [8] and combinator extraction [10].

Present works address tackling pattern matching [12] and Prolog [11]. Future works will include
developing a better programming environment; better extensional criteria for the quality of a source
specification and their implementation; parameterizing post-optimizers; and the automatic generation
of congruence relations and correctness proofs, both from the binding time analysis and from the actual
specialization.
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