
Vertical Composition of Reversible Atomic Objects

Timos Antonopoulos Paul Gazzillo Eric Koskinen Zhong Shao

Yale University

Abstract

The classic Herlihy/Wing notion of concurrent objects has had
great success in theories and implementations (e.g. java.util.
concurrent), providing programmers with the simple abstraction
of an atomic object. Since then, software transactions have ap-
peared, also touting the the goal of providing an atomicity abstrac-
tion. However, despite some vertical composition strategies within
particular STM implementations, a fundamental concept of vertical
composition has remained elusive.

In this paper, we distill the essence of vertical composition, with
the notion of reversible atomic objects. By restricting occurrences
of transactions to the method boundary and requiring that every
object method construct its own inverse, we obtain a cleaner se-
mantics that supports vertical composition. In fact, we do not even
require that one layer use the same implementation (e.g. pessimism
versus optimism) as another, nor that the object be transactional at
all. Formally, we begin with a semantics in which abstract-level op-
erations are composed from constituent base operations, account-
ing for conflict and inverses. These transactional implementations
are put in the context of an environment that includes a novel a
deadlock-mitigating contention manager that ensures progress. The
contention manager may, at any point, apply inverses on behalf of
a currently executing transaction. Our work has the first proof that
programs composed with implementations in this framework are a
contextual refinement of the same program instead composed with
atomic specifications and that layers can be composed vertically.

Our compositional treatment in terms of a single shared log
gives rise to a novel transactional variant of the universal construc-
tion. We have implemented a library of reversible atomic objects.
We demonstrate that it is easy and intuitive to build complex con-
current implementations (e.g. a multi-threaded layered filesystem)
by vertical composition of atomic components.

1. Introduction

The landmark Linearizability paper of Herlihy and Wing [22] es-
tablished the idea of concurrent objects that can be viewed as
atomic from the perspective of threads accessing them. This has
been enormously successful, leading to theories [4, 15, 43, 54, 55]
and implementations (e.g. java.util.Concurrent and the C++
Boost libraries) that exploit this atomicity abstraction and allow one
to build complex systems from sensible building blocks.

In recent years, there has been a push toward supporting transac-
tions: a programming language abstraction intended, at first, to al-
low programmers to build atomic sections of ad-hoc memory oper-
ations, with conflict management handled by an underlying runtime
system. Later it was realized [19, 29] that these transactions need
not consist of memory operations but can, instead, consist of base
ADT operations. These works showed that the ADT operations can
themselves be concurrent (linearizable/atomic) objects and, if they
are, there are performance gains to be had [19].

In the literature thus far, vertical composition has come in the
form of so-called nested transactions [39, 40, 42], whose success
has been modest owing to performance and semantic difficulties.
These systems permit what we believe to be a limited form of ver-
tical composition: all transaction layers are handled by the same
monolithic transactional implementation [3, 23]. But is it reason-
able to require this? In this paper we argue not: the fundamental
idea of transactions should be distilled to a single concept that is
independent of implementation. Consider a transactional filesys-
tem, for example, where POSIX-level commands (e.g. rename) are
implemented transactionally over OS internal data-structures, and
low-level disk drivers provide a transactional interface. One would
not expect that application-level transaction support should be re-
quired to make the same implementation decisions as the low-level
block device (that interacts with hardware) just because they both
use transactions.

Scope. In this paper we re-focus on the Herlihy/Wing idea of
vertically composable concurrent objects in the new context where
objects may be implemented with transactions. Specifically we (1)
break free of a monolithic implementation of nesting, (2) restrict
the form of nesting so that transactions are aligned with object
method boundaries, and (3) require that every operation construct
its own inverse. This choice leads to a cleaner semantics (thanks to
#2 and #3) and, at the same time, more freedom in the pessimistic-
vs-optimistic transactional implementation (thanks to #1).

In this new scope, a reversible atomic object implements a high-
level abstract operation assembled with a transaction that applies
various operations on a collection of base reversible atomic objects.
These base objects can themselves be implemented with transac-
tions or else, as we show, be a simple wrapper around an existing
concurrent atomic object. The programmer must also specify each
method’s commutativity and, in the body of the method, construct
the method’s inverse before it commits/returns. Inverse construc-
tion can be easily automated using the base objects’ inverses pro-
vided that, at least, the lowest level reversible atomic objects have
explicit inverses. Nonetheless, a programmer may choose to pro-
vide one manually, especially in cases where the inverse can be
achieved with fewer base operations.

That reversible atomic objects are based on commutativity and
inverses is, on the one hand, unsurprising since so many recent
works on transactions involved commutativity and inverses [19,
20, 28–30, 33, 39, 40, 42]. What is perhaps surprising is that these
can be used as the fundamental base ingredients, bridging together
the new transactional world with the existing legacy of concurrent
atomic objects. The main benefit of working with reversible atomic
objects is that they provide formal guarantees including contextual
refinement and vertical composition, as described below.

This paper. We develop a methodology, theory, and imple-
mentation of vertically composable reversible atomic objects.
We find that, with the above approach, we can achieve a con-
cept of implementation-independent and vertically composable

atomic transactional objects, thus lifting the Herlihy/Wing notion
of atomic objects [22]. Specifically, we make the following steps
forward:

• A specification of vertically composable reversible atomic ob-
jects and well-formedness criteria thereof. (Section 4)

• A vertically composable semantics of concurrent threads in
which abstract-level operations are composed from constituent
base operations, accounting for conflict and inverses. (Sec-
tion 5)

• A proof that programs composed with implementations in this
framework are a termination-sensitive contextual refinement of
the same program instead composed with atomic specifications,
as well as a proof of vertical composition. (Section 6)

• A demonstration of how progress is achieved through a novel
treatment of contention management as an environment that
may, at any point, invert an object’s uncommitted operations.
(Section 7)

• A novel transactional variant of the universal construction, aris-
ing from our compositional treatment in terms of a single shared
log. (Section 8)

• An implementation of a collection of publicly available1 re-
versible atomic objects. (Section 8)

The model we devise is expressive enough to cover a wide vari-
ety of known implementations, including all of those that are de-
scribed by the recent Push/Pull model [28]. Our formal framework
abstracts over thread implementation, leaving the question of opac-
ity [16] up to the threads: they may choose to view or ignore log
entries that contain effects of uncommitted transactions. Our im-
plementation ensures that they don’t.

Our implementation demonstrates that it is easy and intuitive to
build complex concurrent implementations (e.g. a multi-threaded
filesystem) by vertical composition of atomic components. Our
filesystem is constructed from several reversible atomic objects
(RAOs): the filesystem RAO itself with standard file operations,
a moveable hashtable RAO built with transactions, a directory tree
RAO for the directory hierarchy, and a hashtable RAO that wraps a
base atomic hashtable object.

Limitations. We believe that reversible atomic objects provides
an avenue toward composing transactions in a way that is both se-
mantically clean and efficient. Our work is currently limited a cou-
ple ways. We assume threads cannot access objects across layers
without using a wrapper method. In practice, wrapper methods are
straightforward to create or even automate. They do not permit ar-
bitrary atomic sections, i.e., not aligned with methods; we argue
this permits a cleaner semantics. We assume recursive calls are not
allowed.

2. Programming with Reversible Atomic Objects

We now give an overview of reversible atomic objects by way of an
example. Let us say that we want to implement a fast, concurrent
file system for user applications. File system operations touch mul-
tiple data structures that must be kept in sync with each for integrity,
a challenge for concurrent programs. At the top level, we will im-
plement a FileSystem reversible atomic object that will provide
standard POSIX-like file operations such as moveFile (a.k.a. re-
name), mkdir, rm, etc. The FileSystem object can be seen on the
top of Figure 1. This FileSystem object needs to be implemented
using fast base objects so we will exploit our vertical composi-
tion, and use a reversible atomic tree (for directory lookups) and
reversible atomic hashtable (to store the payload file data for each

1 Our implementation is available as part of the anonymous supplemental
material.

FileSystem, MoveableHashtable, and Hashtable

1 class FileSystem[P, V] : RAO {
2 MoveableHashTable[P, V] mht
3 DirectoryTree[P] tree
4 ...
5 moveFile(p1, p2) = opt atomic{{{{ /∗ conflict: p1,p2,

lca(p1, p2) ∗/
6 l0: v = mht.get(p1) ↦ inv0
7 if (v is empty) {
8 cmt return (inv0, false)
9 else {

10 l1: mht.move(p1, p2) ↦ inv1
11 l2: tree.moveNode(p1, p2) ↦ inv2
12 cmt return (opt atomic{{{{inv2; inv1; inv0}}}}, true)

13 }
14 }}}}
15 }

1 class MoveableHashtable[K, V] : RAO {
2 Hastable[K, V] ht
3 ...
4 get(k) = pess atomic{{{{ /∗ conflict: k ∗/
5 l0: v := ht.get(k) ↦ skip
6 cmt return (skip, v)
7 }}}}
8

9 /∗ conflict: k1, k2, size ∗/
10 move(k1, k2) = pess atomic{{{{
11 l0: v := ht.get(k1) ↦ inv1
12 l1: vold := ht.put(k2, v) ↦ inv2
13 l2: ht.remove(k1) ↦ inv3
14 cmt return (pess atomic{{{{inv3; inv2; inv1}}}}, �)
15 }}}}
16 }

1 class Hashtable[K, V] : RAO {
2 ConcurrentHashtable[K, V] cht
3

4 get(k) { /∗ conflict: k ∗/
5 x = cht.get(k)
6 cmt return (skip, x)
7 }
8 put(k, v) { /∗ conflict: k, sz ∗/
9 vold = cht.get(k)

10 cht.put(k, v)
11 cmt return (cht.put(k, vold), vold)
12 }
13 remove(k) { /∗ conflict: k, sz ∗/
14 vold := cht.get(k)
15 cht.remove(k)
16 cmt return (cht.put(k, vold), vold)
17 }
18 }

Figure 1. Implementation of a filesystem, using a Tree and a
MoveableHashTable.

full path). These are the internal data-structures mht and tree. No-
tice that each object may have its own transactional implementation
style (i.e. pessimistic-vs-optimistic), denoted as pess atomic{{{{ }}}},
opt atomic{{{{ }}}}, etc. We will return to this later in this section.

A reversible atomic object O implements an abstract atomic
operation f , built from base operations, that it assumes are already
atomic. Such an object constructs an abstract state transformer
O.f(x⃗) ∶ Σ → Σ out of one or more constituent (base) state
transformers O1.a,O2.b,O3.c ∶ Σ → Σ, without knowledge of the
detailed implementation of O1,O2,O3. One can view this as:

σ σ1 σ2 σ′

O.f(x⃗)

O.f−1(x⃗)

O1.a O2.b O3.c

O3.c
−1O2.b

−1
O1.a

−1

Let us take, for example, the moveFile method in Figure 1.
The code in light gray could be inserted by a compiler. While the
remaining user code of this simple example looks straight-forward
(we hope!) and the features of this method look familiar, there are
many behind-the-scenes details to be appreciated. We will discuss
each of these in turn:

1. Alignment of transaction with method boundary.
2. Specification of conflict.
3. Invocations of constituent operations.
4. Assembling the inverse.
5. The commit-and-return statement.

Aligning transactions with the method boundary. The first
thing to note is that reversible atomic objects restrict the way
in which transactions can be used: they must be correlated with
object methods. The body of moveFile is an atomic section, de-
noted opt atomic{{{{...}}}}. Moreover, this atomic block ends with
a cmt return statement that both commits the transaction and re-
turns the abstract operation’s response (in this case it is void) back
to the caller. We will discuss the cmt return statement more later.

Conflict specification. All reversible atomic object methods must
provide a conflict specification. Considering the current state of O
and the current active operations on the object, O must provide
a conflict (commutativity) specification ⋈O that specifies when an
invocation of O.f(x⃗) commutes with all other active operations.

In the implementation of moveFile, we use the notion of com-
mutativity conflict points (see [13]) that provide a concise spec-
ification that can be checked efficiently at runtime. This conflict
specification is beyond the scope of this paper but, intuitively, the
moveFile conflict specification (Line 5) means that an invocation
of moveFile does not commute with a concurrent invocation that
accesses the contents of file p1, accesses the contents of file p2, or,
indeed, accesses the directory subtree rooted at the least common
ancestor of the two paths. The commutativity specification here is
independent of how the transactional runtime conflict management
system operates (pessimistically, optimistically, etc.) at any given
level.

One possible transactional implementation at this layer would
be optimistic. As we do in our implementation (Section 8), the
implementation of this layer could furnish each thread/transaction
with its own local copy of the object that they can immediately mu-
tate. Later, at commit time, the transactional system must somehow
communicate these operations with other threads and, in the event
of conflict on p1, p2, or lca(p1, p2), invert some or all of these local
operations. A more conservative approach is pessimism, whereby

the transactional system pauses the transaction until there are no
conflicting concurrent operations that access p1, p2, lca(p1, p2).

It is important to remember: the above conflict is at the FileSys-
tem layer and has nothing to do (yet) with conflict at the level of
the constituent objects: MoveableHashtable and DirectoryTree.

Invoking constituent operations. The implementation of a re-
versible atomic object method is free to perform methods on con-
stituent reversible atomic objects: O1.a,O2.b, etc. In the running
example, the body of moveFile manipulates methods of the con-
stituent objects mht and tree. moveFile moves the file payload to
the new path and then performs a tree manipulation to restructure
the directory hierarchy. These constituent operations may involve
return values as in the call to mht.get on Line 6 and moveFile may
take different actions depending on these return values. Looping is
also permitted, provided that the loop eventually terminates.

With each operation, there are two things to note. First, the
location of each operation is marked (perhaps by a compiler) with
a label: l0, l1, l2, etc. At each such location immediately preceding
the operation, the compiler also captures the continuation [26].
Later, this will be used in case the operation is inverted. Second,
each constituent operation, since it is also a reversible object, will
return an inverse operation. This inverse inv0, inv1, etc. is saved
for two reasons. The inverse operation may be invoked by the
environment contention manager (discussed below). Furthermore,
it may be used in the construction of the overall inverse operation
for moveFile, as seen on Line 12 and discussed next.

Assembling the inverse. Before completing the operation O.f(x⃗)
(via a commit-and-return), a reversible atomic object must prepare

the inverse operation O.f−1(y⃗). Inverses can be generated auto-
matically (perhaps by a compiler) by assembling the inverses of
the constituents, as in this case for the inverse of moveFile on
Line 12. In other cases the programmer might provide a smarter
inverse. Note that the inverses themselves, while atomic, do not
themselves have inverses.

This inverse operation may be used at the next level up. In a
transaction at that higher level, O.f(x⃗) is viewed as an atomic
(and reversible) constituent object and, therefore, may potentially
be inverted as discussed in Section 2.1. There is a subtlety here
about how inverses interact with commutativity: how do we know

whether O.f−1(y⃗) is still a valid inverse when there may be other

concurrent operations? Crucially, this inverse O.f−1(y⃗) is a short-
lived inverse and can only be used during the lifespan of the above
transaction. Consequently, since the above transaction ensures that
O.f(x⃗) is free of conflict with any other concurrent operation, it is
easy to show that one can commute O.f(x⃗) forward in time, until

it is adjacent to O.f−1(y⃗) and that these two then annihilate each
other.

The commit-and-return statement cmt return. The method
(and transaction) completes with a single statement cmt return.
At this point, the transaction is attempting to commit. The way
in which the commit happens is up to the transactional system at
this level. A pessimistic implementation pess atomic{{{{ }}}} will
already have ensured that the current transaction has the right-of-
way (i.e. there are no concurrent operations that pertain to p1, p2,,
or lca(p1, p2)) so this commit event can happen immediately. An
optimistic implementation, on the other hand, would need to per-
form some conflict detection pertaining to p1, p2, and lca(p1, p2).
The first argument to cmt return is the inverse for moveFile. Once
cmt return completes, the operation is considered complete, and
control is returned to the calling object in the next level up.

Client threads. Threads, denoted P = (C1 ∣∣ ⋯ ∣∣ Cn) are the
clients of reversible atomic objects and are the top-most layer. As
with the lower layers, the clients call reversible atomic object meth-

1 class Creator : Thread {
2 run(FileSystem[K,V] fs) {
3 for i := 1..100
4 fs.addFile(”file” + i, i ∗ i);
5 }
6 }
7 class Mover : Thread {
8 run(FileSystem[K,V] fs) {
9 while (num moved < 50) {

10 for i := 1..100 step 2 {
11 moved = fs.moveFile(”file” + i, ”moved file” + i);
12 if (moved)
13 num moved++;
14 }
15 }
16 }
17 }
18 class Printer : Thread {
19 run(FileSystem[K,V] fs) {
20 num files = 0;
21 while (num files < 100)
22 print fs.numFiles();
23 }
24 }

Figure 2. Example clients using a reversible atomic FileSystem
object. Creator makes files named file1 to file100, Mover
moves with even-numbered names to moved file#, and Printer
prints the number of files forever.

ods, treating them as atomic. The client cannot use transactions. It
need not be reversible nor atomic, nor does it have to collect in-
verses of constituent objects.

Figure 2 is an example of threads all operating on the same
FileSystem object. The Creator thread generates files named file1
to file100. The Mover thread moves files with an even number in
their name to moved file## until its has moved 50 files. Lastly,
Printer reports the number of files until there are 100 files.

For this example, we assume a nondeterministic scheduler that
can schedule the threads in any order. For expressivity, no particular
ordering for these threads (i.e. waiting) is required. Instead, the
Mover takes advantage of the moveFile’s interface that tells the
thread whether the move happened or not. The file operations need
to be atomic, otherwise inconsistencies between the underlying
hashtable and tree objects may arise. For instance, the number of
files seen by Printer may decrease, even though files are never
removed in this example, because the move method creates new
file before removing the old one. With atomicity, the number of
files printed is monotonically increasing.

2.1 Across this layer: Conflict, Progress, Refinement.

Before we look at the implementation of vertically composed
MoveableHashtable and DirectoryTree, let us discuss contention
that may arise from other threads invoking operations on the
FileSystem. Transactional memory systems address contention
with a so-called contention manager that implements some policy,
deciding whom should be aborted [48, 49, 51]. If the contention
manager is able to also know when deadlocks occur (e.g. [27]),
then it can implement a policy that ensures overall progress.

Reversible atomic objects take a novel formal view of the con-
tention manager as an environment that (a) controls the scheduling
of transactions [36] (b) can detect deadlocked transactions, and (c)
can partially abort operations by invoking the operations’ inverses
on behalf of the transaction. Combining these elements, we show a

simple such environment that is able to ensure that every transac-
tion eventually completes (Section 7).

For example, let us say that the following has occurred:

1. Transaction τ begins
2. Transaction τ ′ begins
3. Transaction τ ′ completed mht.move(7,8)
4. Transaction τ completed mht.move(5,6)
5. Now, τ wants to invoke mht.get(6)

and τ ′ wants to invoke mht.get(8).

There is a deadlock here because each transaction would like to
execute an operation that conflicts with one already completed by
the other transaction. To resolve this deadlock, the environment can
clear a path for the oldest transaction τ to complete by executing the
inverse of τ ′ operation mht.move(7,8) and then preventing τ ′ from
being scheduled until τ commits. When a later conflict occurs with
some other transaction τ ′′, the environment may have to abort and
unschedule τ (if τ ′′ is older than τ) or else abort and unschedule
τ ′′.

Because the environment is able to invert operations on behalf
of transactions, those transactions must be aware that this may
happen. Later (and in Section 8) we will discuss how this can be
done via a novel transactional version of the universal construction.
When a thread finds that the environment has inverted one or more
of its operations (always in reverse order) back to some location
li, the thread must resume execution at li via a previously captured
continuation.

Contextual Refinement. The main formal result of this paper
(Section 6) is that reversible atomic objects provide a formal con-
textual refinement guarantee. If objects in the system follow the
above criteria, abiding conflict specifications and establishing in-
verses then, for every (multi-threaded) program P , execution of
P composed with the objects’ implementations is a contextual re-
finement of P composed with the objects’ corresponding atomic
specification. Formally,

[[CO]]interleaved ⊑ [[SO]]interleaved

Our formalization is a compositional semantics in which abstract-
level operations are composed from constituent base operations.
Threads are executed in the context of an environment scheduler.
By quantifying over all possible schedulers, each individual trace
of the system is deterministic.

Threads and environment communicate by appending events to
a single shared event log. This is the mechanism by which the en-
vironment can perform contention management. Transactions pub-
lish their operations in the log as well as indicate when they cannot
make progress. Meanwhile, the environment can be proactive by
appending inverses to the log and/or scheduling threads as it deems
appropriate. The shared log also gives rise to a novel transactional
version of the universal construction, which we discuss later.

2.2 Below this layer: Vertical Composition.

The reversible atomic MoveableHashtable. FileSystem is built
from two constituent reversible atomic objects, one of which is
the MoveableHashtable, defined in the middle of Figure 1. This
is a new type of hashtable that provides an operation to move
data between keys, using a single Hashtable RAO as a constituent
object. The move operation, defined on line 10 has three constituent
operations: ht.get the value from k1, ht.put it in k2, and ht.remove
k1. The MoveableHashtable’s move operation must, as always,
construct its own inverse.

At this layer, notice that we have decided to execute transactions
pessimistically with pess atomic{{{{ }}}}. This demonstrates the ex-
pressivity of reversible atomic objects, that one can use different
transactional implementations at different vertical layers.

Basic building blocks. Part of the power of reversible atomic ob-
jects can be seen in the base case, where one can place existing im-
plementations of concurrent objects, say a ConcurrentHashtable
(cht), in a reversible wrapper. This wrapper simply lifts the cht op-
erations, specifies conflict and constructs inverses. These inverses
“get the ball rolling,” by allowing higher level operations to be able
to automatically construct (at least default) inverses.

An example reversible atomic Hashtable is given on the bottom
of Figure 1. It is important to realize that, although this particular
implementation of MoveableHashtable uses the same key space as
Hashtable, they are conceptually different. Therefore, we denote
Hashtable keys/values with different fonts: k : K, v : V.

Take the put method, for example. The conflict specification
pertains to key k and the fact that the overall size of the cht sz
may change. The Hashtable put method first calls the concurrent
hashtable cht.get method, saving the return value vold. This is
needed in order to be able to construct an inverse. Next, cht.put
is called, atomically updating the ConcurrentHashtable. Finally,
this wrapper returns the newly constructed inverse cht.put(k,vold)
and returning the old value to the caller.

The most important aspect to note is that this Hashtable
reversible object wrapper does not execute transactions. These
constituent cht operations will never be inverted or be the rea-
son for conflict. Both inversion and conflict is covered by the
wrapper Hashtable operation. For example, the reversible atomic
Hashtable.put operation has conflict specification k,sz. This
is a sound specification because it covers both cht.get(k) and
cht.put(k,v). In summary, even though a concurrent atomic ob-
ject building block is not transactional, the conflict specification in
the wrapper reversible atomic Hashtable allows it to be used by a
parent object such as MoveableHashtable.

In Section 6.1 we show formally that objects can be vertically
composed. Theorem 6.2 says that, for any two objects O and Q
with implementations/specifications CO/SO and CQ/SQ, that

[[CO ⊕CQ]] ⊑ [[SO ⊕ SQ]]

The FileSystem here is a limited example, but it demonstrates
the key elements of reversible atomic objects. Below and in Sec-
tion 8 we will discuss our implementation that includes the com-
plete FileSystem example.

In comparison to nested transactions, reversible atomic objects
are, on the one hand more restrictive—because atomic sections
are aligned with object methods—yet, from this restriction we
can obtain a cleaner compositional semantics. Moreover, this clear
semantics allows one to plug in different kinds of transactional
implementations. That is, if one decides to adopt the methodology
of reversible atomic objects, then it comes with all of the formal
guarantees discussed in the following sections of the paper.

2.3 Universal Construction and a Library of RAOs

The log-based semantics of the formalization of RAOs lead us to a
novel universal construction for transactional concurrent objects. In
1991, Herlihy described a technique for a linearizable concurrent
object out of any given sequential implementation and a single
shared linearizable queue (i.e. log) [18]. As a reminder to the
reader, in the original universal construction, threads communicate
via a shared log and replicate objects locally. Each thread competes
to append the next method invocation to the log. The thread-local
copies are updated by applying the invocations in the shared log.
This construction does not directly apply to a transactional setting.

As noted above, the compositional semantics that we present in-
volves threads communicating their constituent operations through

a single shared log. This gives rise to a transactional universal con-
struction in which we can build a concurrent object that supports
transactions given only a sequential implementation of the object.
The construction works as follows. First, to support transactions,
the log contains more information. Log entries have a transaction
identifier, and threads may also append begin and commit mes-
sages to the log. Most importantly, inverses may be appended by
a contention manager, signaling an abort. While appending a new
operation to the log, a thread that receives inverses aborts with-
out appending the new operation, retrying the inverted portion of
its transaction. The try op abstraction captures this behavior and
is the core of the universal construction. Using try op, reversible
atomic object implementations can express a range of transactional
policies from pessimistic to optimistic. The more eagerly a method
appends its operations to the log, the more pessimistic it is. In the
other extreme, an RAO may optimistically perform all operations
on a thread-local copy, attempting to append the all operations at
once to the log.

The transactional universal construction directly translates to an
implementation of a runtime system for reversible atomic objects.
We have implemented such a system as well as library of reversible
atomic objects, including a complete version of FileSystem ob-
ject. This library, along a discussion of implementation strategies,
is discussed in Section 8. The transactional universal construction
demonstrates that reversible atomic objects are not an arbitrary for-
malism, but reveal that reversibility is fundamental to transactional
objects and vertical composition.

3. Preliminaries

In this section we establish some formal preliminaries. We will
described the shared log, how threads/objects/environments work
with it, as well as inverses and conflict.

3.1 States, Operations, Event Logs

We will work with a state space Σ. An operation is given by a, b,
etc. and are of type Σ→ Σ. We let Ops be a set of base operations.

Global Log and Threads. We will work with a globally shared
system log ℓ ∶ listEv, which records threads’ events from a domain
of events Ev. The domain of logs is L and we let T be a domain of
unique thread identifiers, with τ to denote a single thread ID. We
will define events later but, for now, one possible event is (τ, a)
where a is a base operation. We use the notation ℓ[i] to mean the ith
element of the log ℓ. We will use ⋅ to denote the append operation
on lists/sequences such as event logs. We write ℓ ⋅ (τ, a) to mean
ℓ ⋅ {(τ, a)}.

We abstract away thread-local internal details, treating a thread
configuration as (st, c, r) which is a thread-local state st ∈ St, a
continuation code c ∈ Cd, and a function r ∈ R ∶ L → (St ×Cd)→
(St×Cd×L). We denote a such transition as (st, c) r ℓ

Ð→ (st′, c′, ℓ′)
which, from a start configuration (st, c) and current system log
ℓ (described next), generates a sequence of events ℓ and a next
configuration (st′, c′).
Observations. An observation obs(ℓ⋅{(τ, a)}) is the return value
of the last operation a in log ℓ ⋅ {(τ, a)} and we will assume
that it is uniquely determined. For example, a reasonable seman-
tics for a hashtable would have behavior such that ∀ℓ. obs(ℓ ⋅
(τ, ht.put(3,42)) ⋅(τ, ht.get(3))) = 42. We use obsi(ℓ) as short-
hand for the observation of ℓ[i].
3.2 Objects

We have a collection of objects O1, ...,On, and each object has
access to an isolated region of that space. An object method is given
by O.f(x⃗) where O is the name of the object, f is the name of the

method, and x⃗ are the arguments, which is a sequence over some
domain D.

Given an object O and one of its methods O.f(x⃗), we define
specO.f(x⃗) ∶D

∗ → Ops. Such a specification function returns the

exact sequence of operations to be performed for the given argu-
ments to the method. As a simple example, if the method O.f(x)
performs the base operation sequence a, b if x > 0 and c otherwise,
then the function specO.f(x⃗)(x) would simply return the corre-

sponding sequence according to the value of x. Furthermore, let
specLogO.f(x) ∶ L ×D∗ → L, which is a mapping that given a

log ℓ and a sequence of arguments x⃗ for the method O.f(x⃗), tra-
verses the log ℓ and consults the function specO.f(x⃗) and produces

the correct sequence of events in the log, that corresponds with the
actions of invoking the method, executing the correct sequence of
base operations and then appending the event of committing and
returning.

Given an object O, we define its specification SO ∶ L→ L to be
a mapping that given a log ℓ returns an extension of it ℓ′ = ℓ ⋅ ℓ′′,
where ℓ′′ comprises the necessary events to be completed until the
CmtRet for the object method. Formally, suppose ℓ1, ℓ2 are logs
such that ℓ1 = ℓ ⋅ (τ, Ivk O.f(x⃗)) and ℓ2 = specLogO.f(x⃗)(ℓ1).
Let ℓ2,p be any prefix of ℓ2 and ℓs,2 the remaining suffix (such that
ℓ2 = ℓ2,p ⋅ ℓ2,s). Then SO(ℓ1 ⋅ ℓ2,p) is equal to ℓ2,s ⋅ (τ,▽).

The implementation of an object O, denoted by CO ∶ L → L,
also returns an extension on the given log, but in contrast to SO ,
this extension does not contain all necessary events, but contains
only the next event, together with a yield event. Formally, for any
log ℓ, if SO(ℓ) = ℓ′ ⋅ (τ,▽), then CO(ℓ) = e ⋅ (τ,▽), where e is
the first event in the log ℓ′, in the case where ℓ′ is not the empty
sequence, and CO(ℓ) = (τ,▽) otherwise.

3.3 Parameterized base operations

We require a prefix-closed predicate on logs allowed(ℓ) that in-
dicates whether ∀i ∈ [0, len(ℓ) − 1]. obsi(ℓ) is valid according
to the sequential specifications of the objects. For convenience we
will also write ℓ allows n which simply means allowed(ℓ ⋅ {n}).
Taking a stack S, for example, and ℓ = {S.push(5) ⋅ S.pop()} we
would say that allowed(ℓ) provided that obs(ℓ) = 5.

We define a precongruence over operation sequences ℓ1 ≼obs ℓ2
by requiring that all allowed extensions of the log ℓ1, are also
allowed extensions to the log ℓ2. We use a coinductive definition
so that the precongruence can be defined up to all infinite suffixes.
Formally, for all ℓ1, ℓ2,

allowed(ℓ1)⇒ allowed(ℓ2) ∀a. (ℓ1 ⋅ a) ≼obs (ℓ2 ⋅ a)
ℓ1 ≼obs ℓ2

gfp

Informally, the above greatest fixpoint says that there is no se-
quence of observations we can make of ℓ2, that we can’t also make
of ℓ1. This is more general than simply requiring that the set of
states reached from the first sequence be included in the second.
Unobservable state differences are also permitted.

We also require an abstract version of the allowed predicate, de-

noted by âllowed, that indicates whether the observation of each

CmtRet event is valid. More generally, âllowed can be parameter-
ized by a set of objects O1, . . . ,On in which case the predicate
indicates whether the observation of each CmtRet event, restricted
to the methods in the set of objects, is valid.

Using the predicate âllowed, we define the notion of abstract
observational precongruence.

âllowed(ℓ1)⇒ âllowed(ℓ2) ∀ℓ∃ℓ′.ℓ1 ⋅ ℓ ≼ôbs ℓ2 ⋅ ℓ′
ℓ1 ≼ôbs ℓ2

gfp

Ev ∶∶= (τ, Ivk O.f(x⃗)) Invoke an abstract method
(τ, a) Implementation base operation

(τ, a−1) Cancel a base operation
(τ,CmtRet O.f(y⃗)) Commit and establish inverse
(τ,Term) Thread termination
(τ,▽) Yield to another thread

Figure 3. Events of the system.

3.4 Inverses and conflict

We assume that for every operation a, there is an inverse operation

a−1, which is to be exactly such that ∀σ, a−1(a(σ)) = σ. Unfold-

ing the structure of a, we say that O.f−1(y⃗) is the function such

that ∀σ, O.f−1(y⃗)(O.f(x⃗)(σ)) = σ. Notice that constructing

an inverse operation f−1 may require arguments other than those
passed to f . Many existing implementations already have a require-
ment of inverses [19, 40, 42].

We define an operation conflict relation with respect to an oper-
ation sequence and observations thereof as follows:

ℓa
ℓ

◁ ℓb ≡ ℓ ⋅ ℓa ⋅ ℓb ≼obs ℓ ⋅ ℓb ⋅ ℓa

Unfolding the definition of ≼obs, one can see that conflict (commu-
tativity) means that ℓa and ℓb make the same observations in either
order and the sequences ℓ ⋅ ℓa ⋅ ℓb and ℓ ⋅ ℓb ⋅ ℓa are observationally
equivalent prefixes.

4. Vertical Composition through Abstraction

In this section, we describe how an object implementation CO (or
specification SO) constructs an overall operation O.f(x⃗) out of a
series of base operations. We then give well-formedness criteria for
these objects.

4.1 Events

In addition to the base event (τ, a), there are other events that

can be emitted by a thread transition
r ℓ
Ð→. The events are given

in Figure 3. As mentioned above, event (τ, a) is an instance of
thread τ performing operation a. The first event in Figure 3 is
(τ, Ivk O.fi(x⃗)) which models thread τ invoking an operation
O.fi(x⃗). If O.fi(x⃗) is already an atomic event, then the next
method generated by τ is a response event (τ,CmtRet O.fi(x⃗))
whose observations give the operation’s return value. Otherwise,
O.fi(x⃗) may be implemented with a transaction. We will describe
this in the next section.

The event Term signals thread termination and event ▽ signals
that the thread is yielding to the environment (described later) Note
that there is no explicit abort event. We model abort by a series of
cancellation steps.

The events described above permit us to model vertical compo-
sition, where an abstract operation O.f(x⃗), with atomic semantics
S.f(x⃗) is implemented via a series of transaction events involving
base operations a, b, In this section we formalize this composi-
tion, by exploring how an object implementation may construct ab-
stract operations (mutations) and observations (return values) from
the mutations and observations of the base observations.

4.2 Abstract operations

The events in Figure 3 allow us to model vertical composition.
Specifically, an object operation O.fi(x⃗) may be implemented
with transactions, but only in a particular way (unlike nested trans-
actions). That is, the implementation of O.fi(x⃗) consists of a trans-

action immediately within the body of the method:

fi(x⃗) = pess atomic{{{{ ... cmt return k;}}}}
Here, k is a depiction of the observation of the overall abstract
operation O.fi(x⃗).

A thread calling this operation is modeled as the following
following event sequence:

(τ, Ivk O.fi(x⃗)), (τ, a), (τ, b), (τ, c), (τ,CmtRet O.fi(x⃗))
The invocation of O.fi(x⃗) also signals the beginning of a transac-
tion (unlike nested transactions, there is no separate “begin” event).

We call such an event sequence (or log segment), an abstract
operation sequence. In other words, an abstract operation se-
quence ℓ is inductively defined as a sequence (τ, Ivk O.f(x⃗)) ⋅
ℓ′ ⋅ (τ,CmtRet O.f(x⃗)), where ℓ′ comprises a sequence of base
operations and abstract operation sequences. Furthermore, in such
a case we call this abstract operation sequence, an O.f(x⃗) ab-
stract operation sequence. We define the predicate aosτ(ℓ,O.f)
that holds for a segment ℓ when it is an O.f(x⃗) abstract operation
sequence over the thread τ .

4.3 Well-formedness

We now give some well-formedness constraints on objects.
We first have a basic well-formedness constraint, requiring the

object to yield sensible event histories. We formalize this with an
inductive predicate over logs wfirτ,O.f . This predicate, intuitively,
means that inverses are used only to cancel previously issued oper-
ations from the same invocation.

A second condition, as discussed in Section 2, is that an ob-
ject method O.f(x⃗) must construct a corresponding abstract in-

verse O.f−1(y⃗), that is returned to the caller in the CmtRet event.
The inverse may be used at that higher level by the parent or, more
likely, the contention management scheme. As we discuss in Sec-
tion 8, this can be done incrementally during the transaction or else
immediately before the transaction commits.

We will further require that threads only generate (τ, a) events
provided that a commutes with every operation b from another
uncommitted transaction. To this end, we have a few definitions:

• committedOps(ℓ) ⊆ Ops: the set of base operations (τ, a) for
which there is a subsequent (τ,CmtRet) event in ℓ.

• activeThreads(ℓ) ⊆ T : the set of every thread identifier τ
such that there is a (τ, Ivk) event in ℓ, but no correlated
(τ,CmtRet) event.

• activeOpsτ(ℓ) ⊆ Ops: the sequence of operations correspond-
ing to τ (such that there is a (τ, Ivk) event in ℓ, but no correlated
(τ,CmtRet) event.) in the order they were generated

• activeOps¬τ(ℓ) ⊆ Ops: the sequence of operations corre-
sponding to all τ ′ ∈ T ∖ {τ} (such that there is a (τ ′, Ivk)
event in ℓ, but no correlated (τ ′,CmtRet) event.) in the order
they were generated

We can now give the commutativity well-formedness condition:

wfcτ(ℓ) aosτ(ℓO.f ,O.f) ℓO.f

ℓ

◁ activeOps¬τ(ℓ)
wfcτ(ℓ ⋅ ℓO.f)

wfcτ(ℓ) (τ, a)
ℓ

◁ activeOps¬τ(ℓ)
wfcτ(ℓ ⋅ (τ, a))

wfcτ(ℓ) e ∈ {CmtRet, Ivk,Term, a−1}
wfcτ(ℓ ⋅ {(τ, e)})

Semantics

E ℓ T = (ℓ′, τ)

ℓ,�, (T, tm)
E
Ð→ ℓ ⋅ ℓ′, τ, (T, tm)

ENV

τ ∈ T tm τ = (st, c, r) st, c
r ℓ
Ð→ st′, c′, ℓ′ ⋅ e e ∈ {▽,Term}

ℓ, τ, (T, tm)
τ
Ð→ ℓ ⋅ ℓ′ ⋅ (τ, e),�, (T, tm[τ ↦ (st′, c′, r)])

THR

Figure 4. The rules for Reversible Atomic Objects.

Intuitively, the first rule above means that every time thread τ gen-
erates a (τ, a) event, it commutes with all uncommitted operations
of other transactions. All other events are well-formed.

Overall, we say that an object is well-formed if it satisfies both
wfirτ and wfcτ for all τ .

5. Shared Log Semantics

We now describe a compositional game semantics that combines
threads (given as a composition of CO/SO agents) with environ-
ments. We define a machine that is a game between a group of
threads and an environment E from domain E, communicating via
shared log ℓ. Threads invoke object operations (τ, Ivk O.f(x⃗))).
The implementation of these operations, provided by CO or SO

generates events for base operations a, b, ... and then a response is
generated. Thread execution may yield and relies on environment
E for scheduling. A similar use of a shared log for communication
appears elsewhere [10, 28].

Definition 5.1 (RAO Game). An RAO Game G = (V,↝) is a game
between a set of threads/transactions and an environment. Game
vertices V ∶ L × T × (P(T) × TM) include the shared log ℓ, the
current transaction’s identifier τ , the set of threads in hand T ⊆ T ,
a mapping tm ∶ T → (St ×C ×R) and an environment oracle E .

A partitioning on the vertices is induced, separating the vertices
VE = {(ℓ, τ,) ∣ τ ∉ T} where it is the environment’s turn and the
vertices VT = {(ℓ, τ,) ∣ τ ∈ T} where it is the turn of one of the
threads in hand. VT can be further partitioned.

Edges. The edges ↝ have two different types
τ
Ð→ and

E
Ð→, given

in Figure 4. The ENV rule occurs when the current player τ is not
in hand T . We denote such a thread with the symbol �. The envi-
ronment takes a step, leaving the current thread (T, tm) untouched
and yielding some new log events ℓ′ and schedules the next thread
τ ′ ∈ T .

The environment E ∶ L → P(A) → (L × T × Ev) is taken
from some domain E. In the simplest form, the environment can
be thought of as a scheduler. We assume that the environment is
deterministic, shifting the nondeterminism into the choice of E
from domain E.

The THR rule occurs when the current player τ is in T . Here, the
thread’s configuration (st, c, r) is loaded and a transition is taken
under the current log ℓ, emitting new events e⃗v ⋅ ▽. These events
are used to construct log ℓ′, the current thread is set to � and the
environment is consulted. Finally, all the accumulated events are
enqueued and the tm is updated.

Merging Thread Components. The compositionality comes from
the fact that it is easy to merge two thread groups T1 and T2. The
merge ⊕ is defined as:

(T1, tm1)⊕ (T2, tm2) ≡ (T1 ∪ T2, λτ.{ tm1 τ if τ ∈ T1

tm2 τ otherwise
)

Object Components. Objects contain the implementation of op-
erations and the implementation is executed on behalf of the calling

thread. We define composition between a thread component and an
object component’s implementation CO as follows:

(T, tm)⊕CO ≡ (T,λτ.let tm τ = (st, c, r) in (st, c, r ∪ rO))
where rO contains the implementation of CO which may consult
the log ℓ in generating events. While CO ∶ L→ L, rO has the same
type as r which carries (St,Cd) → (St,Cd). However, rO is the
identity over this transformation.

We also have the specification component SO of an object
O, and define composition between a thread component and the
specification component SO as follows:

(T, tm)⊕ SO ≡ (T,λτ.let tm τ = (st, c, r) in (st, c, r ∪ rS))
Here, rS consults ℓ and, when τ has generated a (τ, Ivk O.f(x⃗))
event, rS generates a single (atomic) event (τ, S.f(x⃗)). From
the above composition rules, one can construct more elaborate
compositions between groups of threads and objects. Note that for
objects and specifications, the operator ⊕ is not commutative.

6. Contextual Refinement & Vertical

Composition

In this section we give our main theoretical results. We show that
programs composed with implementations in this framework are a
contextual refinement of the same program instead composed with
atomic specifications and that layers can be composed vertically.
We begin by defining traces and the whole program machine.

A trace of a game is an infinite alternation between a group of
threads and the environment, taking turns moving a token through
the game graph.

Definition 6.1 (Trace). For threads T , initial values tm0, and
environment E a trace Π of the game is an sequence

ℓ0, τ0, (T, tm0) τ0
Ð→ ℓ1,�, (T, tm1) E

Ð→

ℓ2, τ2, (T, tm1) τ2
Ð→ ℓ3,�, (T, tm3) E

Ð→ ...

Definition 6.2 (Whole Program). For thread components P =

(T1, tm1), ..., (Tn, tmn) and environment E , the whole program
trace denoted Π(P,E) is the trace between ℓ, τ, (T1, tm1) ⊕ ⋯ ⊕(Tn, tmn) and E .

For two components, a trace Π((T1, tm1) ⊕ (T2, tm2),E) can be
visualized as follows:

V
T1

V
E

V
T2

ENV

THR

THR

ENV

We lift observations to traces, say that an observation obsi(Π)
of a trace is simply the observation obsi(ℓi), which is the same for
all steps of the trace after which the ℓ has size at least i.

Whole-program semantics. For a program P = (T1, tm1)⊕⋯⊕(Tn, tmn) we can now define the whole-program semantics:

[[P]]E ≡ {Π(P,E) ∣ E ∈ E}
Definition 6.3. We say that a system EA with object implemen-
tation CO contextually refines a system EB with object specifica-
tion SO written [[CO]]EA

⊑ [[SO]]EB
, if for every EA ∈ EA and

every P , there exists EB ∈ EB such that Π(P ⊕ CO,EA) ≼ôbs
Π(P ⊕ SO,EB).

In our setting agents CO and SO are defined to invoke the same
base operations given the same arguments, with the difference that
the threads performing these operations are allowed to yield at
different locations. Therefore, the extra condition on going wrong
in other definitions of contextual refinement, is not fruitful in our
case.

We study two particular classes of environments, the interleaved
ones (denoted Einterleaved), and the atomic ones (denoted Eatomic).
An environment EI in the former class, can schedule any thread
irrespectively of which thread’s action was last performed, whereas
an atomic environment EA, will only switch threads if the last event
in the log is of the form (τ,▽), for some τ , and schedules the
thread τ otherwise.

Theorem 6.1. For any object O we have

[[CO]]interleaved ⊑ [[SO]]interleaved

Proof. The proof can be found in the Appendix.

6.1 Vertical composition of contextual refinement between
implementations and specifications

Theorem 6.2. Let O and Q be two objects. Then

[[CO ⊕CQ]]interleaved ⊑ [[SO ⊕ SQ]]interleaved.

Proof. The proof can be found in the Appendix.

Applications. Reversible atomic objects abstract away thread im-
plementation details, many of which are described by the Push/Pull
model [28]. Specifically, in the formalism described in Section 5,
there is a single global append-only shared log that is visible by
all threads. Therefore, there is no need for specific push or pull
rule to ferry events between logs. The essence of transactional ob-
jects is what must happen in order for a thread to commit and what
happens during/after a commit, both of which are captured by re-
versible atomic objects. Therefore, reversible atomic objects covers
all of the following implementations:

Implementation Style Instances

Optimistic STM TL2 [12], TinySTM [14], McRT [47]
Checkpoints Herlihy & Koskinen [26]
Closed nested LogTM [39]
Pessimistic STM Matveev and Shavit [37]
Pessimistic objects Boosting [19]
Irrevocable transactions [58]
Non-opaque Early release [21], dependent [45]
Nondetermin. choice HaskellSTM retry/orElse [17]
Hardware TM Intel [24]

7. Progress

In this section we describe a novel treatment of contention man-
agement as an environment that breaks deadlocks and ensures
progress. The key is to use the fact that inverses are always avail-
able, that there is a common shared log, and that a priority scheme
can be used that ensures the oldest transaction will commit.

Most of the information the environment needs in order to do
contention is already provided by the log. However, the environ-
ment also needs to know what operations deadlocked threads would
like to do. We thus augment the (τ,▽) event to instead be (τ,▽a)
where a is the operation that transaction τ would like to perform but
currently is unable to. The environment can then cross-reference

this with the uncommitted operations of other transactions, con-
sulting the commutativity specifications for conflict.

Our use of shared logs and consistent availability of inverses
means that the environment can serve as a contention manager,

logically, by appending an operation inverses (τ, a−1) on behalf of
thread τ that generated event (τ, a). The thread τ becomes aware
of this inverse by observing the log (we discuss this in more detail
in Section 8). We further require that a well-formed thread will take
note of these inverse operations and act appropriately.

As an example, consider the following log:

ℓ = (τ1, Ivk), (τ1, a), (τ1,▽), (τ2, Ivk), (τ2, b), (τ2,▽),(τ3, Ivk), (τ3, c), (τ3,▽), (τ1,▽e), (τ2,▽f), (τ3,▽g)
the last three ▽ events indicate that threads τ1, τ2, τ3 (resp.) are
stuck trying to perform operations e, f, g (resp.). Let us say that a
conflicts with f , b conflicts with g, and c conflicts with e. Then
there is a deadlock cycle and none of {τ1, τ2, τ3} are able to make
progress.

We will now describe a simple contention management [48, 49,
51] policy that ensures that all transactions eventually terminate.
We can instantiate a base environment that has a simple scheduler
protocol that is able to resolve deadlocks. First, let us say that
deadlocked(ℓ) is the set of deadlocked trheads and oldest(T, ℓ)
indicates that thread whose Ivk event is earliest in the log. Now, we
can define the environment as:

Ecm(ℓ, T):
let pause ℓ τ = rev mkSeq {(τ, a−1) ∣ ∀a ∈ activeOpsτ(ℓ)} in
λ ℓ T .
let T ′ = deadlocked(ℓ) in
if T ′ = ∅ then
choose(ℓ, T)

else
let τ = oldest(T ′,ℓ) in
(concat [] (map (pause ℓ) T ′

∖ τ),
τ)

This environment determines which transactions are deadlocked. If
there are none, then it defaults to making a nondeterministic de-
cision. Otherwise, it determines the oldest transaction, and inverts
the operations of all other deadlocked threads by generating a se-
quence of events on behalf of each such thread (in the reverse order
they they were generated). Finally, it marks τ as the next thread to
execute.

This is overly conservative: the above contention manager may
abort more transactions than necessary. Also, it may not need to
abort all active operations. It could do better by considering which
particular operations cause conflict for the oldest transaction. How-
ever, it is sufficient to yield provable progress guarantees and com-
parative analysis of conflict management strategies is beyond the
scope of this paper.

Returning to the above example, Ecm may return the sequence

of events (τ2, b−1), (τ3, c−1) and schedule τ1 to execute next.

8. Implementation

The semantics given in the previous sections give rise to a novel
transactional version of the universal construction, whereby se-
quential implementations of ADTs/data-structures can be used as
concurrent, transactional objects. This transactional universal con-
struction in turn, informs a real-world implementation of a runtime
for reversible atomic objects. In addition to this runtime, we have
implemented a library of reversible atomic objects. The construc-
tion and its implementation demonstrate that reversibility in our
formalism is a fundamental idea.

8.1 Transactional Universal Construction

The Herlihy universal construction uses the shared log to hold all
method invocations on the shared object [18]. All operations from
the log, applied in sequence, is the state of the shared object. To
mutate the object, threads compete to append the next operation
onto the log. The winner’s method invocation becomes the next log
entry, and the rest keep trying.

Transactions complicate this construction in several ways. First,
the log needs to communicate more information than method
events. The log includes begin and commit events, each being as-
sociated with a transaction identifier. To support reversibility, the
log also permits inverse operations. Second, the procedure for ap-
pending operations to the log accounts for transaction aborts and
conflict. A thread’s operations may be inverted underneath it, in
which case the thread can no longer append the method event with-
out first accounting for the inverse. The append interface needs to
reflect this communication.

The append procedure, try op, is the core of the transactional
universal construction. It takes a transaction identifier and a method
invocation from the thread (τ, a) and reports either a Success, a
Conflict, or an Abort response. Success means the invocation was
appended to the log. A Conflict means the invocation conflicts with
an entry already on the log. Abort means some operations of the
transaction have been inverted. Along with procedures to append
begin and commit events, try op provides the interface necessary
for threads to support transactions on reversible atomic objects.

Figure 5 defines the UniversalTransactionalObject class. It as-
sumes the Thread object contains a local copy of a sequential im-
plementation of the shared object in thread.local and a reference
to the last log entry seen by the thread in thread.lastSeen. Line 3
defines try op, which takes a transaction identifier and a method
invocation. After constructing a new entry (Line 5), it starts iter-
ating over the log from thread.lastSeen until it reaches the end
(Lines 10–17). This loop checks whether the transaction’s new op-
eration is permitted on the log. First, It checks whether the thread’s
new entry conflicts with one already on the log, according to RAO
specification tx.isConflict (Lines 12–14). Second, it checks for any
inversions of the current transaction by the contention manager
(Lines 15–16). Because inverses are applied in reverse order, the
loop continues looking for inverses until the end of the log, saving
the last one found (Lines 18). An Abort or Conflict causes the loop
to break early (Line 19).

When there is no conflict or abort, the thread is finally free to
compete for the end of the log on Line 20. If the thread loses, the
entire process begins again at Line 8. If the thread wins, however,
the next node returned by decideNext is the thread’s own new
entry, and the loop terminates. Lastly, the thread-local copy of the
sequential version of the object created by applying the operations
from the log, as long as they are from committed operations and
the current transaction (Lines 26–31).

With try op defined, it is straightforward to append begin and
commit events. The begin function (Line 34) creates a new trans-
action identifier for the thread (Line 35) and calls try op to append

the begin message (Line 36) 2. The call cannot result in a Conflict
or Abort, because there are no operations yet from the transaction.
Similarly, try commit (Line 39) uses try op to append a commit
event. In this case, however, a threads operation may have been
inverted before the thread appends the commit, so Line 40 saves
the response from try op. If response is Success, the commit is
recorded in a global summary for use in updating of the thread-
local copy of the object (Lines 27–28). The summary is provided
for convenience, and can always be recreated by traversing the log.

2 For simplicity, begin and commit events are also represented by the Invoc
type.

1 public class UniversalTransactionalObject {
2 private Transaction[] committed;
3 private Node logHead;
4 public Result try op(Transaction tx, Invoc invoc) {
5 Thread thread = tx.thread;
6 Node entry = new Node(th, tx, invoc);
7 Node current = thread.lastSeen;
8 do {
9 Result result = null;

10 while (current.next != null) {
11 current = current.next;
12 if (tx.isConflict(entry, current)) {
13 result = new Conflict();
14 break;
15 } else if (tx.isInverse(current))
16 abort = current;
17 }
18 if (abort != null) result = new Abort(abort)
19 if (result != null) break;
20 Node next = current.decideNext(entry);
21 if (next == entry) result = new Success();
22 } while (result == null);
23 thread.local = new SeqObject();
24 current = logHead;
25 while (current != null) {
26 if (committed[current.tx] or current.tx == tx)
27 thread.local.apply(current.invoc);
28 thread.lastSeen = current;
29 current = current.next;
30 }
31 return result;
32 }
33 public Transaction begin(Thread thread, ObjectID obj) {
34 Transaction tx = new Transaction(thread, obj);
35 try op(tx, begin);
36 return tx;
37 }
38 public Result try commit(Transaction tx) {
39 Result result = try op(tx, commit);
40 if (result is Success) {
41 committed[tx] = true;
42 }
43 return result;
44 }
45 }

Figure 5. The universal construction for transactional objects.

Remark: Related work. The original universal construction is
due to Herlihy [18]. Crain et al. [11] describe a universal construc-
tion for atomic read/write objects based on a specific STM setup of
m processors, n processes, and some assurance of progress. How-
ever, they don’t seem to unearth a general methodology for univer-
sal construction of transactional objects. There is also some simi-
larity between multi-core universal construction and replication in
distributed systems (e.g. CORFU [6], Tango [7], and state machine
replication [44]).

8.2 Implementing Reversible Atomic Objects

The transactional universal construction is a convenient way to
make a prototype implementation of reversible atomic objects.
Intuitively, the begin and commit events appear at the beginning
and end of the method, reflecting the alignment of transactions
with method boundaries. Then method calls to child RAOs can

Specification of MoveableHashtable.put

1 /∗ conflict: k, size ∗/
2 put(k, v) = atomic{{{{
3 l0: vold := ht.get(k) ↦ inv0
4 l1: ht.put(k, v) ↦ inv1
5 cmt return (pess atomic{{{{inv1; inv0}}}}, �)
6 }}}}

Pessimistic Implementation of MoveableHashtable.put

1 put(k, v) {
2 tx = begin(thread, mht)
3 l0: vold := ht.get(k)
4 Invoc invoc = ⟨ht.put(k, v)⟩;
5 inverses[invoc] = ⟨ht.put−1(k, vold)⟩;
6 l1: r1 = try op(tx, invoc)
7 if (r1 conflict or abort)
8 goto r1.location
9 ht.put(k, v)

10

11 l2: rcmt = try commit()
12 if (rcmt failed)
13 goto rcmt.location
14 return
15 }

Optimistic Implementation MoveableHashtable.put

1 put(k, v) {
2 tx = begin(thread, mht)
3 do {
4 local ht = ht.copy()
5 Invoc invoc = ⟨ht.put(k, v)⟩;
6 events.add(invoc)

7 inverses[tx,invoc] = ⟨ht.put−1(k, vold)⟩;
8 events.addAll(local ht.put(k, v))
9 events.add(commit)

10 if (try op all(events))
11 return
12 } while (true)
13 }

Figure 6. The specification of MoveableHashtable.put with pes-
simistic and optimistic implementations using the transactional uni-
versal construction.

be instrumented with try op to handle conflicts, aborts, and shared
communication with the log.

Figure 6 demonstrates how our implementation works. We first
show the specification of MoveableHashtable.put. It follows the
same convention as the rest of the FileSystem example from Fig-
ure 1. In an atomic section, the method first calls get and then put,
ending the transaction and returning the inverse and return value.

The second program listing in Figure 6 shows the pessimistic
implementation of MoveableHashtable.put. Like the specifica-
tion, each child object invocation has a label li, used to retry the
transaction. After beginning the transaction (Line 2) and getting the
old value of k (Line 3), Line 4 creates an Invoc object for the child
object method call. The brackets around the method ⟨ht.put(k, v)⟩

RAO Feature Strategy

Aborts and conflicts gotos, continuations
Method-local state snapshots, continuations
Representing inverses function pointers, closures
Conflict detection try op, spinlocks

Table 1. Features of reversible atomic objects and their implemen-
tation strategies.

distinguish the representation of the invocation from the method
call itself. In practice, an invocation can be represented with an
opcode and argument list. Similarly, Line 5 creates the inverse op-

eration from a manually implemented inverse method, ht.put−1.
This is stored in a global table, inverses, for use when aborting or
retrying the transaction.

With the invocation and its inverse, try op attempts to append
the operation to the log (Line 6). Lines 8–9 handle aborts and
conflicts by retrying part of the transaction from a given location li.
For a more complex example, the jump would also need to restore
any thread-local state, e.g., local variables.

The last program listing in Figure 6 is the optimistic imple-
mentation. The difference from pessimistic comes down to how ea-
gerly the method calls try op. The pessimistic implementation calls
try op as early as possible. The optimistic one, however, performs
all operations locally on a deep copy of the child object (Line 4),
collects operations in a local list (Lines 6–9), and attempts to ap-
pend them all at once at the end of the method (Lines 10–13).

In this example, the log is the sole tool for detecting conflicts,
but in general, the thread is not bound by any specific conflict han-
dling technique. One example conflict detection technique is ex-
plained by Dimitrov et al. [13]. Threads may use other conflict de-
tection mechanisms, such as locks, in addition to the log, as long as
the reversible atomic object specification is met. Threads may also
wait, watching the log for the conflicting operation to be committed
or inverted, or invert and retry part of its own transaction [17].

The semantics of reversible atomic objects and the transactional
universal construction permit a wide array of implementation de-
sign choices. Furthermore, our experience implementing them by
hand reveals the potential for automation, where a compiler or run-
time system takes the serial implementation of an RAO and gen-
erates a concurrent version using the transactional universal con-
struction.

Table 1 sketches the key features of reversible atomic objects
and potential implementation strategies. To handle retrying a trans-
action after an abort or a conflict, our implementation example
above used gotos. Continuations may be used for retry and to han-
dle the method-local state saving needed when retrying. Inverses
can be represented with closures, as seen in ScalaSTM [1]. As dis-
cussed above, conflict detection need not rely on the log and can
use other techniques, e.g., spinlocks.

8.3 Library of Reversible Atomic Objects

We have implemented a Java framework based on the transactional
universal construction and a library of reversible atomic objects
built on it. The framework provides a shared log implementation
and the ObjectDefinition superclass. ObjectDefinition provides
the try op methods to interact with the log along with abstract
methods for specifying RAOs as subclasses. The library includes
the complete RAOs from Figure 1 along with a multi-threaded
implementation of the example from Figure 2.

The framework provides everything needed to implement re-
versible atomic objects. The Log is a linked-list that uses compare-
and-swap to append a new entry. The ThreadID provides access to
local object copies, while ObjectID identifies shared objects in the
log, independent of any thread. The ObjectDefinition superclass is

the heart of the framework. All RAOs subclass it, implementing the
apply method for updating thread-local objects and the isConflict
method. RAOs method are implemented following the pattern in
Figure 6, albeit with a few simplifications. First, the RAO methods
restart transactions from the beginning when there is a conflict, al-
though ObjectDefinition provides support for saving and perform-
ing inverses. Second, there is no contention manager implementa-
tion. Lastly, inverses are manually specified rather than generated
from return values.

The RAO library contains the Hashtable base object, Move-
ableHashtable, DirectoryTree, and FileSystem. The Directory-
Tree stores directory contents with the Hashtable, mapping di-
rectory paths to a list of contents. The example program has three
threads, one to generate files /file1 to /file100, another thread
to move even-numbered files to the /evens directory, and third to
repeatedly print the number of existing files. The program finishes
by printing the directories and contents of the FileSystem object.

Discussion. Building the reversible atomic library prototype lead
to a few interesting observations. After implementing the frame-
work, the library objects were straightforward to implement, be-
coming rote. The base objects are simple wrapper that provide a
conflict specification. By following the pattern of Figure 6, the
upper layer objects became systematic to implement, constructing
operations and calling try op. This leads us to believe it is possi-
ble create reversible atomic objects automatically by, for instance,
compiling a serial specification into an RAO.

Another observation is that only the base objects, such Hashtable,
require an apply implementation. Only these methods mutate
shared state. The upper layers have no state themselves; rather they
specify how the base object operations are organized and sched-
uled. This is why only base objects need an apply method.

9. Related Work

Nested transactions. Nested transactions originated in the database
community [57] and, since 2006 [41], they have also appeared in
software. Because reversible atomic object operations may be im-
plemented as transactions, there is an inherent nesting in our model.
In this sense, reversible atomic objects are an instance of nested
transactions.

However, not all nested transactions are reversible atomic ob-
jects. Unlike nested transactions, reversible atomic objects require
that transactions be aligned with method boundaries. Also, re-
versible atomic objects construct their own inverses (and we show
that they are typically easy to construct). Finally, reversible atomic
objects may, at each level, use different implementation styles
(pessimistic-vs-optimistic). To the best of our knowledge, this is
not possible with nested transactions. An example of a nested
transaction that is not a reversible atomic object is given in Fig-
ure 7. There are two class definitions and a vertical OO hierarchy.
Transactions are not directly aligned with object methods. Conflic-
t/commutativity/inverses are used in an ad hoc manor (not shown
here).

There are several key consequences of reversible atomic objects,
in relation to nested transactions:

• Clearer semantics. The semantics of nested transactions is quite
complex [40, 57] and, perhaps consequently, to date there has
not been much formal backbone developed in this area. By con-
trast, reversible atomic objects have a semantics that is simple
and clear, while also permitting great complexity, variety of im-
plementation choices, and vertical composition (see Sections 3-
7).

• Progress. Since we require inverses to consistently be available,
a contention managing environment can be used to abort trans-
actions. Using a priority scheme, progress can be ensured.

1 FileSystem.moveFile(p1, p2) {
2 atomic {
3 v = ht.get(p1)
4 ht.put(p2, v)
5 ht.remove(p1)
6 }
7 directory.move(p1, p2);
8 }
9

10 Directory.move(p1, p2) {
11 atomic {
12 all paths.add(p2)
13 all paths.remove(p1)
14 atomic {
15 Node node = tree.find(p2.directory)
16 node.addChild(p2.filename)
17 }
18 atomic {
19 Node node = tree.find(p1.directory)
20 node.removeChild(p1.filename)
21 }
22 }
23 }

Figure 7. An example of nested transactions that aren’t reversible
atomic objects.

• Ease of implementation. Reversible atomic objects make it eas-
ier for a layperson to build complex concurrent transactional
systems. Many details are abstracted away from the program-
mer and can be accomplished by a compiler or non-monolithic
runtime systems.

• Automation. The transactional universal construction makes au-
tomatic generation of reversible atomic objects possible from a
serial specification.

STM data-structure implementations. Two recent works have
aimed at developing real-world efficient implementations of trans-
actional data-structures. Herman et al. [23] recently described a
way of implementing transactional data-structures. They build on
top of a core infrastructure that provides operations on version
numbers and abstract tracking sets that can be used to make object-
specific decisions at commit time. Similar work by Spiegelman et
al. [3] describes how to build data-structure libraries using tradi-
tional STM read/write tracking primitives. In this way, the imple-
mentation can exploit these STM internals. These data-structures
can combine pessimistic and optimistic implementations. This
strategy is appropriate for STM experts, but does not seem to pro-
vide a general theory and/or framework for vertical composition.

Other works. The recent Push/Pull model provided a formal
semantics for describing a range of transactional implementa-
tions [28]. At a technical level, the Push/Pull model uses thread-
local logs for describing detailed thread-local behavior. We abstract
away these details. The Push/Pull model modifies the global log by
removing entries, where as our semantics is append-only.

The key distinction is that the Push/Pull model does not inves-
tigate how transactional objects can be composed, nor does it pro-
vide contextual refinement results or liveness guarantees. However,
as discussed at the end of Section 6, reversible atomic objects was
designed so that it still captures the range of implementations cov-
ered by Push/Pull.

Many have formalized correctness criteria of various STM im-
plementations. Recently, it was shown that TMS is equivalent to

contextual refinement [5] for the case where shared and local vari-
ables are rolled back when a transaction aborts.

Others [32] describe a method of specifying and verifying TM
algorithms. They specify some transactional algorithms in terms of
I/O automata [35] and this choice of language enables them to fully
verify those specifications in PVS.

Ziv et al. [59] describe how to compose transactions with other
kinds of concurrency control such as two-phase locking and two-
phase commit.

More distant are works that address the privatization prob-
lem [2, 38, 52], dynamic/static/hybrid atomicity [56], message
passing within transactions [33], proof engineering [34], and com-
mutativity [8, 9, 25, 31, 46, 50, 53, 56].

10. Conclusions and Future Work

We have described a model for vertical composition of transac-
tional objects that is semantically simple and yet expressive and
amenable to implementation flexibility. In our model, abstract-
level operations are composed from constituent base operations,
accounting for conflict and ensuring availability of inverses. These
transactional implementations are put in the context of an environ-
ment that includes a novel deadlock-mitigating contention manager
that ensures progress. Our model is the first proof of contextual
refinement and vertical composition for transactional objects. We
believe that reversible atomic objects provide a feasible avenue to-
ward a broader availability of composable transactional objects.

There are several areas for future work. We intend to investigate
recursion in the context of reversible atomic objects. We will also
develop more mature versions of our implementations that can be
used in realistic settings, where a performance evaluation can be
made. Finally, we will automate the translation from user-level
syntax to pessimistic and optimistic implementations.

References
[1] ScalaSTM. https://nbronson.github.io/scala-stm/.

[2] ABADI, M., BIRRELL, A., HARRIS, T., AND ISARD, M. Semantics
of transactional memory and automatic mutual exclusion. In The 35th
ACM SIGPLAN SIGACT Symposium on Principles of Programming
Languages (POPL’08) (2008), pp. 63–74.

[3] ALEXANDER SPIEGELMAN, GUY GOLAN-GUETA, I. K. Transac-
tional data structure libraries. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI’16) (2016).

[4] AMIT, D., RINETZKY, N., REPS, T. W., SAGIV, M., AND YAHAV, E.
Comparison under abstraction for verifying linearizability. In Com-
puter Aided Verification, 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings (2007), pp. 477–490.

[5] ATTIYA, H., GOTSMAN, A., HANS, S., AND RINETZKY, N. Safety
of live transactions in transactional memory: TMS is necessary and
sufficient. In Distributed Computing - 28th International Sympo-
sium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings
(2014), F. Kuhn, Ed., vol. 8784 of Lecture Notes in Computer Science,
Springer, pp. 376–390.

[6] BALAKRISHNAN, M., MALKHI, D., DAVIS, J. D., PRABHAKARAN,
V., WEI, M., AND WOBBER, T. CORFU: A distributed shared log.
ACM Trans. Comput. Syst. 31, 4 (2013), 10.

[7] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU, M., PRAB-
HAKARAN, V., WEI, M., DAVIS, J. D., RAO, S., ZOU, T., AND

ZUCK, A. Tango: distributed data structures over a shared log. In ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013 (2013), pp. 325–340.

[8] BEERI, C., BERNSTEIN, P., GOODMAN, N., LAI, M.-Y., AND

SHASHA, D. A concurrency control theory for nested transactions
(preliminary report). In Proceedings of the 2nd annual ACM sympo-
sium on Principles of distributed computing (PODC’83) (New York,
NY, USA, 1983), ACM Press, pp. 45–62.

[9] BERNSTEIN, A. Analysis of programs for parallel processing. IEEE
Transactions on Electronic Computers 15, 5 (1966), 757–763.

[10] CHEN, H., WU, X. N., SHAO, Z., LOCKERMAN, J., AND GU,
R. Toward compositional verification of interruptible os kernels and
device drivers. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (2016), ACM,
pp. 431–447.

[11] CRAIN, T., IMBS, D., AND RAYNAL, M. Towards a universal con-
struction for transaction-based multiprocess programs. In Interna-
tional Conference on Distributed Computing and Networking (2012),
Springer, pp. 61–75.

[12] DICE, D., SHALEV, O., AND SHAVIT, N. Transactional Locking II.
In Proceedings of the 20th International Symposium on Distributed
Computing (DISC’06) (September 2006).

[13] DIMITROV, D., RAYCHEV, V., VECHEV, M., AND KOSKINEN, E.
Commutativity race detection. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI’14), Edinburgh, UK (2014).

[14] FELBER, P., FETZER, C., AND RIEGEL, T. Dynamic performance
tuning of word-based software transactional memory. In Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’08) (2008), pp. 237–246.

[15] FILIPOVIĆ, I., OHEARN, P., RINETZKY, N., AND YANG, H. Ab-
straction for concurrent objects. Theoretical Computer Science 411,
51 (2010), 4379–4398.

[16] GUERRAOUI, R., AND KAPALKA, M. On the correctness of trans-
actional memory. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP’08)
(2008), ACM, pp. 175–184.

[17] HARRIS, T., MARLOW, S., JONES, S. L. P., AND HERLIHY, M.
Composable memory transactions. Commun. ACM 51, 8 (2008), 91–
100.

[18] HERLIHY, M. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems (TOPLAS) 13, 1 (1991), 124–
149.

[19] HERLIHY, M., AND KOSKINEN, E. Transactional boosting: A
methodology for highly concurrent transactional objects. In Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP’08) (2008).

[20] HERLIHY, M., AND KOSKINEN, E. Composable transactional ob-
jects: A position paper. In Programming Languages and Systems -
23rd European Symposium on Programming, ESOP 2014, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceed-
ings (2014), pp. 1–7.

[21] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER, III,
W. N. Software transactional memory for dynamic-sized data struc-
tures. In Proceedings of the 22nd annual symposium on Principles of
distributed computing (PODC’03) (2003), pp. 92–101.

[22] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS) 12, 3 (1990), 463–492.

[23] HERMAN, N., INALA, J. P., HUANG, Y., TSAI, L., KOHLER, E.,
LISKOV, B., AND SHRIRA, L. Type-aware transactions for faster con-
current code. In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys 2016, London, United Kingdom, April 18-
21, 2016 (2016), C. Cadar, P. Pietzuch, K. Keeton, and R. Rodrigues,
Eds., ACM, pp. 31:1–31:16.

[24] INTEL. Transactional synchronization in haswell.
http://software.intel.com/en-us/blogs/2012/02/07/transactional-syn

[25] KORTH, H. F. Locking primitives in a database system. J. ACM 30, 1
(1983), 55–79.

[26] KOSKINEN, E., AND HERLIHY, M. Checkpoints and continuations
instead of nested transactions. In Proceedings of the 20th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA’08)
(2008), pp. 160–168.

[27] KOSKINEN, E., AND HERLIHY, M. Dreadlocks: efficient deadlock
detection. In Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures (SPAA’08) (New York,
NY, USA, 2008), ACM, pp. 297–303.

[28] KOSKINEN, E., AND PARKINSON, M. J. The push/pull model of
transactions. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015 (2015), D. Grove and S. Blackburn, Eds.,
ACM, pp. 186–195.

[29] KOSKINEN, E., PARKINSON, M. J., AND HERLIHY, M. Coarse-
grained transactions. In Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL’10) (2010), ACM, pp. 19–30.

[30] KULKARNI, M., PINGALI, K., WALTER, B., RAMANARAYANAN,
G., BALA, K., AND CHEW, L. P. Optimistic parallelism requires
abstractions. In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation (PLDI’07)
(2007), pp. 211–222.

[31] LAM, M., AND RINARD, M. Coarse-grain parallel programming
in Jade. In Proceedings of the third ACM SIGPLAN symposium on
Principles and practice of parallel programming (PPoPP’91) (1991),
ACM New York, NY, USA, pp. 94–105.

[32] LESANI, M., LUCHANGCO, V., AND MOIR, M. A framework for
formally verifying software transactional memory algorithms. In Pro-
ceedings of the 23rd International Conference on Concurrency Theory
(CONCUR’12) (2012), vol. 7454, pp. 516–530.

[33] LESANI, M., AND PALSBERG, J. Communicating memory trans-
actions. In Proceedings of the 16th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’11) (2011),
pp. 157–168.

[34] LESANI, M., AND PALSBERG, J. Decomposing opacity. In Proceed-
ings of the 28th International Symposium on Distributed Computing
(DISC’14) (2014), pp. 391–405.

[35] LYNCH, N. A., AND TUTTLE, M. R. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the 6th Annual
ACM Symposium on Principles of Distributed Computing (PODC’87)
(1987), pp. 137–151.

[36] MALDONADO, W., MARLIER, P., FELBER, P., SUISSA, A.,
HENDLER, D., FEDOROVA, A., LAWALL, J. L., AND MULLER, G.
Scheduling support for transactional memory contention management.
In ACM Sigplan Notices, vol. 45, pp. 79–90.

[37] MATVEEV, A., AND SHAVIT, N. Towards a fully pessimistic STM
model. In Proceedings of the 2012 Workshop on Transactional Mem-
ory (TRANSACT12) (2012).

[38] MOORE, K. F., AND GROSSMAN, D. High-level small-step opera-
tional semantics for transactions. In Proceedings of the 35th annual

https://nbronson.github.io/scala-stm/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL’08) (2008), pp. 51–62.

[39] MORAVAN, M. J., BOBBA, J., MOORE, K. E., YEN, L., HILL,
M. D., LIBLIT, B., SWIFT, M. M., AND WOOD, D. A. Supporting
nested transactional memory in logTM. SIGOPS Operating Systems
Review 40, 5 (2006), 359–370.

[40] MOSS, J. E. B. Open nested transactions: Semantics and support. In
Workshop on Memory Performance Issues (2006), vol. 28.

[41] MOSS, J. E. B., AND HOSKING, A. L. Nested transactional memory:
model and architecture sketches. Science of Computer Programming
63, 2 (2006), 186–201.

[42] NI, Y., MENON, V. S., ADL-TABATABAI, A.-R., HOSKING, A. L.,
HUDSON, R. L., MOSS, J. E. B., SAHA, B., AND SHPEISMAN, T.
Open nesting in software transactional memory. In Proceedings of
the 12th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming (PPoPP’07) (2007), pp. 68–78.

[43] O’HEARN, P. W., RINETZKY, N., VECHEV, M. T., YAHAV, E., AND

YORSH, G. Verifying linearizability with hindsight. In Proceedings of
the 29th Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 2010, Zurich, Switzerland, July 25-28, 2010 (2010),
pp. 85–94.

[44] PEDONE, F., GUERRAOUI, R., AND SCHIPER, A. The database state
machine approach. Distributed and Parallel Databases 14, 1 (2003),
71–98.

[45] RAMADAN, H. E., ROY, I., HERLIHY, M., AND WITCHEL, E. Com-
mitting conflicting transactions in an stm. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’09) (2009), pp. 163–172.

[46] RINARD, M., AND LAM, M. The design, implementation, and eval-
uation of Jade. ACM Transactions on Programming Languages and
Systems (TOPLAS) 20, 3 (1998), 483–545.

[47] SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R. L., MINH, C. C.,
AND HERTZBERG, B. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. In Proceedings
of the 11th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’06) (2006), pp. 187–197.

[48] SCHERER III, W. N., AND SCOTT, M. L. Contention management
in dynamic software transactional memory. In PODC Workshop on
Concurrency and Synchronization in Java programs (2004), pp. 70–
79.

[49] SCHERER III, W. N., AND SCOTT, M. L. Advanced contention man-
agement for dynamic software transactional memory. In Proceedings
of the twenty-fourth annual ACM symposium on Principles of dis-
tributed computing (2005), ACM, pp. 240–248.

[50] SCHWARZ, P. M., AND SPECTOR, A. Z. Synchronizing shared
abstract types. ACM Transactions on Computer Systems 2, 3 (1984),
223–250.

[51] SPEAR, M. F., DALESSANDRO, L., MARATHE, V. J., AND SCOTT,
M. L. A comprehensive strategy for contention management in
software transactional memory. In ACM Sigplan Notices (2009),
vol. 44, ACM, pp. 141–150.

[52] SPEAR, M. F., MARATHE, V. J., DALESSANDRO, L., AND SCOTT,
M. L. Privatization techniques for software transactional memory.
In Proceedings of the 26th Annual ACM Symposium on Principles of
Distributed Computing (PODC’07) (2007), pp. 338–339.

[53] STEELE, JR, G. L. Making asynchronous parallelism safe for the
world. In Proceedings of the 17th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages (POPL’90) (New York,
NY, USA, 1990), ACM Press, pp. 218–231.

[54] VAFEIADIS, V. Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge, 2008.

[55] VAFEIADIS, V., HERLIHY, M., HOARE, T., AND SHAPIRO, M. Prov-
ing correctness of highly-concurrent linearisable objects. In Proceed-
ings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2006, New York, New York, USA,
March 29-31, 2006 (2006), pp. 129–136.

[56] WEIHL, W. E. Data-dependent concurrency control and recovery (ex-
tended abstract). In Proceedings of the 2nd annual ACM symposium on
Principles of Distributed Computing (PODC’83) (1983), ACM Press,
pp. 63–75.

[57] WEIKUM, G., AND SCHEK, H.-J. Concepts and applications of
multilevel transactions and open nested transactions, 1992.

[58] WELC, A., SAHA, B., AND ADL-TABATABAI, A.-R. Irrevocable
transactions and their applications. In Proceedings of the 20th Annual
Symposium on Parallelism in Algorithms and Architectures (SPAA’08)
(2008), ACM, pp. 285–296.

[59] ZIV, O., AIKEN, A., GOLAN-GUETA, G., RAMALINGAM, G., AND

SAGIV, M. Composing concurrency control. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015 (2015),
pp. 240–249.

A. Appendix

Proofs for Section 6

A log is inverse-free, if it contains no event that is an inverse of
another event in the log. A log ℓ is (τ, a)-free, if it contians events

neither of the form (τ, a) nor of the form (τ, a−1). Given a log
ℓ ∈ L, the function ki(ℓ) is defined to be such that ki(ℓ) = ℓ when ℓ

is inverse-free and ki(ℓ1 ⋅ (τ, a) ⋅ ℓ2 ⋅ (τ, a−1) ⋅ ℓ3) = ki(ℓ1 ⋅ ℓ2 ⋅ ℓ3)
when ℓ2 is (τ, a)-free.

A thread τ is committed in a log ℓ if ℓ = ℓ1 ⋅ (τ,CmtRet) ⋅ ℓ2
for some logs ℓ1, ℓ2 when ℓ2 contains no (τ, Ivk) event and it
is uncommitted if not. A log ℓ is uncommitted-ordered if there
are no thread identifiers τ, τ ′ such that τ is committed in ℓ, τ ′ is
uncommitted in ℓ and ℓ = ℓ1 ⋅(τ ′, e′)⋅ℓ2 ⋅(τ, e)⋅ℓ3 for logs ℓ1, ℓ2, ℓ3.
Finally, a log ℓ is thread-method-ordered, if it is uncommitted-
ordered and it is a sequence of abstract operation sequences and
base operations. In other words, ℓ is equal to ℓ1⋯ℓn, where for
each i ≤ n, there exists τi such that ℓ1 = (τ, a) or aosτi(ℓi,O.f),
for some O.f .

Given a log ℓ, we say that ℓ1 ⋅ (τ, Ivk O.f(x⃗)) is invoked be-
fore ℓ2 ⋅ (τ, IvkQ.g(x⃗)) in ℓ, if ℓ = ℓ1 ⋅ (τ, Ivk O.f(x⃗)) ⋅ ℓ′1 ⋅(τ, Ivk Q.g(x⃗)) ⋅ ℓ3 and ℓ2 = ℓ1 ⋅ (τ, Ivk O.f(x⃗)) ⋅ ℓ′1. Fur-
thermore, given a log ℓ, we say that an event (τ, e) belongs to
ℓ1 ⋅(τ, IvkO.f(x⃗)) if ℓ = ℓ1 ⋅(τ, IvkO.f(x⃗)) ⋅ℓ2 ⋅(τ, e) ⋅ℓ3 and ℓ2
does not contain an event (τ,CmtRet O.f(x⃗)). Finally, a log seg-
ment ℓ1 in a log ℓ should be before another log segment ℓ2 in that
log, if the constituent events of ℓ1 belong to ℓ1 ⋅ (τ, Ivk O.f(x⃗)),
the constituent events of ℓ2 belong to ℓ2 ⋅ (τ ′, Ivk Q.g(x⃗)) and
ℓ1 ⋅ (τ, Ivk O.f(x⃗)) is invoked before ℓ2 ⋅ (τ, Ivk Q.g(x⃗)).

The function ro(ℓ) is defined to be such that ro(ℓ) = ℓ when ℓ
is thread-method-ordered and ro(ℓ1 ⋅ ℓ2 ⋅ ℓ3 ⋅ ℓ4) = ro(ℓ1 ⋅ ℓ3 ⋅ ℓ2 ⋅ ℓ4)
when ℓ3 should be before ℓ2 in ℓ.

Given a committed-ordered log ℓ = ℓ1 ⋅ ℓ2, where ℓ1 comprises
all the committed operations and ℓ2 comprises all the uncommitted
ones, we define tr(ℓ) to be equal to ℓ1.

Lemma A.1. For all ℓ, ℓ′, ℓ′ ≼obs ℓ ⇒ ℓ′ ≼ôbs ℓ.

Proof. Suppose that ℓ and ℓ′ are two logs such that ℓ ≼obs ℓ′.

Therefore, allowed(ℓ)⇒ allowed(ℓ′) and by definition of âllowed,

it holds that âllowed(ℓ)⇒ âllowed(ℓ′). Furthermore, we know that
for any event (τ, e), ℓ ⋅ (τ, e) ≼obs ℓ′ ⋅ (τ, e). Consequently, for any
log ℓ1 we have that ℓ ⋅ ℓ1 ≼obs ℓ

′
⋅ ℓ1.

We want to show that âllowed(ℓ) ⇒ âllowed(ℓ′) and that
for any log ℓ1, there exists log ℓ2, such that ℓ ⋅ ℓ1 ≼ôbs ℓ′ ⋅ ℓ2.
In particular, for a given log ℓ1, we let ℓ2 = ℓ1 and we instead
show that ℓ ⋅ ℓ1 ≼ôbs ℓ′ ⋅ ℓ1. The latter follows from the fact that
ℓ ⋅ ℓ1 ≼obs ℓ

′
⋅ ℓ1 and therefore ℓ ≼ôbs ℓ

′.

Lemma A.2. For all well-formed logs ℓ, ℓ ≼obs ki(ℓ).
Proof. Let ℓ be a well-formed log. We proceed by induction on
the number n of inverses in ℓ. For the base case, suppose that
there are no inverses. By definition, ki(ℓ) = ℓ, and by reflexivity
ℓ ≼obs ki(ℓ). Suppose then that the statement is correct for all logs
with n inverses, where n < K for some K ∈ N, and consider
a log ℓ with K inverses. Then there exist a basic operation a, a
thread τ and logs ℓ1, ℓ2, ℓ3, such that ℓ2 is (τ, a)-free and ℓ =

ℓ1 ⋅ (τ, a) ⋅ ℓ2 ⋅ (τ, a−1) ⋅ ℓ3. By definition, ki(ℓ) = ki(ℓ1 ⋅ ℓ2 ⋅ ℓ3),
and by the inductive hypothesis, ℓ1 ⋅ ℓ2 ⋅ ℓ3 ≼obs ki(ℓ1 ⋅ ℓ2 ⋅ ℓ3).
It remains to be shown that ℓ ≼obs ℓ1 ⋅ ℓ2 ⋅ ℓ3, or in other words,
ℓ1 ⋅ (τ, a) ⋅ ℓ2 ⋅ (τ, a−1) ⋅ ℓ3 ≼obs ℓ1 ⋅ ℓ2 ⋅ ℓ3.

We show this by induction on the size of the length of ℓ2. For
the base case, suppose that ∣ℓ2∣ = 0. Then ℓ1 ⋅ ℓ2 ⋅ ℓ3 = ℓ1 ⋅ ℓ3 and

ℓ1 ⋅ (τ, a) ⋅ (τ, a−1) ⋅ ℓ3 ≼obs ℓ1 ⋅ ℓ3. Suppose then that the statement
holds for all m <M for some M ∈N, and consider the case where

∣ℓ2∣ =M . Then ℓ2 = ℓ
′
2 ⋅ (τ ′, e). Since ℓ is well-formed, it follows

that (τ ′, e) ℓ′′

◁ (τ, a−1), for ℓ′′ = ℓ1 ⋅ (τ, a) ⋅ ℓ′2, and therefore,

ℓ1 ⋅(τ, a) ⋅ℓ′2 ⋅(τ ′, e) ⋅(τ, a−1) ≼obs ℓ1 ⋅(τ, a) ⋅ℓ′2 ⋅(τ, a−1) ⋅(τ ′, e).
Hence,

ℓ1⋅(τ, a)⋅ℓ′2⋅(τ ′, e)⋅(τ, a−1)⋅ℓ3 ≼obs ℓ1⋅(τ, a)⋅ℓ′2⋅(τ, a−1)⋅(τ ′, e)⋅ℓ3.
Then ∣ℓ′2∣ <M and by the inductive hypothesis,

ℓ1 ⋅ (τ, a) ⋅ ℓ′2 ⋅ (τ, a−1) ⋅ (τ ′, e) ⋅ ℓ3 ≼obs ℓ1 ⋅ ℓ2 ⋅ ℓ3,
and hence, by transitivity of ≼obs,

ℓ1 ⋅ (τ, a) ⋅ ℓ′2 ⋅ (τ ′, e) ⋅ (τ, a−1) ⋅ ℓ3 ≼obs ℓ1 ⋅ ℓ2 ⋅ ℓ3,
where the left hand side is equal to ℓ.

Lemma A.3. For all well-formed ℓ, ℓ ≼obs ro(ℓ).
Proof. Let ℓ be a well-formed log. We proceed by induction on the
number n of pairs of events ((τ, e), (τ ′, e′)) where (τ, e) should
be before (τ ′, e′) in ℓ and where (τ ′, e′) appears before (τ, e) in ℓ.
For the base case, suppose that n = 0. Then ℓ is thread-method-
ordered and therefore, ro(ℓ) = ℓ. By reflexivity, ro(ℓ) ≼obs ℓ.
Suppose then that the statement holds for all n < N , for some N ∈
N, and consider the case where the number of events satisfying
the above condition is N . Then ℓ = ℓ1 ⋅ (τ ′, e′) ⋅ ℓ2 ⋅ (τ, e) ⋅ ℓ3,
where (τ, e) should be before (τ ′, e′) in ℓ. It follows that ro(ℓ) =
ro(ℓ1 ⋅ (τ ′, e′) ⋅ ℓ2 ⋅ (τ, e) ⋅ ℓ3) and by definition, the latter is equal
to ro(ℓ1 ⋅ (τ, e) ⋅ (τ ′, e′) ⋅ ℓ2 ⋅ ℓ3). By the inductive hypothesis,
ℓ1 ⋅ (τ, e) ⋅ (τ ′, e′) ⋅ ℓ2 ⋅ ℓ3 ≼obs ro(ℓ1 ⋅ (τ, e) ⋅ (τ ′, e′) ⋅ ℓ2 ⋅ ℓ3). It
remains to be shown that

ℓ ≼obs ℓ1 ⋅ (τ, e) ⋅ (τ ′, e′) ⋅ ℓ2 ⋅ ℓ3.
Notice, that since ℓ is well-formed, it must be the case that (τ, e) ℓ1

◁

(τ ′′, a) for all (τ, a) in (τ ′, e) ⋅ ℓ2. By induction over the length of
(τ ′, e) ⋅ ℓ2, similarly to the proof of Lemma A.2, it follows that
ℓ1 ⋅ (τ, e) ⋅ (τ ′, e′) ⋅ ℓ2 ≼obs ℓ1 ⋅ (τ ′, e′) ⋅ (τ, e) ⋅ ℓ2, as required.

Lemma A.4. For any log ℓ that is inverse-free and committed-
ordered, ℓ ≼ôbs tr(ℓ).
Proof. By reflexivity of ≼ôbs, we know that for all logs ℓ, ℓ ≼ôbs ℓ.
Let ℓ = tr(ℓ) ⋅ℓ′ and let ℓ1 be any log. By definition of the predicate

âllowed, it holds that âllowed(ℓ)⇒ âllowed(tr(ℓ)). Let ℓ2 = ℓ
′
⋅ℓ1.

Then ℓ⋅ℓ1 = tr(ℓ)⋅ℓ′ ⋅ℓ1 = tr(ℓ)⋅ℓ2 and therefore, ℓ⋅ℓ1 ≼ôbs tr(ℓ)⋅ℓ2,
as required.

Lemma A.5. For all ℓ, ℓ′, ℓ′′,

if ℓ ≼ôbs ℓ
′ and ℓ′ ≼ôbs ℓ

′′ then ℓ ≼ôbs ℓ
′′.

Proof. Suppose that ℓ ≼ôbs ℓ′ and ℓ′ ≼ôbs ℓ′′. Then allowed(ℓ) im-
plies allowed(ℓ′) and allowed(ℓ′) implies allowed(ℓ′′). It follows
that allowed(ℓ)⇒ allowed(ℓ′′). We know that for all ℓ1, there ex-
ists ℓ2 such that ℓ ⋅ ℓ1 ≼ôbs ℓ

′
⋅ ℓ2. Furthermore, we know that given

ℓ2, there exists ℓ3 such that ℓ′ ⋅ ℓ2 ≼ôbs ℓ
′′
⋅ ℓ3. Therefore, for all ℓ1,

there exists ℓ3 such that ℓ ⋅ ℓ1 ≼ôbs ℓ
′
⋅ ℓ3, as required.

Lemma A.6. For all programs P and EI ∈ Einterleaved there exists
EA ∈ Eatomic such that

tr(ro(ki(log(Π(P,EI)))) ≼obs log(ΠA(P,EA)).
Proof. We want to construct a valid EA that simply schedules the
appropriate threads. Let P be any program, and let EI be any
interleaved environment. Let ℓ be equal to log(Π(P,EI)) and ℓnorm

be tr(ro(ki(ℓ))). By definition of the transformations tr(.), ro(.)
and ki(.), it follows that tr(ro(ki(ℓ))) is thread-method-ordered,

without inverses and all operations that appear in it are committed.
We then define EA to be simply the environment that schedules
the threads and methods according to the order they appear in this
normalized version of the log ℓ.

Lemma A.7. For all objects O, and environments EI in Einterleaved,
there exists EA in Eatomic such that for all client programs P ,
Π(P ⊕CO,EA) = Π(P ⊕SO,EI). Similarly, for all EA in Eatomic,
there exists EI in Einterleaved, such that for all P , Π(P ⊕CO,EA) =
Π(P ⊕ SO,EI).
Proof. By definition of Einterleaved and Eatomic.

Theorem 6.1. For any object O we have

[[CO]]interleaved ⊑ [[SO]]interleaved

Proof. We want to show that for every client program P and EI ∈
Einterleaved there exists E ′′I ∈ Einterleaved such that Π(P ⊕CO,EI) ≼ôbs
Π(P ⊕ SO,E

′′
I).

Notice that by Lemma A.7, it suffices to show that for all P
and EI ∈ Einterleaved, there exists EA ∈ Eatomic, such that Π(P ⊕
CO,EI) ≼ôbs Π(P ⊕CO,EA). Fix a program P and an interleaved
environment EI , and let EA be the atomic environment obtained by
Lemma A.6. For readability, let ℓI be log(Π(P ⊕CO,EI)) and let
ℓA be Π(P ⊕CO,EA). We have that tr(ro(ki(ℓI))) ≼obs ℓA, and
by Lemma A.1, it holds that tr(ro(ki(ℓI))) ≼ôbs ℓA.

Since ℓI is assumed to be a well-formed log, by Lemmas
A.2 and A.3, ℓI ≼obs ro(ki(ℓI)) and by Lemma A.1, ℓI ≼ôbs
ro(ki(ℓI)). Furthermore, by Lemma A.4, ro(ki(ℓI)) ≼ôbs tr(ro(ki(ℓI))),
and thus, ℓI ≼ôbs tr(ro(ki(ℓI))), by transitivity of ≼ôbs (Lemma
A.5). Finally, since tr(ro(ki(ℓI))) ≼ôbs ℓA and ℓI ≼ôbs tr(ro(ki(ℓI))),
again by Lemma A.5 we obtain ℓI ≼ôbs ℓA, as required.

Lemma A.8. For any object specification SO , program P , and
environment E ∈ Einterleaved it holds that the base observations of
Π(P,E) are equal to the abstract observations of Π(P ⊕ SO,E).
Theorem 6.2. Let O and Q be two objects. Then

[[CO ⊕CQ]]interleaved ⊑ [[SO ⊕ SQ]]interleaved.

Proof. From Theorem 6.1, we know that (a) [[CO]]interleaved ⊑[[SO]]interleaved and (b) [[CQ]]interleaved ⊑ [[SQ]]interleaved.
We have to show that for all P and all E , there exists E ′ such that

Π(P ⊕CO⊕CQ,E) ≼ôbs Π(P ⊕SO⊕SQ,E
′). Fix environment E

and client program P . Then by (b), there exists E1 such that, Π(P⊕
CO ⊕ CQ,E) ≼ôbs Π(P ⊕ CO ⊕ SQ,E1). By Lemma A.8, there
exists E2 such that Π(P ⊕CO ⊕SQ,E1) ≼ôbs Π(P ⊕CO,E2). By
(a), there exists E3 such that Π(P ⊕CO,E2) ≼ôbs Π(P ⊕SO,E3).
Finally, by applying Lemma A.8 again, there exists E ′ such that
Π(P ⊕ SO,E3) ≼ôbs Π(P ⊕ SO ⊕ SQ,E

′) as needed.

B. Source Code

Log.java
1 import java.util.Hashtable;
2

3 class Log {
4 private LogNode logHead;
5 public final static LogNode SENTINEL = new LogNode(null);
6 public final Hashtable<Transaction, Boolean> committed;
7 public final Hashtable<Transaction, Boolean> ignored;
8

9 public Log() {
10 this.logHead = SENTINEL;
11 this.committed = new Hashtable<Transaction, Boolean>();
12 this.ignored = new Hashtable<Transaction, Boolean>();
13 }
14

15 public LogNode getHead() {
16 return SENTINEL;
17 }
18 }

LogNode.java
1 import java.util.concurrent.atomic.AtomicReference;
2

3 class LogNode {
4 public LogNode prev;
5 public AtomicReference<LogNode> next;
6 public Entry data;
7

8 public LogNode(Entry data) {
9 this.prev = null;

10 this.next = new AtomicReference<LogNode>(); // starts as null
11 this.data = data;
12 }
13

14 public String toString() { return this.data.toString(); }
15 }

Entry.java
1 /∗∗ Log operations. ∗/
2 class Entry {
3 /∗∗ Transaction id. ∗/
4 protected Transaction tx;
5

6 /∗∗ Object id. ∗/
7 ObjectID objectID;
8

9 /∗∗ Sentinel for the beginning of the log. ∗/
10 public static final Entry SENTINEL = new Entry(null, null) {
11 public String toString() { return ”SENTINEL”; }
12 };
13

14 protected Entry(Transaction tx, ObjectID objectID) {
15 this.tx = tx;
16 this.objectID = objectID;
17 }
18

19 public boolean isStart() { return false; }
20 public boolean isOp() { return false; }
21 public boolean isInverse() { return false; }
22 public boolean isCommit() { return false; }
23

24 /∗∗ Get transaction id. ∗/
25 public Transaction getTransaction() { return tx; }
26

27 /∗∗ Get object id. ∗/
28 public ObjectID getObjectID() { return objectID; }
29

30 public String toString() {
31 return super.toString() + ”\t” + this.getTransaction() + ”\t” +

this.getObjectID();
32 }
33

34 /∗∗ Start transaction entry. ∗/
35 static public class Start extends Entry {
36 public Start(Transaction tx, ObjectID objectID) {

37 super(tx, objectID);
38 }
39

40 public boolean isStart() { return true; }
41

42 public String toString() { return super.toString() + ”\tBEGIN”; }
43 }
44

45 /∗∗ Operation entry. ∗/
46 static public class Op extends Entry {
47 /∗∗ The operation. ∗/
48 Operation op;
49

50 /∗∗ The inverse operation. ∗/
51 Operation inv;
52

53 public Op(Transaction tx, ObjectID objectID, Operation op,
Operation inv) {

54 super(tx, objectID);
55 this.op = op;
56 this.inv = inv;
57 }
58

59 public boolean isOp() { return true; }
60

61 public String toString() {
62 String opstring = tx.getThreadID().getObject(objectID).opName(op

.opcode);
63 String invstring = tx.getThreadID().getObject(objectID).opName(

inv.opcode);
64

65 return super.toString() + ”\tOP(” + opstring + ”, ” + invstring
+ ”)”;

66 }
67 }
68

69 /∗∗ Inverse operation entry. ∗/
70 static public class Inverse extends Entry {
71 /∗∗ The operation. ∗/
72 Operation op;
73

74 public Inverse(Transaction tx, ObjectID objectID, Operation op) {
75 super(tx, objectID);
76 this.op = op;
77 }
78

79 public boolean isInverse() { return true; }
80

81 public String toString() {
82 String opstring = tx.getThreadID().getObject(objectID).opName(op

.opcode);
83

84 return super.toString() + ”\tINV(” + opstring + ”)”;
85 }
86 }
87

88 /∗∗ Commit transaction entry. ∗/
89 static public class Commit extends Entry {
90 public Commit(Transaction tx, ObjectID objectID) {
91 super(tx, objectID);
92 }
93

94 public boolean isCommit() { return true; }
95

96 public String toString() { return super.toString() + ”\tCOMMIT”; }
97 }
98 }

ObjectID.java
1 class ObjectID {
2 public final String typeName;
3

4 public ObjectID(String typeName) {
5 this.typeName = typeName;
6 }
7

8 public String toString() {
9 return this.typeName + ”:” + this.hashCode();

10 }
11 }

ThreadID.java
1 class ThreadID {
2 protected final java.util.Hashtable<ObjectID, ObjectDefinition> local;
3

4 public ThreadID() {
5 this.local = new java.util.Hashtable<ObjectID, ObjectDefinition>();
6 }
7

8 public ObjectDefinition addObject(ObjectID obj, ObjectDefinition
instance) {

9 return local.put(obj, instance);
10 }
11

12 public ObjectDefinition getObject(ObjectID obj) {
13 return local.get(obj);
14 }
15

16 public void clear() {
17 for (ObjectID obj : local.keySet()) {
18 local.get(obj).clear();
19 }
20 }
21 }

Operation.java
1 class Operation {
2 protected ObjectID objectID;
3 protected int opcode;
4 protected Object[] args;
5

6 public Operation(ObjectID objectID, int opcode, Object[] args) {
7 this.objectID = objectID;
8 this.opcode = opcode;
9 this.args = args;

10 }
11

12 public ObjectID getObjectID() { return this.objectID; }
13 public int getOpcode() { return this.opcode; }
14 public Object[] getArgs() { return this.args; }
15 }

Result.java
1 class Result {
2 public boolean isSuccess() {
3 return false;
4 }
5

6 public boolean isAbort() {
7 return false;
8 }
9

10 public boolean isConflict() {
11 return false;
12 }
13

14 public static class Success extends Result {
15 public boolean isSuccess() {
16 return true;
17 }
18 }
19

20 public static class Abort extends Result {
21 protected Entry entry;
22

23 public Abort(Entry entry) {
24 this.entry = entry;
25 }
26

27 public Entry getEntry() {
28 return this.entry;
29 }
30

31 public boolean isAbort() {
32 return true;
33 }
34 }
35

36 public static class Conflict extends Result {
37 public boolean isConflict() {
38 return true;
39 }
40 }
41 }

Transaction.java
1 class Transaction {
2 protected ThreadID threadID;
3 protected ObjectID objectID;
4

5 public Transaction(ThreadID threadID, ObjectID objectID) {
6 this.threadID = threadID;
7 this.objectID = objectID;
8 }
9

10 public ThreadID getThreadID() { return threadID; }
11 public ObjectID getObjectID() { return objectID; }
12

13 public String toString() {
14 return ”Transaction(” + this.threadID + ”)”;
15 }
16 }

ObjectDefinition.java
1 import java.util.Deque;
2 import java.util.ArrayDeque;
3

4 abstract class ObjectDefinition {
5 protected final ObjectID objectID;
6 protected final ThreadID threadID;
7 protected Log log;
8 private Deque<Operation> inverses;
9

10 public ObjectDefinition(Log log, ObjectID objectID, ThreadID threadID
) {

11 this.log = log;
12 this.objectID = objectID;
13 this.threadID = threadID;
14

15 this.threadID.addObject(this.objectID, this);
16 }
17

18 public final ObjectID getObjectID() { return this.objectID; }
19 public final ThreadID getThreadID() { return this.threadID; }
20

21 public boolean apply(Operation op) {
22 return true;
23 }
24

25 public void clear() {
26 }
27

28 public abstract String opName(int opcode);
29 public abstract boolean isConflict(Operation op1, Operation op2);
30

31 public final Result try op(Entry entryin) {
32 Transaction tx = entryin.getTransaction();
33 ThreadID thread = tx.getThreadID();
34 LogNode entry = new LogNode(entryin);
35 LogNode lastSeen = log.getHead();
36 do {
37 LogNode abort = null;
38 while (null != lastSeen.next.get()) {
39 lastSeen = lastSeen.next.get();
40 if (log.ignored.containsKey(lastSeen.data.getTransaction()))

continue;
41 if (log.committed.containsKey(lastSeen.data.getTransaction()))

continue;
42 if (lastSeen.data.getTransaction() == tx) continue;
43 if (isConflict(entryin, lastSeen.data)) {
44 return new Result.Conflict();
45 } else if (lastSeen.data.isInverse()
46 && lastSeen.data.getTransaction().equals(tx)) {
47 abort = lastSeen;
48 }
49 }
50 if (null != abort) {

51 return new Result.Abort(abort.data);
52 }
53 } while (! lastSeen.next.compareAndSet(null, entry));
54 return new Result.Success();
55 }
56

57 protected final boolean isConflict(Entry entryin, Entry other) {
58 if (entryin.isOp() && other.isOp()) {
59 Entry.Op a = ((Entry.Op) entryin);
60 Entry.Op b = ((Entry.Op) other);
61 return !(a.getTransaction().equals(b.getTransaction()))
62 && a.getObjectID().equals(b.getObjectID())
63 && this.getThreadID().getObject(a.getObjectID()).isConflict(a.

op, b.op);
64 }
65 return false;
66 }
67

68 protected final boolean apply(Entry entry) {
69 if (entry.isOp()) {
70 Entry.Op op = ((Entry.Op) entry);
71 ObjectID obj = op.op.getObjectID();
72 return this.getThreadID().getObject(obj).apply(((Entry.Op) entry).

op);
73 } else if (entry.isInverse()) {
74 Entry.Inverse inv = ((Entry.Inverse) entry);
75 ObjectID obj = inv.getObjectID();
76 return this.getThreadID().getObject(obj).apply(((Entry.Inverse)

entry).op);
77 }
78 return false;
79 }
80

81 public final void sync() {
82 sync(null);
83 }
84

85 public final void sync(Transaction tx) {
86 getThreadID().clear();
87 LogNode lastSeen = log.getHead().next.get();
88 while (null != lastSeen) {
89 if (! log.ignored.containsKey(lastSeen.data.getTransaction())) {
90 if (log.committed.containsKey(lastSeen.data.getTransaction())
91 || null == tx
92 || lastSeen.data.getTransaction() == tx) {
93 apply(lastSeen.data);
94 }
95 }
96 lastSeen = lastSeen.next.get();
97 }
98 }
99

100 public final Transaction begin(ThreadID thread, ObjectID objid) {
101 inverses = new ArrayDeque<Operation>();
102 Transaction tx = new Transaction(thread, objid);
103 sync(tx);
104 try op(new Entry.Start(tx, this.getObjectID()));
105 return tx;
106 }
107

108 public final Result try commit(Transaction tx, ObjectID obj) {
109 Entry entry = new Entry.Commit(tx, obj);
110 Result result = try op(entry);
111 if (result.isSuccess()) {
112 log.committed.put(tx, true);
113 }
114 return result;
115 }
116

117 public final void add inverse(Operation inv) {
118 inverses.push(inv);
119 }
120

121 public final void do inverses(Transaction tx) {
122 log.ignored.put(tx, true);
123 while (! inverses.isEmpty()) {
124 Operation inv = inverses.pop();
125 do inverse(tx, inv.getObjectID(), inv);
126 }
127 }
128

129 public final Result do inverse(Transaction tx, ObjectID obj, Operation
inv) {

130 return try op(new Entry.Inverse(tx, obj, inv));
131 }
132

133 public final Result try op(Transaction tx, ObjectID obj, Operation op,
Operation inv) {

134 return try op(new Entry.Op(tx, obj, op, inv));
135 }
136 }

Hashtable.java
1 import java.util.Set;
2

3 class Hashtable<K, V> extends ObjectDefinition {
4 public static final String typeName = ”HT”;
5

6 // opcodes
7 public static final int PUT = 1;
8 public static final int PUT INV = 2;
9 public static final int REMOVE = 3;

10 public static final int REMOVE INV = 4;
11

12 public String opName(int opcode) {
13 switch (opcode) {
14 case PUT:
15 return ”PUT”;
16 case PUT INV:
17 return ”PUT INV”;
18 case REMOVE:
19 return ”REMOVE”;
20 case REMOVE INV:
21 return ”REMOVE INV”;
22 default:
23 return null;
24 }
25 }
26

27 @SuppressWarnings(”unchecked”)
28 public boolean apply(Operation op) {
29 switch (op.opcode) {
30 case PUT:
31 case PUT INV:
32 case REMOVE INV:
33 ht.put(((K) (op.args[0])), ((V) (op.args[1])));
34 break;
35 case REMOVE:
36 ht.remove(((K) (op.args[0])));
37 break;
38 default:
39 return false;
40 }
41 return true;
42 }
43

44 public void clear() {
45 ht.clear();
46 }
47

48 /∗∗

49 ∗ Assuming operations are on the same objectID and different,
50 ∗ uncommitted transactions
51 ∗/
52 @SuppressWarnings(”unchecked”)
53 public boolean isConflict(Operation op1, Operation op2) {
54 return ((K) (op1.args[0])).equals(((K) (op2.args[0])));
55 }
56

57 private final java.util.Hashtable<K, V> ht;
58

59 public Hashtable(Log log, ObjectID objectID, ThreadID thread) {
60 super(log, objectID, thread);
61 this.ht = new java.util.Hashtable<K, V>();
62 }
63

64 public V get(K k) {
65 return ht.get(k);
66 }
67

68 public Set<K> keySet() {

69 return ht.keySet();
70 }
71

72 public int size() {
73 return ht.size();
74 }
75

76 public boolean containsKey(K k) {
77 return ht.containsKey(k);
78 }
79

80 public V put(K k, V v) {
81 return ht.put(k, v);
82 }
83

84 public V remove(K k) {
85 V v = ht.remove(k);
86 return v;
87 }
88 }

DirectoryTree.java
1 import java.util.Set;
2 import java.util.HashSet;
3

4 class DirectoryTree extends ObjectDefinition {
5 public static final String typeName = ”MHT”;
6

7 // opcodes
8 public static final int ADD = 1;
9 public static final int ADD INV = 2;

10 public static final int REMOVE = 3;
11 public static final int REMOVE INV = 4;
12 public static final int MOVE = 5;
13 public static final int MOVE INV = 6;
14

15 protected final Hashtable<String, Set<String>> ht;
16

17 public DirectoryTree(Log log, ObjectID objectID, ThreadID thread,
Hashtable<String, Set<String>> ht) {

18 super(log, objectID, thread);
19 this.ht = ht;
20 }
21

22 public String opName(int opcode) {
23 switch (opcode) {
24 case ADD:
25 return ”ADD”;
26 case ADD INV:
27 return ”ADD INV”;
28 case REMOVE:
29 return ”REMOVE”;
30 case REMOVE INV:
31 return ”REMOVE INV”;
32 case MOVE:
33 return ”MOVE”;
34 case MOVE INV:
35 return ”MOVE INV”;
36 default:
37 return null;
38 }
39 }
40

41 protected Set<String> collectKeys(Operation op) {
42 Set<String> dirs = new HashSet<String>();
43 switch (op.opcode) {
44 case MOVE:
45 String arg1 = ((String) (op.args[1]));
46 if (null != arg1) dirs.add(dirname(arg1));
47 case ADD:
48 case REMOVE:
49 String arg0 = ((String) (op.args[0]));
50 if (null != arg0) dirs.add(dirname(arg0));
51 break;
52 default:
53 break;
54 }
55 return dirs;
56 }
57

58 @SuppressWarnings(”unchecked”)
59 public boolean isConflict(Operation op1, Operation op2) {
60 Set<String> dirs1 = collectKeys(op1);
61 Set<String> dirs2 = collectKeys(op2);
62

63 // there is a conflict if set of dirs is disjoint
64 Set<String> all = new HashSet<String>();
65 all.addAll(dirs1);
66 all.addAll(dirs2);
67 return all.size() < (dirs1.size() + dirs2.size());
68 }
69

70 /∗∗

71 ∗ Assumes paths begin with ’/’. Returns path ending in ’/’.
72 ∗/
73 public static String dirname(String path) {
74 if (path.equals(”/”)) return ”/”;
75

76 String[] s = path.split(”/”);
77 s[s.length−1] = ””;
78 return String.join(”/”, s);
79 }
80

81 /∗∗

82 ∗ Assumes paths begin with ’/’.
83 ∗/
84 public static String basename(String path) {
85 String[] s = path.split(”/”);
86 return s[s.length−1];
87 }
88

89 public Set<String> dirs() {
90 sync();
91 return ht.keySet();
92 }
93

94 public Set<String> list(String d) {
95 sync();
96 return ht.get(d);
97 }
98

99 public int size() {
100 sync();
101 return ht.size();
102 }
103

104 /∗∗

105 ∗ Add filename f to directory d.
106 ∗/
107 public void add(String d, String f) {
108 while (true) {
109 Transaction tx = begin(this.getThreadID(), this.getObjectID());
110 Set<String> old list = ht.get(d);
111 Set<String> new list;
112 if (null == old list) {
113 new list = new HashSet<String>();
114 } else {
115 new list = new HashSet<String>(old list);
116 }
117 new list.add(f);
118

119 Operation op = new Operation(ht.getObjectID(), ht.PUT, new
Object[] { d, new list });

120 Operation inv = new Operation(ht.getObjectID(), ht.PUT INV,
new Object[] { d, old list });

121 add inverse(inv);
122 Result result = try op(tx, op.getObjectID(), op, inv);
123 if (! result.isSuccess()) {
124 do inverses(tx);
125 continue;
126 }
127 ht.put(d, new list);
128

129 Result cresult = try commit(tx, this.getObjectID());
130 if (cresult.isSuccess()) {
131 return;
132 } else {
133 do inverses(tx);
134 continue;
135 }
136 }

137 }
138

139 public boolean move(String p1, String p2) {
140 while (true) {
141 Transaction tx = begin(this.getThreadID(), this.getObjectID());
142 boolean retval;
143

144 String d1 = dirname(p1);
145 String f1 = basename(p1);
146 Set<String> old list1 = ht.get(d1);
147 Set<String> new list1;
148 if (null == old list1) {
149 new list1 = new HashSet<String>();
150 } else {
151 new list1 = new HashSet<String>(old list1);
152 }
153 if (new list1.remove(f1)) {
154 {
155 Operation op1 = new Operation(ht.getObjectID(), ht.PUT,

new Object[] { d1, new list1 });
156 Operation inv1 = new Operation(ht.getObjectID(), ht.

PUT INV, new Object[] { d1, old list1 });
157 add inverse(inv1);
158 Result result1 = try op(tx, op1.getObjectID(), op1, inv1);
159 if (! result1.isSuccess()) {
160 do inverses(tx);
161 continue;
162 }
163 ht.put(d1, new list1);
164 }
165

166 {
167 String d2 = dirname(p2);
168 String f2 = basename(p2);
169 Set<String> old list2 = ht.get(d2);
170 Set<String> new list2;
171 if (null == old list2) {
172 new list2 = new HashSet<String>();
173 } else {
174 new list2 = new HashSet<String>(old list2);
175 }
176 new list2.add(f2);
177

178 Operation op2 = new Operation(ht.getObjectID(), ht.PUT,
new Object[] { d2, new list2 });

179 Operation inv2 = new Operation(ht.getObjectID(), ht.
PUT INV, new Object[] { d2, old list2 });

180 add inverse(inv2);
181 Result result2 = try op(tx, op2.getObjectID(), op2, inv2);
182 if (! result2.isSuccess()) {
183 do inverses(tx);
184 continue;
185 }
186 ht.put(d2, new list2);
187 }
188

189 retval = true;
190 } else {
191 retval = false;
192 }
193

194 Result cresult = try commit(tx, this.getObjectID());
195 if (cresult.isSuccess()) {
196 return retval;
197 } else {
198 do inverses(tx);
199 continue;
200 }
201 }
202 }
203 }

MoveableHashtable.java
1 class MoveableHashtable<K, V> extends ObjectDefinition {
2 public static final String typeName = ”MHT”;
3

4 // opcodes
5 public static final int PUT = 1;
6 public static final int PUT INV = 2;
7 public static final int REMOVE = 3;

8 public static final int REMOVE INV = 4;
9 public static final int MOVE = 5;

10 public static final int MOVE INV = 6;
11

12 protected final Hashtable<K, V> ht;
13

14 public MoveableHashtable(Log log, ObjectID objectID, ThreadID thread
, Hashtable<K, V> ht) {

15 super(log, objectID, thread);
16 this.ht = ht;
17 }
18

19 public String opName(int opcode) {
20 switch (opcode) {
21 case PUT:
22 return ”PUT”;
23 case PUT INV:
24 return ”PUT INV”;
25 case REMOVE:
26 return ”REMOVE”;
27 case REMOVE INV:
28 return ”REMOVE INV”;
29 case MOVE:
30 return ”MOVE”;
31 case MOVE INV:
32 return ”MOVE INV”;
33 default:
34 return null;
35 }
36 }
37

38 @SuppressWarnings(”unchecked”)
39 public boolean isConflict(Operation op1, Operation op2) {
40 return ((K) (op1.args[0])).equals(((K) (op2.args[0])));
41 }
42

43 public V get(K k) {
44 sync();
45 return ht.get(k);
46 }
47

48 public int size() {
49 sync();
50 return ht.size();
51 }
52

53 public V put(K k, V v) {
54 while (true) {
55 Transaction tx = begin(this.getThreadID(), this.getObjectID());
56 V v old = ht.get(k);
57

58 Operation op = new Operation(ht.getObjectID(), ht.PUT, new
Object[] { k, v });

59 Operation inv = new Operation(ht.getObjectID(), ht.PUT INV,
new Object[] { k, v old });

60 add inverse(inv);
61 Result result = try op(tx, op.getObjectID(), op, inv);
62 if (! result.isSuccess()) {
63 do inverses(tx);
64 continue;
65 }
66 ht.put(k, v);
67

68 Result cresult = try commit(tx, this.getObjectID());
69 if (cresult.isSuccess()) {
70 return v;
71 } else {
72 do inverses(tx);
73 }
74 }
75 }
76

77 public boolean move(K k1, K k2) {
78 while (true) {
79 Transaction tx = begin(this.getThreadID(), this.getObjectID());
80 V v = ht.get(k1);
81 V v old = ht.get(k2);
82

83 if (null != v) {
84 Operation op1 = new Operation(ht.getObjectID(), ht.PUT, new

Object[] { k2, v });

85 Operation inv1 = new Operation(ht.getObjectID(), ht.PUT INV,
new Object[] { k2, v old });

86 add inverse(inv1);
87 Result result1 = try op(tx, op1.getObjectID(), op1, inv1);
88 if (! result1.isSuccess()) {
89 do inverses(tx);
90 }
91 ht.put(k2, v);
92

93

94 Operation op2 = new Operation(ht.getObjectID(), ht.REMOVE,
new Object[] { k1 });

95 Operation inv2 = new Operation(ht.getObjectID(), ht.
REMOVE INV, new Object[] { k1, v old });

96 add inverse(inv2);
97 Result result2 = try op(tx, op2.getObjectID(), op2, inv2);
98 if (! result2.isSuccess()) {
99 do inverses(tx);

100 continue;
101 }
102 ht.remove(k1);
103 }
104

105 Result cresult = try commit(tx, this.getObjectID());
106 if (cresult.isSuccess()) {
107 return null != v;
108 } else {
109 do inverses(tx);
110 continue;
111 }
112 }
113 }
114 }

FileSystem.java
1 import java.util.Set;
2 import java.util.HashSet;
3

4 class FileSystem extends ObjectDefinition {
5 public static final String typeName = ”FS”;
6

7 // opcodes
8 public static final int ADD = 1;
9 public static final int ADD INV = 2;

10 public static final int DEL = 3;
11 public static final int DEL INV = 4;
12 public static final int MOVE = 5;
13 public static final int MOVE INV = 6;
14

15 protected final MoveableHashtable<String, Integer> mht;
16 protected final DirectoryTree dt;
17

18 public FileSystem(Log log, ObjectID objectID, ThreadID thread,
MoveableHashtable<String, Integer> mht, DirectoryTree dt) {

19 super(log, objectID, thread);
20 this.mht = mht;
21 this.dt = dt;
22 }
23

24 public String opName(int opcode) {
25 switch (opcode) {
26 case ADD:
27 return ”ADD”;
28 case ADD INV:
29 return ”ADD INV”;
30 case DEL:
31 return ”DEL”;
32 case DEL INV:
33 return ”DEL INV”;
34 case MOVE:
35 return ”MOVE”;
36 case MOVE INV:
37 return ”MOVE INV”;
38 default:
39 return null;
40 }
41 }
42

43 protected Set<String> collectKeys(Operation op) {
44 Set<String> dirs = new HashSet<String>();

45 switch (op.opcode) {
46 case ADD:
47 case DEL:
48 dirs.add(DirectoryTree.dirname(((String) (op.args[0]))));
49 case MOVE:
50 dirs.add(DirectoryTree.dirname(((String) (op.args[1]))));
51 break;
52 default:
53 break;
54 }
55 return dirs;
56 }
57

58 @SuppressWarnings(”unchecked”)
59 public boolean isConflict(Operation op1, Operation op2) {
60 Set<String> dirs1 = collectKeys(op1);
61 Set<String> dirs2 = collectKeys(op2);
62

63 // there is a conflict if set of dirs is disjoint
64 Set<String> all = new HashSet<String>();
65 all.addAll(dirs1);
66 all.addAll(dirs2);
67 return all.size() < (dirs1.size() + dirs2.size());
68 }
69

70 public Set<String> dirs() {
71 sync();
72 return dt.dirs();
73 }
74

75 public Set<String> list(String d) {
76 sync();
77 return dt.list(d);
78 }
79

80 public Integer get(String path) {
81 sync();
82 return mht.get(path);
83 }
84

85 public int size() {
86 sync();
87 return mht.size();
88 }
89

90 /∗∗

91 ∗ Overwrites an existing file.
92 ∗/
93 public Integer addFile(String path, Integer v) {
94 while (true) {
95 Transaction tx = begin(this.getThreadID(), this.getObjectID());
96 Integer v old = mht.get(path);
97

98 Operation op1 = new Operation(mht.getObjectID(), mht.PUT,
new Object[] { path, v });

99 Operation inv1 = new Operation(mht.getObjectID(), mht.
PUT INV, new Object[] { path, v old });

100 add inverse(inv1);
101 Result result1 = try op(tx, op1.getObjectID(), op1, inv1);
102 if (! result1.isSuccess()) {
103 if (result1.isConflict()) {
104 do inverses(tx);
105 }
106 continue;
107 }
108 mht.put(path, v);
109

110 String d = DirectoryTree.dirname(path);
111 String f = DirectoryTree.basename(path);
112 Operation op2 = new Operation(dt.getObjectID(), dt.ADD, new

Object[] { d, f });
113 Operation inv2 = new Operation(dt.getObjectID(), dt.ADD INV,

new Object[] { d, f });
114 add inverse(inv2);
115 Result result2 = try op(tx, op2.getObjectID(), op2, inv2);
116 if (! result2.isSuccess()) {
117 do inverses(tx);
118 continue;
119 }
120 dt.add(d, f);
121

122 Result cresult = try commit(tx, this.getObjectID());
123 if (cresult.isSuccess()) {
124 return v;
125 } else {
126 do inverses(tx);
127 continue;
128 }
129 }
130 }
131

132 public boolean moveFile(String path1, String path2) {
133 while (true) {
134 Transaction tx = begin(this.getThreadID(), this.getObjectID());
135

136 {
137 Operation op1 = new Operation(mht.getObjectID(), mht.MOVE,

new Object[] { path1, path2 });
138 Operation inv1 = new Operation(mht.getObjectID(), mht.

MOVE INV, new Object[] { path2, path1 });
139 Result result1 = try op(tx, op1.getObjectID(), op1, inv1);
140 if (! result1.isSuccess()) {
141 do inverses(tx);
142 continue;
143 }
144 mht.move(path1, path2);
145 }
146

147 {
148 Operation op2 = new Operation(dt.getObjectID(), dt.MOVE,

new Object[] { path1, path2 });
149 Operation inv2 = new Operation(dt.getObjectID(), dt.

MOVE INV, new Object[] { path2, path1 });
150 Result result2 = try op(tx, op2.getObjectID(), op2, inv2);
151 if (! result2.isSuccess()) {
152 do inverses(tx);
153 continue;
154 }
155 }
156 boolean retval = dt.move(path1, path2);
157

158 Result cresult = try commit(tx, this.getObjectID());
159 if (cresult.isSuccess()) {
160 return retval;
161 } else {
162 do inverses(tx);
163 continue;
164 }
165 }
166 }
167 }

Main.java
1 import java.util.ArrayList;
2 import java.util.Set;
3 import java.util.HashSet;
4

5 class Main {
6 public static void example() throws InterruptedException {
7 Log log = new Log();
8

9 // initialize the RAOs’ unique IDs
10 ObjectID htID = new ObjectID(Hashtable.typeName);
11 ObjectID mhtID = new ObjectID(MoveableHashtable.typeName);
12 ObjectID htdtID = new ObjectID(Hashtable.typeName);
13 ObjectID dtID = new ObjectID(DirectoryTree.typeName);
14 ObjectID fsID = new ObjectID(FileSystem.typeName);
15

16 // for each thread
17 ArrayList<ThreadID> threads = new ArrayList<ThreadID>();
18 ArrayList<MoveableHashtable<String, Integer>> mhts = new

ArrayList<MoveableHashtable<String, Integer>>();
19 ArrayList<FileSystem> fss = new ArrayList<FileSystem>();
20 for (int i = 0; i < 3; i++) {
21 ThreadID thread = new ThreadID();
22 Hashtable<String, Integer> ht = new Hashtable<String, Integer

>(log, htID, thread);
23 MoveableHashtable<String, Integer> mht = new

MoveableHashtable<String, Integer>(log, mhtID, thread, ht)
;

24 Hashtable<String, Set<String>> htdt = new Hashtable<String,
Set<String>>(log, htdtID, thread);

25 DirectoryTree dt = new DirectoryTree(log, dtID, thread, htdt);
26 FileSystem fs = new FileSystem(log, fsID, thread, mht, dt);
27 threads.add(thread);
28 mhts.add(mht);
29 fss.add(fs);
30 }
31

32 Thread creator = new Thread() {
33 public void run() {
34 for (int i = 1; i <= 100; i++) {
35 String filename = ”/file” + i;
36 fss.get(0).addFile(filename, i);
37 System.out.println(”created ” + filename);
38 }
39 }
40 };
41

42 Thread mover = new Thread() {
43 public void run() {
44 int num moved = 0;
45 while (num moved < 50) {
46 for (int i = 2; i <= 100; i += 2) {
47 String filename = ”/file” + i;
48 String new filename = ”/evens/file” + i;
49 boolean moved = fss.get(1).moveFile(filename,

new filename);
50 if (moved) {
51 System.out.println(”moved ” + filename + ” to ” +

new filename);
52 num moved++;
53 }
54 }
55 System.out.println(”moved ” + num moved);
56 }
57 }
58 };
59

60 Thread printer = new Thread() {
61 public void run() {
62 int size = 0;
63 while (size < 100) {
64 size = fss.get(2).size();
65 System.out.println(”size ” + size);
66 }
67 }
68 };
69

70 creator.start();
71 mover.start();
72 printer.start();
73 creator.join();
74 mover.join();
75 printer.join();
76

77 // // print the full log for debugging
78 // for (LogNode cur = log.getHead(); null != cur; cur = cur.next.get

()) {
79 // System.out.println(cur.data);
80 // }
81

82 Set<String> dirs = new HashSet<String>(fss.get(0).dirs());
83 for (String dir : dirs) {
84 System.out.println(”DIRNAME: ” + dir);
85 Set<String> files = fss.get(0).list(dir);
86 int num = 0;
87 System.out.print(”CONTENTS: ”);
88 for (String file : files) {
89 System.out.print(file + ”, ”);
90 num++;
91 }
92 System.out.println(”\nCOUNT:” + num);
93 System.out.println();
94 }
95 }
96

97 public static void main(String args[]) throws InterruptedException {
98 example();
99 }

100 }

	Introduction
	Programming with Reversible Atomic Objects
	Across this layer: Conflict, Progress, Refinement.
	Below this layer: Vertical Composition.
	Universal Construction and a Library of RAOs

	Preliminaries
	States, Operations, Event Logs
	Objects
	Parameterized base operations
	Inverses and conflict

	Vertical Composition through Abstraction
	Events
	Abstract operations
	Well-formedness

	Shared Log Semantics
	Contextual Refinement & Vertical Composition
	Vertical composition of contextual refinement between implementations and specifications

	Progress
	Implementation
	Transactional Universal Construction
	Implementing Reversible Atomic Objects
	Library of Reversible Atomic Objects

	Related Work
	Conclusions and Future Work
	Appendix
	Source Code

