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Abstract

We report on our initial experience exploring Mizar and Isabelle, two quite different systems
that support constructing and checking mathematical proofs. We also discuss some issues in
the design of such systems.

1 Introduction

As ubiquitous as computers have become in our everyday lives, in many respects the computer
revolution is still in its earliest phases. Martin Davis has made a persuasive case that mathematics,
particularly logic, is the father of computing [1]. However, efforts to integrate the use of computers
into the practice of mathematics, while vigorous, varied, and interesting, cannot be described as a
mature technology.

Part of the bread-and-butter activities of those who practice mathematics is the construction,
communication, and checking of proofs. This note is a report on our initial experience with two
publically available systems, Mizar and Isabelle, intended to support these mathematical activities.
We are not logicians, and in both cases we used the system actively for a few weeks and a few
hundred lines of proof, so our observations are those of novices. However, because human beings
rapidly habituate themselves (to the point of blindness) to the quirks of artificial systems, we believe
it is useful to record our novice observations and discuss their design implications.

2 Mizar

Mizar1 consists of a formal language for expressing mathematical definitions, theorems, and proofs,
and an automated system for checking the correctness of proofs in the language. The Mizar project
includes an extensive library of verified definitions, theorems, and proofs available in the on-line
articles of the Journal of Formalized Mathematics.2

Mizar’s formal language was designed to be close to the “mathematical vernacular,” the informal
but reasonably precise usage of current mathematical practice. Figure 1 presents a simple theorem
and proof from the 1990 Mizar article “Factorial and Newton coefficients” by Rafa l Kwiatek [2].

1Main website: www.mizar.org.
2The Journal has been published since 1989 and included over 2,000 definitions of mathematical concepts and

over 30,000 theorems as of August 2002.
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theorem
Th15: for s holds 1|^s = 1
proof
A1: 1|^0 = 1 by Th9;
A2: for s st 1|^s = 1 holds 1|^(s+1) = 1
proof
let s;
assume 1|^s = 1;
then 1|^(s+1) = 1 * 1 by Th11;
hence thesis;
end;

thus thesis from Nat_Ind(A1,A2);
end;

Figure 1: Example Mizar theorem and proof

This is readily understandable to someone familiar with English and current mathematical
usage. Declarations and definitions elsewhere establish that s is a natural number and that the
character combination |^ denotes an infix power function. The theorem then states that for all
natural numbers s, 1s = 1. This is a low-level fact that must be proved in any comprehensive
formal development.

The proof is by induction over the natural numbers, invoked by the next-to-last line, which
gives the labels of statements of the base case (10 = 1) and the inductive step (if 1s = 1 then
1s+1 = 1). The base case is justified by an earlier theorem in the same article. The inductive
step has a subproof that assumes the hypothesis and applies an earlier theorem and some implicit
arithmetic simplification to establish the conclusion.

In addition to being close to informal mathematical usage, this sequence of characters has been
processed by the Mizar system in the course of verifying the article, which has been incorporated
into the Mizar mathematical library. This result can be used in the justification of further theorems;
from other articles it is specified by the label NEWTON:15.

2.1 Using Mizar

Not content with just reading Mizar, we downloaded and installed the system (including the avail-
able emacs mode) and attempted some proofs of our own. The recommended method of learning
Mizar is to spend a month in Poland with the main Mizar community, so our approach may be seen
as a bit rash. One casualty of our approach was that we never found a description of the approved
procedure for defining new notation, predicates, and functions. However, the Mizar library provides
a rich source of notation and definitions, so this obstacle was not fatal.

The available documentation rapidly cleared up any confusion about the syntax of the language,
though the semantics appeared to have no comparably complete documentation. Taking advantage
of the emacs mode, we used the system in an interactive style, adding a line to a proof and then
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running the proof checker to see what error message(s) were produced. This feedback loop allowed
us to begin to understand by example what proof steps would be accepted. We found it quite useful
to be able to direct the proof checker to accept certain assertions without proof, for example, to
check the feasibility of a particular overall structure for a proof.

The underlying proof system is natural deduction, and although natural deduction mimics some
aspects of informal mathematical proof, it became clear that we needed a more detailed and formal
understanding of both natural deduction and the specific implementation of it in the Mizar system.
For example, informally speaking, to prove an implication one may assume the hypothesis and show
that the conclusion follows. More formally, if the hypothesis is a conjunction, one may assume each
of the conjuncts individually. In Mizar, the conjuncts must be assumed in the left-to-right order in
which they appear, otherwise, the result is the error message “invalid assumption.”

At each point in a Mizar proof, the proof-checker has a current value for the “thesis,” the
statement that remains to be proved. If the system is used in an interactive style, it would be
helpful to be able to inspect the value of the thesis at any particular point in the proof.

2.2 Searches

Most steps of a Mizar proof require an explicit justification in terms of axioms, definitions or
theorems from the library (or results proved earlier in the same article.) Hence it is important to
be able to locate relevant items in the library. Proofs from the library may also serve as models
for the construction of new proofs. Search tools to assist the user in finding related results and
proofs would be particularly helpful to the novice, who is largely unfamiliar with the contents of
the library. However, as on-line libraries grow to include a significant fraction of all of mathematics,
automated search tools will be helpful to the expert as well.

To get some sense of what kinds of searches might be feasible over the Mizar library, we con-
structed a simple tool to extract the statements of theorems from the ASCII library files and tried
various regular expression searches over the full library files and the extracts.

In the simplest case, a user may know the name of a theorem and wish to find examples of
its use. For example, a search for the theorem name REAL_1:54 found 412 references in the full
library: clearly a useful theorem.

theorem :: REAL_1:54
x-z<=y-z implies x <= y;

Another simple kind of search involves a specific keyword. For example, a search for the string
choose in the extract of all theorems matched the following lines.

0 choose 0 = 1
for s holds (s choose 0) = 1
(for r st r = s-t holds (s choose t) = (s choose r))
for s holds s choose s = 1
(((t+1) choose (s+1)) = (t choose (s+1)) + (t choose s)
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& ((t+1) choose (s+1)) = (t choose s) + (t choose (s+1)))
for s st s >= 1 holds s choose 1 = s
for s,t st s>=1 & t = s-1 holds s choose t = s
for s holds (for r holds (s choose r) is Nat)
holds F.i = l choose n) holds Sum F = (n+m) choose (n+1)
for k,n st k <= n holds n choose k >= ((n+1) choose k) / (n+1)
(n choose (k+1))=((n-k)/(k+1))*(n choose k)
((x,y) In_Power n).(k+1)=(n choose k)*(x.^.(n-k))*(y.^.k)

This suggests that there are not many theorems in the library about binomial coefficients, unless
they use some other notation.

As another experiment, we imagined that there might be a theorem something like

i + k < j + k implies i < j

somewhere in the library, and tried to devise an appropriate search. Of course, the variable names,
the direction and strictness of the inequalities, and the spacing might all be different, so a literal
search for this string is not likely to succeed. Ideally, a search might be based on the semantics of
the formulas involved. However, the following simple syntactic search was surprisingly effective:

grep "+.*<.*+.*implies.*<"

This matches lines with the features: plus, less than, plus, implies, less than, in that order and
separated by any characters. The following lists all the matching lines from the extract of all
theorems; the second line is closest to our original target.

x + y <’ +infty implies x <> +infty & y <> +infty
x+z<=y+z implies x <= y
(a+-b<0 or b-a>0 or -a+b>0 or a-e<b+-e or a+-e<b-e or e-a>e-b) implies a<b
a+b<=e+d implies a-e<=d-b
a+b<e+d implies a-e<d-b
(a<0 implies a+b<b & b-a>b) & (a+b<b or b-a>b implies a<0)
(a<=0 implies a+b<=b & b-a>=b) & (a+b<=b or b-a>=b implies a<=0)
K+‘M <‘ K+‘N implies M <‘ N

We concluded that even a simple search tool would be helpful, especially if it could take advan-
tage information about types and semantics. However, we did not continue this line of investigation
because we were reluctant to duplicate the effort of a full parser for Mizar.

2.3 Pascal’s Triangle

We attempted our own proof of the theorem that the sum of row n of Pascal’s Triangle is 2n. In
mathematical notation:

n∑
i=0

(
n

i

)
= 2n.
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reserve i, j, for Nat;
reserve n for natural number;
reserve F for FinSequence of REAL;

theorem Th1:
for n holds

(for F st (len F = n + 1) &
(for i, j st (i in dom F) &

(j = i - 1)
holds
(F.i = n choose j))

holds
Sum F = 2 |^n)

Figure 2: Our Mizar statement of the Pascal Triangle theorem

Our Mizar statement of the theorem is in Figure 2.

We were initially unaware that this theorem is proved as a corollary of Newton’s binomial
theorem, which is the main theorem of Kwiatek’s article [2]. Also, our first guess of the difficulty
of a Mizar proof was a serious underestimate.

Some background may illuminate our Mizar formulation of the theorem. Mizar is based on set
theory; every object in the theory is ultimately a set. The development of the natural numbers,
integers, rationals, reals, and complex numbers is the one familiar to most mathematicians. For
example, 0 is literally the set {} and the natural numbers is literally the set:

{{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}, . . .}

though of course less cumbersome notation is introduced.

Binary relations are sets of ordered pairs, and functions are binary relations with the restriction
that no two pairs have the same first element. The domain of a function F is dom F, and F.i denotes
the value of F on argument i. A finite sequence of reals F is a function from an initial segment of
the positive natural numbers to the real numbers; the cardinality of its domain is len F. The Sum
function returns the sum of a finite sequence of real numbers. Thus, the theorem statement says
that for all natural numbers n, if F is the finite sequence of numbers(

n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)

then the sum of F is 2n.

One complication is that the choose function is defined for natural numbers and the natural
numbers are not closed under subtraction; as a result Mizar’s type system is not happy with the
expression n choose (i - 1). This is why we use the auxiliary variable j in the theorem statement
above. Our experience suggests that a more explicit type system would be quite helpful to the user.
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Our informal proof of the Pascal Triangle theorem is a simple induction on n that relies on
one central lemma (that an entry in row n is the sum of the adjacent two entries in the previous
row) and appropriate manipulation of the summation operator. The central lemma is available in
Kwiatek’s article [2]:

theorem :: NEWTON:32
for s,t st s<t holds

(((t+1) choose (s+1)) = (t choose (s+1)) + (t choose s)
& ((t+1) choose (s+1)) = (t choose s) + (t choose (s+1)));

The remaining work, of splitting off the two end terms, applying the lemma, rearranging the
sum into two sums, shifting indices appropriately, and incorporating the two end terms again, is
relatively straightforward but unexpectedly tedious; it forms the bulk of the three and a half page
proof of Newton’s Binomial Theorem in Kwiatek’s article [2].

The summation operator permits considerable economy of thought and expression in mathe-
matical reasoning. Mathematical concepts and notations have been developed over thousands of
years; it is important to find ways of preserving or enhancing their power in systems designed to
assist a user with mathematical proofs.

Mizar’s proofs are somewhat reminiscent of assembly-language programs: capable of nearly
anything in the right hands, given enough patience and organizational discipline in the management
of low-level detail. However, just as programming was not widely practiced before the advent of
higher-level languages, proof assistants will probably have to support a higher-level approach to
become widely used.

3 Isabelle

Isabelle3 is a proof assistant capable of supporting a variety of logics. We used the system as
specialized for higher order logic (HOL), which has a substantial library of definitions, lemmas,
theorems, and proofs, and a helpful tutorial text [3]. Here is how the main lemma for the Pascal
Triangle theorem appears in the HOL library file Power:

theorem binomial_Suc_Suc:
Suc n choose Suc k = n choose k + (n choose Suc k)

Here binomial_Suc_Suc is the label of the theorem, n and k are natural numbers, and Suc is the
successor operation. Thus, the theorem states that(

n + 1
k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.

3Main website: www.cl.cam.ac.uk/Research/HVG/Isabelle.
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3.1 Proofs in Isabelle

Isabelle is designed to be used interactively in the development of a theory, that is, a related
collection of definitions, lemmas, theorems, and verified proofs. The resulting proofs do not resemble
the current mathematical vernacular. For example, a statement and proof that 1n = 1 for all natural
numbers n look as follows on the page:

lemma power_1: "(1 :: nat)^(n :: nat) = 1";
apply(induct_tac n);
apply(auto);
done;

The type notation (n :: nat) declares that n is of type natural number, which is required in this
case by the overloading of numeric constants and operators. The lines of the proof are directives
to the proof checking system rather than proof steps in the traditional sense. To the human reader
who is somewhat familiar with Isabelle, they convey that the proof is by induction on the variable
n and some automatically discovered steps.

By interactively checking the proof a line at a time, the user can get more information about
it. Perhaps this interactive process is the analog in this setting of reading a proof on paper. We
record the successive steps of the interactive verification:

> lemma "(1 :: nat)^(n :: nat) = 1";
proof (prove): step 0
fixed variables: n
goal (lemma, 1 subgoal):
1 ^ n = 1
1. 1 ^ n = 1

At this point, the system has accepted the statement of the lemma as syntactically correct and set
it up as the only required subgoal.

> apply(induct_tac n);
proof (prove): step 1
fixed variables: n
goal (lemma, 2 subgoals):
1 ^ n = 1
1. 1 ^ 0 = 1
2. !!n. 1 ^ n = 1 ==> 1 ^ Suc n = 1

The induction tactic has used the inductive definition of the natural numbers to replace the previous
subgoal with two new subgoals: the base case (10 = 1) and the inductive step (if 1n = 1 then
1n+1 = 1.)

> apply(auto);
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proof (prove): step 2
fixed variables: n
goal (lemma):
1 ^ n = 1
No subgoals!

The auto tactic has succeeded in proving both subgoals, so no subgoals remain.

> done;
lemma 1 ^ ?n = 1

The final line indicates the end of the proof, and the now verified lemma is restated with a schematic
variable ?n signifying that appropriate substitution instances of the lemma are true. Once a theorem
or lemma is verified, it may be used in subsequent proofs.

While this line by line development conveys some more information about the proof to the user,
it seems that there is no convenient means to investigate the verification found by the auto tactic.4

Of course, the user could attempt a different proof using less powerful individual steps, but it is
tantalizing that the system has found a detailed proof that cannot be inspected.

As in Mizar, the underlying proof framework is natural deduction, which is covered in a chapter
of the tutorial. The preferred style is backward, that is, reducing goals to subgoals until all the
subgoals are trivially satisfied. This direction is perhaps more natural for proof discovery and
informal exposition, but printed mathematical proofs are often presented in forward style, that is,
starting with simple truths and building up to more complex ones. Some system support is offered
for a forward proof style.

3.2 An Isabelle Example

Isabelle/HOL offers direct support for defining and reasoning about functional programs. For
example, here is our recursive definition of a sum operator.

consts sum_start_len :: "nat => nat => (nat => nat) => nat";
primrec
"sum_start_len i 0 f = 0"
"sum_start_len i (Suc n) f = f(i + n) + (sum_start_len i n f)";

This operator takes a starting value i, a length n, and a function f and sums up the n values:

f(i), f(i + 1), . . . , f(i + n− 1).

The following lemma (with its complete proof) states that the sum of the first n odd positive
numbers is n2. In this expression % is the ASCII representation of lambda, so (%i. i + i - 1)
denotes the function that maps i to 2i− 1.

4The tutorial indicates that the steps of the simp tactic can be traced.
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lemma "sum_start_len 1 n (%i. i + i - 1) = n * n";
apply(induct_tac n);
apply(auto);
done;

4 Discussion

Clearly we have only scratched the surface of these two very interesting systems for proof writing
and checking. Below, we summarize several issues uncovered in our initial attempts to use these
systems.

We used both systems in a heavily interactive mode, in part because we were exploring their
capabilities. With Mizar, sufficient familiarity with how the checker works might eventually make
the success or failure of a proposed proof step predictable to the user, removing some of the moti-
vation for interactive use. By contrast, in Isabelle it seems very difficult to predict what subgoals
an application of the built-in tactics simp, auto, or blast will produce from a given goal, making
interactive use essentially unavoidable. In general, the capacity for interactive proof construction
seems desirable, at least for the novice user. Mizar lacks a useful indicator of the current proof
state, which Isabelle supplies in the form of a list of subgoals. A facility like Mizar’s @proof to
indicate to the system to treat an assertion as proved is quite useful in developing and checking
the overall structure of a proof.

The readability of constructed proofs is a very important issue for the human user of a proof
assistant. The design of Mizar is constrained to make proofs that “read” like informal mathematical
proofs on paper. This produces the illusion that Mizar proofs are very similar to informal proofs,
of which the novice user is disabused when attempting to construct Mizar-acceptable proofs from
informal proofs. One thing that detracts from the readability of Mizar proofs is their tendency to
contain a very large number of very small steps. Some facility to view a proof at different levels of
detail would perhaps help this.

Isabelle proofs have the opposite tendency – they are often a very small number of very large
steps, and the very large steps are often “opaque” to the user, in the sense that the user often
cannot effectively resolve the step to the next lower level of detail, an operation for which there is
largely no system support. To augment the bare sequence of directives to the checker in Isabelle, it
helps to add (as comments) the intermediate lists of subgoals generated in the proof. This restores
some of the missing detail, but in general there is no way to resolve the steps into sub-steps. This
task is complicated by the fact that the proof steps found by automatic methods may in general
be unintelligible to a human user. A system like Isabelle also suggests a different interpretation
of “reading” a proof; it may be an interactive process of selectively looking at intermediate goal
states, rather than a line-by-line scanning of a static proof on paper.

It would be very desirable for a proof system to have a simple, powerful and accessible inter-
mediate representation of formulas and partial proofs. Mizar’s representation system requires a lot
of parsing, which seems to have discouraged the development of auxiliary tools for the system. A
clear semantics and explicit type system for the representations used by the system, as well a clear
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account of the capabilities of the checker, would be very desirable. It would be helpful to be able
to control the automatic steps in a flexible way, so that their effective granularity could be varied
for different purposes. Also desirable would be the ability to capture in a relatively natural way
existing mathematical notations, for example, summation, that have been developed and refined
over centuries of use.

For the benefit of novice users, interactive tutorial documentation and sophisticated methods of
searching the libraries for related definitions, theorems, and proofs would be very helpful. Searches
should be possible using both keywords and the semantics of mathematical statements and proofs.

We also note certain pedagogical issues for computer science and other fields. Should we be
teaching our students a standard form of natural deduction, the underlying proof formalization
used in both Mizar and Isabelle? To what extent should students be exposed to proof assistants in
their courses? Such experience could help students develop their own abilities to read and construct
proofs. It could also familiarize them with what is likely to become part of the standard toolkit of
workers in the mathematical sciences. Usability issues would be central to any such effort.
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