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Abstract

We present the Linda Program Builder - a higher-level programming en-
vironment that supports the design and development of parallel software. It
isolates much of the administrative effort in constructing parallel programs, and
maintains a program-describing database. This database feeds information to
the compiler for optimization, to a visualizer for enhanced program visualiza-
tion, and to other tools in the environment. The LPB is a window-oriented,
menu-based, user-friendly system which provides coordination frameworks for
program construction. Most importantly, it represents an alternative approach
to high-level programming languages.
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1 Introduction

The Linda Program Builder (LPB) [ACG91] is a higher-level programming envi-
ronment that aids in the design and development of parallel software. The LPB is
an Epoch-based!, menu-driven, putatively user-friendly system that supports incre-
mental development of explicitly parallel C-Linda programs.

This paper will discuss three major topics: CASE aspects of the LPB, the LPB’s
relationship to the compiler and visualizer, and (potentially most important) the
LPB approach as an alternative to very high level programming languages.

Linda itself has been extensively discussed in previous work, so we will not
describe it here. [CG89) is a representative paper.

2 CASE aspects of the LPB

The LPB is built on top of Epoch running under X-windows. The LPB environment
is menu-driven, but allows the full flexibility of Epoch (Emacs) in editing all files.
Several windows are open at all times. Some offer command menus. Another may
offer a selection of tuples known to the LPB, while an additional window displays
known information on the current tuple selected. Yet another menu lists all open
Linda files and allows point-and-click switching between files. An experienced pro-
grammer may choose to bypass many of these point-and-click facilities. There have
been many template-editor predecessors to the LPB, most notably the Cornell Pro-
gram Synthesizer[RT89a], but on the whole, they impose rigid frameworks which the
programmer is forced to follow. This insistence on following an imposed template
offers guaranteed syntactic correctness, but it limits the flexibility that a creative
programmer needs. The LPB offers similar features, but doesn’t impose them.

The most important features of the LPB are its support of templates and high-
level operations, and its construction of a program database. The LPB’s goal is to
capture organizing strategies for parallel programs and basic coordination frame-
works. The basis for the methodology is presented in [CG90]. It focuses on three
main paradigms known as “specialist”, “result”, and “agenda” parallelism.

'Epoch is a multi-window version of emacs developed by S. Kaplan of the University of Illinois,
Urbana




A template is a program skeleton for a particular paradigm that serves as a
guideline to program construction. The template expands into more detailed code.
A higher level operation allows tuple manipulation at a conceptually higher level
than basic tuple operations. These operations are inserted into the code as buttons
which can be expanded for a view of the implementation, but can also be abstracted
back to a higher level. The program database maintains tuple, function, and higher-
level operation information and is the backbone of the system.

2.1 Templates

Templates are provided and the programmer can choose to follow them all the way
through, but he is free to leave this framework whenever he desires and to return
when necessary. Many templates have already been implemented, but others may
easily be added.

The existing templates follow an incremental approach using buttons to expand
various segments of code. Consider the master-worker template as an example. The
master-worker paradigm is discussed in [ACG91], and we omit details here. When
a master-worker template is chosen from the main menu, a template skeleton is
presented. Figure 1 shows the initial buttons, for example, the “Master routine” and
“Worker routine” buttons. Clicking a button on a template causes it to expand into
more code, which may contain more buttons. Various stages may require further
input, for which the user is prompted either by menus or input windows. The
program grows as more buttons are expanded and more information is obtained
from the user. At certain stages, there may be buttons which cannot be expanded
further until other buttons are expanded first — buttons may be dependent on
information that can only be acquired through the expansion of other buttons.

The user is always free to enter code or comments anywhere within the partially
constructed program. The intention is to restrict the programmer’s activity to parts
of the program that don’t deal explicitly with parallelism.

A master-worker program typically involves task tuples and result tuples. All
tuple operations and the associated variable declarations are automatically gener-
ated according to the particular model chosen. An intermediate stage in program
generation is shown in figure 2.
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2.2 Distributed data structures

Linda programs generally make use of distributed data structures such as distributed
arrays, task bags, shared variables and so on. Many of these can be anticipated
by the coordination-framework templates discussed above. Structures such as task
bags, watermarked bags or distributed queues, to name a few, are often incorporated
into the choices presented during the construction of a program through a template.
But when the case arises where a programmer needs to specify a particular data
structure outside of a specific template, the LPB provides the necessary support.

For example, the LPB has menu options to support creating and manipulating
shared variables and counters in tuple space. Counting semaphores are supported in
a similar manner. The labels of these variables appear in the tuple menu. Picking
a tuple of one of these types will cause the commands menu to change accordingly,
and the information window to display known information on the tuple.

Distributed queues of various kinds are often required in parallel programs. They
may have multiple sources, sinks, or both. The synchronization and handshaking
necessary for coordination among the various sources and sinks can be achieved
through distributed head and tail pointers in tuple space. The LPB provides a
complete set of menu functions to create and manipulate queues. Upon selection
of a create-queue command, a popup menu will offer choices on the various models
available. Once a model has been selected, all the tuples necessary for maintenance
of the queue are automatically generated and initialized. A user is now free to
select menu commands to add to or remove from the queue as desired. All tu-
ple operations, declarations, and additional code are automatically inserted at the
appropriate places.

2.3 Higher level program constructs and abstractions

Certain operations ought to be supported, but not at the level of a full program
template. The LPB supports high-level operations which can be expanded and then
abstracted back again (buttons, on the other hand, can only be expanded). Thus we
can have a higher level construct which is presented to the user as an abstraction. If
the user wants to see the implementation of the higher-level operation, he can choose
to expand it. It can then be abstracted back to the higher level representation which
is more concise and easier to understand.




The abstraction feature is a powerful tool which furnishes the user with a novel
approach to viewing and constructing programs. For top-down program construc-
tion, it presents a high-level view of program structure which can not only be ex-
panded downwards but abstracted back up again to a conceptually more appealing
higher-level format. This allows the programmer to concentrate on hierarchical pro-
gram construction at a high level, and to deal with “blocks” of code represented by
abstractions which together form a larger program.

This is somewhat similar to the Cedar [SZBH86] approach in its Tioga structured
text-editor. Tioga treats documents in a tree-structured manner where each node
is a paragraph or a statement. This hierarchical node structure allows concealing
detail to present a conceptually higher-level view, much as in the LPB.

We give an example in Section 4.

2.4 The program database

The LPB offers features to manipulate basic tuple functions. Variable declarations
and code insertion are automated, as are cross-module propagation of updates to
tuple references when a tuple structure is modified. This is achieved through use of
a program-describing database that the LPB maintains at all times.

Every tuple, function, abstraction, higher level function, or any other crucial
components of the program are entered into the database as they are used. The
database keeps information on a tuple’s label, on the variables used in its fields, the
status of each of the fields, information on the nature of the tuple and its use, and
a record of all the places where references to the tuple exist.

The archive is global across a user’s LPB sessions. It is saved together with the
program files, and automatically loaded when a file is read in.

This database is the backbone of the LPB, maintaining all the information nec-
essary to perform higher level operations and provide user support, eliminating the
need for much memory-work and reducing keystrokes. The stored data supports
automation that can prevent errors. It is also the basis of data that is passed on
to the compiler and visualizer. The LPB’s knowledge of program structure is char-
acteristic of an expert-database approach to intelligent program development, and
expert database heuristics of the sort described in [FG91] will be added eventually.




3 Interfacing to other tools

The topics under this heading are still work in progress, not yet fully implemented.
We briefly describe our plans nonetheless, because of their significance in motivating
the project as a whole.

3.1 The compiler

The Linda pre-compiler parses and analyzes operations on tuples. Given certain
sequences of operations, the pre-compiler may draw certain conclusions about the
intended effects, but (like any compiler) it can rarely infer the user’s intent in spec-
ifying particular sequences of operations. The LPB has superior knowledge in this
regard. Since the program is being constructed through templates or other higher
level conceptual frameworks, the LPB “knows” why the various operations are being
used. For example, the LPB can distinguish between “task” tuples which are used
to describe tasks in a master-worker program, and “result” tuples which hold the
result elements that are passed back to the master. Given a particular distributed
data structure, the LPB knows which tuple operations need to be used to create
and manipulate it. The LPB has a much deeper understanding of data structures
than an analyzer can develop at compile time.

This knowledge can be valuable to a compiler. Given an understanding of what
a series of Linda operations is intended to achieve, the compiler might generate a
semantically equivalent series of operations that are more efficient. A series of Linda
operations is typically carried out as discrete operations over tuple space. In some
cases it will be possible to fuse these operations together and perform a smaller
number of discrete operations over tuple space, saving overhead. Queues are a good
example. To remove an element from the head of a multi-sink queue, three Linda
operations are required (two for atomic update of the pointer tuple, and the third
to remove an element from a queue). The LPB supports queue operations, and it
is therefore aware of intended effects such as “remove an element from the head of
a multi-sink queue.” It can pass on this information to the compiler and indicate
which three operations are intended to achieve that effect. The compiler, in turn,
can make use of this information and fuse these three operations together for a gain
in efficiency.

In general, distributed data structure manipulations are good candidates for op-
timization through fusion. Updating any kind of shared variable or counter typically




requires an in operation to remove the tuple from tuple space, followed by an out
with the updated value. These two operations may be separated by other code, but
the LPB is aware of these operations and their purpose, and can advise the compiler
how to fuse and optimize the operations. In a related case, a shared variable can
typically be updated directly in tuple space without actually being removed and
then returned, as the user’s code must specify (tuples being immutable objects in
logical terms). This is especially significant in the context of distributed memory
machines, where tuple space manipulations are somewhat costlier than on shared
memory machines.

3.2 Program visualization

Our Tuplescope visualizer [BC90] is a graphical monitoring tool that presents a dy-
namic image of an executing Linda program. Tuples are represented on the screen
and their movement to and from tuple space is displayed as the program executes.
The LPB can pass on enough information to Tuplescope to allow a better organi-
zation of the display. Where conventional Tuplescope shows mere processes, our
enhanced Tuplescope may differentiate master and worker processes. Normally, a
counter tuple looks like every other tuple, but with LPB-generated information,
Tuplescope can understand counters: a counter can have its own window with a
displayed value that changes as the counter is updated.

As it 'stands, Tuplescope has no concept of a queue; it regards the various tuples
involved as just that, bare tuples. Once it knows that a queue is being manipulated,
a graphical representation of a queue can be displayed, with head and tail pointers
marked appropriately, and the actual queue clearly visible. This level of enhanced
visualization allows a user to picture his program at a conceptual level closer to his
line of thinking. ‘

The various templates the LPB offers could each have unique representations
in Tuplescope. Piranha programs[BCG*91], for example, all follow a particular
pattern which is similar to general master-worker programs. The LPB is aware of
what constitutes a Piranha program and which process are “feeder” and “piranha”
processes.

3.3 Performance monitor

A performance monitor will make use of information from the LPB as well. De-
pending on which template was used, a performance model is selected and displayed




with the appropriate graphical displays. In conjunction with the LPB, the compiler,
and Tuplescope, this will complete the environment, being useful in later stages of
program development when performance tuning comes into play.

4 The LPB as an alternative to higher-level languages

The methodologies and higher level operations supported by the LPB address an
issue that is wider than CASE for parallelism. LPB-like program builders present
an attractive alternative to very-high-level languages.

Since the late sixties, many researchers have held that programming languages
are too “low level.” High level operations are desirable for ease of programming, for
maintainability, and for quick software development.

The conventional approaches are to add very-high-level features to existing lan-
guages, or to implement completely new languages. The LPB presents a clear alter-
native. Instead of a very high-level language, we can layer a very high-level program
builder over a general-purpose language. The user sees similar advantages in terms
of strong support for high-level models and constructs. But he doesn’t pay the
traditional price in terms of a language that is highly complex (e.g. Ada [Bar80]
or Common Lisp [Jr82] [Jr84]) or restrictive, inflexible or narrow in its range of
applicability (terms in which logic and functional languages, for example, are often
described). The program builder may be very high-level, special-purpose, idiosyn-
cratic — but it may also be changed easily, customized or evolved readily — and
simply bypassed when the very-high-level constructs it supports aren’t the right
ones.

An examination of two different examples in the context of the LPB will illustrate
these points. Consider distributed queues. When the user wants to create a queue
of tuples, he picks the menu option for queue creation. This causes a new popup
menu to appear (Figure 3) which offers a choice of different queue models. Once
a model has been identified, the user is prompted for some initialization data and
the appropriate code is automatically created and inserted. Any further queue
manipulation can now be accomplished through the options in the command menu
that appears when the queue label is selected. Adding to the tail and removing
from the head of the queue are both operations that are supported at this level —
the appropriate code is generated automatically (Figure 4). As we have mentioned,
there are two significant consequences. First, the task of removing the element from
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the queue is simplified, and the programmer specifies it at a “high” conceptual level.
Second, the compiler can make use of the information to optimize the operations.

There is an inevitable question that arises here. If the programmer knows that
he is removing an element from the queue, and the compiler makes use of this infor-
mation, would it not be easier simply to add these higher level features directly to
the base language? Why not extend C-Linda to offer higher-level queue operations,
or throw Linda out and replace it with something “higher level”?

There are several reasons why not. Linda operations were meant to be simple and
powerful. The simplicity of Linda as it stands gives users a flexible base from which
to construct any desired operations. Adding new operations in addition to the old
yields an over-complicated language; allowing new operations to supercede the old
yields an insufficiently powerful one. The LPB consigns high level operations to the
LPB level, general purpose operations to the language level. Note that complexity
is nowhere near as damaging in software like the LPB as it is in the language itself.
If some aspect of the LPB is of no use in some context, programmers don’t have to
learn it and their implementations don’t need to support it. And Linda itself remains
a simple lingua franca for the exchange of source code.

There is a second problem associated with higher-level languages of the kind
described above. Languages must be fairly static. Neither programmers nor imple-
mentors can tolerate rapid or radical change. But programming methodology must
evolve. In a young field like parallel programming, change can be rapid. Program
builders such as the LPB provide a convenient alternative solution. In principle
we would like to revise our language as methodologies become clear to us, with-
out losing compatibility with the rest of the user community. At the same time,
we don’t want a galaxy of constructs that we do not need. If we produce mainly
numerical scientific applications, the very-high-level constructs that are valuable to
(say) graphics or database people may be of no use to us, and we don’t want to
bother with them: don’t want them complicating our language manuals; don’t want
them complicating our compilers. Still, we want to understand, interface to, and
execute graphics and database applications if we need to. All this would appear
to be impossible to achieve within the programming language framework, but the
LPB can support it. The LPB framework can be modified as desired and higher-
level constructs can be added, tested and refined. The end product is Linda code
that is portable and understandable, but the program construction phase offers the
higher-level support that is needed. These operations can be site-specific, making
use of the program-describing database that the LPB maintains. Given a portable
and powerful base language, we can attach a specialized high-level program such as
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the LPB on top to provide a high-level environment of the kind that programmers
have always wanted but rarely obtained.

The second LPB example will address another aspect of this argument. Evidence
suggests that there are cases where a Linda programmer needs to in one of a selection
of tuples. Any one of the selection would do. We refer to this as an or-in, i.e. the
program will in one tuple or another tuple or another one, and so on. This is an
operation which Linda itself does not provide, and yet it is used often enough to be
worth a debate over whether it should be incorporated into the language. Adding it
to the language would involve a significant programming effort, and modification to
the various kernels. The LPB is a convenient forum in which to test this construct.

The LPB implements the or-in function as a higher-level operation. If the user
selects the menu option for an or-in, a menu pops up with a list of the tuples that are
known to the database. The user is free to select which of these tuples will constitute
the or-in. What gets inserted into the code is the higher-level operation. It appears
to be a regular program construct, but the relevant lines in the code are underlined
(Figure 5). The underlining indicates that it is a higher-level operation. Expanding
this abstraction will indicate to the user how this is implemented in Linda code.
The or-in becomes an in of a bit vector to check which tuples may be available.
This is followed by a conditional which checks which bit is on, and based on that,
reads in the appropriate tuple. The bit vector has to be generated whenever one of
the tuples of the or-in is used in an out or eval. Thus, the expansion causes all
relevant references to those tuples in all open modules to be followed by a new out
which puts out a bit vector with the bit corresponding to the out’ed tuple turned
on (Figure 6). If the cursor is placed on the main section of the or-in expansion,
and the abstraction menu item is selected, all the expansion details disappear, and
the abstraction reappears, making the or-in look very much as if it is a part of the
language.

We have thus implemented a proposed language addition in the LPB, and en-
abled programmers to use and test it before it has actually been added to the
language. This allows the operation to run through a trial period before the major
task of adding it to the language is undertaken. Its usage patterns and usefulness
need to be investigated before we commit ourselves to a language change, and the
LPB is the testing medium.

There is one further advantage that the LPB offers over conventional languages
with added features. The graphical user interface provides a level of user-friendliness
that the base language cannot match. In combination with the abstraction facility,
this becomes a powerful tool.
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The disadvantage of the LPB in this context is efficiency. Wiring an operation
into the base language allows the compiler to optimize its support. While the
LPB does not provide that level of optimization, it does provide the compiler with
semantic information that can lead to a different kind of optimization, as discussed in
earlier sections. In combination with the above mentioned advantages, this amounts
to a strong offsetting argument against the efficiency disadvantage.

5 Related work

The LPB’s most important template-based structure editor predecessor is the Cor-
nell Program Synthesizer [RT89b]. Unlike the synthesizer, however, the LPB does
not enforce a rigid framework. Instead, the LPB captures methodologies and sup-
ports them, without imposing a strategy. What the LPB produces is source code,
and the programmer is free to ignore or modify this as desired, a flexibility that is
vitally necessary to any expert programmer.

Extensible parallel programming environments such as SIGMACS [SG91] gener-
ate a program database during compile time that can be used in later modifications
to the program. The LPB, on the other hand, maintains a dynamic program-
describing database that grows as the program is constructed. This allows the
system to maintain semantic as well as syntactic information on the programs being
developed. This information is used for guiding program development, for check-
ing consistency, for documentation purposes, for providing optimizing information
to the compiler [CG91], for benchmarking utilities to visualize performance in the
spirit of [HE91], and for enhancing graphical monitoring.

There is currently much research effort in visualizing the dynamic behavior of
parallel programs. [KC91] is a good example. Since the LPB can convey seman-
tic information to a graphical monitoring tool [BC90], programmers can visualize
dynamic information at a higher abstraction level than would otherwise be possible.

6 Conclusions

There is increasingly widespread agreement that programmers need to write explic-
itly parallel programs. Tools like the LPB are designed to support this in various
ways.
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The LPB is a CASE tool which supports basic tuple operations as well as higher-
level functions, and offers complete templates and program structures. It captures
programming methodologies and guides the user through program development.

Further, the LPB’s program-describing database can supply information to other
tools in the environment, enabling optimization at compile-time, enhanced visual-
ization for monitoring at run-time, and performance monitoring for efficiency.

Most importantly, the LPB is characteristic of a potentially significant trend in
programming language design. It addresses the traditional conflict between keeping
alanguage simple and demanding that it be higher-level. The proposed solution is to
combine a simple, general coordination language with a higher-level, domain-specific
system that provides the power and higher-level abstractions that a programmer can
selectively choose to employ. In sum, we can have our cake and eat it too. If we
can capture the methods and idioms that skilled programmers rely on without com-
plicating the language itself with a galaxy of high-level, special-purpose constructs,
we have a solution to an important problem.
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