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Abstract

Haskell’s type classes permit the definition of overloaded operators in a rigorous and (fairly)
general manner that integrates well with the underlying Hindley-Milner type system. As aresult,
operators that are monomorphic in other typed languages can be given a more general type.
Most notably missing, however, are overloaded functions for data selection and construction.
Such overloaded functions are quite useful, but the current Haskell type system is not expressive
enough to support them.

We introduce the notion of parametric type classes as a significant generalization of Haskell’s
type classes. A parametric type class is a class that has type parameters in addition to the
placeholder variable which is always present in a class declaration. Haskell’s type classes are
special instances of parametric type classes with just a placeholder but no parameters. We
show that this generalization is essential to represent container classes with overloaded data
constructor and selector operations. Furthermore, through a simple encoding scheme, we show
that parametric type classes are able to capture the notion of “type constructor variables”, thus
permitting the definition of overloaded operators such as map.

The underlying type system supporting our proposed generalization is an extension of
Hindley-Milner type system with parametric type classes. The range of type variables are
bounded by constraints. Rules for satisfiability and entailment of these constraints are given
by a context-constrained instance theory that is separate from the inference rules of the type
system. The decoupling of the instance theory from the type inference system makes our sys-
tem more modular than previous work. We prove that the resulting type system is decidable,
and provide an effective type inference algorithm to compute the principal types for well-typed
expressions.




1 Introduction

Haskell’s type classes provide a structured way to introduce overloaded functions, and are perhaps
the most innovative (and somewhat controversial) aspect of the language design [HIW91]. Type
classes permit the definition of overloaded operators in a rigorous and (fairly) general manner that
integrates well with the underlying Hindley-Milner type system. As a result, operators that are
monomorphic in other typed languages can be given a more general type. Examples include the
numeric operators, reading and writing of arbitrary datatypes, and comparison operators such as
equality, ordering, etc.

Haskell’s type classes have proven to be quite useful. Most notably missing, however, are overloaded
functions for data selection and construction. Such overloaded functions are quite useful, but the
current Haskell type system is not expressive enough to support them (of course, no other language
that we know if is capable of supporting them in a type-safe way either).

A Motivating Example

As a simple example, consider the concept of a sequence: a linearly ordered collection of elements,
all of the same type. There are at least two reasonable implementations of sequences, linked lists
and vectors. There is an efficiency tradeoff in choosing one of these representations: lists support
the efficient addition of new elements, whereas vectors support efficient random (including parallel)
access. Currently the choice between representations is made at the programming language level.
Most functional languages provide lists as the “core” data structure (often with special syntax to
support them), relegating arrays to somewhat of a second-class status. Other languages, such as
Sisal and Nial, reverse this choice and provide special syntax for arrays instead of lists (this often
reflects their bias toward parallel and/or scientific computation).

Of course, it is possible to design a language which places equal emphasis on both “container
structures”. However, a naive approach faces the problem that every function on sequences has
to be implemented twice, once for lists and once for arrays. The obvious cure for this name-space
pollution and duplicated code is overloading. In our context, that means specifying the notion of
a sequence as a type class with (at least) lists and vectors as instance types. Using Haskell-like
notation, this would amount to the following declarations: -

class Sequence a s

where cons :: a -> s -> s
nth :: 8 =-> Int -> a
len :: s -> Int

instance Sequence a (List a)
where cons = (:)

nth €D)

len #

instance Sequence a (Vector a)
where cons = vecCons

nth vecNth

len vecLen




This defines the overloaded constructor cons, overloaded indexing selector nth, and a length func-
tion len. (Note the resemblance to a “container class” in ob ject-oriented programming.)

The only problem with this code is that it is not valid Haskell, since Haskell’s type classes are
permitted to constrain only one type, thus ruling out a declaration such as “class Sequence a
s”. In essence, this restriction forces overloaded constructors and selectors to be monomorphic
(which makes them fairly useless).

Even if this restriction did not exist, there is another problem with the current type class mechanism,
which can be demonstrated through the typing of len:

Sequence a s => s -> Int

Even if multi-argument type classes were allowed, this qualified type would still not be valid Haskell
since it is ambiguous: Type variable a occurs in the context (Sequence a s), but not in the type-
part proper (s->Int). ! Ambiguous types need to be rejected, since they have several, possibly
conflicting, implementations.

A related, but harder, problem arises if we extend our example to include an overloaded map
function. Having such a function is attractive, since together with join and filter, it allows
us to generalize (i.e. overload) the notion of a “list comprehension” to include all instances of
Sequence, not just lists. In [CHO92], we elaborate on this, extending it further to comprehensions
for arbitrary instances of class monad, such as bags and lists. This seems quite natural since, after
all, the domain of sets is where the “comprehension” notation came from. However, a problem
becomes evident as soon as we attempt to give a type for map.

map: (Sequence a sa, Sequence b sb) => (a -> b) -> sa -> sb.

This type is too general, since it would admit also implementations that take one sequence type
(e.g. alist) and return another (e.g. a vector). Generality is costly in this context since it again
leads to ambiguity. For instance, the function composition (map f . map g) would be ambiguous;
the type of map g, which does not appear in the type of the enclosing expression, can be either a
list or a vector.

What is needed is some way to specify that map returns the same kind of sequence as its argument,
but with a possibly different element type. A nice way to notate this type would be:

map: Sequence (s a) => (a ->b) ->sa->sb

where s is a variable which ranges over type constructors instead of types. To accommodate this,
Sequence should now be viewed as a type constructor class instead of a type class. However,
because the instance relationships are now expressed at the functor-level, there is the danger (as
has been conjectured in [Lil91]) that second order unification is needed to reconstruct types, thus
rendering the system undecidable.

To solve these problems, we introduce the notion of parametric type classes as a significant gener-
alization of Haskell’s type classes. Parametric type classes can have type arguments in addition to

1Satish Thatte has pointed out that the ambiguity problem can be circumvented in this case by having the len
operation in a different class from the cons and nth operations. This is truein principle, but it would severely restrict
the way operators can be grouped.




the constrained type variable, and thus are able to express classes such as Sequence defined earlier.
Moreover, through a simple encoding scheme, we show that parametric type classes are able to
capture the notion of “type constructor variables,” thus permitting the definition of overloaded
operators such as map. As a matter of fact, parametric type classes are a conservative extension
of Haskell’s type system: If all classes are parameterless, the two systems are equivalent. Most
importantly, we prove that the resulting type system is decidable, and provide an effective type
inference algorithm to compute the principal types for well-typed expressions.

The rest of this report is organized as follows: Section 2 introduces parametric type classes. Sec-
tion 3 presents them formally, in a non-deterministic type system. Section 4 presents an equivalent
syntax-directed system that bridges the gap between the non-deterministic system and a type re-
construction algorithm. Section 5 introduces context-preserving unification and presents such a
unification algorithm to be used in the type inference algorithm. Section 6 presents a simple algo-
rithm to compute principal types for our type system and proves its soundness and completeness.
Section 7 explains when a type scheme is ambiguous and how operators such as map can be typed
in our system. Section 8 describes related work. Section 9 concludes.

2 Parametric Type Classes

A parametric type class is a class that has type parameters in addition to the placeholder vari-
able which is always present in a class declaration. To distinguish between placeholder and type
parameters, we write the placeholder in front of the class, separated by an infix (::). For instance:

class t :: Eq where
class s :: Sequence a where

The first definition introduces a class without parameters; in Haskell this would be written class
Eq t. The second definition defines a type class Sequence with one parameter; this cannot be
expressed in standard Haskell. The infix (::) notation is also used in instance declarations and
contexts. The two instance declarations of Sequence presented in the last section would now be
written:

inst List a :: Sequence a where ..
inst Vector a :: Sequence a where ...
In an instance declaration, of form T :: Sequence a, say, the type T must not be a variable.

Furthermore, if two types T1 and T2 are both declared to be instances of Sequence, then their

top-level type constructors must be different. Thus, the instance declarations given above are both
valid. On the other hand,

inst a :: Sequence (List a)
would violate the first restriction, and

inst List Int :: Sequence Int
inst List Char :: Sequence Char




Type variables a

Type constructors «

Class constructors ¢

Types T u= ()|kr|la|lnxn|n—om

Type schemes o Va:T.o|T

Type classes 5 cT

Class sets T {171,y CnTn} (n > 0, ¢; pairwise disjoint)
Contexts C :u= {a;uTq,...,0quTy} (n>0)

Expressions e u= z|ee|lze|lletz=¢line

Programs p u= classa:ywherez:ocinp

| inst C = r:ywherez=c¢inp

| e

Figure 1: Abstract Syntax of Mini-Haskell+

would violate the second restriction. Effectively, these restrictions ensure that in a proof of an in-
stance relationship every step is determined by the class name and the type in placeholder position.
The class parameter types, on the other hand, depend on the placeholder type.

One consequence of these restrictions is that there is at most one way to deduce that a type is
an instance of a class. This is necessary to guarantee coherence. It is not sufficient, since types
might be ambiguous; see Section 7 for a discussion. Another consequence is that sets of instance
predicates are now subject to a consistency criterion: If we have bothT :: Sequence aandT ::
Sequence b then we must have a = b. Thatis,a = bisa logical consequence of the two instance
predicates and the restrictions on instance declarations. The type reconstruction algorithm enforces
consistency in this situation by unifying a and b.

Enforcing consistency early helps in keeping types small. Otherwise, we could get many superfluous
instance constraints in types. As an example, consider the composition (t1 . t1), where tl is
typed (s :: Sequence a) => s -> s. Without the consistency requirement, the most general
type for the composition would be (s :: Sequence a, s :: Sequence b) => s -> s. Com-
posing t1 n times would yield a type with n Sequence constraints, all but one being superfluous.

3 The Type System of Parametric Classes

This section presents our type system formally. We first define the abstract syntax of classes and
types in the context of a small example language. We then explain formally what it means for a
type to be an instance of a class. Based on these definitions, we define a non-deterministic type
system with the same six rules as in [DM82], but with parametric type classes added. We claim
that, in spite of its added generality, the system is actually simpler than previously published type
systems for standard Haskell.




CHauy (ax{...v...} €C)

CH C'
———— ("inst C' = 74" € Ds)
CH 1y
CH T ve. CH 129,
TN Ty (n>0)
CH 7:{v1y-yYn}
CHnuTy ... CH 1l
1 1 T (nZO)

CH {ruly,...,muls}

Figure 2: Inference Rules for Entailment

Syntax

The example language is a variant of Mini-Haskell [NS91], augmented with parameterized type
classes. Its abstract syntax and types are shown in Figure 1. A parametric type class 7 in this
syntax has the form ¢ 7, where c is a class constructor, corresponding to a class in Haskell, and 7 is
a type. Classes with several parameters are encoded using tuple types, e.g. c (a, B). Parameterless
classes are encoded using the unit type, e.g. Eq ().

The instance relationship between a type and a type class is denoted by an infix (::); the predicate
r'::cT reads 7' is an instance of ¢ 7. We use the same infix notation to stipulate that a type be
an instance of each member of a set of classes. In particular, bound variables in a type scheme are
constrained by a (possibly empty) set of classes. The informal meaning of this is that, in Va::T.o,
a may only be instantiated to types that are instances of every class in I

One simplification with respect to standard Haskell concerns the absence of a hierarchy on classes.
The subclass/superclass relationship is instead modeled by class sets I'. Consider for instance the
class Eq() of equality types in Haskell and its subclass Ord () of ordered types. We can always
represent Ord () as a set of two classes, { Eg (), Ord’ ()}, where Ord’ contains only operations (<, <),
which are defined in Ord but not in Eq. Translating all classes in a program in this way, we end up
with sets over a flat domain of classes. This shows that we can without loss of generality disregard
class hierarchy in the abstract syntax. ‘

Instance Theories

In this subsection, we make precise when a type 7 is an instance of a class set T', a fact which
we will express 7::T. Clearly, the instance relation depends on the instance declarations Ds in a
program. We let these declarations generate a theory whose sentences are instance judgments of
the form C H 7:14. An instance judgment is true in the theory iff it can be deduced using the
inference rules in Figure 2.

Context

In these rules the contezt C is a set of instance assumptions a::T (all a’s in C are disjoint), where
the class set T' is subject to the consistency criterion mentioned in the previous section. When
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convenient, we will also regard a context as a finite mapping from type variables to class sets, i.e.
Ca=Tiff au:T € C. Thus the domain of C, dom(C) , is defined as the set of type variables o
such that @::T € C. As type classes can now contain parameters, we define the region of a context
C,

reg(C)= | fo(Ca)

a€dom(C)

and the closure of C over a set of type variables, A, written C*(A), as the least fixpoint of the
equation

C*(A) = AU C*(reg(Cla))-
Here fv is the standard function that maps every type (scheme) to the set of free type variables
that occur in it. By natural extension, it can be applied to class and set of classes.

We say C) is contained in Cy, written Cy 2 Cy, if dom(Cy) C dom(C) and Cia C Cha for each
a € dom(C;). We write Cy & C; for the disjoint union of two contexts and C\, for restriction of
a context C to all type variables in its domain other than a. As a consequence of the consistency
criterion, the set union of two contexts is not well-defined but for compatible contexs. Two contexts
C; and C; are called compatible, written Cj X Cz, if for any class constructor ¢ and type variable
a, a € dom(Cy) N dom(Cz), we have 7 = 7/ whenever ¢ 7 € G and ¢ 7’ € Ca.

A context C is called closed if C*(dom(C)) = dom(C), or, equivalently, reg(C) C dom(C). A
context C is called acyclic if all the type variables a, a € dom(C), can be topologically sorted
according to the order: a < B if & € fu(Cp). We shall restrict our discussion to only closed acyclic
contexts in the remainder of the report.

Finally, we shall say that an object II is covered by a context C if fo(II) C dom(C).

Constrained Substitution

A substitution is a map from type variables to types. The domain of a substitution S, dom(S), is
the set of type variables a such that Sa # a. The region of a substitution can be defined just as
the region of a context. As usual, the composition of substitutions S and R is denoted by So R, or
simply by juxtaposition SR.

In the following, we shall apply substitutions not only to types, but also to (sets of ) classes and (sets
of) instance predicates. On all of these, substitution is defined pointwise, i.e. it is a homomorphism
on sets, class constructor application and (::). Since a context is a special form of an instance
predicate set, substitutions can be applied to contexts. However, the result of such a substitution
is in general not a context, as the left hand side « of an instance predicate a::T' can be mapped
to a non-variable type. Our typing rules, on the other hand, require contexts instead of general
predicate sets. Thus, we need a means to find a context that is a conservative approximation to a
predicate set. We use the following definitions:

Definition. A constrained substitution is a pair (S, C) where S is a substitution and C is a closed
context such that C = SC.

Definition. A constrained substitution (S, C) preserves a constrained substitution (So, Co) if there
is a substitution R such that S = Ro Sy, C covers RCp, and C H RCy. We write in this case
(S, C) = (So, Co).

It is easy to show that < is a preorder.




Definition. A constrained substitution (S, C) is most general among those constrained substitu-
tions that satisfy some requirement R if (S, C) satisfies R, and, for any (S’, C’) that satisfies R,
(s,¢"h <(S,0).

Definition. A constrained substitution (S, C) is a normalizer of an instance predicate set P if
C H SP.

To ensure the principal type property of our type system with parametric classes, we have to place
the following requirements on the entailment relation H-:

¢ monotonicity: for any contexts C and C’, if C' < C then C H- C'.-

e transitivity under substitution: for any substitution S, contexts C and C’, predicate set
P,if C H SC’ and C' H P then C K SP.

¢ most general normalizers: If a predicate set P has a normalizer then it has a most general
normalizer.

From the viewpoint of type reconstruction, the first two requirements are needed to ensure that once
established entailments are not falsified by later substitutions or additions to contexts. They follow
directly from the inference rules in Figure 2. The last requirement ensures that there is a most
general solution to an entailment constraint. To establish existence of most general normalizers,
we have to place two restrictions on the instance declarations in a program:

(a) There is no instance declaration of the form "inst C' = a::c7.

(b) For every pair of type and class constructor (k, c), there is at most one instance declaration
of the form "inst C = k7'::¢7". Furthermore, 7/ must be the unit type, or a possible empty
tuple of distinct type variables and both dom(C) and fv(r) are contained in fu(7’).

Restriction (a) is part of current Haskell, and restriction (b) is a direct generalization of current
Haskell’s restriction to incorporate parametric type classes.

Theorem 3.1 If the instance declarations Ds of a program satisfy the restrictions (a) and (b),
then H- admits most general normalizers.

Proof: See Section 5. =

Typing Rules

Given an entailment relation H between contexts and instance predicates, we now formalize a
theory of typing judgments. Typing judgments are of the form A,C F e : o, where A is an
assumption set of type predicates z : o (all z disjoint), C is a context, and e is an expression or
a program. A typing judgment A,C + e : o holds in the theory iff it can be deduced using the
inference rules in Figures 3 and 4.

The rules in Figure 3 form a non-deterministic type system for expressions, along the lines of of
the standard Hindley/Milner system [DM82]. One notable difference between this system and the
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(var) ACtz:0 (z:0€A)
A,C + e:Vaul. CHr:T
(V—elim) civan g ’
A,CtFe:lamrT]o
A,Ca:T F e:o
VY —intro d agfvAUre C
( ) A,C F e:VauTl.o (2 f 9 )
ACHF oe:1 ACF €1
(A—elim) e:7' o1 e:r
ACF eé:T
Az:7",C F e:
(A— intro) z:7,C +F e:T
ACF Aze:T' >
ACF €:o Az:o,C F e:T
(let)
A, CFletz=¢ine:r
Figure 3: Typing Rules for Expressions
A.z:Vy, 2{y}.0,C F p:
(class) z:Vp 4Vaz{r}.o p:T
A,C F class a::ywherez:oinp:7
(inst) A, C F z:Na:{y}.o A, CF e:la—To ACF p:T
ins
A,C F inst C' = r'::ywherez =einp: 7

Figure 4: Typing Rules for Declarations

standard Hindley/Milner system is that the bound variable in a type scheme Vo :: T.o can be
instantiated to a type 7 only if we know from the context that 7 ::T (rule V—elim). The second
difference concerns rule (V—intro), where the instance predicate on the generalized variable o is
“discharged” from the context to form the type scheme Va ::T.c. Here fv(A) is the set of type
variables that occur free in A, i.e., |Jfv(o) for each (z:0) € A.

One may obsevre that a signle context C is used in deriving both the type scheme for the let-
definition and the type for the let-body. We could use two different contexts, but the following
lemma justifies our use of a single context C in deriving the type for a let -expression. Let bv(o)
be the set of bounded variables that occur in . We have:

Lemma 3.2 Given a typing judgement A,C’ + e : o and a context C such that C' X C and
dom(C) N bv(a) = B, we can construct another derivation for 4,C F e:o.

Proof: By induction on the structure of A,C’ F e:o. The only nontrivial case is when the last
rule applied is (V—intro).




We have a derivation of the form :

A, C'auT F e: o
A C' F e:VauTl.o!

(a g foAUreg C)

Let 0 = Va:T.o'. It is clear that dom(C.a:T) N bv(a’) = O given dom(C) N bv(c) = . Moreover,
since C! < C, we have C'.a :T < C.a::T. Hence by induction we can constrcut the following
derivation:
A, C'.a:z:T + e: o
A, Ca:T F e:of
A,C F e:Va:T.o

(induction)

(let)

The rules in Figure 4 extend this system from expressions to programs. In rule (class), the over-
loaded identifier z is added to the assumption set. Rule (inst) expresses a compatibility requirement
between an overloaded identifier and its instance expressions. These rules have to be taken in con-
junction with the requirements (a), (b) on instance declarations listed in the last subsection. We
say a program p = Ds e has type scheme o, iff Ds satisfies these requirements and generates an
entailment relation H-, and Ao, {} F p: o, for some given closed initial assumption set Ao.

The Instance Relation and Principal Type Schemes

A useful fact about Hindley/Milner type system is that when an expression e has a type, there is a
principal type scheme which captures the set of all other types derivable for e thruogh the notion
of generic instances. The remainder of this section introduces the definitions of generic instance
and principal type schemes in our system.

Definition. A type scheme ¢’ = Va/ ::T}.7" is a generic instance of a type scheme o = Va;::T'y.7
under a context C, if there exists a substitution S on {a;} such that

1. o} is not free in o,

2. ST =1/, and

3. Cw{a}:T}} H Sa;u:ST;. '

We write in this case, 0/ <¢ o, and we drop the subscript in <¢ if C = {}.

The definiton of <¢ is an extension of the ordering relation defined in [DM82]. The only new
requirement on instance entailment is needed for the extension with parametric type classes. It is
easy to see that < defines a preorder on the set of type schemes.

We obtain a decision procedure for <¢ by performing a match to establish (2), followed by a test
of the validity of (3). We shall see in Section 5 how the latter can be done using the normalization
function defined there.

Two type schemes o and o’ are called syntactically equivalent, written o = o', iff they are instances
of each other, i.e., 0 < ¢’ and ¢/ < 7.

The following properties of (X¢) are easily established:
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Lemma 3.3 Let (0, C;) = gen(r,4,C) and (o', C;) = gen(r,A,C¥ C’). Then o' < o and
o <o o',

Proof: Follows immediately from the definition. ™=

Lemma 3.4 If o/ <¢ 0 and C < C' then ¢/ Z¢ 0.

Proof: Follows immediately from the definition, and noting that H- is monotonic. W

The next lemma shows that the ordering on type schemes is preserved by constrained substitutions.
Lemma 3.5 If 0/ <¢ ¢ and C' K SC then So’ X¢ So.

Proof: Let 0 = Vo; :: T;.7 and o' = Vg; = I‘;- .7'. By definition, there are types 7; forming a
substitution R, R = [a; — 7], such that

1. B; are not free in o,
2. Rr =7/, and
3. Cw{B;:T;} H R{e;=T:}.
Without loss of generality we can assume that neither a; nor §; are involved in S. Hence
So =Va;::ST;.87 and So' =Vp; ::SI‘;.ST’.

Now let R’ = [a; — ST7;]. We show that So’ <¢/ So through R'.
RI(ST) = [a,- — ST;]ST
= S([a;~ milT)
= S7.
Moreover, since C' H- SC and f; are not involved in S, we have
C'y {B; ::SI‘_’i} HS(Cw {ﬂj::F;-}).
By the transitivity under substitution of H- on (3), we get
C'w {B;:: ST} b S(R{e;iuT}).
Using a similar argument, we have
R'({a;:ST;}) = S(R{ei::T;}),

SO

C'¢ {B;::ST;} H R'({e;::ST;}).

Finally, since ; are not involved in § and do not occur free in o, neither will they occur free in
So. This completes the proof. = :
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(var') A CH z:7 (z:0€A, T=Z¢c0)

ACH e:v'>r A CH ¢€:1

A—elim’
(A~ elim’) AC H eé:r
(A= intro) Az:t',C VF e:T
ACH dze:m' >
A C'H €7 T H oe:
(let') O e A CF el (o om = gen(r, 4,07, C" % C

AC H letz=¢ine: 7

Figure 5: Determinstic Typing Rules for Expressions

We can easily extend the definition of instance relation to type asumption sets: For type assumption
sets A’ and A, A’ <¢ A if dom(A') = dom(A) and A'(z) Z¢ A(z) for all z, £ € dom(A).

With the definiton of ordering on type schemes, we can define the notion of principal type schemes
in our system.

Definition. Given A, C, and e, we call o a principal type scheme for e under A and C iff A,C +
e:o ,and for every o/, if A,C + e:0' then ¢/ <¢ 0.

We shall develop an algorithm to compute principal type schemes in the following sections.

4 A Deterministic Type Inference System

We present a deterministic type inference system in this section. Compared to the typing rules in
Section 3, the rules here are so formulated that the typing derivation for a given term e is uniquely
detrmined by the syntactic structure of e, and hence are better suited to use in a type inference
algorithm. We show that the system is equivalent to the previous one in terms of expressiveness and,
in addition, has all the nice properties toward the construction of a type reconstruction algorithm.

Deterministic Typing Rules

The typings rules for the deterministic system are given in Figure 5. The rules V—iniro and V—elim
have been removed and typing judgements are now of the form A,C F e : 7 where T ranges
over the set of type expressions as opposed to type schemes in the typing judgements of Section 3.
Other major differences are that rule (var’) instantiates a type scheme to a type according to the
definition of generic instance and rule (let’) use the generalization function, gen, to introduce type
schemes.

The function gen takes as arguments a type scheme, an assumption set, and a context, and returns
a generalized type scheme and a discharged context. It is defined by
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gen (0,A,C) =
if Ja € dom(C)\(fv AU reg C) then
gen (Va: Ca.o,A, C\y)
else (o, C)

In other words, instance assumptions in the given context, except those constraining type variables
in the assumption set, are discharged and moved to form a more general type scheme in an order
so that type variables are properly quantified. This is formalized in the following lemma:

Lemma 4.1 Let C be a closed and acyclic context that covers both type 7 and type assumption
set A. If gen(t, A, C) = (0, C') where 0 = Va;:: Ca;.7, then {a;} & C*(fv A) = dom(C). In other
words, dom(C') = C*(fv A).

Proof: Follows immediately from gen’s definition. ®m

It is clear that the gen function is derived from the rule (V- intro) used in the non-deterministic
typing system. Hence we have the follwoing lemma:

Lemma 4.2 If A,C F e:7 and (0,C') = gen(7,A,C) then A,C' F e:o0.
Proof: By applying (V—intro) repeatedly on A,C + e:7.

Note that both the (V—intro) rule and the gen function generalize a type scheme by discharging the
instance assumptions contained in the context. Clearly, to derive a more genral typing, one would
presume the context to constrain as many type variables as used in the inference process. This can
always be achieved by assuming an empty class set for those unconstrained type variables and thus
making them part of the context. Consequently, as a convention, in writing 4, C F e: T, weshall
assume that both A and 7 are covered by C.

The following lemma shows that the set of free type variables in the assumption set is, roughly
speaking, preserved under constrained substitution.

Lemma 4.3 Given a type assumption set A, contexts C and D, and a substitution S such that A
is covered by C and SC is covered by D, if D K SC then U{fv(Sa)|a € C*(fv A)} = D*(fv SA).

Proof: We prove U{fv(Sa) | a € C*(fv A)} C D*(fv SA) only; the proof for the other direction is
quite similar and thus omitted.

If o € (C)*(fv A) then a € C*(fv A) for some k, k > 0. Thus an induction on k suffices:
k = 0 : Clearly, if o € fu(A) then fv(Sea) C fu(SA) C D*(fv SA).

k =n+ 1: Suppose that 8 € fv(Ca) for some a € C*(fv A). By induction, fu(Sa) C D*(fv SA).
There are four possibile cases depending on the effects of S on a and f:

o If a ¢ dom(S) and B ¢ dom(S), then clearly § € fv(Da) since D - SC. So, by induction,
we have a € D*(fv SA) and hence fo(SB) C D*(fv SA).
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o If a ¢ dom(S) and B € dom(S), then clearly Da = S(Ca) since D H SC. So, fv(S8) C
fo(Da). By induction, we have a € D*(fv SA) and hence fv(SB) C D*(fv SA).

o If a € dom(S) and 3 ¢ dom(S), then there are two possibile cases according to the structure
of Sa:

- If Sa = p, i.e. fu(Sa) = {p}, then B € fu(Dp) since D H- SC. By induction, p €
D*(fv SA) and hence fu(SB) C D*(fv SA).

— If Sa = (k 7), then from D H SC and our requirement on instance declaration, we have
B € fo(r). But, since fu(Sa) = fu(r), we have fu(r) C D*(fv SA) by induction and
hence fv(SB) € D*(fv SA).

o If @ € dom(S) and 8 € dom(S), then the four possible cases based on the structures of Sa
and S0 can be similarly reasoned as the previous case.

The next two lemmas describe the interaction between the gen function and constrained substitu-
tion. They are evry useful in later proofs.

Lemma 4.4 Let (o, C’) = gen(r, A, C) and (¢, D') = gen(ST,SA, D). If D K- SC then o' <p/ So.

Proof: Let 0 = Va; ::T.7 and o' = Vo ::T}.S7. Now let 3; be new type variables, then
So =Vp;::S[a; = Bi]Ti.S[a; — Bi]r.
To show that o/ <ps So, we choose the substitution R = [8; — Se;]. Thus,
R(S[ai = Bilr) = [Bi > SoilS([ai = Bil7)

= S[Bi — ai]la; — Bi]T
= St

and similarly R(S[a; — B;]T;) = ST;.
Now, the next thing to show is that D' {a}::T}} H- R({B;:: S[e; = B;]T'i}). But since
R({,B;::S[a; = ,3,']1-‘,'}) = {Sa;::SI‘;}
= S{a;:T;},

and D = D'¥ {a} =:T}} by Lemma 4.1, what we need to show is that D H S{e;::T;}. This follows
directly from the given facts that {a;:T;} < C and D K- SC.

Finally, since §; are not free in ¢/, we have ¢/ <p: So. =
9 ) D

The following lemma shows that, under certain conditions, the composition of generalization and
constrained substitution can be commutative.

Lemma 4.5 Let (o, C’) = gen(r, A, C). For any context C” and substitution S such that C"
covers SC’ and C” H- SC’, there exist a substitution R and a context D such that

RA=SA, DHRC, So=0', and D' < C"
where (0/, D') = gen(Rt, RA, D).
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Proof: Let ¢ = Va; :T;.7 and R = S[a; — f;] where 3; are new type variables. From Lemma 4.1,
none of a; occurs in A, so we have RA = SA.

Next, let D = R{a;::T;}# C”|5(sc7). From Lemma 4.1, C = {o;::T; ;} @ C’ and hence RC' = SC'.
Now, since C"” H SC’, it follows that D H- RC.

Third, we shall show that So = ¢’. As f; are new, we have So = Vg, :: R';.R7. Suppose that
o' = Vp; ::T}.R7, we need to show that {8;} = {p;} to complete the proof. Given D’s definition

and the fact that B; are new, it suffices to show that D' = C”| o(scry- This we prove by considering
fv(Sa) for a € dom(C’).

From Lemma 4.1, we know that dom(C') = C*(fv A). Moreover, since D H- RC and RA = 54,
we have fu(Sa) C D*(fv SA) for all a € dom(C’) by Lemma 4.3. In other words, none of the type
variables in fo(SC’) can be generalized in gen(R7, RA,D). Thus, D' = C"|z,(scv) and hence we
have So = ¢’ and D’ < C”. This completes the proof. -®

Equivalence of the two Systems

We now present a number of useful properties of the deterministic type system. They are useful not
only in establishing the congruence of the two type systems, but also in investigating the relation
between the type system and the type reconstruction algorithm.

We begin with the substitution lemma, which assures us that typing derivations are preserved under
constrained substitution.

Lemma 4.6 (Substitution lemma) If A,C +' e:7 and C' H- SC then SA,C' F' e:ST.

Proof: By induction on the structure of the proof A,C ' e:7. The only nontrivial cases are
(var') and (let’).

Case(var’) : We have a derivation of the form
A CH z:17 (z:0€ A, T=Z¢c0)

Without the loss of generality, we assume that S is safe for o. Hence if 0 = Vo, ::T;.7" then
So = Va;:: ST;.St'. Our goal is to find a instantiation substitution J such that J(S7') = S7 and
C'H J{a;::ST;}.

Let I = [a; — 7;] be the instantiation substitution such that 7 = I7' and C K I{a; =T;}. Now

define J = S o I. We first show that J(S7') = S(I7'). This we prove by showing that for each o
occuring 7, J(Sa) = S(1a).

If a is bound in o, i.e., @ = ; for some j, then
J(Sa;) = Ja; = S(1a;j).
Otherwise « is free in o, so
J(Sa) = S(I(Sa)) = §(Sa) = Sa = S(Ia),
since § is safe for a; and e is not in {a;}. Hence J(S7') = ST follows from 7 = I7'.
By a similar argument we can show that J(ST;) = S(IT;). So
J{a;:8T;} = {S(Ia;):: SIT:)} = S(I{ei:T;}).
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Then from C W I{a; :: T;} and C' H SC, we can infer that C’ - S(I{a; :: T;}). Therefore,
ST <1 So through J and hence SA,C’ F z: St.

Case(let’) : We have a derivation of the form

A, C H €:T Az:0,C F e:r’

ACH letz=¢ine: 7

(0’, Cl) = gen(T7 A’ CO)’ Cl = C

and C'H SC.

Clearly, we have C' H- SC}, since C; < C. Now, applying Lemma 4.5 to (o, C1) = gen(r, 4, Co),
C’ and S, we get a substitution R and a context C” such that

RA = SA, C"W RCy, So=0' and C =<’
where (o, C) = gen(Rt, SA, C").

Thus we can construct the derivation

A, G H T , , Az:o,C H e:1 . .
RA,C" 7 o R \nduction) Shz:S0,0 F esr | Lnduction)
SA,C" V' € : Rt (54 = R4) SA.z:0',C' ' e:ST' E‘IS':'): 7

€

SA,C' H letz=¢'ine: ST’

The next two lemmas express a form of monotonicity of typing derivations with respect to the
context and the assumption set. '

Lemma 4.7 If A,C ' e:7and C < C’ then A,C’' V' e:T.
Proof: A straightforward induction on the structure of A,C + e:T.
Lemma 4.8 f A/, C ' e:7 and A’ <¢c A then A,C V' e:7.

Proof: By induction on the structure of A, C ' e:7. The only nontrivial case is (let'):

We have a derivation of the form:

A C'H e Alz:o/,CH e:r
A, CH letz=¢ine:7

(o/,C") = gen(r',A', C"),C" < C

Let 0/ = Vo ::Ti.r and § = [@; — Bi] where Bi are new type variables. Now applying S to
A, C'H €7, weget SA',C F e':S7' where C = SC'. Since none of the a; occurs in A’, this
isequivalent to A, C F' e':S7'.

Next, let D = C\C”. From Lemma 4.1 we know that C' = C" ¥ {a;:T;}. So, D& C =Cy {Bi:
ST;} and hence A’ <pyz A by Lemma 3.4. Furthermore, let (0, C) = gen(S7',A, D ¥ C). Then,
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since none of the §; appear free in A, we have o = Vp;::ST;.Vp; ::T}.S7' where {p; =T} € C. So,
clearly we have ¢/ <¢ o and C < C. Thus we can construct the following derivation

ALC'H e 1
A,DwC V' ¢:87
A Dy C F ¢ :87

A CH letz=¢ine:r

(Lemma 4.7)

Alz:o!,C I e:
(induction) 27 °7

Az:0,C V' e:T

(induction)

(let")

Now we can show that the deterministic system '’ is equivalent to the non-deterministic system
F in the following sense.

First, the deterministic system is sound with respect to the non-deterministic one.
Theorem 4.9 If A,C V' e:r then A,C + e:T.

Proof: By induction on the structure of the proof A,C +' e:7. The only interesting case is (let’):
We have a derivation of the form
AC H €7 Az:0,C FH e:T

A CH letz=¢ine:r

(0,C") = gen(r',4,C"), C"=2C

Without loss of generality, we can assume that dom(C’) N dom(C) = dom(C"), which can be
achieved by a suitable renaming of variables in dom(C). Hence, dom(C) N bv(o) = @ and we can
thus construct the following derivation

AC' H €7

O o (induction)
. - L 4.2
A,C"F o ELemma 3 23 A.z:0,C V' e:t  (induction)
emma 3.

ACtF ée:o Az:0,C F e:m (let)
A CFletz=¢ine:r

Second, for each typing derivation in the non-deterministic system we can always find a derivation in
the deterministic system such that the inferred type scheme, after generalized by the gen function,
is more general than the type scheme determined by the non-deterministic one.

Theorem 4.10 If A,C + e:0 then there is a context C’, and a type 7 such that C' = C,
A,C' H e:r and 0 <¢ o' where (¢, C") = gen(r, A, C").

Proof: By induction on the structure of A,P + e:o.

Case(var) : We have a derivation of the form :

A,CtF z:0 (z:0€A).
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Let 0 = Vo;::T;.7. Define C’ and 7 as follows:
C'=CwS{a;:T;}, 1=87

with S of the form [a; ~— 3;] where B; are new type variables. So, by definition, C' =X C' and
T jcr o. Thus
AC H z:1 (z:0€A, 720 0)

Finally, since C < C', it is clear that o <¢ o' where (o’, C") = gen(r, A, C").

Case(V—elim) : We have a derivation of the form :

A,C F e:VauTl.o CH r:T
A,CF e:larTlo

By induction,
AC' H e:7

for some 7/ and C’, with C < C’, and Va::T.0 <¢ o' where (o', C") = gen(7', A, C'). Using the
hypothesis C H- 7::T' and transitivity of <¢, we have

[ 7lo <¢ Vaul.o <¢ o'
Case(V—intro) : We have a derivation of the form :

A,Ca:T F e:o
A,C F e:Va:uT.o

(a ¢ fo(A)U reg(C))

. By induction,
AC' H e:T
for some 7 and C’, with (C.a:T) < C' and 0 X¢.or 0’ where (o, C") = gen(t, 4, C").

Since a ¢ fu(A)Ureg(C)and (a:T) € C’, we know that (a::T) will be generalized in gen(r, 4, C").
It then follows that Va::T.oc <¢ o’.

Case(\ —elim) : We have a derivation of the form :

ACFe:t>r A, C F €7
AC F ee:1

By induction,
ACL H e:v

for some v and Cy, with C < Cj and 7' — 7 <¢ Ve, ::T;.v where (Vo;:Ti.v, o) = gen(v, A, Cy).
Therefore there is a substitution R, R = [a; > 7], such that

CH R{a;=:T;} and Rv=71'->Tr.

From Lemma 4.1, we know that dom(Cp) = (C1)*(fv A) = C*(fv A). So, Co X C and hence
C ¥ RC;. Then using Lemma 4.6 on R, we can get a derivation

RA,C V' e:Rv.
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Since none of a; appear in A this is equivalent to

A,CH et >,

By a similar argument, we get C H- SD; and
A, CH €:7
for some context D; and substitution S, § = [8; — v;].

Therefore, we have A, C +' ee’ : 7. Finally, if gen(r, A, C) = (¢’, C') then obviously 7 ¢ o'

Case(\—intro) : We have a derivation of the form :

Az:7',CF e:T
A,C F dze:17' >

By induction,
Az:7,Ci H e:v

for some v and C’, with C < C; and T <¢ Ve, ::T;.v where (Va; ::T.v, Gp) = gen(v,A.z:7', Cy).
Therefore, there is a substitution S, S = [a; — 7], such that

CH S{a;:T;} and Sv=r.

From C =< Cj, we know that C X Cp. Furthermore, as C; = {a;::T;} & Cp by Lemma 4.1, we have
C U Cy H SCy. Then, using Lemma 4.6 on S, we get a derivation

S(A.z:7"),CUCy ' e: S
Since none of o; appears in A.z:7' this is equivalent to
Az: 7', CUC +H e:T.

Hence
A, CUCy H dze:T' >,
Finally, if gen(r’ — 7,4, CU Gp) = (o', C') then obviously 7/ — 7 <¢ o'
Case(let) : We have a derivation of the form :
ACF e:o Az:0,C F e:T
ACFletz=¢ine:r

We shall assume that 4, o, and 7 are all covered by C, for we can always place an empty class set
on unconstrained type variables.

By induction,
A, Cl o€ T1

for some 71 and C; with C < C; and 0 <¢ o1 where (01, C{) = gen(m1, A, C1). Again, by induction,

Az:0,Co F e:my
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for some 73 and C; with C < C; and 7 <¢ 03 where (a2, C3) = gen(m, A.z:0, ().

Without loss of generality, we can assume that dom(C;) N dom(Cz) = dom(C). This can always be
achieved by a suitable renaming of the variables in C;. Now, from Lemma 4.1, we have dom(Cj) =
(C1)*(fv A). But obviously (C1)*(fv A) = C*(fv A). Hence C] < C3. So we can construct the
following derivation

Az:0,C H e:m
AC H e:n Az:01,C H e:my

A G Hletz=¢ine:n

(Lemma 4.8)
(let")

Finally, we need to show that if gen(mz, A, C3) = (o3, C3) then 7 <¢ 03. Note that since fv(c) C
dom(C) and C < Cj, we have fv(c) C dom(C,) and hence 03 <¢ 03 by Lemma 3.3. Thus, 7 ¢ 03
follows immediately.

This completes the proof. =

5 Context-Preserving Unification

Type reconstruction usually relies on unification to compute most general types. One consequence
of rule (V—elim) is that the well-known syntactic unification algorithm of Robinson [Rob65] cannot
be used since not every substitution of variables to types satisfies the given instance constraints.
Nipkow and Snelting have shown that order-sorted unification can be used for reconstructing of
types in Haskell [NS91], but it is not clear how to extend their result to parametric type classes.
We show in this section that algorithm mgu, shown in Figure 6, yields the most general context-
preserving unifier of two types.

Function mgu takes two types and returns a transformer on constrained substitutions. The appli-
cation mgu 1 72 (So, Co) returns a most general constrained substitution that unifies the types
and 7, and preserves (Sp, Cp), if such a substitution exists. The algorithm is similar to the one of
Robinson, except for the case mgu a 7 (So, Cp), where a may be substituted to 7 only if 7 can
be shown to be an instance of Copc. This constraint translates to an application of the subsidary
function mgn to 7 and Co.

The call mgn 7 T (S, C) computes a most general (.S, C'}-preserving normalizer of {7::T'}, provided
one exists. This is accomplished by normalizing 7 ::y for each v € T through mgn'/. In mgn’, it
may in turn call mgu 7 7' to solve a subproblem of the form C.a::({c7'} UT') b a::cT. The
unification is required since all class constructors in a class set are pairwise disjoint. Thus, the
above entailment has 7 = 7/ as a logical consequence. The other call to mgu is made when solving
‘the entailment C H- k7' :: c7. Since there is at most one instance declaration for each («,c)
pair, it either fails or finds the proper instance declaration. To instantiate the instance declaration
*C' = k7'::c7", the standard pattern matching operation match is first called. It takes the pair
of types (/,7') and returns a most general substitution S’ such that S't" = 7/. Then, due to the
at-most-one restriction, it calls mgu to unify 7 and S’'7. Finally, it instantiates the declared context
C' and recursively normalize it.

Note that in an instance declaration, "C’ = & T':c77, the type 7! is either a unit type or a tuple of
distinct type variables. Besides, both fu(7) and dom(C") are contained in fo(7'). Thus, it suffices
to use the standard matching operation to instantiate an instance declaration, and no new type
variables will be introduced in the normalization process.
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mgu:T—>17—->SxC—->S5%xC
mgn:To>I->SxC->S5xC

mgu 11 72 (S, C) = mgu' (S11) (S72) (S, C)

mgu' a o = dsxc

mgu' a1 (5,C) | agfo(r) = mgnt(Ca)(far t]oS,[ar T]C\s)
mgu' 7 a (S, C) = mguar(S,C)

mgu’ () () = idsxc

mgu' kT k7' (S,C) = mgut 7 (5,C)

mgu' (11 X T2) (1] X T3) = (mgum )0 (mgu 2 73)

mgu' (= 1) (f{ > 713) = (mgum 7i)o(mgur;m)

mgn 7 {} = idsxc

mgn 7 {7} (5, C) = mgn' (57) (57)(S,C)

mgn 7 (I'1 UT2) = (mgnT1Ty)o(mgn7Ty)

mgn’ a ct (S, C) = if 3r'.(c7' € Ca) then mgu 7 7' (S, C)

else (S, Cla— CaU{cT}])
mgn’' k7' ¢ (S,C) | 3"inst C' = k7'::c7' € Ds
= let S’ = match ¥ '
(8",C") = mgurt (5'7)(5,C)
{n:Ty,...,mmulp} = §'C’
in (mgn 7 T1 (... (mgn 1, Ts (5", C"))))

(and similarly for —, X, ())

Figure 6: Unification and Normalization Algorithms

Consequently, we have the following lemma:

Lemma 5.1 Given a constrained substitution (S, C) and types 71, 7 such that both S7; and S
are covered by C, if mgu 7, 7o (S, C) = (S', C’), then there exists a substitution R such that
S’ = Ro S and both dom(R) and reg(R) are contained in C*(fv(S71) U fu(S72)).

Moreover, in the course of computing the unifier, whenever the substitution is extended with
[+~ 7] in mgu’, the context constraints on a are discharged from C and all occurrences of o in C
are replaced by 7. By doing so we obtain the following lemma:

Lemma 5.2 Given a constrained substitution (5, C) and types 71, 72 such that both S, and S7;
are covered by C, if mgu 7 7 (S, C) = (8', C'), then (5, C’) is a constrained substitution and
dom(8') \ dom(S) = dom(C) \ dom(C").

In order to prove the termination of the unification algorithm, we need to define some metric
functions on sets and types. We write |s| for the number of elements in set s, and, overloading the
| | operation, define || to be the number of symbols in 7 :
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la] =1

10I=1

k7| =1+]|r|

I(rx )l =1+|r|+]|7|
I(r =) =1+|7|+]|7

We now proceed to prove that call to mgu with proper arguments will always terminate.

Lemma 5.3 (Termination of mgu) Given a constrained substitution (S, C), types 7; and 73 such
that both $7; and S7; are covered by C, then mgu 71 7 (5, C) either fails or terminates.

Proof: We can think of the four functions, mgu, mgu’, mgn, mgn', as mutually recursively defined
over the tuple (71,72, 73,7, T, (S, C)), where 7; and 7, are paired with mgu and mgu’, 75 and T
with mgn, and 73 and vy with mgn’. The termination of them can be proved by defining a degree
over the tuple:

(Idom(C)|, |73l IT1, |72l |7il)-
We order degrees lexicographically and argue that each recursive call reduces the degree.

From Lemma 5.2, we know that C is never enlarged by these functions and whenever S is ex-
tended, C will be correspondingly diminished. This fact explains why we put |dom(C)| as the first
component of the degree and is crucial to the following argument.

Calls to mgu are unfolded to calls to mgu’. In mgu’, the recursive call to mgn diminishes |dom(C)|
and the recursive calls to mgu are supplied with subcomponents of 7;, 7 and a possibly diminished
C. For instance, the call mgu’ (1, X 72) (1 X 74) will be expanded to (mgu 7y 1) o (mgu T T3).
Then, we could get from mgu 7, 74 (S, C) some (S’, C’) such that |S'ry| > |(71 X 72)| when unfolding
mgu 7, 7, (5',C'). In that case, however, we would have |dom(C’)| < |dom(C)| by Lemma 5.2
and hence the degree would still be reduced. So we know that the degree is reduced in each case.

Function mgn recursively calls itself with a smaller class set and calls mgn’ only when a singleton
class set is reached. In mgn/, the calls to mgu are unfolded, and, from the above argument for mgu’,
we know that the degree will be reduced. Moreover, in recursively normailzing the context of an
instance declaration, the series of recursive calls to mgn are passed the subcomponents of 73 and a
possibly diminished C, thus the degree will be reduced as the normalization process proceeds.

Since there is no infinite decreasing sequence of tuples of natural number, it follows that mgu 71 7 (.S, C)
either terminates or fails. ™

Lemma 5.4 (Soundness of mgu and mgn)

1. If mgn 73T (S, C) = (S, C’) then (5',C") < (5,C) and C'H §'(73::T).
2. If mgu 74 72 (S, C) = (5, C’) then S'ry = §'rp and (57, C’) X (S5, C).

Proof: We use induction on the degree of the parameters.
If |[dom(C)| = 0 then there is no type variable involved and so the lemma is vacuously true.

We now proceed to show that the lemma is also true for |dom(C)| = n + 1.
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1. mgn3 T (S,C):

Induction base (S73 = a), consider mgn a T (S, C), a € dom(C) :

(a) T = {} : Obvious.
(b) Consider mgn’ a (c7) (S, C). There are two possibilities:
i. 3r'.(cm' € Ca):
We unfold the call mgu 7 7/ (S, C). The interesting cases are:
A 7=0:
Let (S, C") = mgn 7' (CB) ([8 — 7] 0 S,[B + 7']C\g). Then, by induction on
|dom( C\s)| we get

C'H (R o([B+ 7])C\g, and C'H S'(r'::(CB))

where §" = R' o ([8 — 7] 0 §). But, since $'8 = R'r’ and §'(CB) = R'(CB), by
combining the above two entailments, we get C' H- (R’ o [8 > 7'])C and hence
(8", C") < (S, C). Moreover, since a € dom(C), we have C'# S'(a:Ca).
Hence from (c7') € Ca and §'(c7) = §'(c7') it is clear that C' H- §'(73:: 7).
B.T=mxmand =7 XT3
Let (S', C') = mgu 73 7 (S, C). Then, by induction on |7| and || using (2),
we get
C'H R'C and S'rp=S'm

where S’ = R' 0 S. Now consider the second recursive call mgu 7 71 (5', C’):
If ' = S then C' = C by Lemma 5.2. So, again, by induction on || and ||
using (2), let (8", C") = mgu 1y 71 (§', C'), then

C"H# R"(R'C) and S"(11 x 1) = S"(re X 13)

where S” = R" 0 §', then By an argument similar to the one used in the pre-
vious case, we can easily show that C” H- §”(73:: c¢7). Otherwise, we have
|dom(C")| < |dom(C)| by Lemma 5.2 and hence we can get the same result by
induction on |dom(C)| using (2).
ii. Otherwise it is clear that (S, Cla — Ca U {c 7}]) satisfies the requirement.
(c) T =T UT; : By a straightforward induction on I and possibly |dom(C)|.

Induction step (573 = k'), Consider mgn’ (k') T (S, C).

(a) T = {} : Obvious.

(b) T = {(c7)}: Consider mgn' (k7') (c 7) (S, C). Unfolding the call to mgu, and by a
similar inductive argument used in the above, we have (5", C") < (S, C) and §"r =
$"(S'%). Then, since for all i, || < | 7| and [dom(C")| < |dom(C)|, we can get the
result by a series of straightforward induction.

(c) T =T; UTy : By a straightforward induction on I' and possibly |dom(C)|.

2. mgu 1, 73 (S, C): By a similar induction, and using (1).
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Lemma 5.5 (Completeness of mgu and mgn)

1. Given any constrained substitution (5, C), if (5, C) < (S, C)and S = Sf"g,_then mgu 71 72 (S, C)
computes a constrained substitution (S’,C’), with S’ = S’/ and (5,C) X (5,C') <
(s, C).

2. Given any constrained substitution (S, C), if (§,C) < (S,C) and C H S(73 :: T), then
mgn 73 T (5, C) computes a constrained substitution (', C’), with C'H S'(73::T) and
(S,C)=<(5,C")<(S5,0).

Proof: We use induction on the degree of the parameters.
If |dom(C)| = 0, then there is no type variable involved and so the lemma is vacuously true.

We now proceed to to show that the lemma is also true for |dom(C)| = n + 1.

1. mgu 7, 72 (S, C) : By induction on |S73| and |S7|.
(a) mgu' a T (S,C):

Since S unifies a and 7, we can write S = Ro ([a — 7] 0 S). Also, from the assumption
(S,C) < (S, C), we know that
CH R(r::Ca) and C H R([a— 7]C\e).

Now let (57,C') = mgn 7 (Ca) ([a — 1] 0 S,[a —» 7]C\y). Then, by induction on
|dom(C)| using (2), we get

(5,0) 2 (8, C) 2 (la 1]0 S, [am 7]C\a)

where S’ = R' o ([a — 7] 0 .S5). To complete the proof in this case, we need to show
that C’ H- R'(r :: Ca). But this follows directly from (1) of Lemma 5.4. So, we have
C'H (R'o[a~ 7])C and hence (S, C) < (5',C") X (S, C).

(b) mgu' (k 11) (k 72) (S, C): By a straightforward induction.
(c) mgu' (11 X 12) (11 x 73) (S, C) : By a straightforward induction.
2. mgn3 T (5,C):

Induction base (573 = a): Consider mgn a T (S, C):

(a) T'={} : Obvious.

(b) Consider mgn' a (c T) (S, C). There are two possibilities:

i. 3r'.(c " € Ca):
We unfold the call mgu 7 7/ (S, C). The interesting cases are:

e T=p:
In order to induction on |dom(C')|, we need to verify that

(8,C) 2 (B~ 0 8,[8~ 7']C\g) and C K §(r':: CB).
Suppose that S = R o S, then, from the assumptions, we have

C W R(a:cp) and CH RC.
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tp (z,4,5,0C) = inst (S(4z),S,C)

tp (61 e, A, S, C) = let (Tl,Sl, C) =tp (el,A,S, C)
(72,52, C3) = tp (e2, 4,51, C1)
a a fresh type variable
(S3,C3) = mgu Tt (12 = a) (S, Cr.a::{})
in (S30t, 53, C3)

tp (\z.e,4,5,C) = let a a fresh type variable
(r1,5,C1) = tp(e1,Az:0,5,C.au:{})
in (S0 — 11,51, C1)
let (11,51, C1) = tp (e, 4,85,C)
(0,C2) = tpgen (11,514, C1, C)
in tp (e, A.z:0,51, C2)

tp (let z = e; in 2,4, 5, C)

where

inst (Va::T'0,5,C) let 8 a fresh type variable

in inst (e~ B] 0,5, C.6:T)

inst (T,S,C) = (T,S,C)
tpgen (o, A, C, C") = if 3o € dom(C)\(fv(A) U reg(C)U dom(C’))then
tpgen (Va:: Ca.o, A, C\o, C')
else (0,C)

Figure 7: Type Reconstruction Algorithm

6 Type Reconstruction

This section discusses type reconstruction. Having developed the unification algorithm needed
for parametric type classes, we can proceed to present a type reconstruction algorithm, and state
its soundness and completeness with respect to the inference rules given in Section 3 using those
rules in Section 4 and the equivalence result established therein. As a corollary of these results,
we obtain a prinicpal type scheme property of our system analogous to the one in [DM82]. The
type reconstruction algorithm has been implemented in the Yale Haskell compiler. Its size and
complexity compare favorably to the type reconstruction parts of our prior Haskell compiler.

An algorithm for type reconstruction is shown in Figure 7.2 Function tp takes as arguments an
expression, an assumption set, and an initial constrained substitution, and returns a type and a final
constrained substitution. The function is straightforwardly extended to programs. The remainder
of this section establishes the correspondence between tp and the type system of Section 4 and,
thereby, that of Section 3.

We need the following lemmas to establish the soundness and completeness of our algorithm. We

2This is actually a simplification of the real algorithm becuase we can get a cyclic context after the call to unification
function and thus violate our restriction on contexts. So what is missing here is a clique-detection algorithm, which
is simply a variant of occur checking. We omit it here for simplicity.
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Now, since we know that (c¢7') € Ca and C H R(a :: ¢ 7'), then, due to
our requirements on instance declarations, we have R3 = Rr'. Moreover, as
B € dom(C), we have C H R(B:: CB). It then follows that C H S(r':: CB).
Now let R = R o[ + 7']. Then

S=Ro([f~ 7]08) and CH R([B+~ '1C\p).

In other words, o

(S, C) 2 ([B 70 8,[8+ T']C\p)-
Next, let (S, C") = mgn 7' (CB) ([8 — 7']0S,[B — 7']C\p). and §" = R'o([B —
7'] 0 §). Then by induction on |dom(C)|, we get

(5,0)<(8,C"), C'H (R o[B— 7'))C\g, and C'H S'(r'::CP).
But 5’8 = S't', so
C'H (R'o[f—T])C.

Hence (5, C') < (S, C)and C'H R'(a::(c B)).

erT=nxnad =1 X7 o
Note that if § = Ro § then RT = R7’, since C H R(a:(c 7)) and (¢ ') € Co.
Hence the result follows from a straightforward induction using 1.

ii. Otherwise it is clear that (S, C[a — CaU {c 7}]) satisfies the requirement.

(c) T =Ty UT;: By a straightforward induction on |T'| and possibly |dom(C)|.
Induction step (S73 = k 7'): Consider mgn' (k ') T' (S5, C).

(a) T = {} : Obvious.

(b) T = {(c7)}: Consider mgn’ (k') (¢ T) (S, C).
Note that if § = Ro S then RT = R(S'F) since C H R((x ') ::(c 7)), " inst C' =
k7 :cF' € Ds,and 8’ = match 7 7'. Thus, by a similar inductive argument for
mgu 7 (S'7) (S, C) using 1, we get (5,C) < (S",C") X (S,C) and §"'1 = §"(5'F).
Then since for all 4, |7!| < |« /| and |dom(C")| < |dom(C)|, we can get the result by a
straightforward induction.

(¢) T =T UT; : By a straightforward induction.
]

Based on these lemmas, we have the following theorem for our unification algorithm.

Theorem 5.6 Given a constrained substitution (Sp, Cp) and types 71, 72, if there is a (So, Co)-
preserving unifier of 7; and 7, then mgu 71 72 (So, Co) Teturns a most general such unifier. If there
is no such unifier then mgu 7 72 (Sp, Co) fails in a finite number of steps.
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begin by showing that ¢p is indeed a constrained substitution transformer.

Lemma 6.1 Given a constrained substitution (S, C), an expression e, and type assumption set
A such that SA is covered by C, if tp(e, A, S,C) = (1,5, C’), then (§',C") is a constrained
substitution and S’ = R o S for some substitution R.

Proof: By a straightforward induction, and using Lemma 5.1 and Lemma 52. =

Hence we shall often omit the requirement of constrained substitution from now on when writing
tp(e, A, S, C).

One may notice that we have used a new generalization function in dealing with let-expression.
The reason for doing so can be stated as follows. Recall the typing rule (let’) presented in Section
4. There are two contexts used in the antecedent part of that rule : one for deriving the type of
the let-definition and one for the type of the let-body. But only the second one appears in the
conclusion part and it is those instance assumptions contained in the first one that are generalized
by the gen function. While in ¢p, we maintain a single context and pass it through the whole
algorithm. If we were to use the gen function in the let -expression in tp we would overgeneralize
those instance assumptions generated in the previous stages and passed to tp as part of the initial
context.

To avoid such overgeneralization, we need to confine the domain of generalization to only those
instance assumptions generated while reconstructing the type of the let-definition. The new gener-
alization function, tpgen, compared to gen, takes an extra context parameter, C', whose instance
assumptions will be excluded from generalization. Then, in the algorithm, when doing generaliza-
tion, we pass the initial context to tpgen as the second context argument to restrict the domain of
generalization. Hence only those newly generated instance assumptions will be generalized.

The following lemma shows that the context is preserved during the type reconstruction process
and thus justifies our scheme.

Lemma 6.2 Given a constrained substitution (S, C), an expression e, and type assumption set A
such that SA is covered by C, if tp(e, 4, S, C) = (1,5, C') then (5, C') X (S, C).

Proof: By induction on the structure of e, but we need some stronger induction hypothesis. Let
S’ = Ro S. The induction hypothesis is:

1. dom(C) C dom(S") & dom(C").

fo(r) C dom(C") and hence (C")*(fo T) C dom(C").

. fo(5'A) C dom(C") and hence (C")*(fv §'A) C dom(C").
. RC is covered by C'.

If p € dom(C)\ C*(fv SA) then p € dom(C")\(C')*(fv S'A), but p ¢ dom(R), p € (C')*(fv 1)
and p ¢ (C')"(reg R).

6. (S',C") < (S,C).

oos N
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Case e = z : Suppose that z:0 € A and S is safe for 0. Let 0 = Vo, ::T; 7/ and B; be new type
variables. We have

tp(z,A,S5,C) = inst(S(Az),S,C)
= inst(Va;:ST;.57,5,C)
= (J(ST),S,Cu¥ ()

where J = [a; — ;] and Co = {B::: J(ST;)}
So, 7= J(S7"), 8" =S5, C'= CW Cy, and R = id. Therefore

1. Obvious.
fo(r) C fo(So)u{B:}
2. C fu(SA)U{B:}
C dom(C").
3. Obvious.
4. Obvious.
5. Obvious.
6. Obvious.

Case e = \z.¢’ : By a straightforward induction.

Case e = eje; : We have

tp (e1 2,4,5,C) = let(m,5,C) = tp(e1,4,5,C)
(12,52, C3) = tp (e, A, 51, Ch)
a a fresh type variable
(S3,C5) = mgu 1y (12 — ) (52, Cr.a:{})
in (S3¢, 3, C3)

Now in order to use the lemmas for the unification algorithm, we need to show that fv(Sym) U
fv(Se72) C dom(Cy). From the induction hypothesis of (2), we have fv(1) C dom(Cy) and fo(ry) C
dom(C3). But, since both (.51, C1) and (.2, C;) are constrained substitution, we know that S;m = n
and S,7 = 73, and hence it suffices to look into fu(R,71) only where S; = Ry 0 Si.

Consider type variable 3, 8 € fu(r1). By the induction hypothesis of (6), we know that C; H- Ry C;.
Thus, if 8 € (C1)*(fv S14) then fu(R28) C (Cy)*(fv S2A) according to Lemma 4.3, and hence
fu(R28) C dom(C,) by the induction hypothesis of (3). Otherwise, we have ¢ dom(R;) according
to the induction hypothesis of (5) and hence 8 € dom(C;) by the induction hypothesis of 1.
Therefore fv(S,m)U fu(S272) C dom(C2) and hence (C)*(fv(S2m1)U fu(S272)) C dom(C;) since C;

is closed.

Let S = Ry 08, 53 = Ry 057, and S3 = R3 0.S;. We continue our proof:
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. By induction,

dom(C) C dom S;¥Wdom C; C dom S;® dom C,

From Lemma 5.2, dom(Cs.a :: {}) \ dom(C3) = dom(Rs3). Thus, dom(Sz2) ¥ dom(C;) C
dom(S3) W dom(C3), and hence dom(C) C dom(S3) ¥ dom(Cs).

. We know that 7 = Ssa. If @ € dom(R3) then, from Lemma 5.1, we know that reg(R3) C
dom(Cz), so fu(Ssa) C dom(C3;). Moreover, from Lemma 5.2, dom(Cy.a::{})\ dom(Cs) =
dom(Rs3). But, since dom(R3) N reg(R3) = 0, so we have fv(S3a) C dom(Cs). Otherwise,
a ¢ dom(R3) and fv(S3a) = a. Hence a € dom(C3) as dom(Cy.a::{})\ dom(C3) = dom(R3).

. By induction, (C5)(fv S2A) C dom(C2). From Lemma 5.1, reg(R3) C dom(Cy.c:: {}), and
hence fv(S34) C dom(Cy.a:: {}). Moreover, from Lemma 5.2, we know that dom(C; « ::
{}) \ dom(Rs3) = dom(Cs). But, since none of the variable in dom(R3) occurs in fv(S34), we
have fv(S3A4) C dom(C3) and hence (C3)*(fv S34) C dom(C3) as Cjs is closed.

. By induction,

fo(R1C) C dom(Cy) and fu(R2Cy) C dom(Cy).

So we have fu(R2R;C) C dom(C;). Moreover, from Lemma 5.1 and Lemma 5.2, we know
that

dom(R3), reg(R3) C dom(Cy.a::{}) and dom(Ci.a:::{})\ dom(C3) = dom(R3).
But since dom(R3) N reg(R3) = @, it then follows that fu(RzR2R;1 C') C dom(C3).

. For any p, p € dom(C)\ C*(fv SA), we have, by induction, p € dom(C3) \ (C2)*(fv S24), but
p & dom(Ry) U (C1)*(fv 1) U (C1)*(reg R1) and p & dom(Ry) U (Co)*(fv 72) U (C2)*(reg R2).
Next, from Lemma 5.1, dom(Rs) U reg(R3) C (C2)*(fv Ram1) U (C3)(fv 12) U {a}. So, we
have p ¢ dom(R3) U fu(T) U reg(R3) where 7 = Sza. Moreover, from Lemma 5.2, dom(C;.a::
{}) \ dom(C3) = dom(R3). In other words, p € dom(C3), but p ¢ fv(S34). Now, since
dom(C5) C dom(C,), clearly we have p € dom(C3) \ (C3)*(fv S3A), but p ¢ dom(R3) U
(Cs)*(fo T) U (C3)*(reg Rs).

Finally, R = R3o R0 R;. It follows from the argument above that p ¢ dom(R)U(C3)*(fv 7)U
(C3)*(reg R).

. By a straightforward induction, and using Lemma 5.4.

Case e = (let z = ¢; in e;) : we have

tp(letz =¢ ine,A,5,C) = let(n,5,C) = tp(e1,4,5,C)
(0, Cy) = tpgen (11,514, Cy, C)
(12,52, C5) = tp (e, A.z:0, 51, C2)
in (72,52, C3)

By the induction hypothesis of (3), (C1)*(fv S14) € dom(C;). To do induction on the second
recursive call, we need to show that (C2)*(fv S1(A.z:0)) C dom(C;). Suppose that ¢ = Vo ::
T';.71. Then we have dom(C) \ dom(C) = {e;}, fv(o) C (CY)(fv S1A), and none of the a; can
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occur in (Cp)*(fv S1A4) according to tpgen’s definition. So, fv(Si(A.z:0)) C dom(C;) and hence
(CH(fv S1(A.z:0)) C dom(Cy).

Let S; = Ry 0 S and S; = R; 0 5;. We continue the proof:

. By induction, dom(C) C dom($1) W dom(C)) and dom(C3) C dom(S;) ¥ dom(C3). To

complete the proof, it suffices to show that dom(C) C dom(S;)® dom(C3). But, since none
of the a; occurs in dom(C), this is obviously true. Hence dom(C) C dom(S;) & dom(C3)
follows directly by induction on the second recursive call.

. By a straightforward induction.
. By a straightforward induction.

. By induction, fu(R;1C) C dom(C)) and fu(R2C;) C dom(C3). To completethe proof, it

suffices to show that none of the a; occurs in fu(R; C); this in turn can be shown by considering
fo(Rye) for o € dom(C): If a € C*(fv SA), then, from Lemma 4.3, fo(R1a) C (C1)*(fv 514)
and hence none of the a; occurs in fo(R;a) in this case. Otherwise, a ¢ dom(R;) according
to the induction hypothesis of (5) and hence Rja = a. But, since none of the a; occurs
in dom(C), we know that a@ # a;, for all 7. Therefore, fu(R;C) C dom(C3), and hence
f’U(Rle C) g dom( C3)

. For any p, p € dom(C)\ C*(fv SA), we have, by induction, p € dom(Cy)\ (C1)*(fv S14), but

p & dom(Ry) U (C1)*(fv 71)U(C1)*(reg R1). By the definition of tpgen, we have p € dom(C3)
and dom(C;) C dom(C)). Thus, p € dom(C3) \ (C2)*(fv S1A) and the result follows directly
by induction on the second recursive call.

. By induction, (S1,C1) <X (S5, C) and (S, C3) <X S1,C2). To complete the proof we need

to show (S1, C2) < (S, C). By an argument similar to the one used in (4), we know that
none of the o; occurs in R;C. So, (S1,C2) X (5, C) and C5 covers Ry R, C. It then follows
immediately that (S, C3) <X (S, C).

Now we can proceed to prove the soundness of our algorithm.

Theorem 6.3 If tp(e, A,5,C)=(7,5,C’) then S’A,C" F e:T.

Proof: By induction on the structure of e.

Case e = z : Suppose that z:0 € A and S is safe for . Let ¢ = Vo; ::T; 7/ and f3; be new type
variables. We have

tp(z,A,5,C) = 1inst(S(Az),S,C)
inst(Va;:: ST;.57', S, C)
= (J(S7),S,Cw¥ ()

where J = [a; — B3] and Gy = {B;::J(ST;)}
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Finally, it is clear that ¢ <¢, & by Lemma 3.3 and Lemma 3.4. Then, from C3 H Ry C,, we have,
by Lemma 3.5, R0 <¢, R28. But S0 = R0, hence S0 ¢, o'. Therefore, we can construct the
following derivation

S1A,Ci H e :n
R(SlA), C' I'" € RT]
S2A,C' H e : Ry

(Lemma 4.6)

S2A.7:50,C3 H e
(Lemma 4.5) 2020 s T G

SeA.z:0',C3 H ex: 1y

S2A,C3 H letz=eine: 7

(Lemma 4.8)
(let"

This completes the proof. =
Together with Theorem 4.9, we have the following soundness result.

Corollary 6.4 (Soundness of tp) If tp(e, A, 5, C) = (7,5, C’) then S'4,C" + e:T.

Ultimately, we will state and prove that ¢p is able to compute the most general derivable typing
for a given term.

Theorem 6.5 Suppose that $’A,C’ + e : 7" and (5',C’') % (S0, Co). Then tp(e, A, So, Co)
succeeds with (7,5, C), and there is a substitution R such that

1. S’ = RS, except on new type variables of tp(e, A4, So, Co),
2. C'H RC, and
3. ' = Rr.

Proof: Let Ry be the substitution such that S’ = Rg 0 Sy and C' H RoCp. We prove this theorem,
again, by induction on the structure of $'4,C’ V' e: 7'

Case(var') : We have a derivation of the form :

S'A,C'H z:7 (z:0€A, T <o S0).
Without loss of generality, we can assume that variables in o have been suitably renamed so that
no name clash will occur in the following proof. Let ¢ = Va; ::T';.v. Then S'c = Ve = S'T;.S'v.

As 7' <1 S'0, there are types 7; such that
[ai — 7)(Sv) =71 and C'H {rizf[a;— 7](ST:)}
On the other hand, let 3; be new type variables, we have
tp(z, A, So, Co) = ([a; = Bi](Sov), Sos Co ¥ C1)

where Cy = {B;::[a; — B:](Sol;)}. In other words, T = [a; = Bi](Sov), S = So, and C =Gy C.

Now let R = [8; — 7i]Ro. Then, clearly S’ = RS except on the new type variables §;. Moreover,
we have
Rr = ([B:i — 7i]Ro)[ei = Bi]Sov
([8; = Tilla; = Bi])(RoSo)v  (Ro safe for ;)
[a; — 7]SY
/

=T
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So, 7= J(S7'), S’ = S,and C’' = C¥ Gy. Clearly, T <¢r §'0 and hence
S'A,C'" H z:7

using (var’) rule.

Case € = e;e; : We have

tp (e1 €2,4,5,C) = let(r,5,C1) = tp(e1,4,5,C)
(Tg, Sz, Cz) = tp (ez,A, Sl, C])
o a fresh type variable
(S3,C3) = mgu T (12 = @) (82, Co.ai:{})
in (S301, S3, C3)

By induction,
S1A,Ci H e:m and S:A4,C H ez

Let S] = Rl (¢} S, S2 = R2 [} Sl, 53 = R2 [¢] 52. From Lemma 6.2, we have Cl H- RIC, Cg H- RzCl.
Furthermore, we know that Szmy = S3(72 — a) and Cs H R3(Ch.a::{}) from Lemma 5.4. Hence
Cs W R3(R,C;) and we can construct the following derivation

S14,C FH e :m
S3A4,C3 H e : 8371y
S34,C3 F' e : 831 — S3a

S34,C3 H €163 : Sz

(Lemma 4.6)

S2A4,Cy H ey
(Lemma 5.4) 2 72 ARL

S3A, Cg ! € S3T2

(Lemma 4.6)
(A—elim')

Case e = Az.¢': By a straightforward induction.

Case e = (let z = e; in e;) : We have:

tp(let z =€ in e, 4,5,C) = let(n,5,C) = tp (e, 4,5, C)
(0, C2) = tpgen (11,54, C1,C)
(Tz, S2, C3) =1p (ez,A.z:a, 51, Cz)
in (1‘2, Sz, 03)

By induction
SiA,Ci H e :1 and S$A.2:50,C3 F e: 7
We shall combine these two derivations using Lemma 4.5 to complete the proof.

First, let (7, C) = gen(r1, 514, C1). Then, & = Va; ::T;.0 for some 1, 1 > 0, and {o; =T} C G
according to the definitions of gen and tpgen. Next, let S = R;05;. From Lemma 6.2, C3 H R C;.
Hence Cs H R;C, since C < C,. Now, applying Lemma 4.5 to &, R;, and Cs, we get a substitution
R and a context C’ such that

R(S1A) = Ry(514), C'H RCy, R =o' and C" <X C3

where (o/, C") = gen(Rm1, Ry(S14), C).
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and RC = RyCo ¥ RC;. But, since

RC, = [Bi— 7i]Ro({Bi::[ai — Bi]Sols})
= {riz[a;~ 7]RoSol'i}
= {n:zla; - 1](STH}
so we have C' H RC as well.
Case(\—elim') : We have a derivation of the form :
S'A,C'FH e:m— T S'A,C'"FH e:mn
S'A,C' H e1e3: 72

By induction, tp(e;, 4, So, Co) = (v1, S1, C1) succeeds and there is a substitution R; such that
1. S’ = R, 51, except on Ay,
2. C'H R,C;, and .
3. Ryjvy =11 — 7o

where A; is the set of new type variables of tp(e;, 4, So, Co)-

Clearly, S’A = (R;51)A and hence (R;151)A,C' ' e : 1. So, by induction , to(ez, A, 51, C1) =
(va, Sa, C2) succeeds and there is a substitution Rz such that

1. R1S1 = R,S5;, except on Ay,
2. C'H RyC,, and
3. Rovg = 11.
where A, is the set new type variables of tp(ez, 4, S1, C1).
Now let @ be a new variable and R’ = [a — 73] R2S;. Then, clearly
S' = R' except on A; U AU {a}

and
C' i [a— 7)Ra(Co.c: {}).

In addition, we show that (R’, C') is indeed a (S;, Cy.:: {})-preserving unifier of v; and v; — o

R'vy = (R2S2)n (a new)
= (R1S1)n (R151 = R252 ezcept on Ay)
= Rin (51G = Gy)
= 1 — T2
= Ryvy — R'a
= Rz(Ssz) g R'a (SzCz = Cz)
= R'va— Ra (o new)
= R'(r,—a)
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Thus, from Theorem 5.6, mgu vy (v — @) (S2, Co.:: {}) succeeds with (.53, C3) such that Sz =
S3(vy — @), R’ = Ro S3 and C'H RCj; for some substitution R.

Since mgu does not introduce any new type variables, we know that A; U Ay U {a} is the set of
new type variables of tp(e; ez, A, So, Cp). Therefore, tp(ejeq, A, So, Co) succeeds with (S3a, S3, C3)
and R is the required substitution:

1. 8’ = RS3, except on new type variables of tp(e;ez, 4, So, Co),
2. C'¥ R(C3, and
3. 2 = R'a = R(S3a).

Case(\ —intro’) : We have a derivation of the form :

S'Az:7,C'" FH e:1
S'A,C'"H Aze:1' > T

Let a be a new type variable and S” = [a@ — 7] 0 S’. Then, S"(A.z:a),C’ F e : 7 and
(8", C") < (S0, Co-a::{}). So, by induction, tp(e,A.z:a, Sy, Co.a::{}) = (11,5, C) succeeds and
there is a substitution R such that

1. S§” = RS except on the new type variables of tp(e, A.z:a, So, Co.a::{}),
2. C'H RC, and
3. RT1 =T.

Therefore, tp(Az.e, A, So, Co) succeeds with (Sa — 7,5, C) and R is the required substitution :

1. §' = RS except on new type variables of tp(Az.e, A, S, Co)
2. C'H RC, and

3. R(Sa—n)=S"a-»1=1">T1.

Case(let’) : We have a derivation of the form:

S'A,D F e :7m S'Az:0',C' FH e:7
S'A,C' H letz=¢1iney: 7y

where (0", C”) = gen(rl, S’A’D) and C" < C'.

We cannot do a direct induction on S’A,D +' e : 7y, since this would require (5’, D) < (So, Co),
which is not true in general. But, we note that (S, DUC") can suit our purpose here. Without loss of
generality, we can assume that dom(D)Ndom(C') = dom(C"). So, D X C’, and if ¢/ = Vo; ::T;.my
then DU C' = {a;::T;} ¥ C' and hence (S, DU C") X (So, Co)-

Moreover, S’A,DU C' ' e : 71 by Lemma 4.7. So, by indution, tp(e;, 4, S0, Co) = (1,51, C1)
succeeds and there is a substitution R; such that

1. S’ = Ry 51 except on new type variables of tp(e;, A, So, Co),
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2. DU CIH" R]C}, a.nd

3. R1V1 =Ti.

Hence S'A = (R151)A and (R151)A.z:0',C’ +' e, : 7. Now, in order to apply the induction
hypothesis to the second recursive call, we need to show that

C’H“R]Cz and 0” jcl R]O’

where (o, Cy) = tpgen(v1, 514, Cy, Cp).

Since (DU C')\ C' = {a;::T';}, we can prove C' H- R; C; by showing that none of the a; occurs in
Ry Cy; this in turn can be proved by analyzing fv(Rya) for a € dom(C;). There are two possibie
cases according to tpgen’s definition:

e ac (C)(fv S14) : As DU C' H R,Cy, we have fu(Ria) C (D U C')*(fv R151A) by
Lemma 4.3. But, since R;$14 = S'A and (D U C')*(fv S’A) = D*(fv S’A), so we have
fo(Ria) C D*(fv S’A) and hence none of the a; occurs in fo(Rja) in this case.

o a € (dom(Cy)Ndom(Cy))\(C1)*(fv S1A) : Since a is not a new type variable of tp(e;, 4, So, Co),
R1 510 = S'a. Moreover, as a € dom(Cy), from (1) of Lemma 6.2, we have o ¢ dom(S)).
But, S’ = RySo, so fu(Ria) = fo(R1S1@2) = fu(Roa). Finally, from C’ covers RyCp and
C' B Ry Cy, it follows that fu(Rya) C dom(C’) and hence none of the a; occurs in fu(R;a)
in this case, either.

To show that ¢’ <¢r Ryo, we first define (&, C) = gen(r1,S'A, DU C"). Then, clearly ¢’ <o/ & and
C < C'. Next, let (3, C) = gen(v1, 514, Cy). We observe that R; is the substitution that relates
these two generalization. So, from Lemma 4.4, we have ¢ <z R;G and hence <o+ R15. Finally,
note that & <¢, o according to their definitions. So, from C’' H R;C,, we have R1& <o/ Ryo by
Lemma 3.5, and hence o’/ < Ryo by the transitivity of <.

Now we can proceed to the second recursive call to tp. By hypothesis, S’A.z:0', C' F' e, : 1y, but
S'A.z:d’ = RiS1A.z:0' X¢r RiS1A.z:Ryo = R1S51(A.z:0),

so R1S1(A.z:0),C' F e : 7 by Lemma 4.8. Hence by induction, tp(ez, A.z : 0,51, C,) =
(v2, Sz, C3) succeeds and there is a substitution R, such that

1. R;151 = Ry.S5; except on new type variables of tp(ez, 4, 51, C2),
2. C'H RyC3, and

3. T = R2V2.

Therefore, tp(let z = ejin ey, 4, Sp, Co) succeeds with (12,52, C3) and R is the required substitu-
tion since S’ = R3S, except on new type variables of tp(let z = e;in e;, 4, Sy, Cp).
This completes the proof. m

Together with Theorem 4.10, we have the completeness result.
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Corollary 6.6 (Completeness of tp) Suppose that $'4,C’' + e: o' and (5, C') X (So, Co). Then
tp(e, A, So, Co) succeeds with (7,5, C), and there is a substitution R such that

1. S’ = RS except on the new type variables of ¢p(e, 4, So, Co), and

2. 0’ <¢' Ro
where (o, C) = gen(r, SA, C).

Proof: By Theorem 4.10, S’A,C; F' e : v for some context C; that C' X C; and some type v
such that o' <¢r oy where (01, C}) = gen(v,S'A, C1). Now, since (5',C") < (So, Co), we have
(§',C1) =< (So,Co). Therefore, by Theorem 6.5, if tp(e, 4, So, Co) = (7,5, C), then there is a
substitution R such that

1. S’ = RS except on new type variables of tp(e, 4, Sp, Co),
2. Ci H+ RC, and
3. v=RrT.

Clearly, S’A = SA. Now let (o, C) = gen(r,SA, C). Then, applying Lemma 4.4 on R, we get
o1 X¢; Ro. But C|{ X C',so o' X¢' Ro by Lemma 3.4. ®

As a corollary, we have the following result for principal type schemes.

Corollary 6.7 Suppose that dom(Cp) = (Co)*(fv SoA) and tp(e, A, So, Co) = (7,5, C). Then o is
a principal type scheme for e under SA and C’ where (o, C’) = gen(r, SA, C)

Proof: If tp(e, A, So, Co) = (1,5, C) then SA,C + e : 1 by Theorem 6.3 and Theorem 4.9. Now,
since (o, C') = gen(r, SA, C), we have SA, C' F e : o by Lemma 4.2. Moreover, from Lemma 6.2,
we have (S5, C) < (So, Co). In other words, S = RoSp and C H Ro (o for some substitution Ro.
So, in order to apply Corollary 6.6, we need to show that (S, C’") < (So, Cp). From Lemma 4.1, we
have dom(C") = C*(fv SA). So, by Lemma 4.3, we have fo(Roa) C dom(C’) for all & € dom((y),
and hence C’ H- RyCy. Therefore, (S5, C’) X (So, Co)-

Now, suppose that SA,C’ F e : o' for some type scheme ¢’. By Corollary 6.6, there is a
substitution R such that

1. S = RS except on new type variables of tp(e, A, So, Co) and
2. o/ <¢' Ro.
Furthermore, from Lemma 4.3, we know that U{fv(Sa) | @ € (Co)*(fv SoA)} = C*(fv SA). Hence

type variables in C*(fv SA) are unchanged by R because of (1). Now, since fu(o) C C*(fv SA), we
have Ro = o. It then follows that o is a principal type scheme for e under SA and C'. =
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7 Ambiguity Revisited

As we have seen in the introduction, parametric type classes share with standard type classes the
problem that type schemes might be ambiguous.

Definition. Given a type scheme ¢ = Va; :T;.7, let C, = {a; ::T;} be the generic context of o
and 7, = 7 be the type proper of o. Conversely, if C = {a;::T;} and C covers 7 then we shall
write < C,T > for the type scheme Va;::T';.r formed from C and 7.

Definition. A generic type variable a in a type scheme o = Ve ::Ty.7 is (weakly) ambiguous if
(1) C, o # 0, and (2) a € C;(fv 7).

Ambiguous type variables pose an implementation problem. The usual approach to implement
overloading polymorphism is to pass extra dictionary arguments for every type class in the context
of a function signature. Since the constraints on ambiguous variables are non-empty (1), dictionaries
need to be passed. But since the ambiguous variable does not occur free in the type (2), it is never
instantiated, hence we do not know which dictionaries to pass. Seen from another perspective, any
dictionary of an appropriate instance type would do, but we have a problem of coherence: There
are several implementations of an expression with possibly different semantics [Jon92a).

The problem is avoided by requiring that the programmer disambiguate expressions if needed, by
using explicit type signatures. Conceptually, the ambiguity check takes place after type recon-
struction; would it be part of type reconstruction then the principal type property would be lost.
In a way, the ambiguity problem shows that sometimes reconstructed types are too general. Ev-
ery ambiguous type has a substitution instance which is unambiguous (just instantiate ambiguous
variables). The trouble is that there is not always a most general, unambiguous type.

Compared to multi-argument type classes, our type system often produces types with less ambiguity.
Consider:

len :: (sa :: Sequence a) => sa -> Int

Seen as a multi-argument type class, a would be ambiguous, since it occurs in a predicate but not
in the type itself. Seen as a parametric type class, however, a is not ambiguous: Although it does

not occur in the type, it both unconstrained and dependent on sa through (sa :: Sequence a).
Hence both (1) and (2) fail.

Ambiguity problems can be further reduced by making use of the following observation: Because
of restriction (b) in Section 3, the top-level type comstructor of a type uniquely determines the
dictionary that needs to be passed. Hence, if two types have the same top-level type constructor
(but possibly different type arguments), their dictionaries share the same data constructor (but have
possibly different parameters). We can recognize equality of top-level type constructors statically,
using the following technique:

We introduce a special “root” class TC, with one type parameter but no operations. Every type
is an instance of TC by virtue of the following instance declaration (which can be thought of being
implicitly generated for every type & 7).

inst kK 7:: TC (x ())
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Effectively, TC is used to “isolate” the top-level type constructor of a type. That is, if two types
are related by a TC constraint, we know that they have the same top-level type constructor. The
two types are then called similar:

Definition. Given a context C, let similarityin C, (~¢), be the smallest transitive and symmetric
relation such that C H 7y :: TC 15 implies 4 ~¢ T2.

TC is treated like every other type class during type reconstruction. It is treated specially in the
ambiguity check, allowing us to strengthen the ambiguity criterion:

Definition. A generic type variable  in a type scheme o is strongly ambiguous if o is weakly
ambiguous in o, and, for every type 7, @ ~¢, T implies that 7 is a strongly ambiguous type
variable in o.

The TC technique enables us to type map precisely>

map :Va.Vb.Vt.Vsa::{Sequence a, TC t}.Vsb::{Sequence b, TC t}.(a — b) — sa — sb
This states that sa and sb are instance types of Sequence with element types a and b, and that sa
and sb share the same type constructor.

The knowledge that sa and sb have the same type constructor is initially on the meta-level, derived
from the form of the compiler-generated instance declarations. We can formalize it in the type
system as follows:

Definition. A type scheme o = Va; :: ;.7 is in reduced form if none of the I'; contains a class
TC (k T), for arbitrary constructor « and type 7. We use og for type schemes in reduced form.

Definition. Two type schemes oy, 05 are equivalent under a context C, 01 ~¢ 09, iff for all
reduced type schemes op,
OorR23c01 & ORZC 02

We extend the definition of generic instance to include equivalence: A type scheme o, is a generic
instance of a type scheme oy under a context C if there is a type scheme o’ s.t. 07 ~¢ o', and
o' <¢ o3 according to the definition of <¢ in Section 3. This stronger notion of generic instance
is important to check user-defined type signatures.

Example: After substituting List a for sa, the type signature of map would become:
Vsb:: {Sequence b, TC (List ())}.(a — b) — List a — sb
The usual definition of map for lists, on the other hand, would have type:
(a > b) — List a — List b

Equivalence is necessesary to verify that the first type is an instance of the second.

Without loss of generality, we shall assume that all type schemes are closed and thus drop the
subscript in ~¢ in the following discussion.

In order to handle the extended notion of generic instance, we introduce the function r to rewrite
a type scheme into a more ’reduced’, but equivalent one.

3Previously, it has been conjectured that this required second-order unification.
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r(o) = let (S, C) = reduce(C,)
in < C,S(15) >
where reduce (C) =
if 3(a:={TC (k())}UT) € C then
let 3 a fresh type variable
in mgu a (kB) (id, C\g.a:T.5::{})
else (id, C)

As might be expected, the convention on class TC enables us to reduce o by properly instantiating
o and normalizing its generic context. Furthermore, the set of reduced generic instances of o is
preserved by r, as formalized in the following lemma:

Lemma 7.1 0 ~ r(0).

Proof: Let o' = r(c). We prove that for all reduced type schemes o, if ogp < o then og < o'. The
converse part follows immediately from the definition of <.

By the definition of <X, C,; H- SoCy and 7,5, = SoT, for some substitution So. In particular, for
(a:{TC (k())}UT) € C,, we have Cop H So(a::{TC (k())}UT). So, So = S o [a — k] for
some type v and substitution S’ according to our convention on class TC.

Next, let 3 be a new type variable and § = §’[3 — v][a — & B]. Then § = Sy except on §. More-
over, we have Sa = S(k ) and (S, Cop) = (id, Co\a.a::T.B::{}). So, if mgu a (kB) (id, Co\a-a::
I.8:{}) = (8, C), then, by Lemma 5.5, § = §” 0 § and Cyp, H- S§"C for some substitution S”.
But C,» = C and 7,» = S7,. So, 7,5 = ST, = 5”7+ and hence op =< o. =m

Moreover, the two notions of equivalent coincide for reduced type schemes:
Lemma 7.2 For any two reduced type schemes og and o%, og = 0% iff or ~ oj.
Proof: Follows immediately from their definitions. =

Now, let 7*(c) be the reduced type scheme obtained by repeatedly applying r to 0. With the above
two lemmas, we can easily prove the following theorem:

Theorem 7.3 For any two type schemes oy and o3, 01 ~ 03 iff r*(01) = r*(o2).
Proof: We prove the “if” part; the proof for the converse part is similar and thus omitted.
By Lemma 7.1, r*(01) ~ 0y and o3 ~ r*(a2). So, r*(01) =~ r*(02) and hence r*(o1) = r*(o3) by

Lemma 7.2. =

Consequently, by repeatedly applying r to rewrite type schemes to their reduced forms, we get a
decision procedure for the extended generic instance relation.
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8 Related Work

Wadler and Blott [WB89)] introduced type classes and presented an extension of the Hindley-Milner
type system that incorporates them. They proposed a new form of type, called a predicated type,
to specify the types of overloaded functions. A quite similar notion was used under the name
of category in the Scratchpad II system for symbolic computation [JT81]. Also related are Kaes’
work on parametric overloading [Kae88], F-bounded polymorphism in object-oriented programming
[CCH*89], and [Rou90]. The type class idea was quickly taken up in the design of Haskell. Its
theoretical foundation, however, took some time to develop. The initial approach of [WB89] encoded
Haskell’s source-level syntax in a type system that was more powerful than Haskell itself, since it
could accommodate classes over multiple types. This increased expressiveness can, however, lead
to undecidability, as has been investigated by Volpano and Smith [VS91]. Indeed, the system
published in [WB89] is apparently undecidable.

The source-level syntax of Haskell, on the other hand, has a sufficient number of static constraints
to guarantee decidability. This was shown in [NS91], where Nipkow and Snelting modeled type
classes in a three-level system of values, types, and partially ordered sorts. In their system, classes
correspond to sorts and types are sorted according the class hierarchy. Order-sorted unification
[MGS89] is used to resolve overloading in type reconstruction. The use of an order-sorted approach
is mathematically elegant, yet we argue that the ordering relation between classes is a syntactic
mechanism and thus not necessary for developing a type system for type classes. Furthermore, it
is not obvious how to extend their system to incorporate our proposed extensions.

Work was also done to extend the type class concept to predicates over multiple types. Volpano
and Smith [VS91] looked into modifications of the original system in [WB89] to ensure decidability
of type reconstruction and to get a sharper notion of well-typed expressions. Jones [Jon91, Jon92b]
gave a general framework for qualified types. His use of predicate sets is at first sight quite similar to
our context-constrained instance theory. The main difference between the two approaches lies in our
use of normal forms (Jones does not address this issue) and our distinction between constrained
and dependent variables. This distinction allows us to solve the ambiguity problems previously
encountered in definitions of container classes. Recently, based on the notion of constrained types,
Kaes [Kae92] presented a generic inference system of which overloading and subtyping are special
instances.

9 Conclusion

We have proposed a generalization of Haskell’s type classes to support container classes with
overloaded data constructors and selectors. The underlying type system is an extension of the
Hindley-Milner type system with parametric type classes. This extension preserves two important
properties of the original system, namely decidable typability and principal types. Its type scheme
uses bounded quantification whose introduction and elimination depend on a separate context-
constrained instance theory. The decoupling of the instance theory from the type inference system
makes our system more modular than previous work. We believe that the gained modularity can
also be a great aid to implementors.

Compared to other approaches, our type system follows closest in spirit to the design of Haskell’s
type classes. Indeed, the use of normalized context has its root in the source-level syntax of Haskell.
The instant normalization of context constraints matches well with the C'— T rule stated in the
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Haskell report, which requires that a C' — T instance declaration for class C and type T appear
either in the module in which C is declared or in the module in which T is declared. From a
pragmatic viewpoint, the C'— T rule is a reasonable requirement for systems supporting separate
compilation to handle globally overloaded operators. But for type systems with general predicate
sets like qualified types or constrained types, it seems difficult to find such a proper rule for them
without being overly restrictive.

On the other hand, we associate context constraints with individual quantified type variables in
forming a type scheme. By doing so, we have restricted the expressiveness of our system. For
instance, we exclude cylic contezts from our discussion. Therefore, in the future, we plan to
investigate the feasibility of having a context set in our type scheme.
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