A class of algorithms is introduced for the rapid numerical application of a class of linear
operators to arbitrary vectors. Previously published schemes of this type utilize detailed analyt-
ical information about the operators being applied, and are specific to extremely narrow classes
of matrices. In contrast, the methods presented here are based on the recently developed theory
of wavelets, and are applicable to all Calderon-Zygmund operators. The algorithms of this paper
require order O(n) or O(n - log(n)) operations to apply an n X n matrix to a vector (depending
on the particular operator and the version of the algorithm being used), and our numerical experi-
ments indicate that many previously intractable problems become manageable with the techniques
presented here.
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I Introduction

The purpose of this paper is to introduce a class of numerical algorithms designed for rapid
application of dense matrices (or integral operators) to vectors. As is well-known, applying
directly a dense N x N— matrix to a vector requires roughly N2 operations, and this simple
fact is a cause of serious difficulties encountered in large-scale computations. For example,
the main reason for the limited use of integral equations as a numerical tool in large-scale
computations is that they normally lead to dense systems of linear algebraic equations, and the
latter have to be solved, either directly or iteratively. Most iterative methods for the solution of
systems of linear equations involve the application of the matrix of the system to a sequence of
recursively generated vectors, which tends to be prohibitively expensive for large-scale problems.
The situation is even worse if a direct solver for the linear system is used, since such solvers
normally require O(NN3) operations. As a result, in most areas of computational mathematics
dense matrices are simply avoided whenever possible. For example, finite difference and finite
element methods can be viewed as devices for reducing a partial differential equation to a sparse
linear system. In this case, the cost of sparsity is the inherently high condition number of the
resulting matrices.

For translation invariant operators, the problem of excessive cost of applying (or in-
verting) the dense matrices has been met by the Fast Fourier Transform (FFT) and related
algorithms (fast convolution schemes, etc.). These methods use algebraic properties of a matrix
to apply it to a vector in order N log(N) operations. Such schemes are exact in exact arithmetic,
and are fragile in the sense that they depend on the exact algebraic properties of the operator
for their applicability. A more recent group of fast algorithms [1, 2, 5, 9] uses explicit analytical
properties of specific operators to rapidly apply them to arbitrary vectors. The algorithms in
this group are approximate in exact arithmetic (though they are capable of producing any pre-
scribed accuracy), do not require that the operators in question be translation invariant, and
are considerably more adaptable than the algorithms based on the FFT and its variants.

In this paper, we introduce a radical generalization of the algorithms of [1, 2, 5, 9]. We
describe a method for the fast numerical application to arbitrary vectors of a wide variety of
operators. The method normally requires order O(N) operations, and is directly applicable
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to all Calderon-Zygmund and pseudo-differential operators. While each of the algorithms of
[1, 2, 5, 9] addresses a particular operator and uses an analytical technique specifically tailored
to it, we introduce several numerical tools applicable in all of these (and many other) situations.
The algorithms presented here are meant to be a general tool similar to FFT. However, they do
not require that the operator be translation invariant, and are approximate in exact arithmetic,
though they achieve any prescribed finite accuracy. In addition, the techniques of this paper
generalize to certain classes of multi-linear transformations (see Section 4.6 below).

We use a class of orthonormal “wavelet” bases generalizing the Haar functions and
originally introduced by Stromberg [10] and Meyer [7]. The specific wavelet basis functions
used in this paper were constructed by I. Daubechies [4], and are remarkably well adapted to
numerical calculations. In these bases (for a given accuracy) integral operators satisfying certain
analytical estimates have a band-diagonal form, and can be applied to arbitrary functions in a
‘fast’ manner. In particular, Dirichlet and Neumann boundary value problems for certain elliptic
partial differential equations can be solved in order N calculations, where N is the number
of nodes in the discretization of the boundary of the region. Other applications include an
O(N log(N)) algorithm for the evaluation of Legendre series, and similar schemes (comparable
in speed to FFT in the same dimensions) for other special function expansions. In general,
the scheme of this paper can be viewed as a method for the conversion (whenever regularity
permits) of dense matrices to a sparse form.

Once the sparse form of the matrix is obtained, applying it to an arbitrary vector is
an order O(N) procedure, while the construction of the sparse form in general requires O(N?)
operations. On the other hand, if the structure of the singularities of the matrix is known a
priori (as for Green’s functions of elliptic operators or for Calderon-Zygmund operators) the
compression of the operator to a banded form is an order O(N) procedure. The non-zero entries
of the resulting compressed matrix mimic the structure of the singularities of the original kernel.

Effectively, this paper provides two schemes for the numerical evaluation of integral
operators. The first is a straightforward realization (“standard form”) of the matrix of the
operator in the wavelet basis. This scheme is an order N log(N) procedure (even for such simple
operators as multiplication by a function). While this straightforward realization of the matrix
is a useful numerical tool in itself, its range of applicability is significantly extended by the
second scheme, which we describe in this paper in more detail. This realization (“non-standard
form”) leads to an order N scheme. The estimates for the latter follow from the more subtle
analysis of the proof of the “T'(1) theorem” of David and Journé (see [3]). We also present two
numerical examples showing that our algorithms can be useful for certain operators which are
outside the class for which we provide proofs. The paper is organized as follows. In Section II we
use the well-known Haar basis to describe a simplified version of the algorithm. In Section III
we summarize the relevant facts from the theory of wavelets. Section IV contains an analysis
of a class of integral operators for which we obtain an order N algorithm, and a description
of a version of the algorithm for bilinear operators. Section V contains a detailed description
and a complexity analysis of the scheme. Finally, in Section VI we present several numerical




applications.
Generalizations to higher dimensions and numerical operator calculus containing O(N log(N))
implementations of pseudodifferential operators and their inverses will appear in a sequel to this

paper.
II The algorithm in the Haar system
The Haar functions h;; with integer indices j and k are defined by !

2792 for 2i(k—1) < < 2i(k —1/2)
hir(z) =< —27312 for 2i(k —1/2) <z < 27k (2.1)
0 elsewhere.

Clearly, the Haar function h;(z) is supported in the dyadic interval I;
Lk = [29(k — 1), 29k]. (2.2)

We will use the notation hjx(z) = b (z) = hi(z) = 2-i/2p(2-ix —k+1), where h(z) = ho ().
We index the Haar functions by dyadic intervals I;; and observe that the system h 1, () forms
an orthonormal basis of L?(R) (see, for example, [8]).

We also introduce the normalized characteristic function x7, , ()

_ ) T2 for z € Iy 2.3
X1, (%) —{, 0 elsewhere, 9

where |I; x| denotes the length of I;x, and will use the notation x;jx = XI, .-
Given a function f € L?(R) and an interval I C R, we define its Haar coefficient dy of f

a= [ :" f(@)hi(z)de, (24)

and “ average” sy of f on I as

sp= /_ :° f(@)xi(z)de, O (23)

and observe that

We define the basis so that the dyadic scale with the index j is finer than the scale with index j + 1. This
choice of indexing is convenient for numerical applications.




d] = ('SI’ — 8n (2.6)

=

\/57
where I’ and I” are the left and the right halves of I.
To obtain a numerical method for calculating the Haar coefficients of a function we

proceed as follows. Suppose we are given N = 2" “samples” of a function, which can for
simplicity be thought of as values of scaled averages

2= "k
sy = 2"/2/ f(z)dz, (2.7)
2-n(k-1)

of f on intervals of length 2=™. We then get the Haar coefficients for the intervals of length
27"*1 via (2.6), and obtain the coefficients '

1
d} = 75(3(2)1:-1 ~ 8%k)- (2.8)
We also compute the ‘averages’
1
sk = 7—5(331;—1 + 5%;) (2.9)

on the intervals of length 2="+!. Repeating this procedure, we obtain the Haar coefficients
1

1 ) )
P = (s = ) (2.10)
and averages
+1
sp = '_2(3%k—1 + 531) (2.11)

forj=0,...,mn—1and k =1,...,2%5~1, This is illustrated by the pyramid scheme

{2} — {si} — {st} — {s}
N\ N\ N (2.12)
{di} {d3} {2} -

It is easy to see that evaluating the whole set of coefficients dy,s; in (2.12) requires
2(N — 1) additions and 2N multiplications.

In two dimensions, there are two natural ways to construct Haar systems. The first is
simply the tensor product hrxy = hy ® hy, so that each basis function hjy s is supported on the
rectangle I X J. The second basis is defined by associating three basis functions: hr(z)hr(y),
hi(z)xr(y), and xr(z)hy(y) to each square I x I’, where I and I’ are two dyadic intervals of
the same length.

We consider an integral operator




T(f)@) = [ K@@y, (213)

and expand its kernel (formally) as a function of two variables in the two-dimensional Haar
series

K(z,y) =Y amhi(@)hp(y)+ Y Brrhi(z)xe(y) + 3 virxi(z)ho(y), (2.14)
I I I

where the sum extends over all dyadic squares I x I' with |I| = |I’|, and where

orp = //K(a:,y)hI(a:)hp(y)dwdy, (2.15)

pin= [ [ K, hi@)xn(y)dzdy, (2:16)
and

= [ [ K@ y)xa(@hn(y)dsdy. (2.17)
When I = Ik, I' = I 1 (see (2.2)), we will also use the notation

al =g, L (2.18)

Biw = Bl o (2.19)

Vo = VLT (2.20)

defining the matrices o/ = {a{’,}, Bi = {ﬂf;,}, ¥ = {’yf, o}, with 6,1 =1,2...,2"J. Substituting
(2.14) into (2.13), we obtain

T(f)(z) = hr(2)Y ampdp+ > hi(z) > Brrsp+ > xi(z) Y vir dr (2.21)
T g T 2 T T

(recall that in each of the sums in (2.21) I and I’ always have the same length).
To discretize (2.21), we define projection operators

PJf= Z (faXI)XI; j=07"'7n (222)
1=z

and approximate T by
T~ To = PoTPQ, (223)

where Py is the projection operator on the finest scale. An alternative derivation of (2.21)
consists of expanding Tp in a ‘telescopic’ series




n
To = PTPy=» (Pj-1TPj-1 — P;TP;)+ P,TP,
— :
(2:24)

n
= > [(Pj-1 = P))T(Pj-1 ~ P;) + (Pj-1 — P;)TP; + P;T(Pj-1 — Pj)] + PaTPs.
i=1

Defining the operators Q; with j = 1,2,...,n, by the formula
Qj = Pj1 - Fj, (2.25)
we can rewrite (2.24) in the form
n
To = > (Q;TQ; + Q;TP; + P;TQ;) + P, TP,. (2.26)
J=1

The latter can be viewed as a decomposition of the operator T into a sum of contributions from
different scales. Comparing (2.14) and (2.26), we observe that while the term P,TP, (or its
equivalent) is absent in (2.14), it appears in (2.26) to compensate for the finite number of scales. |

Observation 2.1. Clearly, expression (2.21) can be viewed as a scheme for the numerical
application of the operator T to arbitrary functions. To be more specific, given a function f, we
start with discretizing it into samples s,k = 1,2,..., N, which are then converted into a vector
f e RN-2 consisting of all coefficients si, d and ordered as follows

f=(d},ds,.. dN/z,s%,sm ,sN/2,d1,d§,...,d?\,/4,s§,s§,...,s%\,/‘l,...,d}‘,s{‘). (2.27)

Then, we construct the matrices af B,y for j = 1,2,...,n (see (2.15) - (2. 20) and Observation
3.2) corresponding to the operator T, and evaluate the vectors & = {8}, d = {d’ } via the
formulae

&' = od (&) + B (s7) (2.28)

& = yi(dh), (2.29)

where &/ = {d}},s = {s]},k =1,2,...,2"%, with j = 1,...,n. Finally, we define an approxi-
mation TV to T by the formula

n 2n—J

T (=) =D D (d] hjr(z) + &, x(2)). (2.30)

7=1 k=1



Clearly, T (f) is a restriction of the operator T in (2.23) on a finite-dimensional subspace of
L?(R). A rapid procedure for the numerical evaluation of the operator T is described (in a
more general situation) is Section III below.

It is convenient to organize the matrices o, 87,77 with j = 1,2...,n into a single matrix,
depicted in Figure 1, and for reasons that will become clear in Section IV, the matrix in Figure
1 will be referred to as the non-standard form of the operator T', while (2.14) will be referred to
as the “non-standard” representation of T' (note that the (2.14) is not the matrix realization of
the operator Tj in the Haar basis).

III Wavelets with vanishing moments and associated quadra-
tures

3.1. Wavelets with vanishing moments. Though the Haar system leads to simple algo-
rithms, it is not very useful in actual calculations, since the decay of ayyr, Brpr, y11r away from
diagonal is not sufficiently fast (see below). To have a faster decay, it is necessary to use a
basis in which the elements have several vanishing moments. In our algorithms, we use the
orthonormal bases of compactly supported wavelets constructed by I. Daubechies [4] following
the work of Y. Meyer [7] and S. Mallat [6]. We now describe these orthonormal bases.

Consider functions 9 and ¢ (corresponding to h and x in Section IT), which satisfy the
following relations:

2M -1
@)= 3 hipe(2a— k), (3.1)

k=0
2M -1
k=0 )

where

gk = (—l)k_lth—k+1, k=1,...,2M (3.3)
and

/ p(z)dz = 1. (3.4)
The coefficients {hk}ﬁ%M are chosen so that the functions

Q,bj’k(z) = 2_j/2¢(2"j:1: —k+ 1), (3.5)




where j and k are integers, form an orthonormal basis and, in addition, the function 1 has M
vanishing moments

/'gb(:c)x"‘dx =0, m=0,....,M-1. (3.6)
We will also need the notation
oik(z) =279 2p(27 — k + 1). (3.7)

Note that the Haar system is a particular case of (3.1)-(3.6) with M = 1 and hy = hy =
—\}—5,(,0 = x and 9 = h, and that the expansion (2.14)-(2.17) and the nonstandard form in (2.26)

in Section II can be rewritten in any wavelet basis by simply replacing functions x and A by ¢
and 9 respectively.

Remark 3.1. Several classes of functions ¢, have been constructed in recent years, and we
refer the reader to [4] for a detailed description of some of those.

Remark 3.2. Unlike the Haar basis, the functions ¢y, s can have overlapping supports for
J # I. As a result, the pyramid structure (2.12) ‘spills out’ of the interval [1, N] on which
the structure is originally defined. Therefore, it is technically convenient to replace the original
structure with a periodic one with period N. This is equivalent to replacing the original wavelet
basis with its periodized version (see [8]).

3.2. Wavelet-based quadratures. In the preceeding subsection, we introduce a procedure
for calculating the coefficients s7,dJ, for all j > 1,k = 1,2,..., N, given the coefficients s for

= 1,2,..., N. In this subsection, we introduce a set of quadrature formulae for the efficient
evaluation of the coefficients s) corresponding to smooth functions f. The simplest class of
procedures of this kind is obtained under the assumption that there exists a real constant Ty
such that the function ¢ satisfies the condition

/80(:5 +71pm)e™ dz =0, for m=1,2,...,M-1, (3.8)

/cp(w) dz =1, (3.9)

i.e. that the first M — 1 ‘shifted’ moments of ¢ are equal to zero, while its integral is equal to
1. Recalling the definition of s9

Q=23 / fz) (2" -k +1) do = 2% / fl@ +27"(k = 1)) o(2°¢) da, (3.10)

expanding f into a Taylor series around 27"(k — 1+ 7as), and using (3.8), we obtain




=23 /f(x +27(k — 1)) @(2"z) de = 273 f(27"(k — 1+ 7)) + O(27"M+3)), (3.11)

In effect, (3.11), is a one-point quadrature formula for the evaluation of s). Applying the same
calculation to s}, with j > 1, we easily obtain

si = 2755 f(27H (k — 1+ 1ap)) + O(2- (=DM +)), (3.12)

which turns out to be extremely useful for the rapid evaluation of the coefficients of compressed
forms of matrices (see Section IV below).

Though the compactly supported wavelets found in [4] do not satisfy the condition (3.8),
a slight variation of the procedure described there produces a basis satisfying (3.8), in addition to
(3.1) - (3.6). Coefficients of the filters {h;} corresponding to M = 2,4, 6 and appropriate choices
of a7 can be found in Appendix A, and we would like to thank I. Daubechies for providing them
to us.

It turns out that the filters in Table 1 are 50% longer that those in the original wavelets
found in [4], given the same order M. Therefore, it might be desirable to adapt the numerical
scheme so that the ‘shorter’ wavelets could be used. Such an adaptation (by means of appro-
priately designed quadrature formulae for the evaluation of the integrals (3.10)) is presented in
the Appendix B.

Remark 3.3. We do not discuss in this paper wavelet-based quadrature formulae for the
evaluation of singular integrals, since such schemes tend to be problem-specific. Note, however,
that for all integrable kernels quadrature formulae of the type developed in this paper are
adequate with minor modifications.

3.3. Fast wavelet transform. For the rest of this section, we treat the procedures being
discussed as linear transformations in RV, viewed as the Euclidean space of all periodic sequences
with the period N.

Replacing the Haar basis Wlth a basis of wavelets with vanishing moments, and assuming
that the coefficients s9,k = 1,2,..., N are given, we replace the expressions (2.8) - (2.11) with
the formulae and

n=2M

=2 hn3n+2k 2 (3.13)

n=1
n=2M
= D InShime- (3.14)

n=1
where .s,; and dj are viewed as periodic sequences with the period 2"~7 (see also Remark 3.2
above). As is shown in [4], the formulae (3. 13) and (3.14) define an orthogonal mapping O;
Rz"‘J+1 R2"7*!converting the coefficients si7t with k = 1,2,...,27=3+ into the coefﬁc1ents

sk, dk with k = 1,2,...,2" 7, and the inverse of O; is given by the formulae




k=M k=M
J-1 J 7
Son = Z hoksy k41 + Z 92kdy_py1>

k=1 k=1
(3.15)
. k=M ) k=M )
3%;11 = Z h2k~13‘,’,’_k+1 + Z g2k—ld‘7 —k41°
k=1 k=1
Obviously, given a function f of the form
zn_j . R . 2n_J ; : ,
fe)= 3" 8} 2002 27z — (k= 1)) + Y d] 2D/2 yp(27~ig — (k- 1)), (3.16)
k=1 k=1
it can be expressed in the form
on—j+1 )
f(z) = }: i1 2(n=iH)/2 pon—itly _ (1 1)), (3.17)
=1

with s{_l,l =1,2,...2773+1 given by (3.15).

Observation 3.1. Given the coefficients s,k = 1,2,..., N, recursive application of the for-
mulae (3.13), (3.14) yields a numerical procedure for evaluating the coefficients si,df; for all
J=12,...,n, k =1,2,...,2"J with a cost proportional to N. Similarly, given the values
dj, forall j =1,2,...,n, k=1,2,...,2"7 and s} (note that the vector s® contains only one
element) we can reconstruct the coefficients sQ for all k = 1,2,..., N by using (3.15) recursively
for j = n,n—1,...,0. The cost of the latter procedure is also O(N). Finally, given an expansion
of the form

n 2n—J . ] ] n 277 . . .
f@)=3"3" sl 200912 p(2n=ig (k- m+y S & 2(0=D12 (27 g — (k—1)),(3.18)
7=0 k=1 7=0 k=1

it costs O(N) to evaluate all coefficients s,k = 1,2,..., N by the recursive application of the
formula (3.17) with j = n,n —1,...,0.

Observation 3.2. It is easy to see that the entries of the matrices o/, 7,77 with j = 1,2...,n,
are the coefficients of the two-dimensional wavelet expansion of the function K(z,y), and can
be obtained by a two-dimensional version of the pyramid scheme (2.12), (3.13), (3.14). Indeed,
the definitions (2.15)- (2.17) of these coefficients can be rewritten in the form

Cody=27 [ [ Key) (2 a - (- 1) 92y - (1 1) dedy, (3.9)
=27 [~ [ Ko,y v - (i- 1) ey - (1~ 1)) dody, (320)

10




) . [0 oo ) )
=27 [ [ K(e,9) ez - (- 1) 92y - (1- 1)) dedy, (3:21)
-00 J =00
and we will define an additional set of coefficients sf..’, by the formula

=29 [~ [ K@) e(2a - (- 1) w2y - (1= 1)) dady. (3.22)

Now, given a set of coefficients .s?, ; with ¢,/ =1,2,..., N, repeated application of the formulae
(3.13), (3.14) produces

2M
J o j—1
X = E 9kImSk42i-2,m421-2> (3.23)
km=1
, 2M
J

i—1
il = Z gkhmsfc+2i-2,m+2z-2’ (3:24)
km=1

2M
. -
Yy = > hkgm St 1 2i2m421-25 (3.25)

k,m=1

2M
Jo— j—1
shi= 2 hkhmsii2i 2 miai-2> (3.26)

k,m=1 :

with 4,0 =1,2,...,2"7, j = 1,2,...,n. Clearly, formulae (3.23) - (3.26) are a two-dimensional
version of the pyramid scheme (2.12), and provide an order N2 scheme for the evaluation of the
elements of all matrices o/, 37,47 with j =1,2...,n.

IV Integral operators and accuracy estimates

4.1. Non-standard form of integral operators. In order to describe methods for ‘com-
pression’ of integral operators, we restrict our attention to several specific classes of operators
frequently encountered in analysis. In particular, we give exact estimates for pseudo-differential
and Calderon-Zygmund operators.

We start with several simple observations. The non-standard form of a kernel K (z,y) is
obtained by evaluating the expressions

arp = //K(ﬁ,y) Yi1(z) Yr(y) dedy, (4.1)

11




Bip = / / K(z,y) 1(z) op(y) dedy, (4.2)

and
&

yip = / / K(z,y) ¢1(z) $p(y) dady. (4.3)

(see Figure 1). Suppose now that K is smooth on the square I x I’ € [0, N]X[0, N]. Expanding K

into a Taylor series around the center of I x I’, combining (3.6) with (4.1) - (4.3) and remembering

that the functions 11, ¥ are supported on the intervals I, I’ respectively, we obtain the estimate
oM

ap | + |+ L C | TIMHY su ————K(z,y)| . (4.4)
| arp |+ Brr |+ |y |SC | T (E,y)ell)xpgj:law DM (2,9) |

Obviously, the right-hand side of (4.4) is small whenever either | I | or the derivatives involved
are small, and we use this fact to ‘compress’ matrices of integral operators by converting them to
the non-standard form, and discarding the coefficients that are smaller than a chosen threshold.

To be more specific, consider pseudo-differential operators and Calderon-Zygmund oper-
ators. These classes of operators are given by integral or distributional kernels that are smooth
away from the diagonal, and the case of Calderon-Zygmund operators is particularly simple.
These operators have kernels K(z,y) which satisfy the estimates

1

|K(z,y)| < Rk (4.5)
oMK, y)|+ ) K (e € oy (4.6)

for some M > 1. To illustrate the use of the estimates (4.6) for the compression of operators,
consider the simplest case of M = 1, so that

Biv = [ [ K, )ha(e)xr()dzdy, (4.7)

where we assume that the distance between I and I’ is greater than than | I |. Since

/ hy dy =0, (4.8)

we have
1Bl < | [ (K@) - K@ u)hi@xo(w)dady |
|Ip?
) 4.9
|21 —yp |2 (49

12




where z1 denotes the center of the interval I. In other words, the coefficient 8;;» decays quadrat-
ically as a function of the distance between the intervals I, I, and for sufficiently large N and
finite precision of calculations, most of the matrix can be discarded, leaving only a band around
the diagonal. However, algorithms using the above estimates (with M = 1) tend to be quite
inefficient, due to the slow decay of the matrix elements with their distance from the diagonal.
The following simple proposition generalizes the estimate (4.9) for the case of larger M, and
provides an analytical tool for efficient numerical compression of a wide class of operators.

Proposition 4.1. Suppose that in the expansion (2.14), the wavelets ¢, 1 satisfy the conditions
(3.1) - (3.3), and (3.6). Then for any kernel K satisfying the conditions (4.6), the coefficients
o}, 81,7}, in the non-standard form (see (2.18) - (2.20) and Figure 1 ) satisfy the estimate

J J J

for all

li-1]>2M. (4.11)
Remark 4.1. For most numerical applications, the estimate (4.10) is quite adequate, as long as
the singularity of K is integrable across each row and each column (see the following section). To
obtain a more subtle analysis of the operator Ty (see (2.23) above) and correspondingly tighter

estimates, some of the ideas arising in the proof of the *T'(1)’ theorem of David and Journé are
required. We discuss these issues in more detail in Section 4.5 below.

Similar considerations apply in the case of pseudo-differential operators. Let T be a
pseudo-differential operator with symbol o(z, &) defined by the formula

T(f)(z)=o(2,D)f = / € o(x,£)f(€) dé = / K(z,y)f(y) dy, (4.12)

where K is the distributional kernel of 7. Assuming that the symbols ¢ of T and o* of T*
satisfy the standard conditions

| 8¢ 8 o(2,€) I< Cap(1+ | €] -F° (4.13)
| ¢ 82 0™(2,€) I Cap(1+ | € )}2F2, (4.14)

we easily obtain the inequality

2V i Cypp
+ i = M+

log ol + 1810l + |7l < a (4.15)

13




for all integer i, 1.

Remark 4.2. A simple case of the estimate (4.15) is provided by the operator T' = d%’ in which
case it is obvious that

BY =< Vel >=2 (9@ a—(-1) G o (- 1))P de=9 fiy,  (416)
where the sequence {3;} is defined by the formula

Bi = / ¥z — i) () de, (4.17)
provided a sufficiently smooth wavelet ¢(z) is used.

4.2. Numerical calculations and compression of operators. Suppose now that we ap-
proximate the operator T by the operator Tév B obtained from TY by setting to zero all
coefficients of matrices a = {a;r}, 8 = {B1rr}, ¥ = {711} outside of bands of width B > 2M
around their diagonals. It is easy to see that

c
I 73" -1 |I< Wlo&(l\’), (4.18)

where C'is a constant determined by the kernel K. In other words, the matrices o, 3,7 can be ap-
proximated by banded matrices o, 3B, 4B respectively, and the accuracy of the approximation
is

BQM log,(NV). (4.19)

In most numerical applications, the accuracy e of calculations is fixed, and the parameters of
the algorithm (in our case, the band width B and order M) have to be chosen in such a manner
that the desired precision of calculations is achieved. If M is fixed, then B has to be such that

C
I 73" -1 |I< it log2(N) < e, (4.20)
or, equivalently,
1
B > logy(Cum) + 10g2(‘6‘) + logy(logy (V). (4.21)

In other words, 7' has been approximated to precision ¢ with its truncated version, which can
be applied to arbitrary vectors for a cost proportional to N log,(log,(N)), which for all practical
purposes does not differ from N. A considerably more detailed investigation (see Remark 4.1
above and Section 4.5 below) permits the estimate (4.21) to be replaced with the estimate

1
B 2 log,(Ci) +loga(2), (4.22)
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making the application of the operator T{¥ to an arbitrary vector with arbitrary fixed accuracy
into a procedure of order exactly O(N).

Whenever sufficient analytical information about the operator T is available, the eval-
uation of those entries in the matrices a, 3,7 that are smaller than a given threshold can be
avoided altogether, resulting in an O(N) algorithm (see Section V below for a more detailed
description of this procedure).

Remark 4.3. Both Proposition 4.1 and the subsequent discussion assume that the kernel
K is non-singular everywhere outside the diagonal, on which it is permitted to have integrable
singularities. Clearly, it can be generalized to the case when the singularities of K are distributed
along a finite number of bands, columns, rows, etc. While the analysis is not considerably
complicated by this generalization, the implementation of such a procedure on the computer is
significantly more involved (see Section V below).

4.3. Rapid evaluation of the non-standard form of an operator. In this subsection,
we construct an efficient procedure for the evaluation of the elements of the non-standard form
of an operator T lying within a band of width B around the diagonal. The procedure assumes
that T satisfies conditions (4.5), (4.6), of Section IV, and has an operation count proportional
to NB (as opposed to the O(N?) estimate for the general procedure described in Observation
3.2).

To be specific, consider the evaluation of the coefficients ﬁzj,l forall j =1,2,,...,n, and
| i —1|< B. According to (3.24),

2M

. -
ﬂf,l = Z gkhmsi+2i—2,m+21_2, (4.23)
k,m=1

which involves the coefficients sf-.,"',} in a band of size 3B defined by the condition | i’ — I |<

3B. Clearly, (3.26), could be used recursively to obtain the required coefficients 3{;,—1}’ and the
resulting procedure would redquire order N2 operations. We therefore compute the coefficients
sf,j,} directly by using appropriate quadratures. In particular, the application of the one-point
quadrature (3.12) to K(z,y), combined with the estimate (4.6), gives

] —; i1y i 1
5‘1?',1' = " J+1 K (2 n+J 1(2’ -1+ TM),2 n+j 1([' -1+ TM)) +0 (WM—H> .(424)

If the wavelets used do not satisfy the moment condition (3.8), more complicated quadratures
have to be used (see Appendix B to this paper).

4.4. The standard matrix realization in the wavelet basis. While the evaluation of

the operator T via the non-standard form (i.e., via the matrices o/, 87 ,77) is an efficient tool
for applying it to arbitrary functions, it is not a representation of T" in any basis. There are
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obvious advantages to obtaining a mechanism for the compression of operators that is simply a
representation of the operator in a suitably chosen basis, even at the cost of certain sacrifices in
the speed of calculations (provided that the cost stays O(N) or O(N log(N)) ). It turns out that
simply representing the operator T in the basis of wavelets satisfying the conditions (3.6) results
(to any fixed accuracy) in a matrix containing no more than O(N log(/N)) non-zero elements.
Indeed, the elements of the matrix representing 7 in this basis are of the form,

TIJ = (T"pla ";[)J) ) (425)

with I,J all possible pairs of diadic intervals in R, not necessarily such that | I |=| J | .
Combining estimates (4.5), (4.6) with (3.6), we easily see that

| Ty < Cm <Il§ll>l/2 (%—))MH , (4.26)

where Cyy is a constant depending on M, K, and the choice of the wavelets, d(I,J) denotes
the distance between I, J, and it is assumed that | I |[<| J |. It is easy to see that for large N
and fixed € > 0, only O(Nlog(N)) elements of the matrix (4.25) will be greater than &, and
by discarding all elements that are smaller than a predetermined threshold, we compress it to
O(N log(N)) elements.

Remark 4.4. A considerably more detailed investigation (see [8] ) shows that in fact the number
of elements in the compressed matrix is asymptotically proportional to N, as long as the images
of the constant function under the mappings T and T* are smooth. Fortunately, the latter is
always the case for pseudo-differential and many other operators.

Numerically, evaluation of the compressed form of the matrix {T7;} starts with the

calculation of the coefficients s (see (2.7) ) via an appropriately chosen quadrature formula.
For example, if the wavelets used satisfy the conditions (3.8), (3.9), the one-point formula (3.10)
is quite adequate. Other quadrature formulae for this purpose can be found in Appendix B
to this paper. Once the coefficients s® have been obtained, the subsequent calculations can be
carried out in one of three ways.
1. The naive approach is to construct the full matrix of the operator T in the basis associated
with wavelets by following the pyramid (2.12). After that, the elements of the resulting matrix
that are smaller than a predetermined threshold, are discarded. Clearly, this scheme requires
O(N?) operations, and does not require any prior knowledge of the structure of T'.

2. When the structure of singularities of the kernel K is known, the locations of the coefficients
of the matrix {T7;} exceeding the threshold ¢ can be determined a priori. After that, these can
be evaluated by simply using appropriate quadrature formulae on each of the supports of the
corresponding basis functions. The resulting procedure requires order O(N log(N)) operations
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when the operator in question is either Calderon-Zygmund or pseudo-differential, and is easily
adaptable to other distributions of singularities of the kernel.

3. The third approach is to start with the non-standard form of the operator T, compress it,
and convert the compressed version into the standard form. This simplifies the error analysis
of the scheme, enabling one to use the one-point quadratures (3.10). The conversion procedure
starts with the formula

fa=27 [ ([T K@ veio-(k-)ds ) p@iy--1)dy, (420

which is an immediate consequence of (2.16), (2.19). Combining (4.27) with (3.14), we immedi-
ately obtain

Tiy = 2702 [™ " K(a,y) gz - (k- 1)) 2"+ - (- 1) dady

—00
M
= 2 9B 1 42i—2> (4.28)
=1

where I = I and J = Ij4q,;. Similarly, we define the set of coefficients {Sy s} via the formula

2M

S11="3 PP 14ai s (4.29)
=1

and observe that these are the coefficients sf: *+1 in the pyramid scheme (2.12). In general, given
the coefficients Sy on step m (that is, for all pairs (,J) such that | J |= 2™ | I |), we move to
the next step by applying the formula (4.28) recursively.

Remark 4.5. Clearly, the above procedure amounts to simply applying the pyramid scheme
(2.12) each column of the matrix 7.

4.5. Uniform estimates for discretizations of Calderon-Zygmund operators. As has
been observed in Remark 4.1, the estimates (4.10) are adequate for most numerical purposes.
However, they can be strengthened in two important respects.

1. The condition (4.11) can be eliminated under a weak cancellation condition (4.30).

2. The condition (4.10) does not by itself guarantee either the boundedness of the operator
T, or the uniform (in N) boundedness of its discretizations Tp. In this section, we provide the
necessary and sufficient conditions for the boundedness of T, or, equivalently, for the uniform
boundedness of its discretizations Tp. This condition is, in fact, a reformulation of the ‘T'(1)’
theorem of David and Journé.
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Uniform boundedness of the matrices o, 3,7. We start by observing that estimates
(4.5), (4.6) are not sufficient to conclude that &} ,, 8} ,,7/, are bounded for |i — €] < 2M (for

example, consider K(z,y) = ]w_—yl) We therefore need to assume that T defines a bounded
operator on L? or a substantially weaker condition

| [ Ka,) dady <Ol (430)
IxJ

for all dyadic intervals I (this is the “weak cancellation condition”, see [8]). Under this condition
and the conditions (4.5), (4.6) Proposition 4.1 can be extended to

C’M

el + mfel + h’, e|
for all 7,1 (see [8]).

Uniform boundedness of the operators Tp. We have seen in (2.26) a decomposition
of the operator To into a sum of contributions from the different “scales j”. More precisely, the
matrices o, 39,47 act on the vector {s]},{d}}, where d’ are coordinates of the function with
respect to the orthogonal set of functions 2“3/ 24p(2~9z — k), and the s’ are auxiliary quantities
needed to calculate the d’ The remarkable feature of the nonstandard form is the decoupling
achieved among the scales j followed by a simple coupling performed in the reconstruction for-
mulas (3.17). (The standard form, by contrast, contains matrix entries reflecting “interactions”
between all pairs of scales). In this subsection, we analyze this coupling mechanism in the simple
case of the Haar wavelets, in effect reproducing the proof of the ‘T'(1)’ theorem (see [3]).

For simplicity, we will restrict our attention to the case where a =y = 0, and 8 satisfies
conditions (4.31) (which are essentially equivalent to (4.5), (4.6), (4.31)). In this case, for the
Haar wavelets we have

T(f)(z)= ; hi(z) zp:ﬂII’SI' (4.32)
which can be rewritten in the form
T(f)= 21: hi(z) Zﬂm(sn - 1)+ ;ﬂzsﬂn(w), (4.33)
where I
Zﬂ,, T / / hi(z) K(z,y) dedy = (hr, ,B(a:))ﬁ-i (4.34)
and

Bz) = [ K(z,y) dy = T(1)(a). (4.35)
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It is easy to see (by expressing sy in terms of dy) that the operator

Bi(f) =Y k()Y Brr(sr — sr) (4.36)
T I

is bounded on L% whenever (4.31) is satisfied with M = 1. We are left with the “diagonal”
operator

By(f)(z) = ;ﬁlslhl(x), (4.37)

Br= I—I,—lﬁw(x),hﬁ, (4.38)
with

51 = () (439)
Clearly

1B20)I5 =D Bist- (4.40)

If we choose f = x; where J is a dyadic interval we find s; = |I|}/2 for I C J from which we
deduce that a necessary condition for B; to define a bounded operator on L2(R) is given as

Yo 1BF =D (B, hr)* < el J] (4.41)

ICJ IcJ

but since the hj for I C J are orthogonal in L2(J),

>_(B,h1)* = /Jlﬂ(x) —mg(B)I?, (4.42)
ICJ

with
ma(B) = 77 [ B@)de. | (4.43)

Combining (4.41) with (4.42), we obtain
1
i [ 18e) - mapyPas < c. (4.44)
Expression (4.44) is usually called bounded dyadic mean oscillation condition (BMO) on 3, and

is necessary for the boundedness of B, on L2. It has been proved by Carleson (see, for example,
[8]) that the condition (4.41) is necessary and sufficient for the following inequality to hold
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S sist < C [11Pds, st = (). (4.45)
Combining these remarks we obtain

Theorem 4.1 (G. David, J.L. Journé) Suppose that the operator

7(f) = [ K(a,9) £0) dy (4.46)

satisfies the conditions (4.5), (4.6), (4.30). Then the necessary and sufficient condition for T to
be bounded on L? is that

B(z) = T(1)(2), (4.47)
7(z) = T*(1)(2) (4.48)
belong to dyadic B.M.O. i.e. satisfy condition (4.44).

We have shown that the operator T' in Theorem 4.1 can be decomposed as a sum of
three terms

T = B, + By + B3, (4.49)
By(f) =) hiBrsr, (4.50)
Bs(f) =Y xrydr, (4.51)

with [I|*/28; = (h1, 8), 71 = (x1,7), B = T(1), and v = T*(1).

The principal term B;, when converted to the standard form, has a band structure with
decay rate independent of N. The terms B,, B3 are bounded in the standard form only when
B,v are in B.M.O. (see [8]).

4.6. Algorithms for bilinear functionals The terms B,, B3 are bilinear transformations
in (8, f), (v, f) respectively. Such “pseudo products” occur frequently as differentials (in the
direction ) of non-linear functionals of f (see [3]). In this section, we show that pseudo-products
can be implemented in order N operation (or for the same cost as ordinary multiplication). To
be specific, we have the following proposition (see [3]).

Proposition 4.2. Let K(z,y, z) satisfy the conditions

1
G-y + (@ - 22

|K (2, y,2)| < (4.52)
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1
|0M K| + |0M K| + |0M K| < (4.53)

S Moyl o=
and the bilinear functional B(f,g) be defined by the formula

B(£,0)(2) = [ K(a,9,2) 1(u) 9(z) dydz (4.54)

Then the bilinear functional B(f,g) can be applied to a pair of arbitrary functions f, g for a cost
proportinal to N, with the proportionality coefficient depending on M and the desired accuracy,
and independent of the kernel K.

Following is an outline of an algorithm implementing such a procedure. As in the linear
case, we write

K(z,y,2) = > arqvi(z)v(y, 2) + Brovi(x)eq(y,2)  +v10er(z)de(y,2)  (4.55)

1Q
where Q@ = J x J/, |I| = |J| = |J'| and 9g(y,2) is a wavelet basis in two variables (i.e.
@5 (¥)%s(2), vr(y)e(2), ¥a(y)ds(2)) and
©Q(y,2) = @a(y)en(2). (4.56)

Substituting in (4.55) into (4.54) we obtain

B(f,g)(z) = E pr(z) {z o) 1is5(f)ds(g) + oP), 1ds(f)sm(g) + ag?},J,dJ(f)dJ'(g)}
JJ!
+ Z $1(z) Y Br.a.055(f)sn(g) (4.57)
J,J!
+ E ‘PI(-’E) {Z 71, JJ:SJ(f)dJ'(g) + ’71 JdeJ(f)SJ'(g) +71 JJIdJ(f)dJ’(g)}
JJ!

where ag-l?, g1 a?} a0 0‘(1} gr» Br,g,0, and "/}} I 7}2} Jn 7}3} 7+ denote the coefficients of the

function K (2,9, z) in the three-dimensional wavelet basis. Therefore, combining (4.57) with
Observation 3.1, we obtain an order O(NV) algorithm for the evaluation of (4.54) on an arbitrary
pair of vectors.

It easily follows from the estimates (4.52), (4.53) that

CIII 2+M
[dist(I,J)+ dist(1, J')])
resulting in banded matrices and a “compressed” version having O(N) entries (also, compare
(4.58) with (4.10) ).

Similar results can be obtained for many classes of non-linear functionals whose differ-
entials satisfy the conditions analogous to (4.52), (4.53).

lorgp| + Bra0) + 1,000 < ( (4.58)
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V  Description of the algorithm

In this section, we describe an algorithm for rapid application of a matrix Ty discretizing an
integral operator T to an arbitrary vector. It is assumed that T satisfies the estimates (4.5),
(4.6), or the more general conditions described in Remark 4.3. The scheme consists of four steps.

Step 1. Evaluate the coefficients of the matrices o/, 37,74, = 1,2,...,n corresponding
to Tp (see (2.18)-(2.20) above), and discard all elements of these matrices whose absolute values
are smaller than . The remaining number of elements in all matrices o/, 37,77 is proportional
to IV (see estimates (4.21), (4.22)).

Depending on the a priori information available about the operator T, one of two pro-
cedures are used, as follows.

1. If the a prioriinformation is limited to that specified in the Remark 4.3 (i.e. the singularities
of K are distributed along a finite number of bands, rows, and columns, but their exact locations
are not known), then the extremely simple procedure described in Observation 3.2 is utilized.
The resulting cost of this step is O(/N?), and it should only be used when the second scheme
(see below) can not be applied.

2. If the operator T satisfies the estimates (4.5), (4.6) for some M > 1, and the wavelets
employed satisfy the condition (3.8), then the more efficient procedure described in Section 4.3
is used. While the implementation of this scheme is somewhat involved, it results in an order
O(N) algorithm, and should be used whenever possible.

Step 2. Evaluate the coefficients sf;,di for all j = 1,2,...,n, k = 1,2,...,2"7 (see
formulae (3.14), (3.14) and Observation 3.1).

Step 3. Apply the matrices o/, 37,77 to the vectors s/, d?, obtaining the vectors .;J', di
for j =1,2,...,n (see formulae (2.28), (2.30).

Step 4. Use the vectors s7,d7 to evaluate To(f) via the formula (3.15) (see Observation
3.1).

Remark 5.1. It is clear that Steps 2 - 4 in the above scheme require order O(N) operations,
and that Step 1 requires either order O(N) or O(N?) operations, depending on the a priori
information available about the operator T. It turns out, however, that even when Step 1
requires order N operations, it is still the dominant part of the algorithm in terms of the actual
operation count. In most applications, a single operator has to be applied to a relatively large
number of vectors, and in such cases, it makes sense to produce the non-standard form of the
operator T and store it. After that, it can be retrieved and used whenever necessary, for a very
small cost (see also Section VI below).
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Remark 5.2. In the above procedure, Step 1 requires O( N2) operations whenever the structure
of the operator T is not described by the estimates (4.5), (4.6). Clearly, it is not the only
structure of T for which an order O(N) procedure can be constructed. In fact, this can be done
for any structure of T' described in Remark 4.3, provided that the location of singularities of T
is known a priori. The data structures required for the construction of such an algorithm are
fairly involved, but conceptually the scheme is not substantially different from that described in
Section 4.3.

VI Numerical Results

A FORTRAN program has been written implementing the algorithm of the preceeding section,
and numerical experiments have been performed on the SUN-3/50 computer equipped with the
MC68881 floating-point accelerator. All calculations were performed in three ways: in single
precision using the standard (direct) method, in double precision using the algorithm of this
paper with the matrices e, 3,7 truncated at various thresholds (see Section 4.2 above), and in
double precision using the standard method. The latter was used as the standard against which
the accuracy of the other two calculations was measured.

We applied the algorithm to a number of operators; the results of six such experiments
are presented in this section and summarized in Tables 1-6, and illustrated in Figures 2-9.
Column 1 of each of the tables contains the number N of nodes in the discretization of the
operator, columns 2, 3 contain CPU times T, T,, required by the standard (order O(N?)) and
the ‘fast’ (O(N)) schemes to multiply a vector by the resulting discretized matrix respectively,
and column 4 contains the CPU Ty time used by our scheme to produce the non-standard form
of the operator. Columns 5, 6 contain the Ly and L, errors of the direct calculation respectively,
and columns 7,8 contain the same information for the result obtained via the algorithm of this
paper. Finally, column 9 contains the compression coefficients Copmp obtained by our scheme,
defined by the ratio of N2 to the number of non-zero elements in the non-standard form of 7. In
all cases, the experiments were performed for N = 64,128, 256,512, and 1024, and in all Figures
2-9, the matrices are depicted for N = 256.

Example 1.
In this example, we compress matrices of the form
l . .
=7 ? 75 s
A,'j =
0 i =7,

and convert them to a system of coordinates spanned by wavelets with six first moments equal
to zero. Setting to zero all entries in the resulting matrix whose absolute values are smaller than
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10~7, we obtain the matrix whose non-zero elements are shown in black in Figure 2. The results
of this set of experiments are tabulated in Table 1. The standard form of the operator A with
N = 256 is depicted in Figure 9.

Example 2.
Here, we compress matrices of the form

log [i—27—1|~log |j—27—1 . ig £ on—1.4 n—1
' ,!_j I | 7’#.7”75 11]962
A,‘j =

0 otherwise
where i,7=1,...,N and N = 2.

This matrix is not a convolution and its singularities are more complicated. The decomposition
of this matrix using wavelets with six vanishing moments displaying entries above the threshold
of 10~7 is shown in Figure 3, and the numerical results of these experimants are tabulated in
Table 2. In this case, the structure of the singularities of the matrix is not known a priori, and
its non-standard form was obtained by converting the whole matrix to the wavelet system of
coordinates, and discarding the elements that are smaller than the threshold (see Section 4.2).
Correspondingly, the cost of constructing the non-standard form of the operator is proportional
to N2 (see column 4 of Table 2). The standard form of the operator A with N = 256 is depicted
in Figure 10.

Example 3. In this example, we compress and rapidly apply to arbitrary vectors the ma-
trix converting the coefficients of a finite Chebychev expansion into the coefficients of a finite
Legendre expansion representing the same polynomial (see [1]). The matrix is given by the
formulae
Aij = M3ly;
where ¢,j=1,...,N and N = 2" and M} is defined as
L1A2(j5/2) if0=7<j< N and j is even

MY = ZA((F-9)/2)A((j +4)/2) f0<i<j< N andi+jiseven

0 otherwise,

where A(z) = I'(2 4+ 1/2)/T(z + 1) and I'(z) is the gamma function. Alternatively,

LA%(5) ifo=i<j<N
A=) FAG-DAG+E) f0<i<j<N
1) —

0 otherwise.
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We used the threshold of 107¢ and wavelets with five vanishing moments to obtain the numer-
ical results depicted in Table 3 and Figure 4. As a corollary, we obtain an algorithm for the
rapid evaluation of Legendre expansions of the same complexity (and roughly the same actual
efficiency) as that described in [1].

Example 4.
Here,
log(i —j)* i#j
A,’j =
0 1=7.
We use wavelets with six vanishing moments and set to zero everything below 10~6. Table 4

and Figure 5 describe the results of these experiments.

Example 5.
In this example,
1 . .
Aij = s

0 i=73,
and it is easy to see that this operator does not satisfy the condition (4.10). Nonetheless, when a
low order version of our scheme is applied to it, the results are quite staisfactory, albeit with an
expectedly low accuracy (we used wavelets with two vanishing moments, and set the threshold
to 1073). The results of these numerical experiments can be seen in Figure 7 and Table 5.

Example 6.
Here,

zcos(logzzi)_—;)gos(log 72) i3]
A =
0 t=7.
Like in the preceeding example, the operator being compressed satisfies the condition (4.10)
with M = 1, and fails to do so for any larger M. Using wavelets with two vanishing moments,
and setting the threshold to 1073, we obtain the results depicted in in Figure 8 and Table 6.
Again, the compression rate for this reasonably large threshold is quite satisfactory.

The following observations can be made from Tables 1-6 and Figures 2-7.

1. The CPU times required by the algorithm of this paper to apply the matrix to a vector grow
linearly with NV, while those for the direct algoriths grow quadratically (as expected).
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2. The accuracy of the method is in agreement with the estimates of Section 4, and when the
threshold is set to 10—, the actual accuracies obtained tend to be slightly better than those
obtained by the direct calculation in single precision.

3. In many cases, the algorithm becomes more efficient than the direct one by N = 100, and by
N = 1000, the gain is roughly of the factor of 10.

4. Even when the operator fails to satisfy the condition (4.10), the application of the algorithm
with a reasonably large threshold and small M leads to satisfactory compression factors.

5. Combining the linear asymptotic CPU time estimate of the algorithm of this paper with the
actual timings in Tables 1-6, we observe that whenever the algorithm of this paper is applica-
ble, extremely large-scale problems become tractable, even with relatively modest computing
resources.

VII Extensions and Generalizations

7.1. Numerical operator calculus. In this paper, we construct a mechanism for the rapid
application to arbitrary vectors of a wide variety of dense matrices. It turns out that in addi-
tion to the application of matrices to vectors, our techniques lead to algorithms for the rapid
multiplication of operators (or, rather, their standard forms). The asymptotic complexity of the
resulting procedure is also proportional to N. When applied recursively, it permits a whole range
of matrix functions (polynomials, exponentials, inverses, square roots, etc.) to be evaluated for
a cost proportional to N, converting the operator calculus into a competitive numerical tool (as
opposed to a purely analytical apparatus it has been). These (and several related) algorithms
have been implemented, and are described in a paper currently in preparation.

7.2. Generalizations to higher dimensions. The construction of the present paper is limited
to the one-dimensional case, i.e. the integral operators being compressed are assumed to act
on L?(R). Its generalization to problems in higher dimensions is fairly straightforward, and is
being implemented. When combined with the Lippman-Schwinger equation, or with the classical
pseudo-differential calculus, these techniques should lead to algorithms for the rapid solution of
a wide variety of elliptic partial differential equations in regions of complicated shapes, of second
kind integral equations in higher-dimensional domains, and of several related problems.

7.3. Non-linear operators. While the present paper discusses the ‘compression’ of linear and
bilinear operators, extensions to multilinear functionals (defined on the functions in one, as well
as higher dimensions) is not difficult to obtain. These methods (together with some of their
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anolicati . s
pplications) will be described in a forthcoming paper. The underlying theory can be found i
ound in

[3].
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Appendix A

The following table contains filter coefficients {hk}ﬁzi’M for M = 2,4, 6 for one particular
choice of the shift 7. These coefficients have M — 1 vanishing moments,

k=3M
M= Y h(k—-ty)=0, I=1,...,M—1
k=1

where 77 is the shift, and have been provided to the authors by I. Daubechies (see also Section
3.2 above). For M = 2 there are explicit expressions for {hx}5¥=3M, and with 7, = 5, they are

, _VB-3 , _1-VE |, _3-Vi
1= 16\/5, 2—16\/57 3 = 8\/5,

pooYi5+3 V15413 _9-+/15
4 8\/i’ 5 = 16\/5, 6 16\/57

and for M = 4,6, the coefficients {hy} are presented in the table below.

Coeflicients Coeflicients
k hi k hi
M= 1 0.038580777747887 M=6 1 -0.0016918510194918
=25 2 -0.12696912539621 e =8 2 -0.0034878762198426
3 -0.077161555495774 3 0.019191160680044
4 0.60749164138568 4 0.021671094636352
5 0.74568755893443 5 -0.098507213321468
6 0.22658426519707 6 -0.056997424478478
7 0.45678712217269
8 0.78931940900416
M=4 1 0.0011945726958388 9 0.38055713085151
=8 2 -0.012845579755324 10  -0.070438748794943
3 0.024804330519353 11 -0.056514193868065
4 0.050023519962135 12 0.036409962612716
5 -0.15535722285996 13 0.0087601307091635
6 -0.071638282295294 14 -0.011194759273835
7 0.57046500145033 15 -0.0019213354141368
8 0.75033630585287 16 0.0020413809772660
9 0.28061165190244 17 0.00044583039753204
10 -0.0074103835186718 18 -0.00021625727664696
11 -0.014611552521451
12 -0.0013587990591632
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Appendix B.

In this Appendix we construct quadrature formulae using the compactly supported
wavelets of [4] which do not satisfy condition (3.8). These quadrature formulae are similar
to the quadrature formula (3.12) in that they do not require explicit evaluation of the function
@(z) and are completely determined by the filter coefficients {hz}£=2M. Our interest in these
quadrature formulae stems from the fact that for a given number M of vanishing moments of
the basis functions, the wavelets of [4] have the support of length 2M compared with 3M for
the wavelets satisfying condition (3.8). Since our algoritms depend linearly on the size of the
support, using wavelets of [4] and quadrature formulae of this appendix makes these algorithms
~ 50% faster. 4

We use these quadrature formulae to evaluate the coefficients s of smooth functions
without the pyramid scheme (2.12), where sf; are computed via (3.13) for j =1,...,n.

First, we explain how to compute {sQ}¥=N. Recalling the definition of s,

Q=23 / F(z)9(2"z — k + 1) de = 23 / flz +27"(k - 1)) p(2"2) d, (7.1)
we look for the coefficients {¢;}}=Y 1 such that
n I=M-1
2% / fEt+2m(k-1)p(2*z) de =23 3 o f(+27(k-1)), (1.2)
1=0

for polynomials of degree less than M. Using (7.2), we arrive at the linear algebraic system for
the coefficients ¢,

I=M-1
Z lmczszmcp(x)dx, m=0,1,...,M -1, (7.3)
=0

where the moments of the function o(z) are computed in terms of the filter coefficients {hx }¥=?M.
Given the coefficients ¢;, we obtain the quadrature formula for computing s?,
n I=M-1 )
s2=273 > af(l+27"(k - 1)) + 02 "(M+32)), (7.4)
=0

The moments of the function ¢ are obtained by differentiating (an appropriate number
of times) its Fourier transform ¢,

&(€) = (21)"1/2 / dz €% o(z). (7.5)
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and setting £ = 0. The expressions for the moments [ ™ ¢(z) dz in terms of the filter coefficients
{he}=M are found using formula for ¢ [4],

(20)/23(6) = T] mo(27%¢), (7.6)
7=1
where
k=2M .
mo(€) =272 3" hyelE-1)¢, (7.7)
k=1

The moments [ 2™ ¢(z) dz are obtained numerically (within the desired accuracy) by

recursively generating a sequence of vectors, {M7,}7=M-1 for r = 1,2,...,

j=m
M'I";;l-l — Z ( m ) 2m—](r+1)M1T~n_jM;, (7.8)
3=0
starting with
. k=2M
M, =272 N h(k-1)", m=0,...,M—1. (7.9)
k=1

!

Each vector {M7,}7=M~1 represents M moments of the product in (7.6) with r terms.

We now derive formulae to compute the coefficients sf; of smooth functions without the
pyramid scheme (2.12). Let us formulate the following

Proposition B1. Let the coefficients s, be those of a smooth function at some scale
j. Then

=M
sitl = 91/2 3 @Sk yai_s + 027 IM), (7.10)
=1

is a formula to compute the coefficients si}! at the scale j + 1 from those at the scale j. The
coefficients {g;}}=]M in (7.10) are solutions of the linear algebraic system

=M
oa@-1)"=M, m=0,..,M-1. (7.11)
=1
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and where M,, are the moments of the coeficients hy, scaled for convenience by 1/H(0) = 2-1/2,

k=2M
My =272 5" hk™,  m=0,...,M-1. (7.12)
k=1

Using Proposition B1 we prove the following

Lemma B1. Let the coefficients sJ, be those of a smooth function at some scale j.
Then

=M

siir =223 gf Sgr(m+1—2)+1 +0(2=(n=imnM)), (7.13)
=1

is a formula to compute the coefficients si+" at the scale j + r from those at the scale j, with
7 > 1. The coefficients {g] }}=M in (7.13) are obtained by recursively generating the sequence of
vectors {g! }}=M,...,{gf }}=M as solutions of the linear algebraic system

=M
g@i-)m=M,, m=0,...,M-1, (7.14)
=1

where the sequence of the moments {M}, = M,,},{M2},...,{M} is computed via

j=m
Myt =% ( m ) My L}, (7.15)

j=o \J
where
=M
L= q(1-1). (7.16)
=1

We note that for r = 1 (7.13) reduces to (7.10).
Proof of Proposition B1.

Let H(¢) denote the Fourier transform of the filter with the coefficients {h;}5=2M,
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k=2M )
H) = > hyet*t. (7.17)
k=1

Clearly, the moments M,, in (7.12) can be written as
M, =271/? (%a) H(8)|¢=o0, m=0,...,M—1. (7.18)

Also, the trigonometric polynomial H (&) can always be written as the product,

H(¢) = H(Q(®), (7.19)

where we choose @ to be of the form
=M )
Q) = Y. qe@E, (7.20)
=1

and H to have zero moments

(la)mﬂ(g)k:(,, m=1,...,M-1. (7.21)

]

By differentiating (7.19) appropriate number of times, setting £ = 0 and using (7.21) we arrive
at (7.11). Solving (7.11), we find the coefficients {g}}=M. _

Since moments of H vanish, the convolution with the coefficients of the filter H reduces
to the one-point quadrature formula of the type in (3.12). Thus applying H reduces to applying
Q and scaling the result by 1/ H(0) = 2-1/2, Clearly, there are only M coefficients of Q compared
to 2M of H, and the particular form of the filter @ (7.20) was chosen so that only every second
entry of s}, starting with k£ = 1, is multiplied by a coefficient of the filter Q.

Proof of Lemma B1.

Lemma B1 is proved by induction. Since for r = 1 (7.13) reduces to (7.10), we have to
show that given (7.13), it also holds if r is increased by one.

Let .§fc be the subsequence consisting of every 2" entry of s}, starting with £ = 1. Applying
filter {g/}/=M to s! in (7.13) is equivalent to applying filter P to 3, where

=M :
Pr(§) =Y gfel=1e (7.22)
=1

To obtain (7.13), where r is increased by one, we use the quadrature formula (7.10) of Proposition
B1. Therefore, the result is obtained by convolving &, with the coefficients of the filter Q(£) P"(€),
where Q(€) is defined in (7.20).

Let us construct a new filter Q7+ by factoring Q(£€)P"(£) similar to (7.19),
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QE)PT(£) = H(E)QH(¢), (7.23)

where we chose Q71! to be of the form

=M
QY& = Y gt NE (7.24)
=1

and H to have zero moments

(%a)m A@E)lco=0, m=1,...,M—1. (7.25)

Again, since moments of A vanish, the convolution with the coefficients of the filter A
reduces to scaling the result by 2-1/2,

To compute moments M+ of Q(£)PT(€) we differentiate Q(£)P7(¢) appropriate number
of times, set { = 0 and arrive at (7.15) and (7.16). To obtain the linear algebraic system (7.14)
for the coeflicients q{"'l, we differentiate (7.23) appropriate number of times, set £ = 0 and use
(7.25). ‘

Recalling that the filter P is applied to the subsequence &}, we arrive at (7.13), where
r is increased by one.
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Input
Size
)

64
128
256
512

1024

Input
Size
(N)

64
128
256
512

1024

0.12

0.48

1.92

7.68

30.72

0.12

0.48

1.92

7.68

30.72

Time
Tw
0.16
0.38
0.80
1.80

3.72

Time
Tw
0.16
0.34
0.84
1.72

3.30

Error of Single Precision Error of FWT
Multiplication Multiplication
Ta Lz -norm Ls -norm Lz -norm Ly - norm

776 1.26-1077 3.65-10~7 8.89-10"% 1.72-1077
32.62 2.17-1077 8.64-1077 1.12-1077 9.94.1077
96.44 2.81-1077 1.12.107% 1.25-1077 5.30-1077

252.72  4.21-1077 1.75-10~% 1.23-10~7 5.16-1077

605.74 6.64-10~7 3.90-10~% 1.36-10~7 5.04-10"7

Table 1: Numerical results for Example 1

Error of Single Precision Error of FWT
Multiplication Multiplication
Ta Lz -norm Lo -norm Lz -norm Lo - norm

8.62 1.87.1077 7.53.1077 8.24-10"% 2.87-1077
35.06 3.18-1077 8.62-10~7 1.14-10"7 3.79.1077
142.82 4.30-1077 2.03-10~° 1.33-10~7 4.72.107°7

574.86 6.63-107 4.42-10~% 1.44-10~7 4.80.1077

2,298.7 9.25-10"7 6.06-10"% 1.71-10~7 6.77-1077

Table 2: Numerical results for Example 2
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Compression
Coeflicient

Ccomp

1.39
2.22
3.93
7.33

14.09

Compression
Coeflicient

Ccomp

1.23
2.02
3.76
7.50

15.68




Input Time Error of Single Precision Error of FWT Compression

Size Multiplication Multiplication Coefficient
(N) T, Tw Ta Ly -norm Ly -norm Lz -norm Lo - norm Ceomp
64 012 0.12 10.28 2.64-10~7 7.19.-1077 8.09-1077 2.34-107° 1.73
128 0.48  0.30 4270 6.19-1077 3.94-107° 1.66-107° 8.02-107° 2.89
256 1.92 0.66 133.66 1.28-10~% 5.23.107° 2.51-107°% 1.21-10° 5.18
512 7.68 1.40 344.60 2.24-10"°% 1.35.10"% 3.75.107% 3.31-10° 9.70
1024 30.72 2.78 80590 4.45-10"® 2.42.10"% 6.40-107% 9.00-107° 18.60

Table 3: Numerical results for Example 3

Input Time Error of Single Precision Error of FWT Compression
Size Multiplication Multiplication Coeflicient
(N) T Tw Ta Ly -norm Lo -norm Lz -norm Lo - norm Ceomp

64 0.12 0.14 8.84 2.22.-107° 6.31-10"° 1.13-107% 2.33.107° 1.37
128  0.48 0.34 38.42 6.23-107% 1.62-10~* 2.07-10~% 5.19.107° 2.19
256  1.92  0.84 120.22 2.11-10~* 6.99.10* 2.99-10"° 8.46.10"° 3.82
512 7.68 1.76 310.86 7.90-10~* 2.47-10"% 4.08.-10"% 1.23.107° 7.04

1024 30.72 3.70 736.8 2.65-10"% 9.44.10"% 6.53-10~% 2.19.107° 13.43

Table 4: Numerical results for Example 4
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Input Time Error of Single Precision Error of FWT Compression

Size Multiplication Multiplication Coeflicient
N) Ts Tw Ta Lz -norm Lo -norm Lz -norm Lo - norm Ceomp
64 0.12 0.10 2.84 1.93-1077 5.04-1077 1.18-10% 3.11-1073 1.99
128 0.48  0.18 9.00 2.65-107 9.27.1077 1.54.107% 4.36-107° 3.51
256  1.92 0.42  23.62 3.76.1077 1.83.-10~% 2.02.-10"% 8.33.10"° 6.58
512 7.68 0.88 55.62 4.93.1077 2.46-10~° 3.19.10"% 3.91.10"2 12.81
1024 3072 174 123.84 7.53-1077 4.78-10"% 3.99.10~% 7.57.1072 25.19

Table 5: Numerical results for Example 5

Input Time Error of Single Precision Error of FWT Compression
Size Multiplication Multiplication Coefficient
(N) T Tw Ty Ly -norm Lo -norm Lz -morm L - norm Ceomp

64 0.12 0.10 422  2.59.10"7 876-10"7 2.42.10"% 4.58.107° 2.37
128  0.48  0.20 16.60 3.71-10~7 1.07-10"% 2.81-10% 8.61.-10° 4.13
256  1.92  0.38 66.70 5.03-10"7 2.12-10~° 3.62-10~° 1.38.102 8.25
512 7.68 0.82 263.72 8.71-1077 3.10-10~° 3.68-10~% 1.60.102 14.80

1024 30.72 150 1,107.6 1.12-107% 5.52.10% 4.56.10"% 4.12.10"2 33.07

Table 6: Numerical results for Example 6
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FIGURE CAPTIONS

Figure 1.

Representation of the decomposed matrix. Submatrices a, 8 and v on different scales are the
only nonzero submatrices. In fact, most of the entries of these submatrices can be set to zero
given the desired accuracy (see examples in Figures 2-8).

Figure 2.

Entries above the threshold of 1076 of the decomposed matrix of Example 1 are shown black.
Note that the width of the bands does not grow with the size of the matrix.

Figure 3.

Entries above the threshold of 106 of the decomposed matrix of Example 2. Vertical and
horizontal bands in the middle of submatrices as well as the diagonal bands are due to the
singularities of the kernel (matrix). Note, that in this case the kernel is not a convolution.

Figure 4.

Entries above the threshold of 10~6 of the decomposed matrix of Example 3. This matrix is a
one of two transition matrices to compute Legendre expansion from Chebyshev expansion.

Figure 5.

Entries above the threshold of 10~6 of the decomposed matrix of Example 4.

Figure 6.

Entries of the first column of matrices o and S (on the fine scale) of Example 4. We observe
fast decay away from the diagonal. The threshold is 1076,

Figure 7.

Entries above the threshold of 10~2 of the decomposed matrix of Example 5.

Figure 8.
Entries above the threshold of 10~3 of the decomposed matrix of Example 6.

Figure 9.

Entries of a compressed standard form for example one, the different bands represent “interac-
tions” between scales.

Figure 10.

Entries of compressed form of example 2.
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Figure 1

Representation of the decomposed matrix. Submatrices a, 3, and v on different scales are

the only non-zero submatrices.




Figure 2

Entries of the decomposed matrix of Example 1 whose absolute values exceed the threshold

107 are shown in black. Note that the bandwidth does not grow with the size of the matrix.




Figure 3

Entries of the decomposed matrix of Example 2 whose absolute values exceed the threshold
107% are shown in black. Vertical and horizontal bands in the submatrices (as well as the
diagonal bands) are due to the singularities of the kernel. Note that in this case, the kernel is

not a convolution.



Figure 4

Entries of the decomposed matrix of Example 3 whose absolute values exceed the threshold

107° are shown in black. This is one of the two transition matrices connecting the coefficients

of Legendre and Chebychev series.



Figure 5

Entries of the decomposed matrix of Example 4 whose absolute values exceed the threshold

10~% are shown in black.




LEVEL=1; DIFF #1.;

COLUMN #1

0.41203e+00 0.32050e+00
0.97874e-05 0.14130e-05
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
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0.00000e+00 0.00000e+00
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-.97397e-01 0.32056e+00
LEVEL=1; DIFF #2; COLUMN #1
0.15734e+00 -.18626e+00
0.18219%9e-02 0.48824e-03
0.11868e-04 0.72555e-05
0.10682e-05 0.00000e+00
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0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.00000e+00 0.00000e+00
0.84839%e-02 -.39957e-01

ABSOLUTE DEVIATION:

0.61758e-05

L2-NORM DEVIATION:

0.20595e-05

(oo NoooNoNoNoNoNoNoNoNoNoNoNoNoNoNoNe)
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.97068e-01
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
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.00000e+00
.00000e+00
.00000e+00
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.38867e-01
.17715e-03
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.00000e+00
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.00000e+00
.00000e+00
.00000e+00
.00000e+00
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0.00000e+00
0.00000e+00
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0.00000e+00
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0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00

-.39495e-02
0.00000e+00
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0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
-.66485e-02

-.12664e+00
0.38013e-04
0.21085e-05
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
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0.00000e+00
0.13852e-03

0.15142e-03
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
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0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.00000e+00
0.26841e-01

0.13501e-01
0.20515e-04
0.14834e-05
0.00000e+00
0.00000e+00
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Entries of the first column of the matrices @, 8 in Example 4 (fine scale). Observe the fast

decay of the elements away from the diagonal (the threshold is 10~6).



Figure 7

Entries of the decomposed matrix of Example 5 whose absolute values exceed the threshold
103,




/

Figure 8

Entries of the decomposed matrix of Example 6 whose absolute values exceed the threshold
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Figure 9

Entries of the compressed ‘standard form’ in Example 1. The different bands represent

‘interaction’ between different scales.




Figure 10

Entries of the compressed ‘standard form’ in Example 2.
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